WO2022156515A1 - 一种功能食品专用油脂基料油及其制备方法和应用 - Google Patents

一种功能食品专用油脂基料油及其制备方法和应用 Download PDF

Info

Publication number
WO2022156515A1
WO2022156515A1 PCT/CN2021/143605 CN2021143605W WO2022156515A1 WO 2022156515 A1 WO2022156515 A1 WO 2022156515A1 CN 2021143605 W CN2021143605 W CN 2021143605W WO 2022156515 A1 WO2022156515 A1 WO 2022156515A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
carbon chain
functional food
base oil
lipase
Prior art date
Application number
PCT/CN2021/143605
Other languages
English (en)
French (fr)
Inventor
曾哲灵
曾桂炳
欧阳振
杨博
余平
夏佳恒
马毛毛
万冬满
罗苗
曾诚
文学方
Original Assignee
南昌大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌大学 filed Critical 南昌大学
Priority to US18/273,751 priority Critical patent/US20240081360A1/en
Publication of WO2022156515A1 publication Critical patent/WO2022156515A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/01Other fatty acid esters, e.g. phosphatides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/02Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by the production or working-up
    • A23D7/04Working-up
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/007Other edible oils or fats, e.g. shortenings, cooking oils characterised by ingredients other than fatty acid triglycerides
    • A23D9/013Other fatty acid esters, e.g. phosphatides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/02Other edible oils or fats, e.g. shortenings, cooking oils characterised by the production or working-up
    • A23D9/04Working-up
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6454Glycerides by esterification
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01003Triacylglycerol lipase (3.1.1.3)

