WO2022154103A1 - 制御方法及び制御システム - Google Patents

制御方法及び制御システム Download PDF

Info

Publication number
WO2022154103A1
WO2022154103A1 PCT/JP2022/001230 JP2022001230W WO2022154103A1 WO 2022154103 A1 WO2022154103 A1 WO 2022154103A1 JP 2022001230 W JP2022001230 W JP 2022001230W WO 2022154103 A1 WO2022154103 A1 WO 2022154103A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
magnetic marker
period
control
magnetic
Prior art date
Application number
PCT/JP2022/001230
Other languages
English (en)
French (fr)
Inventor
道治 山本
知彦 長尾
均 青山
Original Assignee
愛知製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛知製鋼株式会社 filed Critical 愛知製鋼株式会社
Priority to JP2022575657A priority Critical patent/JPWO2022154103A1/ja
Priority to KR1020237023344A priority patent/KR20230118642A/ko
Priority to CN202280009242.XA priority patent/CN116783567A/zh
Priority to EP22739508.4A priority patent/EP4280012A1/en
Publication of WO2022154103A1 publication Critical patent/WO2022154103A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • B62D15/0285Parking performed automatically
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/243Means capturing signals occurring naturally from the environment, e.g. ambient optical, acoustic, gravitational or magnetic signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/246Arrangements for determining position or orientation using environment maps, e.g. simultaneous localisation and mapping [SLAM]
    • G05D1/2465Arrangements for determining position or orientation using environment maps, e.g. simultaneous localisation and mapping [SLAM] using a 3D model of the environment
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/247Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/646Following a predefined trajectory, e.g. a line marked on the floor or a flight path
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/269Analysis of motion using gradient-based methods
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/042Detecting movement of traffic to be counted or controlled using inductive or magnetic detectors
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/0969Systems involving transmission of navigation instructions to the vehicle having a display in the form of a map
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/50Magnetic or electromagnetic sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2107/00Specific environments of the controlled vehicles
    • G05D2107/10Outdoor regulated spaces
    • G05D2107/13Spaces reserved for vehicle traffic, e.g. roads, regulated airspace or regulated waters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2109/00Types of controlled vehicles
    • G05D2109/10Land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2111/00Details of signals used for control of position, course, altitude or attitude of land, water, air or space vehicles
    • G05D2111/10Optical signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2111/00Details of signals used for control of position, course, altitude or attitude of land, water, air or space vehicles
    • G05D2111/30Radio signals
    • G05D2111/34Radio signals generated by transmitters powered by energy received from an external transceiver, e.g. generated by passive radio-frequency identification [RFID] tags
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2111/00Details of signals used for control of position, course, altitude or attitude of land, water, air or space vehicles
    • G05D2111/60Combination of two or more signals
    • G05D2111/63Combination of two or more signals of the same type, e.g. stereovision or optical flow
    • G05D2111/65Combination of two or more signals of the same type, e.g. stereovision or optical flow taken successively, e.g. visual odometry or optical flow
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle

Definitions

  • the present invention relates to a control method and a control system for traveling a vehicle by using a magnetic marker arranged on a track.
  • the present invention has been made in view of the above-mentioned conventional problems, and is an invention for providing a control method and a control system for realizing a high level of automatic operation by driving support control using a magnetic marker. ..
  • One aspect of the present invention is a control method for a vehicle equipped with a magnetic sensor to travel on a track including a track in which a magnetic marker acting on magnetism is arranged in the periphery.
  • One aspect of the present invention is a control system for a vehicle equipped with a magnetic sensor to travel on a track including a track in which a magnetic marker acting on magnetism is arranged in the periphery. Transition to the immediately preceding parking period in the restart period from when the function is restarted after the parking period in which the function for controlling the running of the vehicle is stopped until the vehicle moves and the magnetic marker is first detected.
  • a circuit that specifies the position of the vehicle based on the position of the vehicle at that time or the position determined during the restart period and executes control to drive the vehicle. In the normal running period after the vehicle first detects the magnetic marker after the restart period, the position of the vehicle is specified based on the position of any of the detected magnetic markers and the control for running the vehicle is executed. Circuit and The control system includes a circuit that executes control switching when the restart period shifts to the normal running period.
  • the present invention is an invention of a control method or control system for a vehicle to travel on a track on which a magnetic marker is arranged.
  • the restart is performed until the vehicle moves and the magnetic marker is first detected.
  • the control is switched between the period and the normal running period after the vehicle detects the magnetic marker.
  • control is executed in which the position of the vehicle is specified based on the position of the vehicle at the time of transition to the immediately preceding parking period or the position determined in the restart period, and the vehicle is driven.
  • control is executed in which the position of the vehicle is specified based on the detected position of the magnetic marker and the vehicle is driven.
  • the restart period is set between the parking period and the normal running period.
  • the control of the vehicle during this restart period is a control that does not presuppose the detection of the magnetic marker.
  • control method and control system of the present invention it is possible to realize a higher level of automatic operation by using the magnetic markers arranged on the track.
  • Explanatory map of roads in the area. The perspective view which shows the magnetic marker.
  • a block diagram showing the configuration of a vehicle system. A flow chart showing the flow of basic processing.
  • a flow chart showing the flow of restart control. Explanatory diagram showing the route to be controlled.
  • Example 1 This example is an example of the vehicle system 1 which is an example of the control system of the vehicle 5, and the control method of the vehicle 5. According to this control method and the vehicle system 1, when the vehicle 5 moves from the home to the office, it is possible to leave the garage at the home by automatic driving. This content will be described with reference to FIGS. 1 to 14.
  • the route in which the vehicle 5 moves between the areas 60 connected by the highway 61 is illustrated.
  • the living road 62 Most of the arterial roads 61 are roads in which magnetic markers 10 are arranged at intervals of, for example, 2 m.
  • most of the living roads 62 are roads on which the magnetic marker 10 is not arranged.
  • the runway on which the vehicle 5 travels in this way is a runway including the runway on which the magnetic marker 10 is arranged.
  • FIG. 2 is an example of the area 60 and shows the position of the vehicle 5 in the area 60.
  • the starting point area 60D and the destination point area 60A are used together.
  • the code 622 in the case of the starting point area 60D represents, for example, the home, which is the starting point
  • the code 622 in the case of the destination area 60A represents, for example, the office, which is the destination point.
  • Vehicle driving can be automated (see Figure 1). For example, if you are located in an area 60 where your work place is different from your home 622, after starting from your home 622 in the area 60D, you can use the arterial road 61 to move to the area 60A where your company is located. The vehicle 5 can automatically travel on the route to the office.
  • the magnetic marker 10 (FIG. 3) is a marker in which an RFID tag 15 (Radio Frequency IDentification Tag) is integrated with a columnar magnet 10M having a diameter of 20 mm and a height of 28 mm. .. As shown in FIG. 4, the magnetic marker 10 is arranged in a state of being housed in a hole formed in the road surface 100S.
  • the magnet 10M forming the magnetic marker 10 is a ferrite plastic magnet in which magnetic powder of iron oxide, which is a magnetic material, is dispersed in a polymer material as a base material.
  • the polymer material is, for example, Chlorinated Polyethylene, Poly Phenylene Sulfide-PPS, or the like.
  • a sheet-shaped RFID tag 15 is arranged on the end face of the columnar magnet 10M.
  • the RFID tag 15 is an electronic component that wirelessly outputs tag information.
  • a coating layer made of a resin material may be provided on the surface.
  • the coating layer may be a layer made of a composite material in which fibers are impregnated with a resin material.
  • the RFID tag 15 may be arranged on the end face of the magnet 10M on which the coating layer is formed.
  • a coating layer may be provided on all or part of the outer surface of the magnet 10M.
  • the RFID tag 15 may be embedded inside the magnet 10M.
  • a sheet-shaped magnetic marker made of a magnet sheet may be adopted.
  • the sheet-shaped RFID tag 15 may be laminated on the surface of the magnet sheet. Further, it may be a magnetic marker in which two magnet sheets are bonded together. In this case, the sheet-shaped RFID tag 15 may be sandwiched between the two magnet sheets.
