WO2022156372A1 - 一种滴眼给药防治干性黄斑病变和视网膜光损伤的眼用制剂 - Google Patents

一种滴眼给药防治干性黄斑病变和视网膜光损伤的眼用制剂 Download PDF

Info

Publication number
WO2022156372A1
WO2022156372A1 PCT/CN2021/134150 CN2021134150W WO2022156372A1 WO 2022156372 A1 WO2022156372 A1 WO 2022156372A1 CN 2021134150 W CN2021134150 W CN 2021134150W WO 2022156372 A1 WO2022156372 A1 WO 2022156372A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
surfactant
treating
eye
preparation according
Prior art date
Application number
PCT/CN2021/134150
Other languages
English (en)
French (fr)
Inventor
董庆
张舒
成旋
薛陆兵
Original Assignee
成都瑞沐生物医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都瑞沐生物医药科技有限公司 filed Critical 成都瑞沐生物医药科技有限公司
Priority to EP21920748.7A priority Critical patent/EP4282401A1/en
Priority to JP2023544440A priority patent/JP2024507326A/ja
Publication of WO2022156372A1 publication Critical patent/WO2022156372A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/155Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/385Heterocyclic compounds having sulfur as a ring hetero atom having two or more sulfur atoms in the same ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/65Tetracyclines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin

Definitions

  • the invention belongs to the field of ophthalmic medicines, in particular to an ophthalmic preparation for preventing and treating dry macular degeneration and retinal light damage by eye drop administration.
  • Age-related macular degeneration is divided into dry and wet forms. Dry AMD is characterized by geographic atrophy, while wet AMD is mainly characterized by choroidal neovascularization (CNV).
  • CNV choroidal neovascularization
  • Doxycycline also known as doxycycline, Doxycycline, CAS number: 564-25-0
  • Doxycycline has been used clinically for many years as a broad-spectrum antibacterial drug, usually with an oral dose of 100 mg/day.
  • low-dose doxycycline (20-40 mg/day) has a significant effect on chronic inflammation such as rosacea
  • metformin locally activated AMPK (adenosine mono-phosphate-activated protein kinase, adenylate-activated protein kinase) on the retina is important for the protection of photoreceptor cells and retinal pigment epithelial cell lesions (Xu et al., Stimulation of AMPK prevents degeneration of photoreceptors and the retinal pigment epithelium, PNAS, 2018, 115(41):10475–10480).
  • metformin, lipoic acid (CAS number: 62-46-4), resveratrol (CAS number: 501-36-0), doxycycline and other drugs can be used in the treatment of AMD.
  • Conjunctival sac drug delivery After the drug enters the anterior aqueous humor through the cornea, it can be diffused and distributed to the iris and ciliary body, but the barrier effect of the lens and vitreous membrane makes the It is difficult for the drug to enter the lens and vitreous;
  • ocular injection including subconjunctival injection, anterior chamber injection, vitreous injection, retrobulbar injection and orbital injection, injection administration can make the drug reach the treatment site directly, but the injection is traumatic , there are potential dangers, such as pain, photophobia, lacrimation, anterior chamber opacity, hemorrhage, corneal endothelial cell damage, traumatic cataract, etc.; vitreous injection will cause lens opacity, vitreous organization, retina/optic nerve damage, etc.; (3)
  • Systemic administration includes oral administration and intravenous administration: drugs generally accumulate in the liver, kidneys or lungs in the body, and are hindered by the blood-
  • oral doxycycline may cause systemic side effects, including skin complications (including photosensitivity reactions and skin lesions), gastrointestinal side effects (vomiting, diarrhea, indigestion), and adverse effects such as effects on bone and tooth growth.
  • the intravitreal injection or vitreous implant operation is a traumatic administration, which requires specially trained ophthalmologists to operate in a sterile environment such as an operating room; because the operation is traumatic, complications may occur, such as intraocular pressure, cataract, Iatrogenic infectious endophthalmitis, vitreous hemorrhage, retinal damage, etc.; high operating conditions and operating environment, must be performed in qualified hospitals; high production and use costs of biological ophthalmic injections; Delays in treatment due to medical constraints have resulted in poor flexibility in adjusting dosing schedules (M.HATA et al., RETINA, 37:1320–1328, 2017).
  • conjunctival sac administration is the most convenient and safest way of ocular administration.
  • Drugs such as metformin, lipoic acid (CAS number: 62-46-4), resveratrol (Resveratrol, CAS number: 501-36-0), and more
  • the special eye drops developed into low concentration such as cyclosporine are applied to the eye part and delivered directly to the fundus, which can avoid trauma to the patient, can greatly reduce the dosage of the drug, reduce the toxic and side effects on the human body, and is very useful for the treatment of AMD. And the protection of the retina is of particular importance.
  • the cornea has a multi-layered structure, which is roughly divided into: liposome-rich epithelial layer, aqueous component-rich stromal layer, and liposome-rich endothelial layer from outside to inside. It first contacts the tear layer of the ocular surface, and then needs to cross the epithelial, stromal, and endothelial layers to reach the posterior segment of the eye. During this process, due to the dilution of tears, the ocular surface barriers of the cornea and conjunctiva, and the barriers of the lens and vitreous, eye drops often have a high concentration in the tissues of the anterior segment of the eye, making it difficult to enter the posterior segment of the eye and reach an effective therapeutic concentration. Therefore, although the conjunctival sac administration method is safe, the drug delivery is poor, and it is difficult to achieve the purpose of effectively treating fundus diseases.
  • the method of eye drop administration has significant advantages of safety and convenience.
  • the invention of ophthalmic preparations that can deliver drugs to the posterior segment of the eye for the treatment of dry macular degeneration is an urgent technical problem to be solved in clinical practice. It has clinical therapeutic value and social significance.
  • the purpose of the present invention is to provide an ophthalmic preparation for eye drop administration, which can deliver the active ingredient for treating eye diseases to the posterior segment of the eye, and prevent and treat dry macular degeneration and retinal photodamage.
  • the invention provides an ophthalmic preparation for eye drop administration, which is a preparation composed of an active ingredient for treating eye diseases and an ophthalmic preparation carrier or auxiliary material;
  • the active ingredients for treating eye diseases are adenylate-activated protein kinase activators and/or anti-inflammatory drugs;
  • the ophthalmic preparation carrier or adjuvant contains the following components: surfactant, ionic polymer and solvent.
  • the mass ratio of surfactant and ionic macromolecule in the carrier or auxiliary material of the above-mentioned ophthalmic preparation is: (1 ⁇ 100):(0.1 ⁇ 50); the ratio of the surfactant to the solvent is: each 100mL solvent contains 5 ⁇ 3000mg surfactant;
  • the mass ratio of surfactant and ionic macromolecule in the carrier or auxiliary material of the ophthalmic preparation is: (1-30): (3.5-6); the ratio of the surfactant to the solvent is: each 100mL solvent contains 50 ⁇ 2500mg surfactant;
  • surfactant is nonionic surfactant
  • the nonionic surfactant is Spans, polysorbates, poloxamers, alkyl glucosides, vitamin E polyethylene succinate, sucrose stearate or azone;
  • the nonionic surfactants are spans, polysorbates, poloxamers, alkyl glucosides, and sucrose stearate.
  • ionic macromolecule is selected from carboxymethyl cellulose and its salt, sodium starch glycolate, hyaluronic acid and its salt, xanthan gum, alginic acid and its salt, diacetate polyethylene glycol PEG-( COOH) 2 at least one.
  • the solvent in the carrier or adjuvant of the above-mentioned ophthalmic preparation is a polar solvent, preferably water.
  • the carrier or adjuvant of the above-mentioned ophthalmic preparation also contains the following components: a tackifier and/or a cosolvent.
  • tackifier is polyethylene glycol, carbomer, poloxamer, povidone, hydroxypropyl cellulose, methyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol, xanthogen
  • glue polyoxyethylene fatty alcohols, hyaluronic acid and its salts or hydroxypropyl methylcellulose
  • cosolvent is propylene glycol, glycerol, liquid polyethylene glycol or castor oil
  • the mass ratio of adhesive and surfactant is 1:(0.1 ⁇ 100), and the mass ratio of cosolvent and surfactant is (1 ⁇ 10):1;
  • the mass ratio of the tackifier and the surfactant is 1:(0.1-6.25), and the mass ratio of the cosolvent and the surfactant is (4.2-10):1;
  • the mass ratio of the above-mentioned surfactant and the active ingredient for treating eye diseases is (1-30):(1-2).
  • the above-mentioned adenylate-activated protein kinase activator is lipoic acid, lipoic acid stereoisomers, lipoic acid salts, salts of lipoic acid stereoisomers, metformin, salts of metformin, resveratrol, white vera At least one of the salts of atrol; and the anti-inflammatory drug is at least one of doxycycline, salts of doxycycline, tetracycline, and salts of tetracycline.
  • the above-mentioned salt of metformin is metformin hydrochloride
  • the salt of doxycycline is doxycycline hydrochloride
  • the salt of tetracycline is tetracycline hydrochloride.
  • the carrier or adjuvant of the above-mentioned ophthalmic preparation contains nanobodies, and the nanobodies are formed by self-assembly of the components of the carrier or adjuvant of the ophthalmic preparation; the nanobodies are encapsulated with active ingredients for treating eye diseases.
  • the above-mentioned nano-body is spherical, and its particle size is 1-100 nm; preferably, the particle size of the nano-body is 5-30 nm.
  • the above-mentioned preparation also contains nano-spheres, and the nano-spheres are spherical with a particle size of 10-2000 nm; the nano-spheres are formed by self-assembly of nano-bodies; The spherical particle size is 100 to 2000 nm.
  • the present invention also provides a method for preparing the above preparation, comprising the following steps:
  • step (1) dispersing the active ingredient and/or cosolvent for the treatment of eye disease in the solution obtained in step (1), then adding ionic polymer or its solution, and dispersing and mixing to obtain an initial suspension;
  • the active ingredient for treating eye diseases in step (2) is dissolved in an organic solvent and then dispersed in the solution obtained in step (1).
  • the dispersion in step (2) is selected from at least one of mechanical stirring dispersion, magnetic stirring dispersion, vortex shaking dispersion, shear dispersion, homogeneous dispersion, grinding dispersion, and ultrasonic dispersion.
  • the present invention also provides the use of the above-mentioned preparation in preparing a medicine for preventing and treating ocular fundus diseases.
  • the above-mentioned medicine for preventing and treating fundus diseases is a medicine for preventing and treating dry macular degeneration
  • the medicine for preventing and treating fundus diseases is a medicine for preventing and treating photoreceptor cells or retinal damage caused by light.
  • the present invention also provides a method for preventing and treating ocular fundus diseases, that is, using an effective amount of the above-mentioned preparation to a patient or an individual at risk of the disease.
  • the above-mentioned fundus disease is dry macular degeneration or damage to the photoreceptor cells or retina of the eye caused by light.
  • the above-mentioned mode of use is administration by eye drops.
  • metformin hydrochloride has a protective effect on retinal structure and ocular photoreceptor cells, but it needs to be administered by injection, and it is difficult to achieve an effective therapeutic dose in the posterior segment of the eye by means of eye drop administration.
  • the ophthalmic preparation for eye drop administration prepared by the invention has stable properties and is easy to store. Experiments have shown that it can effectively deliver metformin and other active ingredients for treating eye diseases to the posterior segment of the eye, and reach an effective (expected) concentration in the fundus of the eye.
  • the way of eye drop administration realizes the treatment and prevention of fundus diseases such as dry macular degeneration, photoreceptor cells or retinal damage caused by light.
  • the present invention overcomes the existing problems of vitreous injection, vitreous injection implant, oral administration and systemic injection, solves serious complications such as intraocular hemorrhage and pain, greatly reduces the suffering of patients with fundus diseases, and increases medical treatment. Sex, improve the quality of life of patients and their families, or avoid systemic side effects caused by systemic administration.
  • the present invention can avoid complications caused by local injection or implantation of the eye.
  • the preparation developed by the invention has small dosage and small toxic and side effects, and can not only be used as a therapeutic drug, but also can be used as a prevention and control of ophthalmic diseases.
  • the preparation of the present invention can meet the needs of clinical long-term administration.
  • the eye drop administration and treatment system of the present invention can use small molecule drugs that have been clinically used and have a clear mechanism of action as the active ingredients, the quality is controllable, the product is easy to use, the patient's compliance is good, and the doctor can flexibly adjust the administration plan according to the patient's condition .
  • the nanosomes referred to in the present invention are nano-scale spherical aggregates formed by self-assembly of the components of the carrier or auxiliary materials of the ophthalmic preparation in a solvent.
  • the nanospheres referred to in the present invention are spherical self-assembled structures formed by self-assembly of nanobodies in a solvent.
  • the solvent referred to in the present invention is a liquid capable of dissolving the components of the carrier or auxiliary material of the ophthalmic preparation.
  • the surfactant referred to in the present invention refers to a substance that can significantly reduce the surface tension of a liquid; the nonionic surfactant referred to in the present invention refers to a surfactant that does not dissociate in water.
  • the ionic polymers referred to in the present invention are high molecular polymers with cations or anions.
  • active ingredients for treating eye diseases are: active substances that can be used to treat eye diseases, that is, active substances that have been used as ophthalmic medicines at present, and the mechanism of action and the target of action show that it can treat eye diseases.
  • active substance Active Pharmaceutical Ingredient, API
  • active Pharmaceutical Ingredient API
  • the eye drop administration of the present invention is an administration method of dropping medicine into the eye, which belongs to the corneal administration route.
  • FIG. 1 is a transmission electron microscope image of the sample prepared in Example 2 (scale bar is 500 nm).
  • FIG. 2 is a transmission electron microscope image of the sample prepared in Example 9 after dyeing (the scale is 100 nm).
  • FIG. 3 is the HPLC spectrum of Example 2.
  • FIG. 4 is the HPLC spectrum of Example 5.
  • FIG. 5 is the HPLC spectrum of Example 14.
  • Figure 6 is the HE staining results of the eyeball tissue sections of the rats in the control group, the dry macular degeneration model group, and the treatment group treated with the preparation of the present invention.
  • the reagents or instruments used in the present invention can be purchased from the market. If no specific conditions are indicated, the conventional conditions or the conditions suggested by the manufacturer are used.
  • API4000 triple quadrupole mass spectrometer (Applied Biosystems, USA);
  • the property testing method of the preparation of the present invention is as follows
  • the freezing point drop of a solution is measured to determine its osmolarity.
  • Clean the probe of the STY-1A osmometer Take three 100 ⁇ L distilled water into three sample tubes, after the instrument is preheated, screw the sample tube containing 100 ⁇ L distilled water onto the probe of the instrument, choose to clean 3 times, click " Clean", repeated three times.
  • Detection After filling in the sample information in the instrument information table, click "Test”; use a pipette to transfer 100 ⁇ L of sample into the sample tube, gently screw on the instrument, and click "Start” to detect. The test was repeated three times, and the average of the three test results was taken as the test result.
  • the FE20 acidity meter is calibrated with pH buffer solution (pH are 4.00, 6.86 and 9.18 respectively), after the electrode is rinsed with pure water, the excess water is absorbed with non-fiber paper, immersed in the liquid sample to be tested, and the measurement is started by pressing the read button. The data obtained after the reading has stabilized is the sample pH value.
  • pH adjusters are NaOH and HCl, phosphoric acid and phosphate (such as sodium dihydrogen phosphate, disodium hydrogen phosphate). ), citric acid and citrate (such as sodium citrate), boric acid and borax; if the osmotic pressure of the obtained liquid does not reach isotonicity, add an appropriate amount of sodium chloride to make it at or near isotonic.
  • Test equipment high performance liquid chromatograph, model: LC-20AD (Shimadzu, Japan); mass spectrometer: model: API4000 triple quadrupole mass spectrometer (Applied Biosystems, USA); chromatographic column: Fortis Pace C18 5 ⁇ M, 2.1X30mm (Fortis, UK).
  • Healthy adult Sprague Dawley (SD) rats were selected and divided into a test group and a control group, each group had 6 eyes, the test group was dripped with the ophthalmic preparation prepared by the embodiment of the present invention, and the control group was dripped with 2mg drug/5mL physiological Suspension of saline (vortexed well before use), 20 ⁇ L per eye.
  • the animals were euthanized 0.5 hours or 1 hour after administration, and the vitreous body was quickly collected.
  • the vitreous body samples were homogenized and stored at -80°C.
  • Preparation method according to Table 1, weigh 60 mg of CMC-Na (sodium carboxymethyl cellulose, ionic polymer) and add it to a glass conical flask containing 10 mL of pure water, turn on magnetic stirring for 2 hours to obtain solution 1; Add 0.3g polysorbate 80 (surfactant) and 0.12g HPC (low-substituted hydroxypropyl cellulose, tackifier) to a glass conical flask containing 20mL of purified water, turn on magnetic stirring, and heat in a water bath at about 40°C for 1.5 15 mg metformin hydrochloride was weighed and put into solution 2, continued to heat and stir for 30 minutes, added to solution 1, and stirred for 30 minutes to obtain a mixed solution; the mixed solution was dispersed at 9500 rpm for 5 minutes with a disperser, and stopped for After the foam disappears, filter under reduced pressure with a Buchner funnel to obtain a dispersion; transfer the dispersion to a high-pressure homogenizer, control