Definitions

  • the invention belongs to the technical field of edible oils and fats.
  • the invention relates to a base oil for special oils and fats for functional foods and a preparation method thereof.
  • Fatty acids are divided into short-chain fatty acids (fatty acids with 2-6 carbon atoms, Short-chain fatty acids, abbreviated as SCFA), medium-chain fatty acids (fatty acids with 8-12 carbon atoms, Medium- chain fatty acids, abbreviated as MCFA), long-chain fatty acids (fatty acids with more than 12 carbon atoms, Long-chain fatty acids, abbreviated as LCFA), which are divided into essential fatty acids (Essential fatty acids, abbreviated as EFA) according to whether the body can synthesize it by itself ), non-essential fatty acids (Non-essential fatty acids, abbreviated as NEFA).
  • SCFA Short-chain fatty acids
  • MCFA Medium-chain fatty acids
  • LCFA long-chain fatty acids
  • EFA essential fatty acids
  • non-essential fatty acids Non-essential fatty acids
  • Oils and fats are mixed fatty acid glycerides. According to the number of carbon atoms of the fatty acids connected to the glycerol backbone molecules, they are divided into Long-Chain Triglycerides (LCT), Medium and Long-Chain Triglycerides, Medium and Long-Chain Triglycerides. MLCT for short), Medium-Chain Triglycerides (MCT), and Short-Chain Triglycerides (SCT).
  • LCT Long-Chain Triglycerides
  • MCT Medium-Chain Triglycerides
  • SCT Short-Chain Triglycerides
  • Fat is one of the three major energy-producing nutrients and one of the six major nutrients in the human body.
  • the unit energy production of fat (9 kcal) is 2.25 times that of the other two energy-producing nutrients - carbohydrates (4 kcal) and protein (4 kcal). Because most of the fats contain essential fatty acids needed by the human body, if the human body lacks fats for a long time, it will lead to serious physiological disorders.
  • long carbon chain oils and long carbon chain fatty acids show that long carbon chain oils are absorbed, transported and stored in the body in the form of triglycerides.
  • the intracellular transport and metabolic energy of long carbon-chain fatty acids depend on the carnitine-acylcarnitine transferase system, which has large molecular weight, low solubility in blood, long half-life, slow and incomplete metabolism and clearance.
  • the excess long carbon chain fatty acids in the body are easily re-esterified into long carbon chain glycerides and accumulate in the blood, liver, fat and other tissues, affecting the functions of the liver, kidneys, lungs and other organs, and then causing lipid metabolism disorders and glucose metabolism disorders.
  • medium carbon chain oils and medium carbon chain fatty acids contained in medium carbon chain oils include caprylic acid (abbreviated as C), capric acid (abbreviated as Ca), lauric acid Acid (Lauric acid, abbreviated as La) three.
  • Medium-carbon chain oils are absorbed, transported and metabolized in the body in the form of free medium-carbon chain fatty acids.
  • Medium-carbon chain fatty acids have small molecular weight, high solubility in blood, and short half-life. They do not need to rely on the carnitine-acylcarnitine transferase system for in vivo transport. They can directly enter cells and mitochondria for oxidative energy production. The metabolism and production speed in the body are fast.
  • Medium removal is also fast and complete.
  • Medium-carbon chain fatty acids are not easy to re-esterify in the body, have little effect on liver, kidney, lung and other organs, do not compete with bilirubin for albumin, do not deepen jaundice, and save protein (nitrogen) The effect is more significant than that of long carbon-chain fatty acids .
  • Medium-carbon chain oil can quickly replenish energy in the body and improve the metabolic disorder of glucose and lipids in the body.
  • medium-carbon chain fatty acids are not essential fatty acids in the human body, nor can they be converted into functional fatty acids in the body, and cannot provide essential fatty acids and functional fatty acids for human growth and development.
  • Linoleic acid (L) is an omega-6 essential fatty acid
  • linolenic acid (Ln) is an omega-3 essential fatty acid.
  • Linoleic acid and linolenic acid are synthetic arachidonic acid (ARA), Eicosapentaenoic Acid (EPA), docosapentaenoic acid (DPA), Docosahexaenoic acid (DHA), Prostaglandin (PG), Thromboxane (TXA) and Leukotrienes (LT), which have important physiological functions Precursors or precursors of polyunsaturated fatty acids.
  • ARA arachidonic acid
  • EPA Eicosapentaenoic Acid
  • DPA docosapentaenoic acid
  • DHA Docosahexaenoic acid
  • PG Prostaglandin
  • TXA Thromboxane
  • LT Leukotrienes
  • These polyunsaturated fatty acids are an important component of the brain and retina, which can promote and maintain the development and growth of the brain nervous system and visual system, reduce the content of triglycerides and cholesterol in the blood, prevent the accumulation of cholesterol and fat on the arterial walls, healthy Cardiovascular and cerebrovascular system and immune system, improve glucose and lipid metabolism disorders in the body.
  • Most of the natural edible oils and fats are long carbon chain oils with a long carbon chain fatty acid content of more than 95% (w/w), such as soybean oil, palm oil, peanut oil, rapeseed oil, lard, corn oil, rice bran oil, tea Seed oil, olive oil, cocoa butter, etc.
  • the medium and long carbon chain oils with a medium carbon chain fatty acid content of more than 50% are only coconut oil (about 7.5% caprylic acid, 7.0% capric acid, and 48.0% lauric acid), palm kernel oil (about 3.9% caprylic acid, and 5.0% capric acid).
  • Cinnamomumcamphora seed kernel oil (abbreviated as CCSKO) (containing 0.32-0.47% caprylic acid, 56.49-61.98% capric acid, and 34.18-39.20% lauric acid) found by the inventors has a short carbon chain fatty acid content greater than 1%.
  • the only fat is tallow, which is produced by fermenting cow's milk.
  • Food-specific oils and fats used in cold drinks are still made of animal fat, hydrogenated vegetable oil, palm oil and other long carbon chain oils and caprylic acid. It is produced from medium and long carbon chain oils such as palm kernel oil and coconut oil with capric acid content below 30% w/w.
  • food-specific oils and fats are still rich in long-carbon chain oils, containing trans fatty acids, insufficient in medium-carbon chain fatty acids, and lacking essential fatty acids (linolenic acid and linoleic acid).
  • the patent discloses an oil composition for margarine and shortening containing medium carbon chain fatty acid triglyceride, long carbon chain fatty acid triglyceride or medium and long carbon chain fatty acid triglyceride and its preparation method.
  • the oil and fat composition contains more than 80 wt % of triglycerides, and relative to the total weight of all fatty acids forming the oil and fat composition, medium carbon chain fatty acids account for 8 to 15 wt %;
  • the oil and fat composition is obtained by physical mixing or transesterification, wherein the transesterification can be chemical transesterification or enzymatic transesterification.
  • the patent discloses a grease composition for vegetable fat powder and a vegetable fat powder prepared therefrom, and particularly relates to an oil composition for zero trans fatty acid vegetable fat powder and a vegetable fat powder prepared therefrom.
  • the oil composition for the zero-trans fatty acid vegetable fat powder is characterized in that: in all fatty acids forming the oil composition, the weight sum of the medium carbon chain fatty acid and the long carbon chain fatty acid is more than 98 wt%, and the medium carbon chain fatty acid is more than 98 wt%.
  • the weight ratio to long carbon chain fatty acids is 10-35:65-90.
  • the non-trans fatty acid non-dairy non-dairy powder prepared by the oil composition for non-trans fatty acid non-dairy non-dairy powder of the present invention solves the problem that the high trans fatty acid content will cause harm to the body in the traditional non-trans fatty acid powder using hydrogenated vegetable oil as a raw material. .
  • Patent (CN201310717548) discloses a special oil for ice cream, characterized in that, relative to the total weight of all fatty acids forming the special oil, medium carbon chain fatty acids account for 5%-25%; In terms of total weight, it contains 75%-95% of component B; wherein, the medium carbon chain fatty acid is a fatty acid with a carbon number of 6-10; the component B is selected from palm oil, palm kernel oil and both group of modified products.
  • the present invention also provides an ice cream composition prepared from the special fat and oil for ice cream of the present invention.
  • US Patent discloses a cooking oil with a medium carbon chain fatty acid content of 5-23% and a mass content of triglycerides containing two medium carbon chain fatty acid molecules of 1-20%.
  • Patent (CN106490189A) discloses a margarine with low oil content and no trans fatty acid prepared by using functional oil, wherein the content of functional oil such as medium carbon chain oil is 5-9%.
  • Patent (CN103315071A) discloses a method for preparing non-hydrogenated vegetable oil after preparation of non-hydrogenated vegetable oil.
  • the content of palm kernel oil and coconut oil used in the patent is 18% to 30%, and the amount of essential fatty acids is not considered .
  • Patent (JP2015211666A) discloses that a medium carbon chain fatty acid triglyceride and a long carbon chain fatty acid triglyceride are used to prepare margarine after a certain proportion of transesterification, wherein the content of the medium carbon chain triglyceride used ranges from 0.5% to 100%, does not take into account the amount of essential fatty acids.
  • the above invention products all have the existence of "the medium carbon chain fatty acid content in the special oil for medium and long carbon chain food is less than 30% (w/w), the medium carbon chain fatty acids contained are all caprylic acid and capric acid, essential fatty acids (linolenic acid and Linoleic acid) content is low and the proportion is unreasonable" and so on.
  • the present invention is achieved through the following technical solutions.
  • the first object of the present invention is to provide a special oil base oil for functional food, with camphor seed oil or mixed oil esters similar to camphor seed oil fatty acid composition as the main raw material, with pangasius stearin or palm High-melting fats such as stearin and linolenic acid are used as auxiliary raw materials, and base oils for functional foods are constructed through transesterification.