  • the RFID tag 15 (FIG. 5) is an electronic component in which an IC chip 157 is mounted on the surface of a tag sheet 150 cut out from, for example, a PET (Polyethylene terephthalate) film.
  • a print pattern of the antenna 153 is provided on the surface of the tag sheet 150.
  • the antenna 153 has both a power feeding antenna function in which an exciting current is generated by electromagnetic induction from the outside and a communication antenna function for wirelessly transmitting information.
  • the RFID tag 15 operates by wireless external power supply, and outputs tag information such as tag ID, which is identification information, to the outside.
  • the tag ID externally output by the RFID tag 15 is an example of the identification information of the magnetic marker 10.
  • the magnet 10M constituting the magnetic marker 10 as described above is a magnet in which magnetic powder is dispersed in a polymer material. Since such a magnet 10M has a large electrical internal resistance, there is little possibility that an eddy current is generated according to the wireless power supply to the RFID tag 15. Therefore, when this magnet 10M is adopted, electric power can be efficiently supplied to the RFID tag 15 from the outside.
  • the magnet 10M is suitable as a magnet for holding the RFID tag 15.
  • Vehicle system 1 (FIGS. 6 and 7) includes a control unit 18 for controlling the travel of the vehicle 5, various actuators for travel control capable of external control, a millimeter-wave radar 17, an image sensor 19, and the like.
  • the object detection sensor, the tag reader unit 14 that communicates with the RFID tag 15, and the positioning unit 16 for specifying the absolute position or the relative position are included.
  • the control unit 18 is a circuit unit composed mainly of an electronic board (not shown) on which electronic components such as a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory) are mounted. be.
  • a storage device storage medium
  • a wireless communication circuit, or the like is connected to an electronic board via I / O (Input / Output). ..
  • the control unit 18 is provided with a marker database (marker DB) 18M for storing marker information related to each magnetic marker 10 and a map database (map DB) 18T for storing three-dimensional map data using the storage area of the storage device.
  • marker DB marker database
  • map DB map database
  • the 3D map data represents the 3D structure of road accessories such as edge stones, guard rails, central separation zones and signs, and the 3D structure of the surrounding environment such as buildings and overpasses. It is map data.
  • the tag ID (tag information), which is the identification information of the attached RFID tag 15, is linked (corresponded) to the marker information stored in the marker DB 18M.
  • the corresponding magnetic marker 10 can be specified by referring to the marker DB 18M using the tag ID.
  • the marker information includes position data (position information) indicating the laying position of the magnetic marker 10, information indicating the attributes of the laying position (road type, etc.), regulation information such as speed limit, and the like.
  • position information position information
  • the tag ID is linked to this marker information.
  • the tag ID is an example of information that can specify the position of the magnetic marker 10.
  • the map data stored in the map DB18T is composed of vector data representing the structure of the road and the surrounding environment.
  • this map data the laying position and the like of each magnetic marker 10 are mapped.
  • the position in the map data can be specified by specifying the magnetic marker 10. Then, if the position of the vehicle 5 in the map data is specified, the road shape and road structure in front represented by the map data can be grasped.
  • the control unit 18 may be capable of receiving real-time traffic conditions such as construction sites and signal lighting states from an external server at any time.
  • real-time traffic conditions such as construction sites and signal lighting states from an external server at any time.
  • a dynamic map that reflects the real-time traffic conditions can be constructed, and vehicle control using the dynamic map becomes possible.
  • Various actuators controlled by the control unit 18 include a throttle actuator 181 for adjusting the engine output (FIG. 7), a steering actuator 183 for changing the steering direction, and a brake actuator 185 for adjusting the braking force. be.
  • the control unit 18 can drive the vehicle 5 by appropriately controlling these actuators.
  • Sensors connected to the control unit 18 include a magnetic sensor Cn, a millimeter wave radar 17, an image sensor 19, and the like.
  • the magnetic sensor Cn is a sensor for detecting magnetism.
  • the vehicle 5 incorporates a sensor array 21 in which 15 magnetic sensors Cn are arranged in a straight line.
  • the sensor array 21 is a rod-shaped unit that is long in the vehicle width direction, and is attached to the bottom surface of the vehicle 5 in a state of facing the road surface 100S.
  • the sensor array 21 includes a detection processing circuit 212 that executes detection processing of the magnetic marker 10.
  • the detection processing circuit 212 controls 15 magnetic markers Cn to acquire the magnetic measurement values of each magnetic marker Cn. Then, the detection processing circuit 212 executes the detection processing of the magnetic marker 10 and the like by processing the magnetic measurement value of each magnetic marker Cn.
  • the sensor array 21 In the sensor array 21 (FIG. 7), 15 magnetic sensors Cn are arranged at intervals of 10 cm.
  • the magnetic measurement values output by the magnetic sensors C1 to C15 form a discrete magnetic distribution in the vehicle width direction.
  • the sensor array 21 detection processing circuit 212 detects the magnetic marker 10, it outputs a detection signal indicating that fact and measures the amount of lateral displacement of the vehicle 5 with respect to the magnetic marker 10.
  • the sensor array 21 is located directly above the magnetic marker 10
  • the position of the magnetic marker 10 in the vehicle width direction is specified based on the distribution of magnetic measurement values (magnetic distribution in the vehicle width direction) output by each magnetic sensor Cn. It is possible.
  • the sensor array 21 specifies the amount of lateral displacement of the vehicle with respect to the magnetic marker 10 based on the position of the magnetic marker in the vehicle width direction.
  • the magnetic sensor Cn for example, an MI sensor that detects magnetism by using a known MI effect (Magneto Impedance Effect) is suitable.
  • the MI effect is a magnetic effect in which the impedance of a magnetic sensitive material such as an amorphous wire changes sensitively in response to an external magnetic field.
  • the MI sensor has magnetic sensitivity in the direction of the magnetometer incorporated in a straight line.
  • the magnetic sensor Cn may be, for example, a magnetic sensor capable of detecting a magnetic component in one direction such as a vehicle width direction or a vertical direction. It may be a magnetic sensor capable of detecting magnetic components in two directions such as a magnetic component in the traveling direction and a magnetic component in the vehicle width direction. A magnetic sensor capable of detecting magnetic components in three directions, such as being able to detect magnetic components in the vertical direction in addition to the traveling direction and the vehicle width direction, may be used.
  • the millimeter wave radar 17 is an object detection sensor that uses millimeter waves with a wavelength of 1 to 10 mm and a frequency of 30 to 300 GHz.
  • the millimeter wave radar 17 detects an object by using the reflected radio wave when the millimeter wave is transmitted, and measures the distance to the object.
  • the millimeter-wave radar 17 it is possible to detect a person in addition to other vehicles, road structures such as guardrails and curbs.
  • millimeter-wave radars 17 are arranged at the front, rear, left, and right corners of the vehicle body so that the surroundings can be monitored.
  • the image sensor 19 is a sensor including a front camera for photographing the environment in front.
  • the image sensor 19 includes a processing circuit (not shown) or the like that executes image processing.
  • the image sensor 19 performs image processing on the captured image to detect white lines, road signs, traffic lights, people, bicycles, preceding vehicles, oncoming vehicles, and the like that divide lanes.
  • sensor fusion technology that enhances detection accuracy by using a plurality of sensors, such as performing image processing focusing on the gaze area specified by the millimeter wave sensor 17, is utilized. To.
  • the positioning unit 16 includes a GPS (Global Positioning System) unit, an inertial measurement unit, and the like.
  • the GPS unit is a unit that measures a vehicle position (vehicle position) using GPS, which is a type of GNSS (Global Navigation Satellite System).
  • the inertial measurement unit is a unit that measures the changing speed (angular velocity) of the yaw angle of a vehicle and the acceleration in the traveling direction and the lateral direction. By using the angular velocity and acceleration measured by the inertial measurement unit, it is possible to specify the relative position from the reference position (an example of the amount of displacement due to the movement of the vehicle) and the direction of the vehicle.
  • the relative position and the turning angle (change amount of the yaw angle) after passing the reference position such as the laying position of the magnetic marker 10 can be specified with high accuracy.