  • pH adjustment method adjust pH to 6.5 with 0.1N NaOH.
  • HPLC detection Column: ZORBAX Eclipse Plus C18, 4.6x100mm, 3.5 ⁇ m; mobile phase A: 40mM ammonium acetate (pH5.0), B: methanol; gradient elution, 0 ⁇ 2': 100% A, 20 ⁇ 22' : 60%A-40%B, Temp.: 35°C, detection wavelength: 233nm, Flowrate: 0.8ml/min; injection volume: 10 ⁇ L; detection result: 97.4%.
  • the particle size is 11.8 nm (71.6%), PdI: 0.519; after being placed in the dark at room temperature for 1 month, there is no obvious change in appearance and content.
  • the preparation method refers to Example 1, the raw materials and the dosage are shown in Table 1, and a colorless and clear solution after impurity removal is obtained.
  • pH and osmotic pressure adjustment adjust to pH 6.5 with 1N sodium citrate solution, add sodium chloride to adjust osmotic pressure to: 297mOsmol/kg.
  • HPLC detection Column: ZORBAX 300SB-CN, 2.1x150mm, 5 ⁇ m; mobile phase: 40mM KH 2 PO 4 (pH4.5): methanol (75:25) isocratic elution, Temp.: 35°C, detection wavelength: 233nm , Flowrate: 0.8ml/min; detection result: 99.1%.
  • the particle size is 21.6 nm (94.4%), PdI: 0.206; it was placed in the dark at room temperature for 1 month, and the appearance and content did not change significantly.
  • the concentration of API in rat vitreous body was 39.8 ⁇ 16.6ng/g 1 hour after eye instillation.
  • Embodiment 3 the preparation of ophthalmic preparation of the present invention
  • the preparation method refers to Example 1, the raw materials and the dosage are shown in Table 1, and a colorless and clear solution after impurity removal is obtained. pH test result: 6.9, close to isotonic, no need to adjust.
  • the HPLC detection method was the same as that in Example 1, and the detection result was 98.6%.
  • the particle size is 16.6 nm (98.6%), PdI: 0.227, and it was placed in the dark at room temperature for 1 month, and there was no obvious change in appearance and content.
  • the preparation method refers to Example 1, the raw materials and the dosage are shown in Table 1, and a colorless and clear solution after impurity removal is obtained. pH test result: 6.5, close to isotonic, no need to adjust.
  • the HPLC detection method was the same as that in Example 1, and the detection result was 97.8%.
  • the particle size is 17.1 nm (55.5%), 513 (36.3%), PdI: 0.795, and placed in the dark at room temperature for 1 month, with no obvious change in appearance and content.
  • Preparation method Weigh 60mg CMC-Na into a glass conical flask containing 15mL pure water, turn on magnetic stirring for 2 hours to obtain solution 1; respectively weigh 0.24g polysorbate 80 and 0.12g HPMC (viscosifier) and add In another glass conical flask containing 15mL of pure water, turn on magnetic stirring and heat in a water bath at about 40°C for 3 hours to obtain solution 2; weigh 15mg of lipoic acid and 1mL of glycerol (equivalent to 5.25 times the amount of surfactant ( w/w)) put it into solution 2, continue heating and stirring for 30 minutes, add solution 1, stir for 30 minutes to obtain a mixed solution; disperse the mixed solution with a disperser at 11,000 rpm for 3 minutes, and wait for the solution foam to disappear after shutdown Transfer to a high pressure homogenizer for homogenization treatment (refer to Example 1 for conditions) to obtain a colorless and clear solution, then sterilize under reduced pressure and remove mechanical impurities to obtain solution
  • pH and osmotic pressure adjustment method adjust the pH to 6.3 with 0.1N sodium citrate solution, add sodium chloride to adjust the osmotic pressure to: 294mOsmol/kg;
  • HPLC detection Column: ZORBAX Eclipse Plus C18, 4.6 ⁇ 100 mm 3.5 ⁇ m; mobile phase A: 0.1% phosphoric acid (pH 3.0), B: methanol-acetonitrile (1:1). Temp.: 35°C, detection wavelength: 215nm, Flowrate: 0.8ml/min; gradient elution program: 0-5': 60%A-40%B, 28-30': 40%A-60%B; detection Results: 97.4%. Particle size test results: 17.8nm (98.6%), PdI: 0.222; no change in appearance and content after being placed in the dark at 3-8°C for 1 month.
  • the concentration of API in rat vitreous body was 52.6 ⁇ 17.9ng/g 0.5 hours after eye instillation.
  • the control group was dripped with a suspension of 2mg lipoic acid/5mL physiological saline (vortexed before use), 20 ⁇ L per eye, and no lipoic acid was detected in the vitreous of animals in the control group 0.5 hours after eye instillation (below the detection limit). , ⁇ 1ng/g).
  • the preparation method and pH, osmotic pressure adjustment method refer to Example 1, the raw materials and dosage are shown in Table 1, and the colorless and clear solution after impurity removal is obtained.
  • the HPLC detection method is the same as that of Example 1, and the HPLC detection result: 98.4%
  • the preparation method and pH, osmotic pressure adjustment method refer to Example 5, the raw material and dosage are shown in Table 1, wherein the dosage of cosolvent propylene glycol is 6.2 times (w/w) of surfactant.
  • HPLC detection method is the same as that of Example 5, and the detection results are: 98.1%; particle size 25.8 nm (87.4%), PdI: 0.317, and placed in the dark at 3-8°C for 1 month, with no change in appearance and content.
  • the preparation method and pH, osmotic pressure adjustment method refer to Example 5, the raw material and dosage are shown in Table 1, wherein the dosage of cosolvent propylene glycol is 8.9 times (w/w) of surfactant.
  • HPLC detection method is the same as that in Example 5, and the detection results are: 95.2%; particle size: 31.5 nm (82.9%); PdI: 0.347. Placed in the dark at 3-8°C for 1 month, the appearance and content have no change.
  • the preparation method refers to Example 1, the raw materials and the dosage are shown in Table 1, and the slightly yellow clear solution after impurity removal is obtained.
  • pH and osmotic pressure adjustment adjust to pH 6.3 with 0.1N NaOH, add sodium chloride to adjust the osmotic pressure to: 297mOsmol/kg;
  • HPLC detection wavelength 280nm other detection methods are the same as in Example 1, detection results: 97.3%; particle size 16.7nm (98.1%), PdI: 0.225; placed in the dark at room temperature for 1 month, no change in appearance and content.
  • the concentration of API in rat vitreous body was 66.5 ⁇ 18.1ng/g 0.5 hours after eye instillation.
  • control group was dripped with a suspension of 2 mg doxycycline/5 mL of normal saline (vortexed before use), 20 ⁇ L per eye, and no doxycycline was detected in the vitreous of animals in the control group 0.5 hours after eye instillation ( Below the detection limit, ⁇ 1ng/g).
  • the preparation method and pH, osmotic pressure adjustment method refer to Example 9, the raw material and dosage are shown in Table 1, and the slightly yellow clear solution after impurity removal is obtained.
  • HPLC detection method is the same as that of Example 9, and the HPLC detection results are: 98.2%; particle size 17.2 nm (97.9%), PdI: 0.208; placed in the dark at room temperature for 1 month, the appearance and content have no change.
  • the preparation method and pH, osmotic pressure adjustment method refer to Example 9, the addition of the cosolvent is: take by weighing 1.5mL propylene glycol (equivalent to 10 times (w/w) of the surfactant) and add the surfactant to the medium water, magnetic force Stir, heat and dissolve in a water bath to obtain solution 2, and obtain a slightly yellow clear solution after impurity removal.
  • the raw materials and dosage are shown in Table 1.
  • HPLC detection method was the same as that of Example 9, and the detection results were: 95.2%; particle size 29.7 nm (89.3%), PdI: 0.382; placed in the dark at 3-8° C. for 1 month, floccules appeared.
  • the preparation method and pH, osmotic pressure adjustment method refer to Example 5, and the raw materials and dosage are shown in Table 1.
  • the HPLC detection method refers to Example 5, and the detection results are: 0.486mg/mL (metformin), 0.481mg/mL (lipoic acid); particle size 18.9nm+302.1nm, PdI: 0.529; 3 ⁇ 8 °C protected from light for 1 month , the appearance and content are unchanged.
  • vitreous API concentrations of animals 0.5 hours after eye instillation were: 86.5ng/g lipoic acid, 69.5ng/g metformin.
  • the preparation method and pH, osmotic pressure adjustment method refer to Example 5, and the raw materials and dosage are shown in Table 1.
  • the HPLC detection method refers to Example 5, and the detection results are: 0.487mg/mL (doxycycline), 0.478mg/mL (lipoic acid); particle size 20.2nm+251.6nm, PdI: 0.701, placed in the dark at 3 ⁇ 8°C 1 month, no change in appearance and content.
  • vitreous API concentrations of rats were 57.3ng/g lipoic acid and 68.4ng/g metformin 0.5 hours after eye instillation.
  • the preparation method refers to Example 5; the raw materials and the dosage are shown in Table 1, wherein the dosage of the cosolvent propylene glycol is 4.5 times (w/w) of the surfactant, and the pH is 6.5, which is close to isotonic and does not need to be adjusted.
  • HPLC detection method Column: ZORBAX Eclipse Plus C18, 4.6x100mm 3.5 ⁇ m; mobile phase A: 0.1% phosphoric acid, B: acetonitrile (80:20), isocratic elution; Temp.: 35°C, detection wavelength: 306nm, Flowrate : 0.8ml/min; test result: 95.7%;
  • the particle size is 27.5nm (77.9%), PdI: 0.328; placed in the dark at 3-8°C for 1 month, there is no obvious change in appearance and content.
  • the concentration of API in rat vitreous body was 20.3 ⁇ 9.3ng/g 0.5 hours after eye instillation.
  • the preparation method refers to Example 14, the raw materials and the consumption are shown in Table 1, and the consumption of the cosolvent propylene glycol is 4.5 times (w/w) of the surfactant to obtain a colorless and clear solution after removing impurities.
  • pH is 6.6, no need to adjust pH; osmotic pressure adjustment: add sodium chloride to adjust osmotic pressure to: 293mOsmol/kg;
  • the particle size is 24.5nm (85.5%), PdI: 0.253; placed in the dark at 3-8°C for 1 month, there is no obvious change in appearance and content.
  • the preparation method refers to Example 14, the raw materials and the consumption are shown in Table 1, and the consumption of the co-solvent glycerol is 4.5 times (w/w) of the surfactant to obtain a colorless and clear solution after impurity removal.
  • pH is 6.4, no need to adjust pH; osmotic pressure adjustment: add sodium chloride to adjust the osmotic pressure to 305mOsmol/kg;
  • the particle size is 26.2nm (75.2%), PdI: 0.325; placed in the dark at 3-8°C for 1 month, there is no obvious change in appearance and content.
  • the preparation method refers to Example 14, the raw materials and the consumption are shown in Table 1, and the consumption of the cosolvent propylene glycol is 4.5 times (w/w) of the surfactant to obtain a colorless and clear solution after removing impurities.
  • pH and osmotic pressure adjustment adjust to pH 6.2 with 0.2N NaOH, add sodium chloride to adjust the osmotic pressure to: 305mOsmol/kg;
  • the particle size is 22.7nm (83.4%), PdI: 0.372; placed in the dark at 3-8°C for 1 month, there is no obvious change in appearance and content.
  • the preparation method refers to Example 9, the raw materials and the consumption are shown in Table 1, wherein the consumption of the cosolvent propylene glycol is 5 times (w/w) of the surfactant, to obtain a colorless and clear solution after removing impurities.
  • pH and osmotic pressure adjustment adjust to pH 6.3 with 0.1N NaOH, add sodium chloride to adjust the osmotic pressure to: 290mOsmol/kg;
  • HPLC detection method refers to Example 5, and the detection result: 96.1%;
  • the particle size is 23.7 nm (84.2%), and PdI: 0.323; after being placed in the dark at room temperature for 1 month, there is no obvious change in appearance and content.
  • the concentration of API in rat vitreous body at 0.5 hours after eye instillation was 62.5ng/g.
  • the preparation method is with reference to Example 5, the raw materials and the consumption are shown in Table 1, and the consumption of the cosolvent propylene glycol is 4.2 times (w/w) of the surfactant to obtain a colorless and clear solution after the removal of impurities.
  • pH and osmotic pressure adjustment adjust to pH 6.3 with 0.1N NaOH, add sodium chloride to adjust the osmotic pressure to: 288mOsmol/kg;
  • the HPLC detection method refers to Example 5, the detection result: 95.6%; particle size 24.1 nm (81.5%), PdI: 0.357; placed in the dark at room temperature for 1 month, the appearance and content have no obvious change.
  • Example 20 Preparation of the ophthalmic preparation of the present invention
  • the preparation method refers to Example 5, the raw materials and the consumption are shown in Table 1, and the consumption of the cosolvent propylene glycol is 5.2 times (w/w) of the surfactant to obtain a colorless and clear solution after removing impurities.
  • pH and osmotic pressure adjustment adjust to pH 6.3 with 0.2N NaOH, add sodium chloride to adjust osmotic pressure to: 310mOsmol/kg;
  • the HPLC detection method refers to Example 5, the detection result: 97.2%; particle size 27.5nm (79.6%), PdI: 0.364; placed in the dark at room temperature for 1 month, there are visible particles.
  • Example 21 Preparation of the ophthalmic preparation of the present invention
  • Example 9 For the preparation method, refer to Example 9, and the raw materials and dosage are shown in Table 1 to obtain a light yellow clear solution after impurity removal.
  • pH and osmotic pressure adjustment adjust to pH 7.0 with 0.1N sodium citrate solution, add sodium chloride to adjust osmotic pressure to: 302mOsmol/kg.
  • HPLC detection Column: ZORBAX 300SB-CN, 2.1x150mm, 5 ⁇ m; mobile phase: 0.1M ammonium acetate aqueous solution-10mM triethylamine (pH8.5): acetonitrile (84:16), isocratic elution, Temp.: 30°C, detection wavelength: 350nm, Flowrate: 0.8ml/min; detection result: 98.5%; particle size 13.4nm (89.5%), PdI: 0.201; placed in the dark at room temperature for 1 month, the appearance and content did not change significantly.
  • the concentration of API in rat vitreous body at 0.5h after eye instillation was 54.8 ⁇ 19.2ng/g.
  • the measurement results of the concentration of API in the rat's vitreous after eye drop administration indicate that the ophthalmic preparation of the present invention can carry the active ingredient for the treatment of eye diseases through the barrier of the eyeball structure, and is administered through the conjunctival sac (eye drop administration)
  • An effective dose of the drug can be delivered to the vitreous body, avoiding invasive administration methods such as vitreous injection, and also greatly reducing the total amount of the drug, reducing the absorption of the drug in the body, and avoiding toxic and side effects.
  • Comparative example 1 the preparation prepared by povidone auxiliary material
  • Example 5 With reference to the preparation method of Example 5, take 15mg lipoic acid as medicine, replace ionic macromolecule with Povidone K12 (PVP K12), replace tackifier with Povidone K30 (PVP K30); use PEG300 as cosolvent , the mass of PEG300 is 22 times that of povidone K12, and is prepared according to the dosage shown in Table 1.
  • Example 2 With reference to the preparation method of Example 2, take 15mg metformin hydrochloride as medicine, replace ionic macromolecule with povidone K12 (PVP K12), take PEG300 as cosolvent, the quality of PEG300 is 4 times of surfactant, according to the table 1 was prepared in the amount indicated.
  • PVP K12 povidone K12
  • Example 15 Referring to the preparation method of Example 15, the ionic polymer was replaced with PEG4000; PEG300 was used as a cosolvent, and the mass of P300 was 3 times that of the surfactant, which was prepared according to the dosage shown in Table 1.
  • the pharmaceutical preparation prepared by the present invention has a small particle size, a high content of active ingredients detected by HPLC, and is stable in form and content after long-term storage; it shows that the preparation of the present invention has high encapsulation efficiency and good stability.
  • the preparation prepared by using a comparative example different from the auxiliary material of the present invention has poor stability, and precipitation or deterioration will occur in a short time.
  • Example 9 of the present invention was instilled into the conjunctival sac under both eyes, 3 times a day, for 6 consecutive days.
  • the treatment was the same as the treatment group. 12 hours after the last eye instillation, the rats were euthanized, the eyeballs were removed, fixed in 4% paraformaldehyde, routinely paraffin sectioned, and stained with HE.
  • the model group showed retinal atrophy, decreased outer nuclear layer cells, decreased inner nuclear layer cells, and disordered cell arrangement. Compared with the model group, the degree of retinopathy was improved in the treatment group, the number of cells in the outer nuclear layer increased, the number of cells in the inner nuclear layer increased, and the cells were arranged relatively neatly (see Figure 6).
  • the present invention provides an eye-drop administration preparation, which can carry (encapsulate) adenylate-activated protein kinase activator and/or anti-inflammatory active ingredients through the anterior segment of the eye by means of eye-drop administration, and deliver To the posterior segment of the eye to play a therapeutic role. It achieves the goal of preventing and treating dry macular degeneration and retinal photodamage through eye drop administration, solves the technical problem that has been urgently solved but has not been solved in the art, and has excellent clinical use value and very positive social significance.