  • the special oil base oil for functional food has the characteristics of wide melting range, can significantly improve glucose and lipid metabolism disorders in the body, balance and supplement essential fatty acids and functional fatty acids in the body, and quickly replenish energy in the body.
  • the special oil base oil for functional food according to the present invention is constituted by ternary transesterification of medium carbon chain glycerides, high melting point fats and linolenic oils.
  • the medium carbon chain glycerides include camphor tree seed oil and mixed oil esters with a fatty acid composition similar to that of camphor tree seed oil.
  • the high melting point fat has a melting point range of 44-52° C., including pangasius oil stearin, palm stearin and the like.
  • the linolenic acid oils include perilla seed oil, linseed oil and the like.
  • the fatty acid of the special oil base oil for functional food according to the present invention is measured by the mass of fatty acid, the mass ratio of medium carbon chain fatty acid is 63% to 69%, and the mass ratio of linoleic acid and linolenic acid in the long carbon chain fatty acid is 0.5 .
  • the mass ratio of medium carbon chain fatty acids to the total fatty acids in the base oil for functional food special oils and fats is 65%.
  • the medium-carbon chain fatty acids are derived from camphor tree seed oil or mixed oil esters with a fatty acid composition similar to that of camphor tree seed oil.
  • Long carbon chain fatty acids are derived from pangasius oil stearin or palm stearin and other fats with a melting point of 44 to 52°C, and linolenic acid oils.
  • the medium carbon chain glycerides used in the special oil base oil for functional food according to the present invention are obtained from camphor tree seed oil.
  • the special oil base oil for functional food of the present invention is 5.8%-15.6% at 25°C and 0%-8.3% at 30°C.
  • the SFC of the base oil for functional foods is 13.8% at 25°C and 7.5% at 30°C.
  • camphor tree seed oil (Cinnamomumcamphora Seed Kernel Oil, abbreviated as CCSKO) contains about 0.32-0.47% of caprylic acid, 56.49-61.98% of capric acid, 34.18-39.20% of lauric acid, and the content of medium carbon chain fatty acid reaches More than 95% belong to natural medium carbon chain glycerides.
  • the second object of the present invention is to provide a preparation method of the above-mentioned special oil base oil for functional food.
  • the preparation method of a special oil base oil for functional food is as follows: using lipase as a catalyst, under suitable temperature and stirring intensity, the medium carbon chain glycerides are mixed with high melting point fat, linolenic acid, etc.
  • the oil is directly subjected to ternary transesterification to obtain the special oil base oil for functional food in one step.
  • the mass ratio of medium carbon-chain fatty acids in the base oil for functional food special oils and fats is 63%-69%
  • the mass ratio of linoleic acid to linolenic acid in the long-carbon-chain fatty acids is 0.5.
  • the medium carbon chain fatty acid in the medium carbon chain glyceride of the special oil base oil for functional food accounts for 65% by mass.
  • Described lipase is lipase Lipozyme RM IM, lipase Lipozyme TL IM, lipase Novozyme 435, lipase Staphylococcus caprae lipase.
  • the lipase is lipase Staphylococcus caprae lipase.
  • the amount of the lipase added is 5-25% according to the mass percentage of the mixed oil, the ternary transesterification reaction temperature is 35-55°C, and the ternary transesterification reaction time is 1-8 h.
  • the amount of the lipase added is 10% according to the mass percentage of the mixed oil, the ternary transesterification reaction temperature is 50°C, and the ternary transesterification reaction time is 4h.
  • the third object of the present invention is the application of the above-mentioned special grease base oil for functional food in food.
  • the food includes, but is not limited to, oil powder, margarine, and sports nutrition food.
  • the base oil for functional food special oil has a wide melting range, can significantly improve glucose and lipid metabolism disorders in the body, balance and supplement essential and functional fatty acids in the body, and quickly replenish energy, and can satisfy consumers, especially those who are overweight and obese.
  • fatty liver, hyperlipidemia, hyperglycemia, high blood pressure, high blood viscosity, hyperuricemia, hyperinsulinemia and other metabolic syndrome patients and athletes' dietary and nutritional needs can be widely used in oil powder, artificial Cream and sports nutrition food can improve human health and living standards, and have significant social, ecological and economic benefits.
  • Fig. 1 is the influence of the mass ratio of the medium carbon chain fatty acid to the total fatty acid of the base stock oil for functional food special oils and fats in Example 1 on various indexes of the obese model mice, wherein, a is the influence on the weight of the mice; b is the effect on the body fat coefficient of mice; c is the effect on serum triglyceride (TG) in mouse serum; d is the effect on mouse serum total cholesterol (TC).
  • a is the influence on the weight of the mice
  • b is the effect on the body fat coefficient of mice
  • c is the effect on serum triglyceride (TG) in mouse serum
  • d mouse serum total cholesterol
  • Fig. 2 is the influence of the mass ratio of medium-carbon chain fatty acids to total fatty acids in the base oil for functional food special oils and fats in Example 1 on various indexes of obese model mice, wherein a is the effect on the serum low-density lipoprotein of mice (LDL-C); b is the effect on mouse serum high-density lipoprotein (HDL-C); c is the effect on mouse serum fasting blood glucose (FBG); d is the effect on mouse serum fasting insulin (FINs )Impact.
  • LDL-C serum low-density lipoprotein of mice
  • HDL-C mouse serum high-density lipoprotein
  • FBG mouse serum fasting blood glucose
  • FINs mouse serum fasting insulin
  • Fig. 3 is the influence of the mass ratio of medium-carbon chain fatty acids to total fatty acids in the base oil for functional food special oils and fats in Example 1 on various indicators of obese model mice, wherein a is the coefficient of insulin resistance in mice (HOMA -IR); b is the effect on mouse serum alanine aminotransferase (ALT); c is the effect on mouse serum aspartate aminotransferase (AST).
  • a is the coefficient of insulin resistance in mice (HOMA -IR)
  • b is the effect on mouse serum alanine aminotransferase (ALT)
  • c is the effect on mouse serum aspartate aminotransferase (AST).
  • Figure 4 shows the effect of the mass ratio of medium carbon chain fatty acids to total fatty acids in the base oil for functional food oils and fats on SFC at different temperatures.
  • H-BO--base oil feed for high-fat functional foods NC--basic feed (AIN-93M) group, NR--recovery group, HFD--high-fat feed ( D12451) group, the H-BO group with BO1-MCFA accounting for 63% of the total fatty acid mass ratio, the H-BO group with BO2-MCFA accounting for 65% of the total fatty acid mass ratio, and the BO3-MCFA accounting for 67% of the total fatty acid mass ratio
  • the ratio of BO4-MCFA to the total fatty acid was 69% of the H-BO group.
  • MCT medium-chain triacylglycerol
  • the determination method of Sn-2 fatty acid content refers to the national standard GB/T 24894-2010 and GB 5009.168-2016.
  • the freezing point determination method refers to SN/T0801.17-2010.
  • GC model Agilent7890B
  • Column DB-23 fused silica capillary column (30m*0.25mm*0.25 ⁇ m).
  • HPLC model Agilent1260 Column: C18 column (5 ⁇ m*4.6mm*200mm).
  • camphor tree seed oil is self-made, and the pangasius oil stearin, palm stearin, perilla seed oil, and linseed oil used are all purchased from the market; lipase Lipozyme RM IM is purchased from Nuo Vision Biotechnology Co., Ltd., lipase Lipozyme TL IM was purchased from Novozymes Biotechnology Co., Ltd., lipase Novozyme 435 was purchased from Novozymes Biotechnology Co., Ltd., and lipase Staphylococcus caprae lipase was self-made.
  • Example 1 of the present invention the feeds used in the animal test are basic feed (AIN-93M), high-fat feed (D12451) and base oil feed for high-fat functional foods (H-BO). See Table 1-1 and Table 1-2 for the production capacity ratio.
  • Example 1 of the present invention compared with the obesity model mice in the high-fat feed group, the base oil for fats and oils for functional foods has the effect of significantly improving glucose and lipid metabolism disorders in vivo, which means that the improvement of the obesity model is small.
  • AST transaminase
  • ALT alanine transaminase
  • other indicators decreased or increased by 15% or more.
  • the fatty acids of camphor tree seed oil, pangasius oil stearin, and perilla seed oil raw materials used in this example are raw materials, and their composition and distribution are shown in Table 2. According to the mass ratio of medium carbon chain fatty acids to be 63%, 65%, 67% and 69%, and the mass ratio of linoleic acid to linolenic acid to be 0.5, appropriate amounts of camphor tree seed oil, soybean oil and linseed oil were weighed respectively in In different esterification reactors, lipase Staphylococcus caprae lipase was added according to 10% (w/w) of the mass of the mixed oil. The reaction temperature was 50 °C, and the stirring reaction time was 4 h.
  • the lipase in the reaction solution was separated, and the ternary transesterification rate and SFC (solid fat coefficient) were measured, and the mass ratios of medium-carbon chain fatty acids to total fatty acids were 63%, 65%, and 67%, respectively. %, 69%, the mass ratio of linoleic acid and linolenic acid is 0.5, the ternary transesterification rates are 73.13%, 74.05%, 74.35%, 73.91%, respectively, and the SFC at 25 °C are 15.6%, 13.8%, 9.7 %, 5.8%, and SFC at 30°C are 8.3%, 7.5%, 3.8%, 0% respectively.
  • the fatty acid composition of the base oil for functional food special oils and fats with different mass ratios of medium carbon chain fatty acids to total fatty acids is shown in Table 3.
  • Table 2 Fatty acid composition of camphor tree seed oil, pangasius stearin and perilla seed oil
  • Base oil fatty acid composition (L/Ln is 0.5)
  • L/Ln refers to the mass ratio of linoleic acid to linolenic acid.
  • mice 3-4-week-old C57BL/6 male mice, weighing 13-16 g, were used in the experiment.
  • the mice were fed in standard cages with free access to food and water, 12h/12h day and night cycle light, the rearing temperature was 23 ⁇ 2°C, and the humidity was 40%-60%.
  • the mice were randomly divided into two groups, 10 mice as the basal diet group (Normal Chow, NC group), fed with the basal diet AIN-93M, and 60 mice as the high-fat diet.