  • an inertial measurement unit it is possible to identify the vehicle position in a tunnel where satellite radio waves cannot be received.
  • the tag reader unit 14 is a communication unit that wirelessly communicates with the RFID tag 15 held by the magnetic marker 10 (FIG. 4).
  • the tag reader unit 14 wirelessly transmits the electric power required for the operation of the RFID tag 15 to operate the RFID tag 15 and reads the tag ID (tag information) which is the identification information of the RFID tag 15.
  • tag ID tag information
  • FIG. 6 a unit in which these are integrated may be adopted.
  • FIG. 8 shows the flow of (3.1) basic processing when the vehicle 5 moves.
  • FIG. 9 shows the flow of (3.2) restart control during the restart period following the parking period.
  • FIG. 11 shows the flow of (3.3) normal running control, which runs while detecting the magnetic marker 10. Note that FIG. 10 is a reference diagram in the explanation of restart control. 12 and 13 are explanatory views in the explanation of the normal traveling control.
  • the control unit 18 acquires the destination point input by the user of the vehicle 5, for example. (S102).
  • the input method of the destination point for example, a method of inputting using a mobile terminal (not shown) connected so as to be communicable by the Bluetooth (R) function, or a touch panel display (not shown) provided on the vehicle 5 is used. There is a method to input above.
  • the control unit 18 refers to the three-dimensional map data stored in the map DB 18T, identifies the route to the destination point by calculation, and sets the route as the control target (S103). When specifying the route to the destination point, the control unit 18 also determines the magnetic marker 10 to which the vehicle 5 first arrives by the restart control described later. The magnetic marker 10 determined by the control unit 18 in this way is the optimum magnetic marker to be detected first when the vehicle reaches the destination point.
  • the control unit 19 stores the identification information of the magnetic marker 10 determined at the time of specifying the route. Although details will be described later, the identification information of the magnetic marker 10 is information that triggers switching from the restart control in step S105 to the normal travel control in step S107 below.
  • control unit 18 reads out the route data representing the route on the three-dimensional map data from the map DB 18T (S104), and starts control so as to drive the vehicle 5 along the corresponding route.
  • the control unit 18 executes restart control (described later with reference to FIG. 9) in which the vehicle 5 is driven by automatic running based on the vehicle position positioned by the positioning unit 16 (S105).
  • This restart control is a control that does not presuppose the magnetic marker 10, and is executed during the restart period until the magnetic marker 10 can be detected (S106: No ⁇ S105).
  • the control unit 18 When the magnetic marker 10 determined at the time of identifying the route to the destination as described above can be detected while the vehicle 5 is traveling by the restart control (S106: Yes), that is, the control unit as described above.
  • the control unit 18 performs the control applied to the vehicle 5 from the restart control in step S105.
  • the normal traveling control is a control for a road on which a magnetic marker 10 is arranged, such as an arterial road 61. This normal travel control is premised on the continuous detection of the magnetic marker 10. The contents of the normal traveling control will be described later with reference to FIGS. 11 to 13.
  • the control unit 18 executes the normal running control during the normal running period from the start of the movement of the vehicle 5 to the first detection of the magnetic marker 10 until the vehicle arrives at the destination point (S108: No ⁇ S107). ). Upon arriving at the destination point, the control unit 18 ends the process in response to the switching of the ignition of the vehicle 5 to the off state (IG off) (S109: Yes). When the IG is off, the control unit 18 stores (saves, stores, records) the vehicle position and the vehicle direction representing the direction (absolute direction) of the vehicle 5 in the storage area.
  • the control unit 18 automatically travels the vehicle 5 by inertial navigation based on the last detected magnetic marker 10 (automatic travel control). As will be described in detail later, this automatic traveling control by the control unit 18 is executed as a part of the normal traveling control.
  • the restart control (FIGS. 8 and 9) is a control until the magnetic marker 10 can be detected after the ignition of the vehicle 5 is switched to the ON state.
  • This restart control is a control for autonomously traveling the vehicle 5 without assuming the magnetic marker 10.
  • the restart control is applied, for example, as shown in FIG. 10, after the vehicle 5 parked at the home 622 starts moving, it moves along the arrow R1 and is a highway on which the magnetic marker 10 is arranged. The situation until entering 61 is assumed. After entering the main road 61, the vehicle switches to the normal traveling control described in detail with reference to FIG.
  • the arrow R1 is a part of the route to be controlled determined in step S103 in the above-mentioned basic process.
  • the control unit 18 first acquires the positioning data by the positioning unit 16 (S201).
  • the control unit 18 uses this positioning data to specify the vehicle position and the vehicle orientation (S202).
  • the positioning unit 16 includes a GPS unit that outputs position data representing an absolute position, an inertial measurement unit that outputs angular velocity and acceleration, and the like.
  • the control unit 18 uses the position data obtained by the GPS unit to specify the vehicle position on the route set in step S103 above. Further, the control unit 18 collates the three-dimensional structure around the vehicle position represented by the three-dimensional map with the surrounding three-dimensional structure specified by the image sensor 19 and the millimeter-wave radar 17 included in the vehicle 5. By this collation, the control unit 18 improves the accuracy of the vehicle position and specifies the vehicle direction representing the direction of the vehicle 5.
  • control unit 18 specifies the vehicle position and vehicle orientation by inertial navigation when GPS cannot be used, such as when the vehicle 5 cannot receive satellite radio waves while the vehicle 5 is running under restart control.
  • the control unit 18 estimates the relative position of the vehicle 5 after that, based on the latest time when the vehicle position and the vehicle direction can be specified. Then, the latest vehicle position is specified by adding the estimated relative position to the vehicle position at the reference time. The relative position of the vehicle 5 is obtained based on the history of acceleration and angular velocity measured by the inertial measurement unit.
  • the control unit 18 estimates the turning angle by using the measurement history of the angular velocity by the inertial measurement unit after the time point of the above reference. Specifically, the turning angle, which is the displacement amount of the yaw angle, can be obtained by integrating the angular velocity.
  • the control unit 18 specifies the latest vehicle orientation by adding the estimated turning angle (displacement amount of the yaw angle) to the vehicle orientation at the reference time. At this time, the accuracy of the vehicle position and the vehicle orientation can be improved by grasping the surrounding three-dimensional structure using sensors such as the image sensor 19 and the millimeter-wave radar 17 and collating it with the three-dimensional structure represented by the three-dimensional map. Is possible. It should be noted that the vehicle position or vehicle orientation may be estimated mainly by collating the surrounding three-dimensional structure grasped by using the sensor with the three-dimensional structure represented by the three-dimensional map.
  • the control unit 18 specifies the position and orientation of the vehicle 5 on the route by combining the route data read in step S104 with the vehicle position and vehicle orientation specified in step S202. As a result, the control unit 18 identifies the surrounding three-dimensional structure including the front of the vehicle 5, and specifies the direction of the course of the vehicle 5 for moving along the route (S203).
  • the control unit 18 controls the vehicle 5 so that it can travel in the direction of the course specified in step S203 (S204). During this control, detection data from the millimeter-wave radar 17 and the image sensor 19 is taken into the control unit 18 at any time, and the vehicle 5 is controlled while ensuring safety. For example, according to the millimeter-wave radar 17, it is possible to detect surrounding vehicles such as a preceding vehicle and an oncoming vehicle, a guardrail, a bicycle, a pedestrian, and the like. According to the image sensor 19, road markings such as signs and pedestrian crossings can be detected, and the state of signals can be recognized.
  • the restart control of FIG. 9 is continued until the magnetic marker 10 is detected as described above with reference to the flow chart of the basic process of FIG. 8 (S106: No ⁇ S105 in FIG. 8).
  • the restart control (FIG. 9) is switched to the normal traveling control (FIG. 11) (S106: Yes ⁇ S107 in FIG. 8).
  • the control unit 18 switches a specific method such as a vehicle position depending on whether or not the magnetic marker 10 is detected during the execution of the normal travel control shown in FIG. 11 (S301).
  • the control unit 18 acquires the tag ID (marker information) from the RFID tag 15 held by the magnetic marker 10 (S312).
  • the control unit 18 refers to the marker DB 18M by using the acquired tag ID, and specifies the position (laying position) of the detected magnetic marker 10.