Abstract

一种防治干性黄斑病变和视网膜光损伤的眼用制剂,它是由治疗眼病的活性成分和眼用制剂载体或辅料组成的制剂;所述治疗眼病的活性成分为腺苷酸活化蛋白激酶激活剂和/或抗炎症类活性成分;所述眼用制剂载体或辅料含有如下成分:表面活性剂、离子型高分子和溶剂。眼用制剂能够通过滴眼给药的方式,携载(包裹)腺苷酸活化蛋白激酶激活剂和/或抗炎症类活性成分穿过眼前段,输送到眼后段防治干性黄斑病变和视网膜光损伤,具有极为优良的临床使用价值和非常积极的社会意义。

Description

一种滴眼给药防治干性黄斑病变和视网膜光损伤的眼用制剂 技术领域
本发明属于眼用药物领域,具体涉及一种滴眼给药防治干性黄斑病变和预防视网膜光损伤的眼用制剂。
背景技术
眼底疾病患者众多,仅中国患者数量已逾数千万,随着社会日益老龄化,电子产品的普及,发病率将会逐年上升;常见的眼底疾病有糖尿病性黄斑水肿、糖尿病性视网膜病变、年龄相关性黄斑病变、视网膜静脉阻塞、病理性近视、地图样萎缩、眼部肿瘤、非感染性眼内炎等,可能导致视力下降甚至失明,严重影响人们生活质量。
年龄相关性黄斑病变(AMD)分为干性和湿性,干性AMD以地图样萎缩为特征,湿性AMD以脉络膜新生血管(CNV)为主要特征。在对AMD的治疗探索中,Chen等人分析了68205位糖尿病人13年的病例(台湾,2001~2013年),发现口服二甲双胍(Metformin,CAS号:657-24-9)的2型糖尿病人发生AMD的风险显著低于不服用二甲双胍的病人;服用二甲双胍剂量越高,降低AMD风险越明显(Yu-Yen Chen et al.,Association between Metformin and a Lower Risk of Age-Related Macular Degeneration in Patients with Type 2Diabetes,Journal of Ophthalmology,Volume 2019,Article ID 1649156,9pages)。Brown等人跟踪分析了7788位糖尿病人7年的病例(美国佛罗里达州)发现口服二甲双胍可能对AMD的发生或发展有治疗作用;还发现与不服用二甲双胍的病人比较,大剂量服用组(2年>1110g二甲双胍)可最大程度(25%)降低开角型青光眼的发生(Emily E.Brown et al.,The Common Antidiabetic Drug Metformin Reduces Odds of Developing Age-Related Macular Degeneration,IOVS,April 2019,Vol.60(5):1470-77)。多西环素(又称强力霉素,Doxycycline,CAS号:564-25-0)作为广谱抗菌药物已在临床使用多年,通常口服剂量为100mg/天。近年来多项研究表明低剂量强力霉素(20-40mg/天)对慢性炎症如酒糟鼻(rosacea)等有明显作用(R.D.Caprio et al.,Anti-Inflammatory Properties of Low and High Doxycycline Doses:An In Vitro Study,Mediators of Inflammation,Vol.2015,Article ID 329418,10pages)。一项随机,双盲,安慰剂对照的三期临床试验(TOGA;NCT01782989)表明,商品名为
Figure PCTCN2021134150-appb-000001
(40mg doxycycline)的多西环素胶囊,每天一次,服用24个月,对眼底地图样萎缩的干性年龄相关性黄斑病变的改善也有明显作用。
视网膜光化学损伤可致感光细胞凋亡和视网膜变性,严重者导致视力丧失。Xu等人研究了注射二甲双胍是否对动物眼有保护作用,在做光照破坏试验之前给小鼠玻璃体腔注射二甲双胍(最高500mg/Kg/天,持续7天)几乎可以完全保护光损伤,明显地保护了视网膜结构和感光细胞。研究结果表明 二甲双胍在眼局部激活视网膜上的AMPK(adenosine mono-phosphate-activated protein kinase,腺苷酸活化蛋白激酶)对保护感光细胞和视网膜色素上皮细胞病变很重要(Xu et al.,Stimulation of AMPK prevents degeneration of photoreceptors and the retinal pigment epithelium,PNAS,2018,115(41):10475–10480)。
上述研究结果证明了二甲双胍、硫辛酸(lipoic acid,CAS号:62-46-4)、白藜芦醇(Resveratrol,CAS号:501-36-0)、多西环素等药物对AMD的治疗、预防视网膜光损伤的有效性,但均涉及口服给药或玻璃体注射等给药方式。
目前的临床眼科给药通常有3种途径:⑴结膜囊给药(滴眼):药物通过角膜进入前房水后可以扩散分布到虹膜、睫状体,但晶状体和玻璃体膜的屏障作用,使药物难以进入晶状体和玻璃体;⑵眼部注射给药:包括结膜下注射、眼前房注射、玻璃体注射、眼球后注射和眼眶注射,注射给药可以使药物直接抵达治疗部位,但注射是创伤性的,存在潜在危险,如前房注射产生疼痛,畏光,流泪,前房浑浊,出血,角膜内皮细胞损害,外伤性白内障等;玻璃体注射会出现晶状体浑浊,玻璃体机化,视网膜/视神经损害等;⑶全身给药包括口服给药,静脉给药:药物在体内一般大多聚集在肝脏,肾脏或肺脏,受到血-视网膜屏障(blood retinal barrier,BRB)的阻碍,抵达眼球组织的浓度较低,同时全身尤其是主要脏器承受了不必要的毒副作用。尤其是口服多西环素可能引起全身副作用,包括皮肤并发症(包括光敏反应和皮肤损伤)、胃肠道副作用(呕吐、腹泻、消化不良)、影响骨和牙齿生长等不良反应。
目前临床上为了使药物穿过眼屏障,通常采用的是眼球玻璃体注射、或玻璃体植入(眼内插入)等技术手段,把药物输送到患者玻璃体,治疗眼后段疾病(凌沛学主编《眼科药物与制剂学》,中国轻工业出版社,2010,P3;Wang et.al.,Mediators of Inflammation,Vol.2013,Article ID 780634;Luaces-Rodríguez et al.,Pharmaceutics,2018,10,66)。但药物玻璃体注射或玻璃体植入操作是创伤性给药,需要经过专门培训的眼科医师在手术室等无菌环境下操作;因为操作有创伤性可能会出现并发症,如高眼压、白内障、医源性感染性眼内炎、玻璃体出血、视网膜损伤等;操作条件及操作环境要求高,必须在有条件的医院进行;生物药眼用注射剂生产成本和使用成本高;同时亦存在治疗时机上因为医疗条件限制而延误治疗的情况发生,调整给药方案灵活性差(M.HATA et al.,RETINA,37:1320–1328,2017)。
可见,相比于现有技术中采用玻璃体注射、植入、口服等手段用药治疗干性黄斑病变和预防视网膜光损伤的方式,结膜囊给药是最方便、最安全的眼部给药方式,将对AMD的治疗、预防视网膜光损伤有效的药物如二甲双胍、硫辛酸(lipoic acid,CAS号:62-46-4)、白藜芦醇(Resveratrol,CAS号:501-36-0)、多西环素等开发成低浓度的特殊滴眼液应用于眼局部,并将其直接输送到眼底,可避免对患者造成创伤,能够大幅降低用药剂量,减少对人体产生的毒副作用,对治疗AMD以及视网膜的保护具有特别重要的意 义。
但是,眼角膜有多层结构,从外至内大致分为:富含脂质体的上皮层、富含水性成分的基质层和富含脂质体的内皮层,滴眼液在滴眼后首先接触眼表泪水层,继而需要跨过上皮层、基质层和内皮层才可能到达眼后段。在此过程中,由于泪液的稀释、角膜、结膜的眼表屏障和晶状体、玻璃体的屏障,滴眼液往往在眼前段的组织中浓度高,很难进入眼后段并达到有效的治疗浓度。因此,结膜囊给药的方式虽然安全,但是药物输送性差,难以达到有效治疗眼底疾病的目的。
综上,现有治疗干性黄斑病变等眼底疾病主要给药方法均难以兼顾安全和有效。寻找一种有效且安全的治疗眼底疾病的制剂或方法是本领域研究人员一直孜孜以求的奋斗目标。
发明内容
滴眼给药的方式相比于静脉注射、玻璃体注射具有安全、方便的显著优势,发明能将药物输送到眼后段治疗干性黄斑病变的眼科制剂是临床实践中亟待解决的技术问题,非常具有临床治疗价值和社会意义。
本发明的目的在于提供一种滴眼给药的眼用制剂,能够将治疗眼病的活性成分递送到眼后段,防治干性黄斑病变和视网膜光损伤。
本发明提供了一种滴眼给药的眼用制剂,它是由治疗眼病的活性成分和眼用制剂载体或辅料组成的制剂;
所述治疗眼病的活性成分为腺苷酸活化蛋白激酶激活剂和/或抗炎症类药物;
所述眼用制剂载体或辅料含有如下成分:表面活性剂、离子型高分子和溶剂。
进一步地,上述的眼用制剂的载体或辅料中表面活性剂、离子型高分子的质量比为:(1~100):(0.1~50);所述表面活性剂与溶剂的比例为:每100mL溶剂含5~3000mg表面活性剂;
优选的,所述眼用制剂的载体或辅料中表面活性剂、离子型高分子的质量比为:(1~30):(3.5~6);所述表面活性剂与溶剂的比例为:每100mL溶剂含50~2500mg表面活性剂;
更进一步地,上述表面活性剂为非离子表面活性剂;
优选的,所述非离子表面活性剂为司盘类、聚山梨酯、泊洛沙姆、烷基葡萄糖苷、维生素E聚琥珀酸乙二醇酯、蔗糖硬脂酸酯或氮酮;
更优选的,所述非离子表面活性剂为司盘类、聚山梨酯、泊洛沙姆、烷基葡萄糖苷、蔗糖硬脂酸酯。
进一步地,上述离子型高分子选自羧甲基纤维素及其盐、羟基乙酸淀粉钠、透明质酸及其盐、黄原胶、海藻酸及其盐、二乙酸聚乙二醇PEG-(COOH) 2中的至少一种。
进一步地,上述眼用制剂的载体或辅料中的溶剂为极性溶剂,优选为水。
进一步地,上述眼用制剂的载体或辅料中还含有如下成分:增粘剂和/或助溶剂。
更进一步地,上述增粘剂为聚乙二醇、卡波姆、泊洛沙姆、聚维酮、羟丙基纤维素、甲基纤维素、羟乙基纤维素、聚乙烯醇、黄原胶、聚氧乙烯脂肪醇类、透明质酸及其盐或羟丙基甲基纤维素中的至少一种,所述助溶剂为丙二醇、丙三醇、液态聚乙二醇或蓖麻油;增粘剂和表面活性剂的质量比为1:(0.1~100),助溶剂和表面活性剂的质量比为(1~10):1;
优选的,所述增粘剂和表面活性剂的质量比为1:(0.1~6.25),助溶剂和表面活性剂的质量比为(4.2~10):1;
进一步地,上述表面活性剂和治疗眼病的活性成分的质量比为(1~30):(1~2)。
进一步地,上述腺苷酸活化蛋白激酶激活剂为硫辛酸、硫辛酸立体异构体、硫辛酸盐、硫辛酸立体异构体的盐、二甲双胍、二甲双胍的盐、白藜芦醇、白藜芦醇的盐中的至少一种;所述抗炎症类药物为多西环素、多西环素的盐、四环素、四环素的盐中的至少一种。
更进一步地,上述二甲双胍的盐为盐酸二甲双胍,所述多西环素的盐为多西环素盐酸盐,所述四环素的盐为四环素盐酸盐。
进一步地,上述眼用制剂的载体或辅料含有纳米小体,所述纳米小体由眼用制剂的载体或辅料的成分自组装形成;所述纳米小体中包裹有治疗眼病的活性成分。
更进一步地,上述纳米小体为球形,其粒径为1~100nm;优选地,所述纳米小体粒径为5~30nm。
更进一步地,上述制剂中还含有纳米小球,所述纳米小球为球形,其粒径为10~2000nm;所述纳米小球是纳米小体自组装形成的;优选地,所述纳米小球粒径为100~2000nm。
本发明还提供了一种制备上述制剂的方法,包括以下步骤:
(1)将表面活性剂和/或增粘剂加入溶剂中配制成溶液;
(2)将治疗眼病的活性成分和/或助溶剂分散在步骤(1)得到的溶液中,再加入离子型高分子或其溶液,分散混合得到初悬液;
(3)将步骤(2)得到的初悬液搅拌分散或均质分散,即得;
优选地,步骤(2)所述治疗眼病的活性成分用有机溶剂溶解后分散在步骤(1)得到的溶液中。
进一步地,步骤(2)中所述分散选自机械搅拌分散、磁力搅拌分散、涡旋振摇分散、剪切分散、均质分散、研磨分散、超声分散中的至少一种。
本发明还提供了上述的制剂在制备防治眼底疾病的药物中的用途。