  • Group High Fat Diet, HFD group
  • Mice in the HFD group whose body weight was 20% or more heavier than the average body weight of the mice in the NC group were selected as nutritional obesity model mice and used in subsequent experiments.
  • the nutritionally obese model mice were randomly divided into 6 groups according to their body weight, namely the HFD group, the recovery group (NR group), and the 4 groups of base oil for functional food special oils and fats (BO1 group, BO2 group, BO3 group, BO4 group), continue to feed for 10 weeks.
  • the mice in the HFD group continued to be fed with high-fat diet, while the mice in the NR group were fed with basal diet.
  • the mice in the BO1, BO2, BO3, and BO4 groups were fed with medium-carbon chain fatty acids with a mass ratio of 63%, 65%, and 65%, respectively.
  • the specific feed formula of the feed used in the experiment is shown in Table 1-1 and Table 1-2.
  • TG triglyceride
  • TC total cholesterol
  • LDL-C low-density lipoprotein cholesterol
  • HDL-C High-density lipoprotein cholesterol
  • FBG fasting blood glucose
  • FINs insulin
  • alanine aminotransferase also known as alanine aminotransferase, ALT
  • aspartate aminotransferase also known as aspartate aminotransferase
  • Peritesticular fat and perirenal fat of mice were separated and weighed, and the sum of peritesticular fat and perirenal fat was taken as the mass of abdominal fat.
  • Fat coefficient fat as percentage of body weight
  • HOMA-IR [(FBG(mmol/L) ⁇ FINs(ng/ml)]/22.5) were calculated.
  • SPSS 19.0 statistical software package (SPSS Inc., Chicago, IL, USA) was used for data processing. The results of animal experiments are shown in Figures 1 to 3.
  • mice were 22.7%, 14.0%, 18.0% lower, and the levels of TG, TC and LDL-C in the BO3 group were 24.3%, 18.9%, and 18.0% lower than those in the high-fat diet group (HFD group), respectively.
  • the BO4 group The levels of TG, TC and LDL-C in mice were 25.6%, 19.4%, and 18.6% lower than those in the high-fat diet group (HFD group), respectively; indicating that the proportion of medium carbon chain fatty acids was 65%, 67%, and 69%.
  • BO with a mass ratio of linoleic acid to linolenic acid in long carbon chain fatty acids significantly reduced blood lipids in mice.
  • FBG level, FINs level and HOMA-IR index of mice in BO3 group were 25.4%, 23.3%, and 38.6% lower than those in high-fat diet (HFD) mice, respectively.
  • the IR index was 25.2%, 21.2%, and 38.3% lower than that of the high-fat diet (HFD) mice, respectively.
  • the levels of FBG, FINs and HOMA-IR index of the BO1 group were lower than those of the high-fat diet (HFD) mice, respectively.
  • the base oil for functional foods has a great influence on the serum ALT and AST levels of mice.
  • the ALT and AST levels of the basal diet group (NC group), the recovery group (NR group), and the BO4, BO3, BO2, and BO1 groups were all at lower levels, and the ALT and AST levels of the BO4 group were respectively Compared with the mice in the high-fat diet group (HFD group), the ALT and AST levels of the mice in the BO3 group were 43.1% and 30.0% lower than those in the high-fat diet group (HFD group).
  • the ALT and AST levels of the mice in the high-fat diet group were 40.7% and 27.9% lower than those in the high-fat diet group (HFD group).
  • % indicating that the mass ratio of medium carbon chain fatty acids to long carbon chain fatty acids is 63%, 65%, 67%, and 69%, and the mass ratio of linoleic acid to linolenic acid in long carbon chain fatty acids is 0.5.
  • Special oils for functional foods The base oil has the effect of significantly repairing liver damage in mice.
  • Figures 1 to 4 comprehensively measure the melting range of the base oil for functional foods, and the effects of improving fat metabolism disorders in mice and efficiently supplementing essential fatty acids and functional fatty acids in the body.
  • the mass ratio of carbon chain fatty acids to total fatty acids is 65% to 69%, the effect of improving fat metabolism disorder in mice and efficiently supplementing essential fatty acids and functional fatty acids in vivo is remarkable.
  • the base oil for functional food special oils and fats with medium carbon chain fatty acids accounting for 65% of the total fatty acids has an SFC of 13.8% at 25°C and 7.5% at 30°C, and has a wide melting range. Therefore, it is most preferable to select the base oil for functional food special oils and fats in which the medium carbon chain fatty acids account for 65% of the total fatty acids by mass.
  • the mass ratio of linoleic acid and linolenic acid is 0.5, take by weighing 164.06g camphor tree seed oil, 65.48g pangasius oil stearin and 20.46g
  • the mixed oil composed of perilla seed oil was placed in 4 reactors of the same specification, and immobilized lipase Novozyme 435, immobilized lipase Staphylococcus caprae lipase, immobilized lipase Staphylococcus caprae lipase, immobilized lipase Novozyme 435, immobilized lipase Staphylococcus caprae lipase, Lipase Lipozyme RM IM, immobilized lipase Lipozyme TL IM in 4 reactors.
  • the ternary transesterification reaction conditions are: magnetic stirring (stirring bar 30mm ⁇ 10mm, rotating speed 100rpm), the reaction temperature selects the optimum temperature recommended by each lipase, respectively (immobilized lipase Novozyme 435, immobilized lipase Lipozyme RM IM , immobilized lipase Lipozyme TL IM) 60 °C, (immobilized lipase Staphylococcus caprae lipase) 50 °C, the reaction time is 4h.
  • the HPLC-ELSD detection method was used to determine the ternary transesterification rate.
  • the effect of lipase species on the ternary transesterification rate was compared and analyzed, and the lipase species was selected. It can be seen from Table 4 that the lipase Staphylococcus caprae lipase is used to prepare the base oil for functional food special oils and fats with the highest ternary transesterification rate, reaching 74.34% (w/w), and the lipase with the highest catalytic efficiency is Staphylococcus caprae lipase.
  • the mass ratio of medium carbon chain fatty acids to total fatty acids is 65%, and the mass ratio of linoleic acid to linolenic acid is 0.5, weigh 164.06g of camphor tree seed oil, 65.48g of pangasius oil stearin and 20.46 g of g perilla seed oil in the reactor.
  • the ternary transesterification reaction conditions are: lipase Staphylococcus caprae lipase is 5% to 25% (the percentage of mixed oil mass), magnetic stirring (stirring bar 30mm ⁇ 10mm, rotating speed 100rpm), the reaction temperature is 50°C, and the reaction time is 4h .
  • the ternary transesterification rate was determined by HPLC-ELSD detection method. The effect of the amount of enzyme added on the ternary transesterification rate was compared and analyzed, and the amount of enzyme added was determined. It can be seen from Table 5 that when the amount of enzyme added is 10%, the tribasic transesterification rate is the highest, reaching 74.21% (w/w), and the optimal amount of enzyme added is 10%.
  • the mass ratio of linoleic acid and linolenic acid is 0.5, take by weighing 164.06g camphor tree seed oil, 65.48 g pangasius oil stearin and 20.46 g g perilla seed oil in the reactor.
  • the ternary transesterification reaction conditions are: lipase Staphylococcus caprae lipase is 10% (percentage of mixed oil mass), magnetic stirring (stirring bar 30mm ⁇ 10mm, rotating speed 100rpm), reaction temperature is 35 ⁇ 55°C, and reaction time is 4h.
  • the ternary transesterification rate was determined by HPLC-ELSD detection method. The effect of reaction temperature on ternary transesterification rate was compared and analyzed, and the reaction temperature was determined. It can be seen from Table 6 that when the reaction temperature is 50°C, the tribasic transesterification rate is the highest, reaching 74.33% (w/w), and the optimum reaction temperature is 50°C.
  • the mass ratio of medium carbon chain fatty acids to total fatty acids is 65%, and the mass ratio of linoleic acid to linolenic acid is 0.5, weigh 164.06g of camphor tree seed oil, 65.48g of pangasius oil stearin and 20.46 g of g perilla seed oil in the reactor.
  • the ternary transesterification reaction conditions are: lipase Staphylococcus caprae lipase is 10% (percentage of mixed oil mass), magnetic stirring (stirring bar 30mm ⁇ 10mm, rotating speed 100rpm), reaction temperature is 50 °C, reaction time is 1 ⁇ 8h.
  • the ternary transesterification rate was determined by HPLC-ELSD detection method. The effect of reaction time on the ternary transesterification rate was compared and analyzed, and the reaction time was determined. It can be seen from Table 7 that when the reaction time is 4h, the tribasic transesterification rate is the highest, reaching 74.36% (w/w), and the optimal reaction time is 4h.
  • the mass ratio of medium carbon chain fatty acids to total fatty acids of 65% and the mass ratio of linoleic acid to linolenic acid of 0.5 weigh 164.06g of camphor tree seed oil, 63.62g of palm stearin and 22.32g of flax seed oil in the reactor.
  • the ternary transesterification reaction conditions are: lipase Staphylococcus caprae lipase is 10% (the percentage of mixed oil mass), magnetic stirring (stirring bar 30mm ⁇ 10mm, rotating speed 100rpm), the reaction temperature is 50 °C, and the reaction time is 4h.
  • the ternary transesterification rate was determined to be 74.34% by HPLC-ELSD detection method, and the fatty acid content in the base oil for functional foods was determined by GC.
  • Caprylic acid 0.49%, capric acid 36.71%, lauric acid 27.56%, linoleic acid 2.52%, linolenic acid 4.98%.
  • the functional non-dairy creamer is prepared by utilizing the base stock oil for functional food special oil and other ingredients prepared by each embodiment, and the specific operation steps of its preparation process are as follows:
  • Shearing and emulsification use a shearing machine to shear the liquid for about 1 to 2 minutes;
  • Drying and granulation use a pressure sprayer and a fluidized bed for drying and granulation, the inlet air temperature is 180°C, and the outlet air temperature is 90-100°C.
  • the functional margarine is prepared by utilizing the base oil product and other ingredients for functional food special oils and fats prepared by each embodiment, and the specific operation steps of its preparation process are as follows:
  • Shear emulsification Mix the oil phase and the water phase evenly at 65°C, and use a shearing machine to shear the liquid for about 1 to 2 minutes;
  • Maturation transfer the emulsion to a 20°C incubator for ageing for 24h, and then refrigerate and age at 4°C for 24h to obtain functional margarine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Mycology (AREA)
  • Edible Oils And Fats (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