  • the control unit 18 identifies the vehicle position based on the detected position of the magnetic marker 10 (S313). Specifically, the control unit 18 specifies a position shifted by the amount of lateral displacement of the vehicle 5 with respect to the magnetic marker 10 as a vehicle position with reference to the laying position of the magnetic marker 10.
  • the control unit 18 is based on the most recently detected laying position of the magnetic markers 10.
  • the relative position of the vehicle 5 is estimated by inertial navigation using the vehicle position (position marked with ⁇ in FIG. 12) specified in the above as a reference position (S302).
  • the control unit 18 estimates the relative position and the like based on the angular velocity and acceleration of the inertial measurement unit.
  • the control unit 18 specifies the position marked with x, which is moved from the reference position by the relative position estimated in step S302, as the vehicle position (S313).
  • an example of a vector representing this relative position is indicated by an arrow.
  • the control unit 18 calculates the deviation ⁇ D of the own vehicle position with reference to the route of the control target shown by the broken line in FIG. Then, the control unit 18 calculates the direction of the course based on the deviation ⁇ D (S314). The control unit 18 controls the vehicle 5 to travel in the direction of the course obtained in step S314 (S315). As in step S204, during the execution of the normal driving control, the detection data by the millimeter wave radar 17 and the image sensor 19 is taken into the control unit 18 at any time, and the vehicle 5 is controlled while ensuring safety. ..
  • the control unit 18 specifies the vehicle position and the vehicle direction by inertial navigation in the flow of step S301: no detection ⁇ S302 (S313).
  • the control unit 18 identifies the surrounding three-dimensional structure including the front of the vehicle 5, and determines the direction of the course of the vehicle 5 for moving along the route (S314).
  • the difference in control between the main road 61 on which the magnetic marker 10 is arranged and the road on which the magnetic marker 10 is not arranged, such as a living road 62, is that the amount of lateral displacement of the vehicle 5 with respect to the magnetic marker 10 is predetermined. With or without lateral control to bring it closer to the value.
  • On roads where the magnetic marker 10 is not arranged lane recognition by image processing, vehicle position measured by the GPS unit, vehicle orientation (yaw angle) based on the measured value of the inertial measurement unit, etc. are referred to, and the steering angle is steered. Control target is determined.
  • the control target of the steering angle is determined by using the amount of lateral displacement with respect to the magnetic marker 10.
  • the control method of this example is a control method for the vehicle 5 equipped with the magnetic sensor Cn to travel on the road (runway) on which the magnetic marker 10 is arranged.
  • the restart period is set until the vehicle 5 moves and first detects the magnetic marker 10. The control is switched between the normal running period after the detection of the magnetic marker 10 and the normal running period.
  • restart control is executed in which the vehicle position is specified based on the position determined in the restart period following the parking period and the vehicle 5 is driven.
  • normal running control is executed in which the vehicle position is specified based on the detected position of the magnetic marker 10 and the vehicle 5 is run.
  • the restart period to which the restart control is applied is set between the parking period and the normal driving period.
  • the control of the vehicle 5 during this restart period is a control that does not presuppose the detection of the magnetic marker 10. If the control is switched between the normal traveling period and the restart period, automatic traveling from the start of movement of the vehicle 5 after the parking period to the detection of the magnetic marker 10 becomes possible. According to such a control method, the area in which the traveling of the vehicle 5 can be controlled can be expanded, and the versatility can be improved. According to the control method of this example, it is possible to realize a high level of automatic driving by using the magnetic marker 10 arranged on the road.
  • step S201 (FIG. 9) is immediately executed when the restart control is started in response to the switching to IG on in step S101 (FIG. 8) described above has been described.
  • the restart control is immediately started and before the vehicle position is specified (S210: YES)
  • the GPS positioning accuracy is first evaluated (S211), and the GPS positioning is performed. It is also possible to decide whether or not to specify the vehicle position based on the data.
  • an evaluation of positioning accuracy by GPS for example, there is an evaluation using the number of satellites that can receive satellite radio waves.
  • the GPS positioning accuracy that can be expected based on the number of satellites that can receive satellite radio waves, and the estimation accuracy of the vehicle position stored in the storage area at the time of the latest IG off, that is, at the time of transition to the immediately preceding parking period. Evaluation to compare is conceivable.
  • an index of positioning accuracy by GPS there is a size of an error circle.
  • an index of the accuracy of the vehicle position when the IG is off there is a range of the estimation error of the vehicle position by inertial navigation.
  • the vehicle position is determined based on the positioning data by GPS. It is good to specify (S212). That is, at the start of the restart period, the accuracy of the vehicle position determined by GPS is compared with the estimation accuracy of the vehicle position at the time of the transition to the immediately preceding parking period, and the positioning accuracy by GPS is higher. In this case, the vehicle position determined by GPS may be specified as the vehicle position at the start of the restart period.
  • the vehicle position recorded when the IG is off. Is good to read (S222). That is, at the start of the restart period, the accuracy of the vehicle position determined by GPS and the estimation accuracy of the vehicle position at the time of transition to the immediately preceding parking period are compared, and at the time of transition to the immediately preceding parking period. When the estimation accuracy of the vehicle position is higher, the estimation accuracy of the vehicle position at the time of transition to the immediately preceding parking period may be specified as the vehicle position at the start of the restart period.
  • the process after the vehicle position is specified in step S212 or S222 is the same as the process described with reference to FIG.
  • the result of evaluating the GPS positioning accuracy is OK or NG. It is also possible to switch between determining whether (S211) and specifying the vehicle position based on the positioning data by the GPS unit (S212) or reading the vehicle position when the IG is off (S222) according to the determination result. ..
  • a configuration in which a sheet-shaped RFID tag 15 is attached to the upper surface of the magnetic marker 10 is illustrated, but a configuration in which the magnetic marker 10 and the RFID tag 15 are integrated is not essential.
  • the magnetic marker 10 and the RFID tag 15 may be arranged at the same position, and the RFID tag 15 may be arranged vertically above or below the magnetic marker 10.
  • the magnetic marker 10 of this example is a marker in which the RFID tag 15 is integrated. Instead of this, a magnetic marker to which the RFID tag 15 is not attached may be included. For example, it is also possible to provide the RFID tag 15 on the magnetic marker 10 located at the intersection, while arranging the untagged magnetic marker at other locations. Alternatively, the magnetic markers 10 provided with the RFID tags 15 may be arranged at intervals of 5 places, 10 places, etc., while the others may be untagged magnetic markers.
  • the main road 61 on which the magnetic marker 10 is arranged is illustrated, while the configuration in which the magnetic marker 10 is not arranged on the living road 62 for moving in the area 60 is illustrated. ..
  • magnetic markers 10 may be arranged on all roads. In this case, after starting from the parking lot facing the road, the period from entering the road to the first detection of the magnetic marker, or after resuming the running of the vehicle parked on the shoulder, the magnetic marker is first used. The restart period is the period until detection.
  • an auxiliary magnetic marker may be arranged along the direction of the road with the magnetic marker 10 as a reference. If the amount of strike-slip with respect to the magnetic marker 10 and the amount of strike-slip with respect to the auxiliary magnetic marker are known, the direction of the road, which is the direction connecting the magnetic marker 10 and the auxiliary magnetic marker, and the traveling direction of the vehicle are formed. The angle can be obtained by calculation or the like. The distance between the magnetic marker 10 and the auxiliary magnetic marker is good so that it can be expected that there is little change in the steering amount on the vehicle side. For example, the interval may be about 0.2 to 3.0 m, more preferably about 1.0 m.
  • an interval of 1.5 to 3.0 m may be set, and on a road having a speed limit of about 10 to 20 km / h, an interval of 0.2 to 0.4 m may be set.
  • Example 2 This example is an example in which the content of the restart control is changed based on the control method of the vehicle 5 of the first embodiment. This content will be described with reference to FIG. FIG. 9 is a replacement diagram of FIG. 9 referred to in the description of the first embodiment.
  • the restart control of this example is an alternative to the restart control of the first embodiment, which mainly uses GPS positioning, and mainly uses autonomous navigation (dead reckoning) for positioning.