进一步地,上述防治眼底疾病的药物是防治干性黄斑病变的药物;
或,所述防治眼底疾病的药物是防治光照对眼感光细胞或视网膜损伤的药物。
本发明还提供了一种防治眼底疾病的方法,即对患者或有患病风险的个人使用有效量的上述的制剂。
进一步地,上述眼底疾病是干性黄斑病变或光照对眼感光细胞或视网膜损伤。
更进一步地,上述使用的方式是滴眼给予。
现有技术已证明盐酸二甲双胍对视网膜结构和眼感光细胞有保护作用,但却需要通过注射的方式给药,难以通过滴眼给药的方式在眼后段达到有效治疗剂量。本发明制备的滴眼给药的眼用制剂,性状稳定,易于储存,实验证明其能够有效将二甲双胍等治疗眼病的活性成分递送到眼后段,在眼底达到有效(预期)浓度,因而可以通过滴眼给药的方式实现对眼底疾病如干性黄斑病变、光照对眼感光细胞或视网膜损伤的治疗和预防。本发明克服了现有玻璃体注射、玻璃体注射植入剂,口服给药和全身注射给药存在的问题,解决眼内出血、疼痛等严重的并发症问题,极大降低眼底疾病患者的痛苦,增加医从性、改善患者及其家庭的生活质量,或避免全身给药带来的全身毒副作用。
本发明可以避免眼局部注射或植入带来的并发症。
本发明开发的制剂给药量小,毒副作用小,不仅可以作为治疗药物,还可以作为眼科疾病防控。
本发明的制剂可以满足临床上长期给药的需求。
本发明的滴眼给药治疗系统,有效成分可以采用已在临床使用且作用机理明确的小分子药物,质量可控,产品使用方便,病人顺应性好,医师可根据患者病情灵活调整给药方案。
本发明所指的纳米小体是:眼用制剂的载体或辅料的成分在溶剂中自组装形成的纳米级的球形聚集体。
本发明所指的纳米小球是:纳米小体在溶剂中自组装形成的球形自组装结构。
本发明所指的溶剂是:能溶解眼用制剂的载体或辅料的成分的液体。
本发明所指表面活性剂是:能够显著降低液体表面张力的物质;本发明所指非离子型表面活性剂是指在水中不解离的表面活性剂。
本发明所指离子型高分子是:带有阳离子或阴离子的高分子聚合物。
本发明所指的“治疗眼病的活性成分”是:可以用于治疗眼病的活性物质,即目前已经作为眼科用药使用的活性物质,以及作用机理、作用靶点表明其能够治疗眼病,但目前暂没有作为眼科用药使用的活性物质(Active Pharmaceutical Ingredient,API)。
本发明所述滴眼给药是:将药液滴入眼内的一种给药方法,属于角膜给药途径。
显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、替换或变更。
以下通过实施例形式的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围。
附图说明
图1为实施例2制得的样品的透射电镜图(标尺为500nm)。
图2为实施例9制得的样品染色后的透射电镜图(标尺为100nm)。
图3为实施例2的HPLC谱图。
图4为实施例5的HPLC谱图。
图5为实施例14的HPLC谱图。
图6为对照组、干性黄斑病变模型组、本发明制剂治疗的治疗组大鼠的眼球组织切片HE染色结果。
具体实施方式
本发明所用试剂或仪器可以通过市售购买获得,未注明具体条件的,按照常规条件或制造商建议的条件使用。
部分仪器设备如下:
ES225SM-DR(E)电子分析天平,Precisa公司(瑞士);
DF-101S集热式恒温加热磁力搅拌器,巩义市英峪高科仪器厂(河南,中国);
WH-2微型涡旋混合仪,上海沪西分析仪器厂有限公司(上海,中国);
分散机:T25 easy clean digital,IKA公司(德国);
KQ-500型超声清洗仪,昆山市超声波仪器有限公司(昆山,中国);
JP-010T型超声清洗仪,深圳市洁盟清洗设备有限公司;
AH-NANO Plus高压均质机,安拓思纳米技术(苏州)有限公司(中国);
PM-DK2行星式球磨机,卓的仪器设备(上海)有限公司(上海,中国);
Mettler Toledo FE20pH meter,梅特勒-托利多公司(瑞士);
NS-90纳米粒度分析仪,珠海欧美克仪器有限公司(珠海,中国);
安捷伦1100HPLC高效液相色谱仪,安捷伦科技有限公司(美国);
API4000三重四极杆质谱仪(美国Applied Biosystems公司);
STY-1A渗透压测定仪,天津市天大天发科技有限公司(天津,中国)。
本发明制剂的性质检测方法如下
粒径检测方法:
将1mL实施例或对比例制备得到的样品转移至样品池中,检测温度设置为40℃,将样品池放入NS-90纳米粒度分析仪,开始检测。每个样品重复检 测3次,取3次检测结果的平均值为该样品检测结果为粒度(以光强分布,及占比%)和多分散指数(PdI,Polydispersity Index)表示。
渗透压检测方法:
测量溶液的冰点下降来测定其渗透压摩尔浓度。操作:清洗STY-1A渗透压测定仪探头:取三份100μL蒸馏水至3只样品管中,待仪器预热后,将装有100μL蒸馏水的样品管旋上仪器探头,选择清洗3次,点击“清洗”,重复三次。检测:在仪器信息表中填入样品信息后,点击“测试”;用移液枪移取100μL样品至样品管中,轻轻旋上仪器,点击“启动”检测。重复检测三次,取3次检测结果的平均值为检测结果。
pH值检测方法:
FE20型酸度计分别用pH缓冲溶液(pH分别为4.00、6.86和9.18)校准,电极用纯净水冲洗后,用无纤维纸吸去多余水份,浸入待检测液体样品中按读数键开始测量,在读数稳定后所得数据,即为样品pH值。
检测得到的溶液若pH<5,或>9,则需要用酸或碱调节至pH6~8,常用的pH调节剂为NaOH和HCl,磷酸和磷酸盐(如磷酸二氢钠、磷酸氢二钠),柠檬酸和柠檬酸盐(如柠檬酸钠),硼酸和硼砂;检测所得液体的渗透压如未达到等渗,则添加适量氯化钠,使其达到或接近等渗。
递送药物到达眼后段的效果验证方法:
试验仪器设备:高效液相色谱仪,型号:LC-20AD(日本岛津);质谱仪:型号:API4000三重四极杆质谱仪(美国Applied Biosystems公司);色谱柱:Fortis Pace C18 5μM,2.1X30mm(英国Fortis公司)。
选用健康成年Sprague Dawley(SD)大鼠,分为受试剂组和对照组,每组6只眼,受试剂组滴加本发明实施例制备的眼用制剂,对照组滴加2mg药物/5mL生理盐水的混悬液(使用前涡旋振摇均匀),每只眼睛20μL。给药后于0.5小时或1小时后安乐死处理动物,迅速采集玻璃体,玻璃体样品匀浆处理后,于-80℃保存。取10μL玻璃体匀浆,加入90μL 95%乙醇,超声2分钟,涡旋混合1分钟,得玻璃体匀浆液;取50μL匀浆液,加入175μL甲醇,涡旋混合3min,4℃ 12000rpm离心10min,取上清液用0.45μm的针头式过滤器过滤,滤液用于LC/MS/MS(正离子模式,MRM SCAN)分析。
实施例1、本发明眼用制剂的制备
制备方法:按照表1称取60mg CMC-Na(羧甲基纤维素钠,离子型高分子)加到含有10mL纯净水的玻璃三角瓶中,开启磁力搅拌2小时,得溶液1;分别称取0.3g聚山梨酯80(表面活性剂)和0.12g HPC(低取代羟丙基纤维素,增黏剂)加到含有20mL纯净水的玻璃三角瓶中,开启磁力搅拌、水浴加热40℃左右1.5小时,得溶液2;称取15mg盐酸二甲双胍投入到溶 液2,继续加热搅拌30分钟,加入溶液1,搅拌30分钟,得混合液;将混合液用分散机在转速9500转分散5分钟,停机待泡沫消失后,用布氏漏斗减压过滤,得分散液;将分散液转移至高压均质机,控制温度15±5℃,在压力400Bar左右均质3分钟,然后提高压力至>800Bar均质25分钟,减压至300Bar均质2分钟后排出,得到无色澄明溶液,进一步减压过滤除菌并除去机械杂质得到除杂后的无色澄明溶液。
pH调节方法:用0.1N NaOH调节pH6.5。
HPLC检测:Column:ZORBAX Eclipse Plus C18,4.6x100mm,3.5μm;流动相A:40mM醋酸铵(pH5.0),B:甲醇;梯度洗脱,0~2':100%A,20~22':60%A-40%B,Temp.:35℃,检测波长:233nm,Flowrate:0.8ml/min;进样体积:10μL;检测结果:97.4%。粒径11.8nm(71.6%),PdI:0.519;室温避光放置1个月,外观及含量无明显变化。
实施例2、本发明眼用制剂的制备
制备方法参照实施例1,原料及用量如表1所示,得到除杂后的无色澄明溶液。
pH和渗透压调节:用1N柠檬酸钠溶液调节至pH6.5,加氯化钠调节渗透压至:297mOsmol/kg。
HPLC检测:Column:ZORBAX 300SB-CN,2.1x150mm,5μm;流动相:40mM KH 2PO 4(pH4.5):甲醇(75:25)等度洗脱,Temp.:35℃,检测波长:233nm,Flowrate:0.8ml/min;检测结果:99.1%。
粒径21.6nm(94.4%),PdI:0.206;室温避光放置1个月,外观及含量无明显变化。
滴眼后1小时大鼠玻璃体API浓度为:39.8±16.6ng/g。
实施例3、本发明眼用制剂的制备,
制备方法参照实施例1,原料及用量如表1所示,得到除杂后的无色澄明溶液。pH检测结果:6.9,接近等渗,无需调节。
HPLC检测方法同实施例1,检测结果:98.6%。
粒径16.6nm(98.6%),PdI:0.227,室温避光放置1个月,外观及含量无明显变化。
实施例4、本发明眼用制剂的制备
制备方法参照实施例1,原料及用量如表1所示,得到除杂后的无色澄明溶液。pH检测结果:6.5,接近等渗,无需调节。
HPLC检测方法同实施例1,检测结果:97.8%。
粒径17.1nm(55.5%),513(36.3%),PdI:0.795,室温避光放置1个月,外观及含量无明显变化。
实施例5、本发明眼用制剂的制备
制备方法:称取60mg CMC-Na加到含有15mL纯水的玻璃三角瓶中,开启磁力搅拌2小时,得溶液1;分别称取0.24g聚山梨酯80和0.12g HPMC(增黏剂)加入到含有15mL纯水的另一个玻璃三角瓶中,开启磁力搅拌、水浴加热40℃左右3小时,得溶液2;称取15mg硫辛酸和1mL丙三醇(相当于表面活性剂用量的5.25倍(w/w))投入到溶液2,继续加热搅拌30分钟后,加入溶液1,搅拌30分钟,得混合液;将混合液用分散机在转速11,000转分散3分钟,停机后待溶液泡沫消失后转入高压均质机均质处理(条件参照实施例1)得到无色澄明溶液,然后减压过滤除菌并除去机械杂质,得到除杂后的无色澄明溶液;
pH和渗透压调节方法:用0.1N柠檬酸钠溶液调节至pH6.3,加氯化钠调节渗透压至:294mOsmol/kg;
HPLC检测:Column:ZORBAX Eclipse Plus C18,4.6x100mm 3.5μm;流动相A:0.1%磷酸(pH3.0),B:甲醇-乙腈(1:1)。Temp.:35℃,检测波长:215nm,Flowrate:0.8ml/min;梯度洗脱程序:0-5’:60%A-40%B,28-30’:40%A-60%B;检测结果:97.4%。粒度检测结果:17.8nm(98.6%),PdI:0.222;3~8℃避光放置1个月外观和含量无变化。
滴眼后0.5小时大鼠玻璃体API浓度为:52.6±17.9ng/g。
对照组滴加2mg硫辛酸/5mL生理盐水的混悬液(使用前涡旋振摇均匀),每只眼睛20μL,对照组滴眼后0.5小时动物玻璃体中未检测到硫辛酸(低于检测限,<1ng/g)。
实施例6、本发明眼用制剂的制备
制备方法及pH、渗透压调节方法参照实施例1,原料及用量如表1所示,得到除杂后的无色澄明溶液。
HPLC检测方法同实施例1,HPLC检测结果:98.4%
检测结果:粒径348nm(85%),PdI:0.422。
室温避光放置1个月外观和含量无变化,1个月无明显变化,2个月后出现少量沉淀。
实施例7、本发明眼用制剂的制备
制备方法和pH、渗透压调节方法参照实施例5,原料及用量如表1所示,其中助溶剂丙二醇的用量为表面活性剂的6.2倍(w/w)。