一种功能食品专用油脂基料油及其制备方法和应用,由中碳链甘油酯、高熔点脂肪、亚麻酸类油脂进行三元酯交换而构成;以脂肪酶为催化剂,在温度及搅拌强度下,使中碳链甘油酯与高熔点脂肪、亚麻酸类油脂进行三元酯交换,一步得到所述功能食品专用油脂基料油。功能食品专用油脂用基料油的熔程较宽、能显著改善体内糖脂代谢紊乱、平衡补充体内必需和功能脂肪酸、快速补充能量,可满足消费者,尤其是超重、肥胖、脂肪肝、高血脂、高血糖、高血压、高血粘稠度、高尿酸血症、高胰岛素血症等代谢综合症患者及运动员的饮食和营养需求,可广泛应用于油脂粉末、人造奶油、运动营养食品。

Description

一种功能食品专用油脂基料油及其制备方法和应用 技术领域
本发明属于食用专用油脂技术领域。涉及功能食品专用油脂用基料油及其制备方法。
背景技术
脂肪酸依据脂肪酸碳链的长度分为短链脂肪酸(碳原子数为2-6的脂肪酸,Short-chain fatty acids,缩写为SCFA)、中链脂肪酸(碳原子数为8-12的脂肪酸,Medium-chain fatty acids,缩写为MCFA)、长链脂肪酸(碳原子数大于12的脂肪酸,Long-chain fatty acids,缩写为LCFA),依据机体能否自行合成分为必需脂肪酸(Essential fatty acids,缩写为EFA)、非必需脂肪酸(Non-essential fatty acids,缩写为NEFA)。
油脂为混合脂肪酸甘油酯,依据油脂甘油骨架分子上连接的脂肪酸的碳原子数,分为长碳链油脂(Long-Chain Triglycerides,简称LCT)、中长碳链油脂(Medium and Long-Chain Triglycerides,简称MLCT)、中碳链油脂(Medium-Chain Triglycerides,简称MCT)、短碳链油脂(Short-Chain Triglycerides,简称SCT)。
油脂是人体三大产能营养素、六大主要营养素之一。油脂的单位产能量(9 kcal)是其他两种产能营养素——碳水化合物(4 kcal)、蛋白质(4 kcal)的2.25倍。因绝大部分油脂中含有人体所需的必需脂肪酸,人体若长期缺食油脂、会导致严重的生理机能紊乱。
国内外有关长碳链油脂和长碳链脂肪酸的研究报道表明,长碳链油脂是以甘油三酯的形式在体内被吸收、转运、存储。长碳链脂肪酸在细胞内的转运和代谢产能需依赖肉毒碱-酰基肉毒碱转移酶系统,其分子量较大、血液中溶解度较小、半衰期较长、代谢和清除较慢而不完全。体内多余的长碳链脂肪酸易于再酯化为长碳链甘油酯而积蓄于血液、肝脏、脂肪等组织内,影响肝、肾、肺等脏器功能,进而引发脂代谢紊乱、糖代谢紊乱。长期过量摄入富含长碳链油脂的高能食物是引发超重、肥胖、脂肪肝、高血脂、高血糖、高血压、高血粘稠度、高尿酸血症、高胰岛素血症等代谢综合症的主要原因之一。
国内外有关中碳链油脂和中碳链脂肪酸的研究报道表明,中碳链油脂所含中碳链脂肪酸有辛酸(Caprylic acid,缩写为C)、癸酸(Capric acid,缩写为Ca)、月桂酸(Lauric acid,缩写为La)三种。中碳链油脂是以游离中碳链脂肪酸的形式在体内被吸收、转运、代谢。中碳链脂肪酸分子量小、血液中溶解度大、半衰期短,体内转运不需依赖肉毒碱-酰基肉毒碱转移酶系统,可直接进入细胞和线粒体进行氧化产能,体内代谢和产能速度快,血液中清除速度也快且完全。中碳链脂肪酸在体内不易再酯化,对肝、肾、肺等脏器影响小,不与胆红素竞争白蛋白,不加深黄疸,节省蛋白质(节氮)作用比长碳链脂肪酸更显著。中碳链油脂具有快速补充体内能量、改善体内糖脂代谢紊乱作用。但中碳链脂肪酸不是人体必需脂肪酸,也不能在体内转化为功能脂肪酸,无 法提供人体生长发育所需必需脂肪酸和功能脂肪酸。
长碳链脂肪酸中的亚油酸(Linoleic acid,缩写为L)是一种ω-6必需脂肪酸,亚麻酸(linolenic acid,缩写为Ln)是一种ω-3必需脂肪酸。亚油酸、亚麻酸是体内合成花生四烯酸(Arachidonic acid,缩写为ARA)、二十碳五烯酸(Eicosapentaenoic Acid,缩写为EPA)、二十二碳五烯酸(DPA)、二十二碳六烯酸(Docosahexaenoic acid,缩写为DHA)、前列腺素(Prostaglandin,缩写为PG)、血栓烷(Thromboxane,缩写为TXA)以及白三烯(Leukotrienes,缩写为LT)等具有重要生理功能的多不饱和脂肪酸的前体或母体。这些多不饱和脂肪酸是大脑和视网膜的重要构成成分,具有促进和维持脑神经系统和视觉系统发育和生长、可降低血液中甘油三脂和胆固醇含量、防止胆固醇和脂肪在动脉壁上积聚、健康心脑血管系统和免疫系统、改善体内糖脂代谢紊乱作用。
天然食用油脂绝大部分是长碳链脂肪酸含量达95%(w/w)以上的长碳链油脂,如大豆油、棕榈油、花生油、菜籽油、猪油、玉米油、米糠油、茶籽油、橄榄油、可可脂等。中碳链脂肪酸含量达50%以上的中长碳链油脂只有椰子油(约含辛酸7.5%、癸酸7.0%、月桂酸48.0%)、棕榈仁油(约含辛酸3.9%、癸酸5.0%、月桂酸47.5%)、山苍籽核仁油(约含癸酸15.8%、月桂酸71.6%),中碳链脂肪酸含量达95%(w/w)以上的中碳链油脂只有本发明的发明人研究发现的樟树籽仁油(Cinnamomumcamphora seed kernel oil,缩写为CCSKO)(含辛酸0.32~0.47%、癸酸56.49~61.98%、月桂酸34.18~39.20%),短碳链脂肪酸含量大于1%的油脂只有通过发酵牛乳生产的牛酪脂。
应用于冷饮(冰淇淋、雪糕)、饮料(奶茶、代餐粉、咖啡)等的食品专用油脂——人造奶油和油脂粉末,至今仍以动物脂肪、氢化植物油、棕榈油等长碳链油脂以及辛酸癸酸含量低于30%w/w的棕榈仁油、椰子油等中长碳链油脂为原料生产。致使食品专用油脂至今还存在富含长碳链油脂、含反式脂肪酸、中碳链脂肪酸不足、缺乏必需脂肪酸(亚麻酸和亚油酸)之不足,长期食用含这些食品专用油脂食品的消费者易患超重、肥胖、脂肪肝、高血脂、高血糖、高血压、高血粘稠度、高尿酸血症、高胰岛素血症等代谢综合症疾病。
为克服长碳链食用专用油脂产品的弊端,国内外相关油脂研究人员相继研发出多种中长碳链食品专用油脂及其制备方法,主要以下几种:
专利(CN201310261549)公开了一种含中碳链脂肪酸甘油三酯、长碳链脂肪酸甘油三酯或中长碳链脂肪酸甘油三酯的人造奶油和起酥油用油脂组合物及其制备方法。相对于组合物的总重量而言,所述油脂组合物含有80wt%以上的甘油三酯,相对于形成油脂组合物的全部脂肪酸的总重量而言,中碳链脂肪酸占8~15wt%;所述油脂组合物通过物理混合或酯交换反应获得,其中,所述酯交换反应可以是化学酯交换反应或酶促酯交换反应。
专利(CN201310410498)公开了一种植脂末用油脂组合物及由此制备的植脂末,尤其涉及一种零反式脂肪酸植脂末用油脂组合物及由此制备的植脂末。所述零反式脂肪酸植脂末用油脂组合物的特征在于:在形成油脂组合物的全部脂肪酸中,中碳链脂 肪酸和长碳链脂肪酸的重量之和为98wt%以上,并且中碳链脂肪酸和长碳链脂肪酸的重量之比为10-35:65-90。利用本发明的零反式脂肪酸植脂末用油脂组合物所制备的植脂末解决了以氢化植物油为原料的传统植脂末中因反式脂肪酸含量过高而会对身体带来危害的问题。
专利(CN201310717548)公开了一种冰淇淋专用油脂,其特征在于,相对于形成所述专用油脂的全部脂肪酸的总重量而言,中碳链脂肪酸占5%-25%;相对于所述专用油脂的总重量而言,含有组分B75%-95%;其中,所述中碳链脂肪酸是碳数为6~10的脂肪酸;所述组分B选自于由棕榈油、棕榈仁油及二者的改性产品所组成的组。本发明还提供了由本发明的冰淇淋专用油脂制备的冰淇淋组合物。
美国专利(US2004/0191391Al)公开了一种中碳链脂肪酸含量为5-23%、含两个中碳链脂肪酸分子的甘油三酯质量含量为1-20%的烹饪食用油。
专利(CN106490189A)公开了一种使用功能性油脂制备的油脂含量低,不含反式脂肪酸的人造奶油,其中的中碳链油脂等功能性油脂的含量为5~9%。
专利(CN103315071A)公开了一种使用非氢化植物油经过调配后制备植脂鲜奶油的方法,该专利中使用的棕榈仁油和椰子油含量为18%~30%,且并未考虑必需脂肪酸的用量。
专利(JP2015211666A)公开了一种中碳链脂肪酸甘油三酯和长碳链脂肪酸甘油三酯经过一定比例酯交换后用于制备人造奶油,其中使用的中碳链甘油三酯的含量从0.5%~100%,并未考虑必需脂肪酸的用量。
以上发明产品皆存在“中长碳链食品专用油脂中的中碳链脂肪酸含量都低于30%(w/w)、所含中碳链脂肪酸皆为辛酸和癸酸、必需脂肪酸(亚麻酸和亚油酸)含量低且比例不合理”等问题。
因此,制备一种中碳链脂肪酸占脂肪酸总质量比为65%以上,且亚油酸比亚麻酸质量比为0.5,且符合功能食品专用油脂要求的功能食品专用油脂用基料油(简称BO)就显得极其重要。
发明内容
本发明所述是通过以下技术方案实现的。
本发明的第一个目的在于,提供一种功能食品专用油脂基料油,以樟树籽仁油或与樟树籽仁油脂肪酸组成相似的混合油酯为主要原料,以巴沙鱼油硬脂或棕榈酸硬脂等高熔点脂肪和亚麻酸类油脂为辅助原料,通过酯交换反应构建功能食品专用油脂用基料油。该功能食品专用油脂用基料油具有熔程较宽、能显著改善体内糖脂代谢紊乱、平衡补充体内必需脂肪酸和功能脂肪酸、快速补充体内能量的特点。
本发明所述的一种功能食品专用油脂基料油,由中碳链甘油酯、高熔点脂肪、亚麻酸类油脂进行三元酯交换而构成。
所述的中碳链甘油酯包括樟树籽仁油,以及与樟树籽仁油脂肪酸组成相似的混合油酯。
所述的高熔点脂肪其熔点范围为44~52℃,包括巴沙鱼油硬脂、棕榈硬脂等。
所述的亚麻酸类油脂包括紫苏籽油、亚麻籽油等。
本发明所述的功能食品专用油脂基料油的脂肪酸以脂肪酸质量计,中碳链脂肪酸所占质量比为63%~69%、长碳链脂肪酸中的亚油酸与亚麻酸质量比为0.5。优选的,所述的功能食品专用油脂用基料油的中碳链脂肪酸占总脂肪酸质量比为65%。
其中,中碳链脂肪酸来源于樟树籽仁油或与樟树籽仁油脂肪酸组成相似的混合油酯。长碳链脂肪酸来源于巴沙鱼油硬脂或棕榈硬脂等熔点在44~52℃的脂肪、亚麻酸类油脂。
优选的,本发明所述的功能食品专用油脂基料油中所用的中碳链甘油酯,取自樟树籽仁油。
本发明所述的功能食品专用油脂基料油以25℃和30℃时的SFC计,25℃时,SFC分别为5.8%~15.6%,30℃时,SFC分别为0%~8.3%。优选的,所述的功能食品专用油脂用基料油在25℃时的SFC为13.8%,30℃的SFC为7.5%。