  • the control unit of this example is the angular velocity (corresponding to reference numeral 16 in FIGS. 6 and 7) output by the positioning unit (corresponding to reference numeral 16 in FIGS. 6 and 7).
  • the control unit can perform positioning by autonomous navigation using angular velocity and vehicle speed pulse.
  • the restart control (FIG. 15) of this example is a control executed by the control unit in response to switching to IG on (corresponding to step S101: YES in FIG. 8).
  • the control unit first determines whether or not the vehicle position has not been specified, that is, whether or not the vehicle position has not been specified immediately after the start of the restart control (S320). .. If the control unit has not specified the vehicle position (S320: YES), the control unit reads out the vehicle position and vehicle orientation recorded at the latest IG off, that is, when the vehicle is parked (S321).
  • the control unit After the vehicle position is specified as described above (S320: NO), the control unit acquires the angular velocity, vehicle speed pulse, etc. by the positioning unit 16 (S322), and specifies the vehicle position and vehicle direction by autonomous navigation (S320: NO). S202). Specifically, the control unit 18 estimates the relative position or the relative direction of the vehicle 5 based on the measurement history of the angular velocity after the latest time when the vehicle position and the vehicle direction can be specified, the output history of the vehicle speed pulse, and the like. .. Then, the control unit identifies the latest vehicle direction by adding the estimated relative directions to the vehicle direction at the reference time. Further, the control unit identifies the position moved by the estimated relative position along the latest vehicle direction with the vehicle position at the reference time as the latest vehicle position.
  • the process after the vehicle position and the vehicle direction are specified in step S202 is the same as the process described with reference to FIG. 9 in the first embodiment.
  • This method is a method of identifying the movement of a pattern or the like in a road surface image taken at a sufficiently short time interval by an image method such as pattern matching and estimating the displacement of the vehicle based on the movement of the pattern or the like. be.
  • This method is similar to, for example, a motion detection method in an optical mouse.
  • the optical mouse only the translational movement is detected, but it is also possible to detect the rotational movement in addition to the translational movement.
  • the rotational movement can be detected from the road surface image, which is an image of the road surface
  • the vehicle orientation can be estimated by autonomous navigation based on the road surface image.
  • the road surface image may be, for example, an image captured by taking an image of the road surface directly under the vehicle using an imaging camera mounted on the vehicle.
  • a specific wavelength such as infrared rays or laser light
  • the amount of change in the vehicle orientation may be estimated based on the front image.
  • the amount of change in the vehicle orientation can be estimated by detecting the lateral movement of, for example, a utility pole included in the front image acquired continuously in time.
  • the front image can be acquired using an imaging camera mounted on the vehicle so that the front can be photographed.
  • Vehicle system 10 Magnetic marker 14 Tag reader unit 15 RFID tag (wireless tag) 16 Positioning unit 17 mm wave radar 18 Control unit (circuit) 19 Image sensor 18M Marker database (Marker DB, database) 18T map database (map DB) 21 Sensor array 212 Detection processing circuit 5 Vehicles 60 Areas 61 Arterial roads 62 Living roads

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Electromagnetism (AREA)

Abstract

車両システム(1)は、車両の走行を制御する機能が停止された駐車期間を経て機能が再始動された後、車両が移動して最初に磁気マーカを検出するまでの再始動期間と、再始動期間を経て車両が磁気マーカを検出した後の通常走行期間とで、制御を切り替え、再始動期間では、再始動期間において測位された位置に基づいて車両の位置を特定して車両を走行させるリスタート制御(S105)を実行する一方、通常走行期間では、検出された磁気マーカの位置に基づいて車両の位置を特定して車両を走行させる通常走行制御(S107)を実行する。

Description

制御方法及び制御システム
 本発明は、走路に配設された磁気マーカを利用して車両を走行させるための制御方法及び制御システムに関する発明である。