HPLC检测方法同实施例5,检测结果:98.1%;粒径25.8nm(87.4%),PdI:0.317,3~8℃避光放置1个月,外观和含量无变化。
实施例8、本发明眼用制剂的制备
制备方法和pH、渗透压调节方法参照实施例5,原料及用量如表1所示,其中助溶剂丙二醇的用量为表面活性剂的8.9倍(w/w)。
HPLC检测方法同实施例5,检测结果:95.2%;粒径31.5nm(82.9%),PdI:0.347。3~8℃避光放置1个月,外观和含量无变化。
实施例9、本发明眼用制剂的制备
制备方法参照实施例1,原料及用量如表1所示,得到除杂后的微黄色澄明溶液。
pH、渗透压调节:用0.1N NaOH调节至pH6.3,加氯化钠调节渗透压至:297mOsmol/kg;
HPLC检测波长280nm,其余检测方法同实施例1,检测结果:97.3%;粒径16.7nm(98.1%),PdI:0.225;室温避光放置1个月,外观和含量无变化。
滴眼后0.5小时大鼠玻璃体API浓度为:66.5±18.1ng/g。
对照组滴加2mg多西环素/5mL生理盐水的混悬液(使用前涡旋振摇均匀),每只眼睛20μL,对照组滴眼后0.5小时动物玻璃体中未检测到多西环素(低于检测限,<1ng/g)。
实施例10、本发明眼用制剂的制备
制备方法和pH、渗透压调节方法参照实施例9,原料及用量如表1所示,得到除杂后的微黄色澄明溶液。
HPLC检测方法同实施例9,HPLC含检测结果:98.2%;粒径17.2nm(97.9%),PdI:0.208;室温避光放置1个月,外观和含量无变化。
实施例11、本发明眼用制剂的制备
制备方法和pH、渗透压调节方法参照实施例9,助溶剂的加入是:称取1.5mL丙二醇(相当于表面活性剂的10倍(w/w))与表面活性剂一起加入介质水中,磁力搅拌,水浴加热溶解得到溶液2,得到除杂后的微黄色澄明溶液,原料及用量如表1所示。
HPLC检测方法同实施例9,检测结果:95.2%;粒径29.7nm(89.3%),PdI:0.382;3~8℃避光放置1个月,有絮状物出现。
实施例12、本发明眼用制剂的制备
制备方法和pH、渗透压调节方法参照实施例5,原料及用量如表1所示。
HPLC检测方法参照实施例5,检测结果:0.486mg/mL(二甲双胍)、0.481mg/mL(硫辛酸);粒径18.9nm+302.1nm,PdI:0.529;3~8℃避光放置1个月,外观和含量无变化。
滴眼后0.5小时动物玻璃体API浓度为:86.5ng/g硫辛酸,69.5ng/g二甲双胍。
实施例13、本发明眼用制剂的制备
制备方法和pH、渗透压调节方法参照实施例5,原料及用量如表1所示。
HPLC检测方法参照实施例5,检测结果:0.487mg/mL(多西环素)、0.478mg/mL(硫辛酸);粒径20.2nm+251.6nm,PdI:0.701,3~8℃避光放置1个月,外观和含量无变化。
滴眼后0.5小时大鼠玻璃体API浓度为:57.3ng/g硫辛酸,68.4ng/g二甲双胍。
实施例14、本发明眼用制剂的制备
制备方法参照实施例5;原料及用量如表1所示,其中助溶剂丙二醇的用量为表面活性剂的4.5倍(w/w),pH为6.5,接近等渗,无需调节。
HPLC检测方法:Column:ZORBAX Eclipse Plus C18,4.6x100mm 3.5μm;流动相A:0.1%磷酸,B:乙腈(80:20),等度洗脱;Temp.:35℃,检测波长:306nm,Flowrate:0.8ml/min;检测结果:95.7%;
粒径27.5nm(77.9%),PdI:0.328;3~8℃避光放置1个月,外观和含量无明显变化。
滴眼后0.5小时大鼠玻璃体API浓度为:20.3±9.3ng/g。
实施例15、本发明眼用制剂的制备
制备方法参照实施例14,原料及用量如表1所示,其中助溶剂丙二醇的用量为表面活性剂的4.5倍(w/w),得到除杂后的无色澄明溶液。
pH为6.6,无需调节pH;渗透压调节:加氯化钠调节渗透压至:293mOsmol/kg;
HPLC检测方法参照实施例14,检测结果:96.1%;
粒径24.5nm(85.5%),PdI:0.253;3~8℃避光放置1个月,外观和含量无明显变化。
实施例16、本发明眼用制剂的制备
制备方法参照实施例14,原料及用量如表1所示,其中助溶剂丙三醇的用量为表面活性剂的4.5倍(w/w),得到除杂后的无色澄明溶液。
pH为6.4,无需调节pH;渗透压调节:加氯化钠调节渗透压至305mOsmol/kg;
HPLC检测方法参照实施例14,检测结果:94.7%;
粒径26.2nm(75.2%),PdI:0.325;3~8℃避光放置1个月,外观和含量无明显变化。
实施例17、本发明眼用制剂的制备
制备方法参照实施例14,原料及用量如表1所示,其中助溶剂丙二醇的用量为表面活性剂的4.5倍(w/w),得到除杂后的无色澄明溶液。
pH、渗透压调节:用0.2N NaOH调节至pH6.2,加氯化钠调节渗透压至: 305mOsmol/kg;
HPLC检测方法参照实施例14,检测结果:95.3%;
粒径22.7nm(83.4%),PdI:0.372;3~8℃避光放置1个月,外观和含量无明显变化。
实施例18、本发明眼用制剂的制备
制备方法参照实施例9,原料及用量如表1所示,其中助溶剂丙二醇的用量为表面活性剂的5倍(w/w),得到除杂后的无色澄明溶液。
pH、渗透压调节:用0.1NNaOH调节至pH6.3,加氯化钠调节渗透压至:290mOsmol/kg;
HPLC检测方法参照实施例5,检测结果:96.1%;
粒径23.7nm(84.2%),PdI:0.323;室温避光放置1个月,外观和含量无明显变化。
滴眼后0.5小时大鼠玻璃体API浓度为:62.5ng/g。
实施例19、本发明眼用制剂的制备
制备方法参照实施例5,原料及用量如表1所示,其中助溶剂丙二醇的用量为表面活性剂的4.2倍(w/w),得到除杂后的无色澄明溶液。
pH、渗透压调节:用0.1N NaOH调节至pH6.3,加氯化钠调节渗透压至:288mOsmol/kg;
HPLC检测方法参照实施例5,检测结果:95.6%;粒径24.1nm(81.5%),PdI:0.357;室温避光放置1个月,外观和含量无明显变化。
实施例20、本发明眼用制剂的制备
制备方法参照实施例5,原料及用量如表1所示,其中助溶剂丙二醇的用量为表面活性剂的5.2倍(w/w),得到除杂后的无色澄明溶液。
pH、渗透压调节:用0.2N NaOH调节至pH6.3,加氯化钠调节渗透压至:310mOsmol/kg;
HPLC检测方法参照实施例5,检测结果:97.2%;粒径27.5nm(79.6%),PdI:0.364;室温避光放置1个月,有可见微粒。
实施例21、本发明眼用制剂的制备
制备方法参照实施例9,原料及用量如表1所示,得到除杂后的淡黄色澄明溶液。
pH、渗透压调节:用0.1N柠檬酸钠溶液调节至pH7.0,加氯化钠调节渗透压至:302mOsmol/kg。
HPLC检测:Column:ZORBAX 300SB-CN,2.1x150mm,5μm;流动相:0.1M醋酸銨水溶液-10mM三乙胺(pH8.5):乙睛(84:16),等度洗脱,Temp.:30℃,检测波长:350nm,Flowrate:0.8ml/min;检测结果:98.5%;粒径13.4nm (89.5%),PdI:0.201;室温避光放置1个月,外观及含量无明显变化。
滴眼后0.5h大鼠玻璃体API浓度为:54.8±19.2ng/g。
通过滴眼给药后大鼠玻璃体内API浓度的测定结果,说明本发明眼用制剂可以携载治疗眼病的活性成分穿过眼球结构的屏障,通过结膜囊给药(滴眼给药)的方式即可把有效剂量的药物递送到玻璃体,避免玻璃体注射等侵入性给药方式,还大幅度减少总的药物量,减少药物在全身的吸收,避免产生毒副作用。
对比例1、聚维酮辅料制备的制剂
参照实施例5的制备方法,以15mg硫辛酸为药物,将离子型高分子替换为聚维酮K12(PVP K12),以聚维酮K30(PVP K30)替代增粘剂;以PEG300作为助溶剂,PEG300的质量为聚维酮K12的22倍,按照表1所示用量制备得到。
对比例2、聚维酮替代离子型高分子制备的制剂
参照实施例2的制备方法,以15mg盐酸二甲双胍为药物,将离子型高分子替换为聚维酮K12(PVP K12),以PEG300作为助溶剂,PEG300的质量为表面活性剂的4倍,按照表1所示用量制备得到。
对比例3、聚乙二醇代替离子型高分子制备的制剂
参照实施例15的制备方法,将离子型高分子替换为PEG4000;以PEG300作为助溶剂,P300的质量为表面活性剂的3倍,按照表1所示用量制备得到。
表1、
Figure PCTCN2021134150-appb-000002
Figure PCTCN2021134150-appb-000003
Figure PCTCN2021134150-appb-000004
以下通过实验例证明本发明滴眼给药的药物制剂的有益效果。
实验例1、本发明载体的透射电镜观察结果
透射电子显微镜(JEM-2100Plus,日本JEOL公司)
吸取1滴实施例2制备的液体样品于铜质样品网,静置5分钟后吸去多余的液体样品后,自然放干,放置于电镜样品室作检测;样品染色:吸取1滴液体样品于铜质样品网,在除去样品网上多余的样品后,加1滴2%磷钼酸,静置5分钟后吸去多余的液体,自然放干,样品网放置于电镜作检测。结果见图1。同样方法观察实施例9制备的样品,结果见图2。可以观察到1~100nm的球形结构(纳米小体)以及纳米小体构成的100~2000nm的球形结构(纳米小球)。
实验例2、粒径、含量及稳定性检测
1、实验方法
将1mL实施例和对比例制备得到的样品转移至样品池中,检测温度设置为40℃,将样品池放入NS-90钠米粒度分析仪,开始检测。每个样品重复检测3次,取3次检测结果的平均值为该样品检测结果为粒度(以光强分布,及占比%)和多分散指数(PdI,Polydispersity Index)表示。检测后避光保存,观察外观变化并再次检测粒径。
采用安捷伦1100高效液相色谱仪检测本发明制得的眼用制剂样品的HPLC含量。
2、实验结果
见下表:
表2.
Figure PCTCN2021134150-appb-000005
Figure PCTCN2021134150-appb-000006
Figure PCTCN2021134150-appb-000007
上述结果可以看出,本发明制备的药物制剂粒径小,HPLC检测活性成分含量高,长时间放置形态和含量均稳定;说明本发明制剂包封率高,稳定性好。而使用与本发明的辅料原料不同的对比例制得的制剂,稳定性很差,短时间就会出现沉淀或变质现象。
实验例3、本发明眼用制剂通过滴眼给药的方式治疗干性黄斑病变的效果验证
1、实验方法
将9只140-160克体重SD鼠分为对照组(3只),模型组(3只)和治疗组(3只)。模型组和治疗组经鼠尾静脉注射1%碘酸钠(20mg/kg)构建干性黄斑变性大鼠模型,其囊括了干性黄斑变性的病理学特征,是评估干性黄斑变性新疗法的有效工具之一。
治疗组于注射后24小时开始,双眼下眼结膜囊每次滴入本发明实施例9的制剂20uL,每天3次,连续6天,模型组和对照组大鼠除生理盐水滴眼外,其他处理与治疗组一致,于最后一次滴眼后12小时,安乐死大鼠,摘除眼球,4%多聚甲醛固定,常规石蜡切片、HE染色。
2、实验结果
光学显微镜下观察,对照组大鼠视网膜层次清晰,细胞排列整齐,外核层和内核层细胞结构无异常。模型组大鼠视网膜萎缩,外核层细胞减少,内 核层细胞减少,细胞排列紊乱。治疗组与模型组比较,视网膜病变程度改善,外核层细胞数增加,内核层细胞数增加,且细胞排列相对整齐(见图6)。
上述实验结果表明本发明滴眼剂对干性黄斑变性有预防/治疗作用。
综上,本发明提供了一种滴眼给药制剂,能够通过滴眼给药的方式,携载(包裹)腺苷酸活化蛋白激酶激活剂和/或抗炎症类活性成分穿过眼前段,输送到眼后段发挥治疗作用。实现了通过滴眼给药防治干性黄斑病变和视网膜光损伤的目标,解决了本领域一直期限亟待解决但未解决的技术问题,具有极为优良的临床使用价值和非常积极的社会意义。