本发明的发明人研究发现,樟树籽仁油(Cinnamomumcamphora Seed Kernel Oil,缩写为CCSKO)约含辛酸0.32~0.47%、癸酸56.49~61.98%、月桂酸34.18~39.20%,中碳链脂肪酸含量达95%以上,属于天然中碳链甘油脂。
本发明的第二个目的在于,提供一种上述功能食品专用油脂基料油的制备方法。
本发明所述的一种功能食品专用油脂基料油的制备方法,按如下步骤:以脂肪酶为催化剂,在适宜温度及搅拌强度下,使中碳链甘油酯与高熔点脂肪、亚麻酸类油脂直接进行三元酯交换,一步得到所述功能食品专用油脂基料油。其中,所述功能食品专用油脂用基料油的中碳链脂肪酸所占质量比为63%~69%,长碳链脂肪酸中亚油酸与亚麻酸质量比为0.5。
优选的,所述功能食品专用油脂基料油的中碳链甘油酯中的中碳链脂肪酸所占质量比为65%。
所述脂肪酶为脂肪酶Lipozyme RM IM、脂肪酶Lipozyme TL IM、脂肪酶Novozyme 435、脂肪酶Staphylococcus caprae lipase。优选的,所述的脂肪酶为脂肪酶Staphylococcus caprae lipase。
所述脂肪酶加入量按混合油质量的百分比为5~25%、三元酯交换反应温度35~55℃、三元酯交换反应时间1~8 h。优选的,所述脂肪酶加入量按混合油质量的百分比为10%、三元酯交换反应温度50℃、三元酯交换反应时间4h。
本发明的第三个目的在于,上述功能食品专用油脂基料油在食品的应用。
所述的食品,包括但不限于油脂粉末、人造奶油、运动营养食品。
本发明所述的功能食品专用油脂用基料油的熔程较宽、能显著改善体内糖脂代谢紊乱、平衡补充体内必需和功能脂肪酸、快速补充能量,可满足消费者,尤其是超重、肥胖、脂肪肝、高血脂、高血糖、高血压、高血粘稠度、高尿酸血症、高胰岛素血症等代谢综合症患者及运动员的饮食和营养需求,可以广泛地应用于油脂粉末、人造奶 油、运动营养食品,提高人类的健康和生活水平,具有显著的社会效益、生态效益和经济效益。
附图说明
图1为实施例1中功能食品专用油脂用基料油的中碳链脂肪酸占总脂肪酸的质量比对肥胖模型小鼠的各类指标的影响,其中,a为对小鼠体重的影响;b为对小鼠体内脂肪系数的影响;c为对小鼠血清中血清甘油三酯(TG)的影响;d为对小鼠血清总胆固醇(TC)的影响。
图2为实施例1中功能食品专用油脂用基料油的中碳链脂肪酸占总脂肪酸的质量比对肥胖模型小鼠的各类指标的影响,其中,a为对小鼠血清低密度脂蛋白(LDL-C)的影响;b为对小鼠血清高密度脂蛋白(HDL-C)的影响;c为对小鼠血清空腹血糖(FBG)的影响;d为对小鼠血清空腹胰岛素(FINs)的影响。
图3为实施例1中功能食品专用油脂用基料油的中碳链脂肪酸占总脂肪酸的质量比对肥胖模型小鼠的各类指标的影响,其中,a为对小鼠胰岛素抵抗系数(HOMA-IR)的影响;b为对小鼠血清谷丙转氨酶(ALT)的影响;c为对小鼠血清谷草转氨酶(AST)的影响。
图4为功能食品专用油脂用基料油的中碳链脂肪酸占总脂肪酸的质量比对不同温度下SFC的影响。
在图1-图4中,H-BO--高脂功能食品专用油脂用基料油饲料,NC--基础饲料(AIN-93M)组,NR--恢复组,HFD--高脂饲料(D12451)组,BO1—MCFA占总脂肪酸质量比为63%的H-BO组,BO2—MCFA占总脂肪酸质量比为65%的H-BO组,BO3—MCFA占总脂肪酸质量比为67%的H-BO组,BO4—MCFA占总脂肪酸质量比为69%的H-BO组。
具体实施方式
下面结合具体实施例,对本发明作进一步的说明。下列实施例中未注明具体条件的实验方法,通常按照常规条件。除非另外说明,否则所有的百分数、比例、比率、或百分数按照质量计算。
除非特别说明,实施例中所使用的所有专业与科学用语与本领域技术人员所熟知的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可用于本发明中。实施例中所述的较佳实施方法与材料仅做示范之用。
在本发明的下述实施例中。
脂肪酸含量测定方法参考GB 5009.168-2016。
酯交换率测定方法参考《Characterization of medium-chain triacylglycerol(MCT)-enriched seed oil from Cinnamomumcamphora(Lauraceae)and its oxidative stability》(Journal of Agricultural and Food Chemistry,2011,59(9):4771-4778)。
Sn-2位脂肪酸含量测定方法参考国标GB/T 24894-2010、GB 5009.168-2016。
凝固点测定方法参考SN/T0801.17—2010。
GC型号:Agilent7890B色谱柱:DB-23熔融石英毛细管柱(30m*0.25 mm*0.25μm)。
HPLC型号:Agilent1260色谱柱:C18柱(5μm*4.6mm*200mm)。
本发明的下述实施例中,樟树籽仁油为自制,使用的巴沙鱼油硬脂、棕榈硬脂、紫苏籽油、亚麻籽油均通过市场购买获得;脂肪酶Lipozyme RM IM购自诺维信生物技术有限公司,脂肪酶Lipozyme TL IM购自诺维信生物技术有限公司,脂肪酶Novozyme 435购自诺维信生物技术有限公司,脂肪酶Staphylococcus caprae lipase为自制。
在本发明的实施例1中,动物试验中使用的饲料为基础饲料(AIN-93M)、高脂饲料(D12451)和高脂功能食品专用油脂用基料油饲料(H-BO),其配方及产能占比详见表1-1、表1-2。
表1-1动物实验中的基础饲料和高脂饲料配方
Figure PCTCN2021143605-appb-000001
表1-2动物实验中的高脂功能食品专用油脂基料油饲料配方
Figure PCTCN2021143605-appb-000002
在本发明的实施例1实施方案中,与高脂饲料组肥胖模型小鼠相比较,所述功能食品专用油脂用基料油具有显著改善体内糖脂代谢紊乱作用,是指其改善肥胖模型小鼠体内糖脂代谢紊乱效果达15%及以上,即肥胖模型小鼠的脂肪系数、血清甘油三酯(TG)、血清总胆固醇(TC)、血清低密度脂蛋白(LDL-C)、血清高密度脂蛋白(HDL-C)、空腹血糖(FGB)、空腹胰岛素(FINs)、胰岛素抵抗系数(HOMA-IR=[(FBG(mmol/L)×FINs(ng/ml)]/22.5)、谷草转氨酶(AST)、谷丙转氨酶(ALT)等指标水平的降低或增高率达15%及以上。
实施例1。
本实施例采用的樟树籽仁油、巴沙鱼油硬脂、紫苏籽油原料的脂肪酸为原料,其组成与分布详见表2。按照中碳链脂肪酸所占质量比为63%、65%、67%、69%,亚油酸与亚麻酸质量比为0.5,分别称取适量的樟树籽仁油、大豆油和亚麻籽油于不同酯化反应器中,并按混合油质量的10%(w/w)加入脂肪酶Staphylococcus caprae lipase。反应温度为50℃,搅拌反应时间为4 h。三元酯交换反应结束后,分离出反应液中的脂 肪酶,测定三元酯交换率和SFC(固体脂肪系数),得到中碳链脂肪酸占总脂肪酸质量比分别为63%、65%、67%、69%,亚油酸与亚麻酸质量比皆为0.5,三元酯交换率分别为73.13%、74.05%、74.35%、73.91%,在25℃下SFC分别为15.6%、13.8%、9.7%、5.8%,30℃下SFC分别为8.3%、7.5%、3.8%、0%的系列功能食品专用油脂用基料油。不同中碳链脂肪酸占总脂肪酸质量比的功能食品专用油脂用基料油脂肪酸组成详见表3。
表2樟树籽仁油、巴沙鱼油硬脂和紫苏籽油的脂肪酸组成
Figure PCTCN2021143605-appb-000003
表3不同中碳链脂肪酸占总脂肪酸质量比的功能食品专用油脂
基料油脂肪酸组成(L/Ln为0.5)
Figure PCTCN2021143605-appb-000004
Figure PCTCN2021143605-appb-000005
备注:L/Ln指亚油酸与亚麻酸质量比。
实验选用3-4周龄的C57BL/6雄性小鼠,体重13-16g。实验期间,小鼠饲喂于标准饲养笼里,自由采食和饮水,12h/12h昼夜循环光照,饲养温度为23±2℃,湿度为40%-60%。经一周的适应性饲喂后,随机将小鼠分为两组,10只小鼠作为基础饲料组(Normal Chow,NC组)、饲喂基础饲料AIN-93M,60只小鼠作为高脂饲料组(High Fat Diet,HFD组)、饲喂高脂饲料D12451,饲喂8周后称量并记录小鼠体重。将HFD组中体重比NC组小鼠平均体重重20%及以上的小鼠选定为营养型肥胖模型小鼠并用于后续的实验。
造模完成后,按体重将营养型肥胖模型小鼠随机分为6组,分别为HFD组、恢复组(NR组)及4组功能食品专用油脂用基料油组(BO1组、BO2组、BO3组、BO4组),继续喂养10周。HFD组小鼠继续饲喂高脂饲料,NR组饲喂基础饲料,BO1组、BO2组、BO3组、BO4组小鼠分别饲喂中碳链脂肪酸所占质量比分别为63%、65%、67%、69%且长碳链脂肪酸中亚油酸与亚麻酸质量比为0.5的高脂功能食品专用油脂用 基料油饲料(H-BO)。NC组小鼠继续饲喂基础饲料AIN-93M至实验结束。实验过程中所用饲料的具体饲料配方详见表1-1、表1-2。
实验终点时称量并记录了小鼠终体重,摘眼球取血、分离血清,检测小鼠血清中甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、空腹血糖(FBG)、胰岛素(FINs)、谷丙转氨酶(也称丙氨酸氨基转移酶,ALT)、谷草转氨酶(也称天门冬氨酸氨基转移酶,AST)等指标水平。分离、称量小鼠睾周脂肪、肾周脂肪,将睾周脂肪和肾周脂肪总和作为腹部脂肪质量。计算脂肪系数(脂肪占体重的百分比)和稳态模型胰岛素抵抗指数(HOMA-IR=[(FBG(mmol/L)×FINs(ng/ml)]/22.5)。
采用SPSS19.0统计软件包(SPSS Inc.,Chicago,IL,USA)进行数据处理。动物实验结果列于图1~图3中。
由图1-a~图1-b可以看出:基础饲料组(NC组)、恢复组(NR组)及BO1组、BO2组、BO3组、BO4组小鼠的脂肪系数处于较低水平,且BO1组、BO2组、BO3组、BO4组小鼠的脂肪系数分别比高脂饲料组(HFD组)小鼠低20.6%、24.3%、24.8%、25.3%;说明中碳链脂肪酸质量占比为63%、65%、67%、69%且长碳链脂肪中亚油酸与亚麻酸质量比为0.5的功能食品专用油脂用基料油具有显著减少小鼠体内脂肪作用。