 従来より、走路に配列された磁気マーカに対する車両の横ずれ量をゼロに近づけるためのラテラル制御により走路に沿って車両を走行させるシステムが知られている(例えば特許文献1参照。)。磁気マーカを検出するための磁気センサに加えて、電波や光の反射を利用して先行車両を検出し車間距離を計測するためのミリ波レーダやライダーを備える車両であれば、先行車追従を含め、磁気マーカが配設された走路を自動走行することが可能である。
特開2002-334400号公報
 しかしながら、上記従来のシステムでは、車両による移動を開始した後、最初に磁気マーカを検出できるまでの期間における自動運転の難易度が高く、マニュアル運転が不可避であるという問題がある。
 本発明は、前記従来の問題点に鑑みてなされたものであり、磁気マーカを利用した運転支援制御によって高レベルの自動運転を実現するための制御方法及び制御システムを提供するための発明である。
 本発明の一態様は、周辺に磁気を作用する磁気マーカが配設された走路を含む走路を、磁気センサを備える車両が走行するための制御方法であって、
 車両の走行を制御する機能が停止された駐車期間を経て当該機能が再始動された後、車両が移動して最初に磁気マーカを検出するまでの再始動期間と、
 該再始動期間を経て車両が磁気マーカを検出した後の通常走行期間とで、制御を切り替え、
 前記再始動期間では、直前の駐車期間への移行時の車両の位置、あるいは当該再始動期間において測位された位置、に基づいて車両の位置を特定して車両を走行させる制御を実行する一方、
 前記通常走行期間では、検出された磁気マーカの位置に基づいて車両の位置を特定して車両を走行させる制御を実行する制御方法にある。
 本発明の一態様は、周辺に磁気を作用する磁気マーカが配設された走路を含む走路を、磁気センサを備える車両が走行するための制御システムであって、
 車両の走行を制御する機能が停止された駐車期間を経て当該機能が再始動された後、車両が移動して最初に磁気マーカを検出するまでの再始動期間において、直前の駐車期間への移行時の車両の位置、あるいは当該再始動期間において測位された位置、に基づいて車両の位置を特定して車両を走行させる制御を実行する回路と、
 前記再始動期間を経て車両が最初に磁気マーカを検出した後の通常走行期間において、検出されたいずれかの磁気マーカの位置に基づいて車両の位置を特定して車両を走行させる制御を実行する回路と、
 前記再始動期間から前記通常走行期間へ移行したときに制御の切替を実行する回路と、を備える制御システムにある。
 本発明は、磁気マーカが配設された走路を車両が走行するための制御方法あるいは制御システムの発明である。本発明の制御方法及び制御システムでは、車両の走行を制御する機能が停止された駐車期間を経て当該機能が再始動された後、車両が移動して最初に磁気マーカを検出するまでの再始動期間と、車両が磁気マーカを検出した後の通常走行期間とで、制御が切り替えられる。
 前記再始動期間では、直前の駐車期間への移行時の車両の位置、あるいは当該再始動期間において測位された位置、に基づいて車両の位置を特定して車両を走行させる制御が実行される。前記通常走行期間では、検出された磁気マーカの位置に基づいて車両の位置を特定して車両を走行させる制御が実行される。
 本発明の制御方法及び制御システムでは、前記駐車期間と前記通常走行期間との間に、前記再始動期間が設定される。この再始動期間における車両の制御は、磁気マーカの検出を前提としない制御である。前記通常走行期間と前記再始動期間とで制御を切り替えることで、駐車期間の後、磁気マーカを検出できるまでの走行が可能になる。本発明の制御方法及び制御システムによれば、車両の走行を制御可能な領域を拡大でき、汎用性を向上できる。
 このように本発明の制御方法及び制御システムによれば、走路に配設された磁気マーカを利用して、よりレベルの高い自動運転を実現可能である。
幹線道路で行き来可能な2つの地域の説明図。 地域内の道路の説明図。 磁気マーカを示す斜視図。 磁気マーカが配設された道路を走行する車両の説明図。 RFIDタグの正面図。 車両を示す上面図。 車両システムの構成を示すブロック図。 基本処理の流れを示すフロー図。 リスタート制御の流れを示すフロー図。 制御対象のルートを示す説明図。 通常走行制御の流れを示すフロー図。 慣性航法により推定される相対位置の説明図。 ルートに対する偏差ΔDの説明図。 他のリスタート制御の流れを示すフロー図。 他のリスタート制御の流れを示すフロー図。
 本発明の実施の形態につき、以下の実施例を用いて具体的に説明する。
(実施例1)
 本例は、車両5の制御システムの一例をなす車両システム1、及び車両5の制御方法の例である。この制御方法及び車両システム1によれば、自宅から勤務先に向かって車両5で移動する際、自動運転により自宅の車庫を出発可能である。この内容について、図1~図14を参照して説明する。
 本例では、幹線道路61で接続された地域60間を車両5が移動するルートを例示する。地域60内では、生活道路62を利用して移動可能である(図2)。幹線道路61の多くは、例えば2mなどの間隔で磁気マーカ10が配設されている道路である。一方、生活道路62の多くは、磁気マーカ10が配設されていない道路である。このように車両5が走行する走路は、磁気マーカ10が配設された走路を含む走路である。
 図2は、地域60の例示であり、地域60における車両5の位置を示している。同図は、出発地点の地域60Dおよび目的地点の地域60Aを兼用している。出発地点の地域60Dである場合の符号622は例えば出発地点である自宅を表し、目的地点の地域60Aである場合の符号622は例えば目的地点である勤務先を表している。
 磁気マーカ10が配設された幹線道路61のみならず、図2に例示する生活道路62を制御の対象に含めれば、例えば、出発地点が所在する地域60Dから目的地点が所在する地域60Aへの車両の運転を自動化できる(図1参照。)。例えば、自宅622と勤務先が異なる地域60に所在するような場合には、地域60Dの自宅622から出発した後、幹線道路61を利用して勤務先の会社が所在する地域60Aに移動し、勤務先に至るまでのルートを車両5が自動走行可能である。
 以下、走路に配設される(1)磁気マーカ10、及び(2)車両システム1、の構成を説明した後、(3)車両システム1の動作、について説明する。
(1)磁気マーカ
 磁気マーカ10(図3)は、直径20mm、高さ28mmの柱状をなす磁石10Mに対して、RFIDタグ15(Radio Frequency IDentification Tag、無線タグ)が一体化されたマーカである。磁気マーカ10は、図4のごとく、路面100Sに穿設された孔に収容された状態で配設される。磁気マーカ10をなす磁石10Mは、磁性材料である酸化鉄の磁粉を基材である高分子材料中に分散させたフェライトプラスチックマグネットである。高分子材料は、例えば、塩素化ポリエチレン(Chlorinated Polyethylene)、ポリフェニレンスルファイド(Poly Phenylene Sulfide - PPS)等である。
 磁気マーカ10では、柱状の磁石10Mの端面に、シート状のRFIDタグ15が配置されている。RFIDタグ15は、無線によりタグ情報を出力する電子部品である。なお、磁石10Mの端面にRFIDタグ15を配置した後、樹脂材料によるコーティング層を表面に設けることも良い。コーティング層としては、繊維に樹脂材料を含浸させた複合材料よりなる層であっても良い。あるいは、コーティング層が形成された磁石10Mの端面に、RFIDタグ15を配設しても良い。磁石10Mの外表面の全部あるいは一部に、コーティング層を設けることも良い。
 さらに、磁石10Mの内部に、RFIDタグ15の全部又は一部を埋設することも良い。柱状の磁気マーカ10に代えて、磁石シートよりなるシート状の磁気マーカを採用しても良い。この場合、磁石シートの表面にシート状のRFIDタグ15を積層しても良い。さらに、2枚の磁石シートを貼り合わせた磁気マーカであっても良い。この場合、2枚の磁石シートによってシート状のRFIDタグ15を挟み込むことも良い。
 RFIDタグ15(図5)は、例えばPET(Polyethylene terephthalate)フィルムから切り出したタグシート150の表面にICチップ157が実装された電子部品である。タグシート150の表面には、アンテナ153の印刷パターンが設けられている。アンテナ153は、外部からの電磁誘導によって励磁電流が発生する給電用のアンテナ機能と、情報を無線送信する通信用のアンテナ機能と、を併せ持っている。RFIDタグ15は、無線による外部給電により動作し、識別情報であるタグIDなどのタグ情報を外部出力する。RFIDタグ15が外部出力するタグIDは、磁気マーカ10の識別情報の一例である。
 なお、上記のように磁気マーカ10を構成する磁石10Mは、磁粉を高分子材料中に分散させた磁石である。このような磁石10Mは、電気的な内部抵抗が大きいため、RFIDタグ15に対する無線による電力供給に応じて渦電流が発生するおそれが少ない。それ故、この磁石10Mを採用する場合、RFIDタグ15に対して外部から効率良く電力を供給できる。この磁石10Mは、RFIDタグ15を保持する磁石として好適である。
(2)車両システム
 車両システム1(図6及び図7)は、車両5の走行を制御する制御ユニット18、外部制御が可能な各種の走行制御用のアクチュエータ、ミリ波レーダ17や画像センサ19などの物体検知センサ、RFIDタグ15と通信するタグリーダユニット14、及び絶対位置あるいは相対位置を特定するための測位ユニット16を含めて構成されている。