Claims (20)

  1. 一种滴眼给药的眼用制剂,其特征在于,它是由治疗眼病的活性成分和眼用制剂载体或辅料组成的制剂;
    所述治疗眼病的活性成分为腺苷酸活化蛋白激酶激活剂和/或抗炎症类药物;
    所述眼用制剂载体或辅料含有如下成分:表面活性剂、离子型高分子和溶剂。
  2. 根据权利要求1所述的制剂,其特征在于,所述的眼用制剂的载体或辅料中表面活性剂、离子型高分子的质量比为:(1~100):(0.1~50);所述表面活性剂与溶剂的比例为:每100mL溶剂含5~3000mg表面活性剂。
  3. 根据权利要求2所述的制剂,其特征在于,所述眼用制剂的载体或辅料中表面活性剂、离子型高分子的质量比为:(1~30):(3.5~6);所述表面活性剂与溶剂的比例为:每100mL溶剂含50~2500mg表面活性剂。
  4. 根据权利要求1~3任一项所述的制剂,其特征在于,所述表面活性剂为非离子表面活性剂;优选的,所述非离子表面活性剂为司盘类、聚山梨酯、泊洛沙姆、烷基葡萄糖苷、维生素E聚琥珀酸乙二醇酯、蔗糖硬脂酸酯或氮酮;更优选的,所述非离子表面活性剂为司盘类、聚山梨酯、泊洛沙姆、烷基葡萄糖苷、蔗糖硬脂酸酯。
  5. 根据权利要求1~3任一项所述的制剂,其特征在于,所述离子型高分子选自羧甲基纤维素及其盐、羟基乙酸淀粉钠、透明质酸及其盐、黄原胶、海藻酸及其盐、二乙酸聚乙二醇PEG-(COOH) 2中的至少一种。
  6. 根据权利要求1所述的制剂,其特征在于:所述眼用制剂的载体或辅料中的溶剂为极性溶剂,优选为水。
  7. 根据权利要求1所述的制剂,其特征在于:所述眼用制剂的载体或辅料中还含有如下成分:增粘剂和/或助溶剂;
    优选的,所述增粘剂为聚乙二醇、卡波姆、泊洛沙姆、聚维酮、羟丙基纤维素、甲基纤维素、羟乙基纤维素、聚乙烯醇、黄原胶、聚氧乙烯脂肪醇类、透明质酸及其盐或羟丙基甲基纤维素中的至少一种,所述助溶剂为丙二醇、丙三醇、液态聚乙二醇或蓖麻油;增粘剂和表面活性剂的质量比为1:(0.1~100),助溶剂和表面活性剂的质量比为(1~10):1;
    更优选的,所述增粘剂和表面活性剂的质量比为1:(0.1~6.25),助溶剂和表面活性剂的质量比为(4.2~10):1。
  8. 根据权利要求1所述的制剂,其特征在于,所述表面活性剂和治疗眼病的活性成分的质量比为(1~30):(1~2)。
  9. 根据权利要求1所述的制剂,其特征在于,所述腺苷酸活化蛋白激酶激活剂为硫辛酸、硫辛酸立体异构体、硫辛酸盐、硫辛酸立体异构体的盐、 二甲双胍、二甲双胍的盐、白藜芦醇、白藜芦醇的盐中的至少一种;所述抗炎症类药物为多西环素、多西环素的盐、四环素、四环素的盐中的至少一种。
  10. 根据权利要求9所述的制剂,其特征在于,所述二甲双胍的盐为盐酸二甲双胍,所述多西环素的盐为多西环素盐酸盐,所述四环素的盐为四环素盐酸盐。
  11. 根据权利要求1~10任一项所述的制剂,其特征在于,所述眼用制剂的载体或辅料含有纳米小体,所述纳米小体由眼用制剂的载体或辅料的成分自组装形成;所述纳米小体中包裹有治疗眼病的活性成分。
  12. 根据权利要求11所述的制剂,其特征在于,所述纳米小体为球形,其粒径为1~100nm;优选地,所述纳米小体粒径为5~30nm。
  13. 根据权利要求12所述的制剂,其特征在于:它含有纳米小球,所述纳米小球为球形,其粒径为10~2000nm;所述纳米小球是纳米小体自组装形成的;优选地,所述纳米小球粒径为100~2000nm。
  14. 一种制备权利要求1~13任一项所述的制剂的方法,其特征在于,包括以下步骤:
    (1)将表面活性剂和/或增粘剂加入溶剂中配制成溶液;
    (2)将治疗眼病的活性成分和/或助溶剂分散在步骤(1)得到的溶液中,再加入离子型高分子或其溶液,分散混合得到初悬液;
    (3)将步骤(2)得到的初悬液搅拌分散或均质分散,即得;
    优选地,步骤(2)所述活性成分用有机溶剂溶解后分散在步骤(1)得到的溶液中。
  15. 根据权利要求14所述的方法,其特征在于,步骤(2)中所述分散选自机械搅拌分散、磁力搅拌分散、涡旋振摇分散、剪切分散、均质分散、研磨分散、超声分散中的至少一种。
  16. 权利要求1~13任意一项所述的制剂在制备防治眼底疾病的药物中的用途。
  17. 根据权利要求16所述的用途,其特征在于,所述防治眼底疾病的药物是防治干性黄斑病变的药物;
    或,所述防治眼底疾病的药物是防治光照对眼感光细胞或视网膜损伤的药物。
  18. 一种防治眼底疾病的方法,其特征在于,对患者或有患病风险的个体使用有效量的权利要求1~13任一项所述的制剂。
  19. 根据权利要求18所述的方法,其特征在于,所述眼底疾病是干性黄斑病变或光照对眼感光细胞或视网膜损伤。
  20. 根据权利要求18所述的方法,其特征在于,所述使用的方式是滴眼给予。
PCT/CN2021/134150 2021-01-22 2021-11-29 一种滴眼给药防治干性黄斑病变和视网膜光损伤的眼用制剂 WO2022156372A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21920748.7A EP4282401A1 (en) 2021-01-22 2021-11-29 Ophthalmic preparation administered by eye drops and used for preventing and treating dry macular degeneration and retinal light damage
JP2023544440A JP2024507326A (ja) 2021-01-22 2021-11-29 点眼投与により乾燥型黄斑変性症および網膜光障害を予防・治療するための眼科用製剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110091088.2 2021-01-22
CN202110091088 2021-01-22