由图1-c~图2-b可知:功能食品专用油脂用基料油对小鼠血清TG、TC及LDL-C水平影响较大。基础饲料组(NC组)、恢复组(NR组)及BO1组、BO2组、BO3组、BO4组小鼠的TG、TC及LDL-C均处于较低水平,且BO1组小鼠的TG、TC及LDL-C水平分别比高脂饲料组(HFD组)小鼠低16.8%、12.1%、11.3%,BO2组小鼠的TG、TC及LDL-C水平分别比高脂饲料组(HFD组)小鼠低22.7%、14.0%、18.0%,BO3组小鼠的TG、TC及LDL-C水平分别比高脂饲料组(HFD组)小鼠低24.3%、18.9%、18.0%,BO4组小鼠的TG、TC及LDL-C水平分别比高脂饲料组(HFD组)小鼠低25.6%、19.4%、18.6%;说明中碳链脂肪酸质量占比为65%、67%、69%且长碳链脂肪酸中亚油酸与亚麻酸质量比为0.5的BO具有显著降低小鼠血脂作用。
糖脂代谢密切相关,脂代谢紊乱易引起糖代谢紊乱。从图2-c~图3-a可以看出:基础饲料组(NC)、恢复组(NR)及BO4组、BO3组、BO2组、BO1组小鼠血清中的FBG水平、FINs水平及HOMA-IR指数都处于正常较低水平、无明显差异,且BO4组小鼠的FBG水平、FINs水平及HOMA-IR指数分别比高脂饲料组(HFD)小鼠低26.0%、24.2%、39.2%,BO3组小鼠的FBG水平、FINs水平及HOMA-IR指数分别比高脂饲料组(HFD)小鼠低25.4%、23.3%、38.6%,BO2组小鼠的FBG水平、FINs水平及HOMA-IR指数分别比高脂饲料组(HFD)小鼠低25.2%、21.2%、38.3%,BO1组小鼠的FBG水平、FINs水平及HOMA-IR指数分别比高脂饲料组(HFD)小鼠低23.8%、16.7%、36.9%;说明中碳链脂肪酸质量占比为63%、65%、67%、69%,且长碳链脂肪酸中亚油酸与亚麻酸质量比为0.5的BO具有显著改善小鼠体内糖代谢作用。
由图3-b、图3-c可知:功能食品专用油脂用基料油对小鼠血清ALT、AST水平影 响较大。基础饲料组(NC组)、恢复组(NR组)及BO4组、BO3组、BO2组、BO1组小鼠的ALT、AST水平均处于较低水平,且BO4组小鼠的ALT、AST水平分别比高脂饲料组(HFD组)小鼠低45.3%、33.5%,BO3组小鼠的ALT、AST水平分别比高脂饲料组(HFD组)小鼠低43.1%、30.0%,BO2组小鼠的ALT、AST水平分别比高脂饲料组(HFD组)小鼠低40.7%、27.9%,BO1组小鼠的ALT、AST水平分别比高脂饲料组(HFD组)小鼠低37.9%、24.5%,说明中碳链脂肪酸与长碳链脂肪酸质量占比为63%、65%、67%、69%,且长碳链脂肪酸中亚油酸与亚麻酸质量比为0.5的功能食品专用油脂用基料油具有显著修复小鼠肝损伤的作用。
综合分析图1~图3可以断定中碳链脂肪酸质量占比处于63%~69%之间,且长碳链脂肪酸中亚油酸与亚麻酸质量比为0.5的功能食品专用油脂用基料油具有改善小鼠体内糖脂代谢紊乱作用,其中,中碳链脂肪酸质量占比处于65%~69%时,且长碳链脂肪酸中亚油酸与亚麻酸质量比为0.5的功能食品专用油脂用基料油改善小鼠体内糖脂代谢紊乱效果最显著。
由图1~图4综合衡量功能食品专用油脂用基料油的熔程和改善小鼠体内脂肪代谢紊乱和高效补充体内必须脂肪酸和功能脂肪酸的作用效应,功能食品专用油脂用基料油的中碳链脂肪酸占总脂肪酸质量比为65%~69%时,改善小鼠体内脂肪代谢紊乱和高效补充体内必须脂肪酸和功能脂肪酸效果显著。其中,中碳链脂肪酸占总脂肪酸质量比为65%的功能食品专用油脂用基料油在25℃时SFC为13.8%,30℃时SFC为7.5%,且熔程较宽。故选用中碳链脂肪酸占总脂肪酸质量比为65%的功能食品专用油脂用基料油为最优选。
实施例2。
本实施例中,按照中碳链脂肪酸占总脂肪酸质量比为65%、亚油酸与亚麻酸质量比为0.5,称取164.06g的樟树籽仁油、65.48 g巴沙鱼油硬脂和20.46 g紫苏籽油组成的混合油脂于4个相同规格的反应器中,并分别按混合油质量的10%(w/w)加入固定化脂肪酶Novozyme 435、固定化脂肪酶Staphylococcus caprae lipase、固定化脂肪酶Lipozyme RM IM、固定化脂肪酶Lipozyme TL IM于4个反应器中。三元酯交换反应条件为:磁力搅拌(搅拌子30mm×10mm、转速100rpm),反应温度选取各脂肪酶推荐的最适温度,分别为(固定化脂肪酶Novozyme 435、固定化脂肪酶Lipozyme RM IM、固定化脂肪酶Lipozyme TL IM)60℃、(固定化脂肪酶Staphylococcus caprae lipase)50℃,反应时间为4h。
三元酯交换反应结束后,采用HPLC-ELSD检测方法测定三元酯交换率。比较分析脂肪酶种类对三元酯交换率的影响,选定脂肪酶种类。由表4可知,采用脂肪酶Staphylococcus caprae lipase制备功能食品专用油脂用基料油时三元酯交换率最高、达74.34%(w/w),催化效率最高的脂肪酶为Staphylococcus caprae lipase。
表4脂肪酶种类对三元酯交换率的影响
Figure PCTCN2021143605-appb-000006
实施例3。
在本实施例中,按照中碳链脂肪酸占总脂肪酸质量比为65%、亚油酸与亚麻酸质量比为0.5,称取164.06g的樟树籽仁油、65.48g巴沙鱼油硬脂和20.46g紫苏籽油于反应器中。三元酯交换反应条件为:脂肪酶Staphylococcus caprae lipase为5%~25%(混合油质量的百分比),磁力搅拌(搅拌子30mm×10mm、转速100rpm),反应温度为50℃,反应时间为4h。
反应结束后,采用HPLC-ELSD检测方法测定三元酯交换率。比较分析加酶量对三元酯交换率的影响,确定加酶量。由表5可知,加酶量为10%时三元酯交换率最高、达74.21%(w/w),最佳加酶量为10%。
表5Staphylococcus caprae lipase加入量对三元酯交换率的影响
Figure PCTCN2021143605-appb-000007
实施例4。
在本实施例中,按照中碳链脂肪酸占总脂肪酸质量比为65%、亚油酸与亚麻酸质量比为0.5,称取164.06g的樟树籽仁油、65.48 g巴沙鱼油硬脂和20.46 g紫苏籽油于反应器中。三元酯交换反应条件为:脂肪酶Staphylococcus caprae lipase为10%(混合油质量的百分比),磁力搅拌(搅拌子30mm×10mm、转速100rpm),反应温度为35~55℃,反应时间为4h。
反应结束后,采用HPLC-ELSD检测方法测定三元酯交换率。比较分析反应温度对三元酯交换率的影响,确定反应温度。由表6可知,反应温度为50℃时三元酯交换率最高、达74.33%(w/w),最佳反应温度为50℃。
表6酯交换反应温度对三元酯交换率的影响
Figure PCTCN2021143605-appb-000008
实施例5。
在本实施例中,按照中碳链脂肪酸占总脂肪酸质量比为65%、亚油酸与亚麻酸质量比为0.5,称取164.06g的樟树籽仁油、65.48g巴沙鱼油硬脂和20.46g紫苏籽油于反应器中。三元酯交换反应条件为:脂肪酶Staphylococcus caprae lipase为10%(混合油质量的百分比),磁力搅拌(搅拌子30mm×10mm、转速100rpm),反应温度为50℃,反应时间为1~8h。
反应结束后,采用HPLC-ELSD检测方法测定三元酯交换率。比较分析反应时间对三元酯交换率的影响,确定反应时间。由表7可知,反应时间为4h时三元酯交换率最高、达74.36%(w/w),最佳反应时间为4h。
表7酯交换反应时间对三元酯交换率的影响
反应时间(h) 三元酯交换率(w/w%)
1 35.82
2 64.92
3 71.83
4 74.36
5 72.46
6 72.39
7 71.44
8 71.12
实施例6。
在本实施例中,按照中碳链脂肪酸占总脂肪酸质量比为65%、亚油酸与亚麻酸质量比为0.5,称取164.06g的樟树籽仁油、63.62g棕榈硬脂和22.32g亚麻籽油于反应器中。三元酯交换反应条件为:脂肪酶Staphylococcus caprae lipase为10%(混合油质量的百分比),磁力搅拌(搅拌子30mm×10mm、转速100rpm),反应温度为50℃,反应时间为4h。
反应结束后,通过HPLC-ELSD检测方法测定三元酯交换率为74.34%,采用GC测定功能食品专用油脂用基料油中的脂肪酸含量。辛酸0.49%,癸酸36.71%,月桂酸27.56%,亚油酸2.52%,亚麻酸4.98%。
实施例7。
利用各实施例制备的功能食品专用油脂用基料油与其他配料制备功能植脂末,其制备流程的具体操作步骤如下:
(1)制备料液:按照功能植脂末配方表8,称取相应质量的水溶性物质于63~67℃热水中,待水溶性物质全部溶解后,称取相应质量的功能食品专用油脂用基料油和单 双脂肪酸甘油酯于水溶液中,60~90rpm转速下搅拌25~30min;
(2)剪切乳化:使用剪切机剪切料液1~2min左右;
(3)均质乳化:使用加已杀菌均质机于25~30Mpa压力下均质料液2次;
(4)干燥造粒:使用压力喷雾机和流化床进行干燥造粒,进风温度180℃,出风温度90-100℃。
表8功能植脂末配方表
配料表 质量分数(%)
功能食品专用油脂用基料油 20.0-50.0
淀粉糖浆 40.0-70.0
脱脂奶粉 5.0-10.0
单双脂肪酸甘油酯 0.5-5.0
三聚磷酸钠 0.1-5.0
酪朊酸钠 0.1-5.0
羟甲基纤维素 0.2-0.6
六偏磷酸钠 0.1-1.5
磷酸氢二钾 0.1-5.0
柠檬酸钠 0.1-0.5
氯化钠 0.0-0.5
食用香精 0.0-0.5
SiO2 0.0-0.5
总计 100.0
实施例8。
利用各实施例制备的功能食品专用油脂用基料油产品与其他配料制备功能人造奶油,其制备流程的具体操作步骤如下:
(1)制备油相:按照功能人造奶油配方表9,称取相应质量的功能食品专用油脂用基料油、卵磷脂、三聚甘油酯加热到65℃,搅拌溶解得到油相;
(2)制备水相:称取相应质量的纯化水、酪蛋白和甜味剂,65℃下搅拌均匀制备水相;
(3)剪切乳化:将油相和水相在65℃下混合均匀,使用剪切机剪切料液1~2min左右;
(4)骤冷捏合成型:将乳液放在冰浴中350rpm搅拌5min;
(5)熟化:将乳化液转移至20℃恒温箱中熟化24h后,4℃冷藏熟化24h,即得到功能人造奶油。
表9功能人造奶油配方表
配料表 质量分数(%)
功能食品专用油脂用 50.0-60.0
基料油  
卵磷脂 2.5-5
三聚甘油酯 2.5-5
酪蛋白 0.01-0.1
甜味剂 0.1-1
纯化水 30-35
总计 100.0