 制御ユニット18は、CPU(Central Processing Unit)やROM(Read Only Memory)やRAM(Random Access Memory)などの電子部品が実装された電子基板(図示略)を中心にして構成された回路のユニットである。制御ユニット18では、ハードディスクドライブ(HDD)あるいはソリッドステートドライブ(SSD)等の記憶装置(記憶媒体)や無線通信回路等が、I/O(Input/Output)を介して電子基板に接続されている。
 制御ユニット18では、記憶装置の記憶領域を利用して、各磁気マーカ10に関するマーカ情報を記憶するマーカデータベース(マーカDB)18M、3次元地図データを記憶する地図データベース(地図DB)18T等が設けられている。3次元地図データは、道路の形状・構造のほか、縁石やガードレールや中央分離帯や標識などの道路の付帯物の3次元構造や、建物や陸橋などの周囲環境などの3次元構造等を表す地図データである。
 マーカDB18Mで記憶されるマーカ情報には、付設されたRFIDタグ15の識別情報であるタグID(タグ情報)がひも付け(対応付け)されている。本例の構成では、タグIDを利用してマーカDB18Mを参照することで、対応する磁気マーカ10の特定が可能である。
 マーカ情報には、磁気マーカ10の敷設位置を表す位置データ(位置情報)や、その敷設位置の属性(道路種別など)を表す情報や、制限速度などの規制情報などが含まれている。上記の通り、このマーカ情報には、タグIDがひも付けられている。タグIDを利用してマーカDB18Mを参照すれば、磁気マーカ10の敷設位置を特定できる。つまり、タグIDは、磁気マーカ10の位置を特定可能な情報の一例をなしている。
 地図DB18Tに格納される地図データは、道路の構造や周囲環境などを表すベクターデータによって構成されている。この地図データでは、各磁気マーカ10の敷設位置等がマッピングされている。例えば、車両5がいずれかの磁気マーカ10を検出した場合、その磁気マーカ10を特定することにより地図データ中の位置を特定できる。そして、地図データ中の車両5の位置を特定すれば、地図データが表す前方の道路形状、道路構造を把握できる。
 なお、工事箇所や信号の点灯状態などのリアルタイムの交通状況を外部サーバから随時、受信可能な制御ユニット18であっても良い。この場合には、リアルタイムの交通状況が反映されたダイナミックマップを構築でき、ダイナミックマップを利用した車両制御が可能になる。
 制御ユニット18が制御する各種のアクチュエータとしては、エンジン出力を調節するためのスロットルアクチュエータ181(図7)、操舵方向を変更するためのステアリングアクチュエータ183、制動力を調節するためのブレーキアクチュエータ185などがある。制御ユニット18が、これらのアクチュエータを適宜、制御することで、車両5を走行させることができる。
 制御ユニット18に接続されたセンサとしては、磁気センサCn、ミリ波レーダ17、画像センサ19等がある。磁気センサCnは、磁気を検出するためのセンサである。車両5には、15個の磁気センサCnが直線上に配列されたセンサアレイ21が組み込まれている。センサアレイ21は、車幅方向に長い棒状のユニットであり、路面100Sと対面する状態で車両5の底面に取り付けられる。
 センサアレイ21は、磁気マーカ10の検出処理等を実行する検出処理回路212を備えている。検出処理回路212は、15個の磁気マーカCnを制御して各磁気マーカCnの磁気計測値を取得する。そして、検出処理回路212は、各磁気マーカCnの磁気計測値を処理することで磁気マーカ10の検出処理等を実行する。
 センサアレイ21(図7)では、15個の磁気センサCnが10cm間隔で配置されている。磁気センサC1~C15が出力する磁気計測値は、車幅方向の離散的な磁気分布を形成する。センサアレイ21(検出処理回路212)は、磁気マーカ10を検出したとき、その旨を表す検出信号を出力すると共に、磁気マーカ10に対する車両5の横ずれ量を計測する。センサアレイ21が磁気マーカ10の真上に位置したとき、各磁気センサCnが出力する磁気計測値の分布(車幅方向の磁気分布)に基づけば、車幅方向における磁気マーカ10の位置を特定可能である。そして、センサアレイ21は、車幅方向における磁気マーカの位置に基づいて、磁気マーカ10に対する車両の横ずれ量を特定する。
 磁気センサCnとしては、例えば、公知のMI効果(Magneto Impedance Effect)を利用して磁気を検出するMIセンサなどが好適である。MI効果とは、アモルファスワイヤなどの感磁体のインピーダンスが外部磁界に応じて敏感に変化するという磁気的な効果である。MIセンサは、一直線状で組み込まれる感磁体の方向に磁気的な感度を有する。磁気センサCnは、例えば、車幅方向あるいは鉛直方向など一方向の磁気成分を検出可能な磁気センサであっても良い。進行方向の磁気成分および車幅方向の磁気成分など、2方向の磁気成分を検出可能な磁気センサであっても良い。進行方向および車幅方向に加えて鉛直方向の磁気成分を検出可能など、3方向の磁気成分を検出可能な磁気センサであっても良い。
 ミリ波レーダ17は、波長1~10mm、周波数30~300GHzのミリ波を利用する物体検出センサである。ミリ波レーダ17は、ミリ波を送信したときの反射電波を利用して対象物を検出すると共に、対象物までの距離を計測する。ミリ波レーダ17によれば、他の車両、ガードレールや縁石などの道路構造物に加えて、人の検出も可能である。車両5では、周囲を監視できるよう、車体の前後左右の隅部にミリ波レーダ17が配置されている。
 画像センサ19は、前方の環境を撮影するための前方カメラを含むセンサである。画像センサ19は、画像処理を実行する処理回路(図示略)等を含んで構成されている。画像センサ19は、撮影画像に画像処理を施して、車線を区画する白線、道路標識、信号、人、自転車、先行車両、対向車両などを検出する。なお、歩行者などの検出に当たっては、ミリ波センサ17によって特定された注視領域に対して重点的に画像処理を施す等、複数のセンサを利用して検出精度を高めるセンサフュージョンの技術が活用される。
 測位ユニット16は、GPS(Global Positioning System)ユニットや慣性計測ユニット等を含んでいる。GPSユニットは、GNSS(Global Navigation Satellite System、衛星測位システム)の一種であるGPSを利用して車両位置(車両の位置)を計測するユニットである。慣性計測ユニットは、車両のヨー角の変化速度(角速度)や進行方向及び横方向の加速度を計測するユニットである。慣性計測ユニットが計測する角速度や加速度を利用すれば、基準位置からの相対位置(車両の移動による変位量の一例)や車両の向きを特定可能である。慣性計測ユニットを採用すれば、磁気マーカ10の敷設位置などの基準位置を通過した後の相対位置や回頭角(ヨー角の変化量)を精度高く特定できる。慣性計測ユニットを採用すれば、衛星電波を受信できないトンネル内などでの車両位置の特定が可能になる。
 タグリーダユニット14は、磁気マーカ10(図4)に保持されたRFIDタグ15と無線で通信する通信ユニットである。タグリーダユニット14は、RFIDタグ15の動作に必要な電力を無線で送電してRFIDタグ15を動作させ、RFIDタグ15の識別情報であるタグID(タグ情報)を読み取る。なお、図6では、磁気センサアレイ21及びタグリーダユニット14を別体で図示しているが、これらが一体化されたユニットを採用することも良い。
(3)車両システムの動作
 次に、上記のように構成された車両システム1の動作について、図8~図13を参照して説明する。図8は、車両5が移動する際の(3.1)基本処理の流れを示している。図9は、駐車期間に後続する再始動期間中の(3.2)リスタート制御の流れを示している。図11は、磁気マーカ10を検出しながら走行する(3.3)通常走行制御、の流れを示している。なお、図10は、リスタート制御の説明中の参照図である。図12及び図13は、通常走行制御の説明中の説明図である。
(3.1)基本処理
 基本処理(図8)は、車両5の主電源であるイグニッションのオンへの切替(IGオン)の後、目的地点に到着してイグニッションをオフに切り替える(IGオフ)までの処理である。この基本処理の流れについて、図8のフロー図に沿って説明する。
 車両5のイグニッションがオフ状態に保持された駐車期間を経て、オン状態に切り替えられると(IGオン、S101:Yes)、制御ユニット18は、例えば車両5の利用者によって入力された目的地点を取得する(S102)。なお、目的地点の入力方法としては、例えばブルートゥース(R)機能によって通信可能に接続された携帯端末(図示略)を利用して入力する方法や、車両5に設けられたタッチパネルディスプレイ(図示略)上で入力する方法等がある。
 制御ユニット18は、地図DB18Tに格納された3次元地図データを参照し、目的地点に至るルートを演算により特定し、そのルートを制御目標に設定する(S103)。なお、目的地点に至るルートを特定する際、制御ユニット18は、後述するリスタート制御により車両5が最初に到達する磁気マーカ10を併せて決定する。このように制御ユニット18が決定する磁気マーカ10は、車両が目的地点に到達する際、最初に検出されるべき最適な磁気マーカである。制御ユニット19は、ルートを特定する際に併せて決定した磁気マーカ10の識別情報を記憶する。詳しくは後述するが、この磁気マーカ10の識別情報は、下記のステップS105のリスタート制御からステップS107の通常走行制御に切り替えるための契機となる情報である。
 そして、制御ユニット18は、3次元地図データ上でそのルートを表すルートデータを地図DB18Tから読み出し(S104)、対応するルートに沿って車両5を走行させるように制御を開始する。
 制御ユニット18は、まず、測位ユニット16により測位された車両位置に基づく自動走行により車両5を走行させるリスタート制御(図9を参照して後述する。)を実行する(S105)。このリスタート制御は、磁気マーカ10を前提としない制御であり、磁気マーカ10を検出できるまでの再始動期間において実行される(S106:No→S105)。