Publications (1)

Publication Number Publication Date
WO2022156372A1 true WO2022156372A1 (zh) 2022-07-28

Family

ID=82549367

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2021/134151 WO2022156373A1 (zh) 2021-01-22 2021-11-29 一种滴眼给药治疗黄斑水肿、视神经炎和非感染性眼内炎的眼用制剂
PCT/CN2021/134149 WO2022156371A1 (zh) 2021-01-22 2021-11-29 一种眼用制剂的载体或辅料及其制备方法和应用
PCT/CN2021/134150 WO2022156372A1 (zh) 2021-01-22 2021-11-29 一种滴眼给药防治干性黄斑病变和视网膜光损伤的眼用制剂

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/134151 WO2022156373A1 (zh) 2021-01-22 2021-11-29 一种滴眼给药治疗黄斑水肿、视神经炎和非感染性眼内炎的眼用制剂
PCT/CN2021/134149 WO2022156371A1 (zh) 2021-01-22 2021-11-29 一种眼用制剂的载体或辅料及其制备方法和应用

Country Status (3)

Country Link
EP (3) EP4282401A1 (zh)
JP (3) JP2024507327A (zh)
WO (3) WO2022156373A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070116777A1 (en) * 2005-11-07 2007-05-24 Joseph Schwarz Ophthalmic preparation containing menthyl ester of indomethacin
CN102085203A (zh) * 2009-12-02 2011-06-08 沈阳兴齐制药有限公司 左氧氟沙星和醋酸泼尼松龙的眼用制剂及其制备方法
WO2012053011A2 (en) * 2010-10-18 2012-04-26 Usv Limited Ophthalmic compositions comprising brinzolamide
CN103501763A (zh) * 2011-04-08 2014-01-08 赫姆法拉匈牙利有限责任公司 在早期青光眼中恢复正常视觉功能的基于pacap(垂体腺苷酸环化酶活化多肽)的眼用制剂
WO2019165240A1 (en) * 2018-02-23 2019-08-29 Rhnanopharma Nanosuspensions of salsalate and methods of using the same
CN110664757A (zh) * 2018-11-19 2020-01-10 成都瑞沐生物医药科技有限公司 纳米晶滴眼剂、其制备方法及其应用
CN110893188A (zh) * 2012-11-08 2020-03-20 克莱尔塞德生物医学股份有限公司 用于在人类受试者中治疗眼部疾病的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69526369T2 (de) * 1995-01-20 2002-11-07 Wakamoto Pharma Co Ltd Entzündungshemmende augentropfen
US20050196370A1 (en) * 2003-03-18 2005-09-08 Zhi-Jian Yu Stable ophthalmic oil-in-water emulsions with sodium hyaluronate for alleviating dry eye
WO2017058836A1 (en) * 2015-09-28 2017-04-06 Puracap Pharmaceutical Llc Soft gelatin capsules containing a mixture of analgesics and decongestants, expectorants, antitussives and/or antihistamines
CN110237233B (zh) * 2019-07-30 2021-01-15 沈阳兴齐眼药股份有限公司 一种含有环孢素的眼用药物组合物、其制备方法及用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070116777A1 (en) * 2005-11-07 2007-05-24 Joseph Schwarz Ophthalmic preparation containing menthyl ester of indomethacin
CN102085203A (zh) * 2009-12-02 2011-06-08 沈阳兴齐制药有限公司 左氧氟沙星和醋酸泼尼松龙的眼用制剂及其制备方法
WO2012053011A2 (en) * 2010-10-18 2012-04-26 Usv Limited Ophthalmic compositions comprising brinzolamide
CN103501763A (zh) * 2011-04-08 2014-01-08 赫姆法拉匈牙利有限责任公司 在早期青光眼中恢复正常视觉功能的基于pacap(垂体腺苷酸环化酶活化多肽)的眼用制剂
CN110893188A (zh) * 2012-11-08 2020-03-20 克莱尔塞德生物医学股份有限公司 用于在人类受试者中治疗眼部疾病的方法和装置
WO2019165240A1 (en) * 2018-02-23 2019-08-29 Rhnanopharma Nanosuspensions of salsalate and methods of using the same
CN110664757A (zh) * 2018-11-19 2020-01-10 成都瑞沐生物医药科技有限公司 纳米晶滴眼剂、其制备方法及其应用

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
CAS, no. 564-25-0
EMILY E. BROWN ET AL.: "The Common Antidiabetic Drug Metformin Reduces Odds of Developing Age-Related Macular Degeneration", IOILS, vol. 60, no. 5, April 2019 (2019-04-01), pages 1470 - 77
LUACES-RODRIGUEZ ET AL., PHARMACEUTICS, vol. 10, 2018, pages 66
M. HATA ET AL., RETINA, vol. 37, 2017, pages 1320 - 1328
PEI-XUE LING: "Ophthalmic Drugs and Preparation Techniques", CHINA LIGHT INDUSTRY PRESS, 2010, pages 3
R.D. CAPRIO ET AL.: "Anti-Inflammatory Properties of Low and High Doxycycline Doses: An in Vitro Study", MEDIATORS OF INFLAMMATION, vol. 2015, no. 329418, pages 10
TAHA EHAB I.; BADRAN MOHAMED M.; EL-ANAZI MAGDA H.; BAYOMI MOHSEN A.; EL-BAGORY IBRAHIM M.: "Role of Pluronic F127 micelles in enhancing ocular delivery of ciprofloxacin", JOURNAL OF MOLECULAR LIQUIDS, ELSEVIER, AMSTERDAM, NL, vol. 199, 16 September 2014 (2014-09-16), NL , pages 251 - 256, XP029090964, ISSN: 0167-7322, DOI: 10.1016/j.molliq.2014.09.021 *
WANG ET AL., MEDIATORS OF INFLAMMATION, vol. 2013, no. 780634
XU ET AL.: "Stimulation of AMPK prevents degeneration of photoreceptors and the retinal pigment epithelium", PNAS, vol. 115, no. 41, 2018, pages 10475 - 10480
YU-YEN CHEN ET AL.: "Association between Metformin and a Lower Risk of Age-Related Macular Degeneration in Patients with Type 2 Diabetes", JOURNAL OF OPHTHALMOLOGY,, vol. 2019, no. 1649156, pages 9

Also Published As

Publication number Publication date
EP4282402A1 (en) 2023-11-29
JP2024507326A (ja) 2024-02-19
WO2022156371A1 (zh) 2022-07-28
JP2024507329A (ja) 2024-02-19
EP4282401A1 (en) 2023-11-29
WO2022156373A1 (zh) 2022-07-28
JP2024507327A (ja) 2024-02-19
EP4282432A1 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
Chang et al. Phase II results of an intraocular steroid delivery system for cataract surgery
Fedorchak et al. 28-day intraocular pressure reduction with a single dose of brimonidine tartrate-loaded microspheres
WO2020103958A1 (zh) 纳米晶滴眼剂、其制备方法及其应用
TWI827800B (zh) 4-(7-羥基-2-異丙基-4-側氧基-4h-喹唑啉-3-基)-苄腈之配製物
Ma et al. Design, characterization, and application of a pH-triggered in situ gel for ocular delivery of vinpocetine
CN113797163B (zh) 一种滴眼给药防治干性黄斑病变和视网膜光损伤的眼用制剂
Prieto et al. Gantrez AN nanoparticles for ocular delivery of memantine: in vitro release evaluation in albino rabbits
WO2022156372A1 (zh) 一种滴眼给药防治干性黄斑病变和视网膜光损伤的眼用制剂
JP2022514257A (ja) ドライアイ疾患の治療のための局所点眼製剤におけるlxrアゴニスト
CN114099645A (zh) 胰岛素纳米系统对角膜组织修复的药物组合物及其应用
US20150150795A1 (en) Time-release and micro-dose formulations for topical application of estrogen and estrogen analogs or other estrogen receptor modulators in the treatment of dry eye syndrome, and methods of preparation and application
WO2023030430A1 (zh) 一种滴眼给药预防和/或治疗白内障的眼用制剂
KR20200113221A (ko) 다중 표적 억제제의 현탁액 조성물
EP4074319A1 (en) Ophthalmic topical composition with ceria nanoparticles for treating diseases of posterior segment of the eye
WO2023103835A1 (zh) 一种酪氨酸激酶抑制剂眼用制剂及其制备方法和用途
Navarro-Partida et al. Safety and Tolerability of Topical Ophthalmic Triamcinolone Acetonide-Loaded Liposomes Formulation and Evaluation of Its Biologic Activity in Patients with Diabetic Macular Edema. Pharmaceutics 2021, 13, 322
Yu et al. Ocular topical application of alpha-glucosyl hesperidin as an active pharmaceutical excipient: in vitro and in vivo experimental evaluation
Feghhi Cationic liposomes as promising vehicles forTimolol/Brimonidine combination ocular delivery in glaucoma: Formulation development and in vitro/in vivo evaluation
CN115837027A (zh) 一种眼用地塞米松药物组合物
Yang et al. Sustained release gel based on CT image inspection for treatment of diabetes fundus macular lesions
Dnyanmote Santosh Study of Intraocular Structures Upon Exposure to Chitosan Membrane Saturated with 5 Fluorouracil Injected Intravitreally in Experimental Settings
CN112294761A (zh) 一种难溶性药物的眼用胶束制剂
CN117959316A (zh) 一种包含恩格列净的药物组合物及其制备方法与制药用途
JP2019163227A (ja) 医薬組成物
Concheiro et al. 444 Drug delivery I

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920748

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023544440

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021920748

Country of ref document: EP

Effective date: 20230822