Claims (9)

  1. 一种功能食品专用油脂基料油,其特征是由中碳链甘油酯、高熔点脂肪、亚麻酸类油脂进行三元酯交换而构成;
    所述的中碳链甘油酯为樟树籽仁油,或者与樟树籽仁油脂肪酸组成相似的混合油酯;
    所述的高熔点脂肪为熔点范围为44~52℃脂肪;
    所述的亚麻酸类油脂为紫苏籽油、亚麻籽油。
  2. 根据权利要求1所述的一种功能食品专用油脂基料油,其特征是所述的高熔点脂肪为巴沙鱼油硬脂、棕榈硬脂。
  3. 根据权利要求1所述的一种功能食品专用油脂基料油,其特征是脂肪酸以脂肪酸质量计,中碳链脂肪酸所占质量比为63%~69%、长碳链脂肪酸中的亚油酸与亚麻酸质量比为0.5;
    其中,中碳链脂肪酸来源于樟树籽仁油或与樟树籽仁油脂肪酸组成相似的混合油酯;长碳链脂肪酸来源于熔点在44~52℃的脂肪、亚麻酸类油脂。
  4. 根据权利要求3所述的一种功能食品专用油脂基料油,其特征是所述的熔点在44~52℃的脂肪为巴沙鱼油硬脂、棕榈硬脂。
  5. 根据权利要求3所述的一种功能食品专用油脂基料油,其特征是所述的功能食品专用油脂用基料油的中碳链脂肪酸占总脂肪酸质量比为65%。
  6. 权利要求1或3所述的一种功能食品专用油脂基料油的制备方法,其特征是按如下步骤:以脂肪酶为催化剂,在温度及搅拌强度下,使中碳链甘油酯与高熔点脂肪、亚麻酸类油脂进行三元酯交换,一步得到所述功能食品专用油脂基料油;
    所述中碳链脂肪酸所占质量比为65%,亚油酸与亚麻酸质量比为0.5;
    所述脂肪酶为脂肪酶Lipozyme RM IM、脂肪酶Lipozyme TL IM、脂肪酶Novozyme 435、脂肪酶Staphylococcus caprae lipase;
    所述脂肪酶加入量按混合油质量的百分比为5~25%、三元酯交换反应温度35~55℃、三元酯交换反应时间1~8h。
  7. 根据权利要求6所述的一种功能食品专用油脂基料油,其特征是所述脂肪酶加入量按混合油质量的百分比为10%、三元酯交换反应温度50℃、三元酯交换反应时间4h。
  8. 权利要求1或3所述的一种功能食品专用油脂基料油在食品的应用。
  9. 根据权利要求8所述的一种功能食品专用油脂基料油在食品的应用所述的食品为油脂粉末、人造奶油或运动营养食品。
PCT/CN2021/143605 2021-01-22 2021-12-31 一种功能食品专用油脂基料油及其制备方法和应用 WO2022156515A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/273,751 US20240081360A1 (en) 2021-01-22 2021-12-31 Base oil for oils and fats used in functional food, preparation method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110086345.3 2021-01-22
CN202110086345.3A CN112772924A (zh) 2021-01-22 2021-01-22 一种功能食品专用油脂基料油及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022156515A1 true WO2022156515A1 (zh) 2022-07-28

Family

ID=75758487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143605 WO2022156515A1 (zh) 2021-01-22 2021-12-31 一种功能食品专用油脂基料油及其制备方法和应用

Country Status (3)

Country Link
US (1) US20240081360A1 (zh)
CN (1) CN112772924A (zh)
WO (1) WO2022156515A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112772924A (zh) * 2021-01-22 2021-05-11 南昌大学 一种功能食品专用油脂基料油及其制备方法和应用
CN112920908A (zh) * 2021-01-22 2021-06-08 南昌大学 一种辛酸癸酸月桂酸类中碳链油及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112342152B (zh) * 2020-06-28 2022-05-20 南昌大学 一种表达脂肪酶的山羊葡萄球菌株ncu s6

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102326630A (zh) * 2011-08-18 2012-01-25 南昌大学 利用樟树籽油制备低/零反式脂肪酸塑性油脂的方法
CN103027133A (zh) * 2011-09-30 2013-04-10 中粮集团有限公司 用于人造奶油和起酥油的零或低反式脂肪酸结构脂肪
CN104247783A (zh) * 2013-06-27 2014-12-31 中粮营养健康研究院有限公司 一种人造奶油和起酥油用油脂组合物及其制备方法
CN104988190A (zh) * 2015-07-27 2015-10-21 厦门双北生物科技有限公司 一种富含中链脂肪酸的结构型甘油三酯及其制备方法
WO2016010102A1 (ja) * 2014-07-17 2016-01-21 日清オイリオグループ株式会社 栄養組成物
CN107058413A (zh) * 2017-04-10 2017-08-18 南昌大学 一种利用樟树籽仁油和大豆油制备中长碳链甘油三酯的方法
CN108770954A (zh) * 2018-07-16 2018-11-09 张培培 一种高纯度中长链脂肪酸油脂的制备方法
CN109699760A (zh) * 2019-03-13 2019-05-03 广州市至润油脂食品工业有限公司 包含巴沙鱼油的脂肪组合物和制备方法以及在人造奶油中的应用
CN109907126A (zh) * 2019-04-18 2019-06-21 江南大学 一种中长碳链甘油三酯的油脂组合物及其制备方法
CN112772924A (zh) * 2021-01-22 2021-05-11 南昌大学 一种功能食品专用油脂基料油及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103798499B (zh) * 2012-11-13 2016-04-06 嘉里特种油脂(上海)有限公司 一种冰淇淋涂层油脂
CN106916631A (zh) * 2015-12-28 2017-07-04 丰益(上海)生物技术研发中心有限公司 油脂组合物、母乳脂肪替代物及其制备方法
WO2017209597A1 (en) * 2016-05-31 2017-12-07 Malaysian Palm Oil Board (Mpob) Palm-based structured fats from palm-based oil high in symmetrical triacylglycerols
CN112772731A (zh) * 2021-01-22 2021-05-11 南昌大学 一种功能食用油及其制备方法和应用
CN113287659A (zh) * 2021-05-09 2021-08-24 南昌大学 一种功能结构油及其制备方法和应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102326630A (zh) * 2011-08-18 2012-01-25 南昌大学 利用樟树籽油制备低/零反式脂肪酸塑性油脂的方法
CN103027133A (zh) * 2011-09-30 2013-04-10 中粮集团有限公司 用于人造奶油和起酥油的零或低反式脂肪酸结构脂肪
CN104247783A (zh) * 2013-06-27 2014-12-31 中粮营养健康研究院有限公司 一种人造奶油和起酥油用油脂组合物及其制备方法
WO2016010102A1 (ja) * 2014-07-17 2016-01-21 日清オイリオグループ株式会社 栄養組成物
CN104988190A (zh) * 2015-07-27 2015-10-21 厦门双北生物科技有限公司 一种富含中链脂肪酸的结构型甘油三酯及其制备方法
CN107058413A (zh) * 2017-04-10 2017-08-18 南昌大学 一种利用樟树籽仁油和大豆油制备中长碳链甘油三酯的方法
CN108770954A (zh) * 2018-07-16 2018-11-09 张培培 一种高纯度中长链脂肪酸油脂的制备方法
CN109666541A (zh) * 2018-07-16 2019-04-23 河北康睿达脂质有限公司 一种高纯度中长链脂肪酸油脂的制备方法
CN109699760A (zh) * 2019-03-13 2019-05-03 广州市至润油脂食品工业有限公司 包含巴沙鱼油的脂肪组合物和制备方法以及在人造奶油中的应用
CN109907126A (zh) * 2019-04-18 2019-06-21 江南大学 一种中长碳链甘油三酯的油脂组合物及其制备方法
CN112772924A (zh) * 2021-01-22 2021-05-11 南昌大学 一种功能食品专用油脂基料油及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHAOGUI FENG: "Lipase-Catalyzed Preparation of Structural Lipids from Cinnamomum Camphora Seed Kernel Oil and Polyunsaturated Long Carbon Chain Oil", CHINESE MASTER'S THESES FULL-TEXT DATABASE, 18 May 2019 (2019-05-18), pages 1 - 67, XP055952794 *
ZHENG FULIANG, BIN YANG, JIYONG HUANG, BO YANG, ZHELING ZENG, PING YU: "Preparation of Structured Lipid Containing ω-3 Polyunsaturated Fatty Acids by Enzymatic Modification of Cinnamomum Camphora Seed Kernel Oil and its Physicochemical Properties and Antioxidant Activity", CHINA OILS AND FATS, vol. 45, no. 12, 31 December 2020 (2020-12-31), pages 76 - 83, XP055953202, ISSN: 1003-7969, DOI: 10.12166/j.zgyz.1003-7969/2020.12.015 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112772924A (zh) * 2021-01-22 2021-05-11 南昌大学 一种功能食品专用油脂基料油及其制备方法和应用
CN112920908A (zh) * 2021-01-22 2021-06-08 南昌大学 一种辛酸癸酸月桂酸类中碳链油及其制备方法和应用

Also Published As

Publication number Publication date
CN112772924A (zh) 2021-05-11
US20240081360A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
WO2022156515A1 (zh) 一种功能食品专用油脂基料油及其制备方法和应用
Mohan et al. Milk fat: opportunities, challenges and innovation
Osborn et al. Structured lipids‐novel fats with medical, nutraceutical, and food applications
Takeuchi et al. The application of medium-chain fatty acids: edible oil with a suppressing effect on body fat accumulation.
US20240122200A1 (en) Functional edible oil, preparation method therefor and use thereof
JP3021499B2 (ja) 乳児処方用ランダム化パーム油脂組成物
US8206772B2 (en) Structured lipid compositions and methods of formulation thereof
US20160249665A1 (en) Human milk fat substitutes
WO2002016534A1 (fr) Composition de graisses
TW200427415A (en) Lipid-improving agent and composition containing lipid-improving agent
CN102396608A (zh) 一种含有中短链脂肪酸的油脂组合物及其制法和应用
CN113287659A (zh) 一种功能结构油及其制备方法和应用
WO2013147138A1 (ja) 油脂組成物
KR20110049868A (ko) 디아실글리세롤 풍부 지방, 오일 및 기능성 식품
JP2015091228A (ja) 油脂組成物
Puligundla et al. Emerging trends in modification of dietary oils and fats, and health implications–a review
KR20040019112A (ko) 근육세포내 지질 레벨을 증가시키기 위해 고안된, 올레지방산 및 오메가-6 지방산을 함유하는 지질 배합물 및음식물
Hayakawa et al. The role of trans fatty acids in human nutrition
JPH03504868A (ja) 乳脂肪を含有する構造化脂質
Flickinger et al. Dietary fats and oils: technologies for improving cardiovascular health
JP2016202001A (ja) 油脂組成物
Murphy Synthesis of milk fat and opportunities for nutritional manipulation
CN112920908A (zh) 一种辛酸癸酸月桂酸类中碳链油及其制备方法和应用
Cheng et al. Medium-and long-chain triacylglycerol: Preparation, health benefits, and food utilization
CN115500391B (zh) 含有LPLn/OPLn的脂肪酸酯组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920886

Country of ref document: EP

Kind code of ref document: A1