 上記のごとく目的地点に至るルートを特定する際に併せて決定された磁気マーカ10を、リスタート制御による車両5の走行中に検出できた場合(S106:Yes)、すなわち、上記のごとく制御ユニット18が記憶した磁気マーカ10の識別情報と一致するタグIDを、対応するRFIDタグ15から取得できた場合、制御ユニット18は、車両5に適用する制御を、上記ステップS105のリスタート制御からステップS107の通常走行制御に切り替える。通常走行制御は、幹線道路61など、磁気マーカ10が配設された道路向けの制御である。この通常走行制御は、磁気マーカ10が連続的に検出されることを前提としている。なお、通常走行制御の内容について、図11~図13を参照して後述する。
 制御ユニット18は、出発地点から車両5が移動を開始して最初に磁気マーカ10を検出した後、目的地点に到着するまでの通常走行期間において、通常走行制御を実行する(S108:No→S107)。目的地点に到着すると、制御ユニット18は、車両5のイグニッションのオフ状態への切り替え(IGオフ)に応じて処理を終了させる(S109:Yes)。なお、IGオフの際、制御ユニット18では、車両位置、及び車両5の向き(絶対方位)を表す車両方位が記憶領域に格納(保存、記憶、記録)される。
 なお、例えば幹線道路61(図2)から分岐し、目的地点に至る生活道路62(図2参照。)に進入した後では、磁気マーカ10を継続的に検出できなくなる可能性がある。この場合には、制御ユニット18は、最後に検出された磁気マーカ10を基準とする慣性航法により車両5を自動走行させる(自動走行制御)。詳しくは後述するが、制御ユニット18によるこの自動走行制御は、通常走行制御の一環として実行される。
(3.2)リスタート制御
 リスタート制御(図8、図9)は、上記のごとく、車両5のイグニッションがオン状態に切り替えられた後、磁気マーカ10を検出できるまでの制御である。このリスタート制御は、磁気マーカ10を前提とせず、車両5を自律的に走行させるための制御である。リスタート制御が適用される状況としては、例えば、図10のごとく、自宅622に駐車した車両5が移動を開始した後、矢印R1に沿って移動し、磁気マーカ10が配設された幹線道路61に進入するまでの状況が想定される。なお、幹線道路61に進入した後は、図11を参照して詳しく説明する通常走行制御に切り替わる。なお、矢印R1は、上述の基本処理におけるステップS103で決定された制御対象のルートの一部である。
 図9のリスタート制御では、制御ユニット18は、まず、測位ユニット16による測位データを取得する(S201)。制御ユニット18は、この測位データを利用して、車両位置及び車両方位を特定する(S202)。上記のごとく、測位ユニット16は、絶対位置を表す位置データを出力するGPSユニット、角速度及び加速度を出力する慣性計測ユニット等を含んでいる。
 制御ユニット18は、GPSユニットが測位可能な状況である場合、GPSユニットによる位置データを利用し、上記のステップS103で設定されたルート上の車両位置を特定する。また、制御ユニット18は、3次元地図が表す車両位置周辺の3次元構造に対して、車両5が備える画像センサ19及びミリ波レーダ17によって特定される周囲の3次元構造を照合する。制御ユニット18は、この照合により、車両位置の精度を高めると共に、車両5の向きを表す車両方位を特定する。
 なお、制御ユニット18は、リスタート制御による車両5の走行中に、衛星電波を受信できない等、GPSが利用不可能な状況に陥った場合、慣性航法により車両位置および車両方位を特定する。制御ユニット18は、車両位置及び車両方位を特定できた直近の時点を基準とし、その後の車両5の走行による相対位置を推定する。そして、基準の時点における車両位置に、推定した相対位置を足し合わせることで、最新の車両位置を特定する。なお、車両5の相対位置は、慣性計測ユニットが計測した加速度及び角速度の履歴に基づいて求められる。
 また、制御ユニット18は、上記の基準の時点の後、慣性計測ユニットによる角速度の計測履歴を利用して回頭角を推定する。具体的には、角速度の積分によりヨー角の変位量である回頭角を求めることができる。制御ユニット18は、基準の時点における車両方位に、推定した回頭角(ヨー角の変位量)を足し合わせることで、最新の車両方位を特定する。このとき、画像センサ19及びミリ波レーダ17などのセンサを用いて周囲の3次元構造を把握し、3次元地図が表す3次元構造と照合することで、車両位置および車両方位の精度を高めることが可能である。なお、センサを利用して把握される周囲の3次元構造と、3次元地図が表す3次元構造と、の照合による車両位置あるいは車両方位の推定を主としても良い。
 制御ユニット18は、上記のステップS104で読み出したルートデータに対して、上記のステップS202で特定した車両位置及び車両方位を組み合わせることで、ルート上の車両5の位置及び向きを特定する。これにより制御ユニット18は、車両5の前方を含む周囲の3次元構造を特定し、ルートに沿って移動するための車両5の進路の方向を特定する(S203)。
 制御ユニット18は、このステップS203で特定した進路の方向に向かって走行できるように車両5を制御する(S204)。この制御中では、ミリ波レーダ17や画像センサ19による検出データ等が随時、制御ユニット18に取り込まれ、安全を確保しながら車両5が制御される。例えば、ミリ波レーダ17によれば、先行車両や対向車両等の周囲の車両や、ガードレールや、自転車や、歩行者などを検出可能である。画像センサ19によれば、標識や横断歩道などの道路標示を検出可能であると共に、信号の状態を認識可能である。
 図9のリスタート制御は、図8の基本処理のフロー図を参照して上述した通り、磁気マーカ10が検出されるまで継続される(図8中のS106:No→S105)。磁気マーカ10が検出されたとき、リスタート制御(図9)から通常走行制御(図11)に切り替わる(図8中のS106:Yes→S107)。
(3.3)通常走行制御
 制御ユニット18は、図11の通常走行制御の実行中では、磁気マーカ10が検出されたか否かに応じて車両位置等の特定方法を切り替える(S301)。磁気マーカ10が検出された場合(S301:検出有)、制御ユニット18は、その磁気マーカ10に保持されたRFIDタグ15からタグID(マーカ情報)を取得する(S312)。制御ユニット18は、取得したタグIDを利用してマーカDB18Mを参照し、検出した磁気マーカ10の位置(敷設位置)等を特定する。そして、制御ユニット18は、検出した磁気マーカ10の位置に基づいて車両位置を特定する(S313)。具体的には、制御ユニット18は、磁気マーカ10の敷設位置を基準として、磁気マーカ10に対する車両5の横ずれ量の分だけずらした位置を車両位置として特定する。
 一方、隣り合う磁気マーカ10の中間に車両5が位置しており、磁気マーカ10を検出できないときには(S301:検出無)、制御ユニット18は、直近で検出された磁気マーカ10の敷設位置に基づいて特定された車両位置(図12中の△印の位置)を基準位置とし、慣性航法により車両5の相対位置を推定する(S302)。具体的には、制御ユニット18は、慣性計測ユニットによる角速度、加速度に基づいて相対位置等を推定する。そして、制御ユニット18は、図12に例示するように、ステップS302で推定した相対位置の分だけ基準位置から移動させた×印の位置を車両位置として特定する(S313)。なお、同図では、この相対位置を表すベクトルの一例を矢印で示している。
 制御ユニット18は、車両位置を特定すると、図13において破線で示す制御目標のルートを基準として、自車位置の偏差ΔDを算出する。そして制御ユニット18は、この偏差ΔDに基づいて進路の方向を演算により求める(S314)。制御ユニット18は、このステップS314で求められた進路の方向に向けて車両5を走行させるように制御する(S315)。なお、上記のステップS204と同様、通常走行制御の実行中では、ミリ波レーダ17や画像センサ19による検出データ等が随時、制御ユニット18に取り込まれ、安全を確保しながら車両5が制御される。
 なお、目的地点が所在する地域60A(図2参照。)において、磁気マーカ10が配設されていない生活道路62に面して目的地点が位置している場合、図9のリスタート制御と同様の慣性航法による自動走行制御が必要になる場合がある。この場合、制御ユニット18は、ステップS301:検出無→S302の流れで慣性航法により車両位置及び車両方位を特定する(S313)。これにより制御ユニット18は、車両5の前方を含めて周囲の3次元構造を特定し、ルートに沿って移動するための車両5の進路の方向を求める(S314)。
 ここで、磁気マーカ10が配設された幹線道路61と、生活道路62など磁気マーカ10が配設されていない道路と、の制御の違いは、磁気マーカ10に対する車両5の横ずれ量を所定の値に近づけるラテラル制御の有無にある。磁気マーカ10が配設されていない道路では、画像処理等による車線認識や、GPSユニットが計測する車両位置や、慣性計測ユニットの計測値に基づく車両方位(ヨー角)等が参照され、操舵角の制御目標が決定される。一方、磁気マーカ10が配設された道路では、上記に加えて、磁気マーカ10に対する横ずれ量を利用して操舵角の制御目標が決定される。
 以上の通り、本例の制御方法は、磁気マーカ10が配設された道路(走路)を、磁気センサCnを備える車両5が走行するための制御方法である。この制御方法では、車両5の走行を制御する機能が停止された駐車期間を経てその機能が再始動された後、車両5が移動して最初に磁気マーカ10を検出するまでの再始動期間と、磁気マーカ10を検出した後の通常走行期間とで、制御が切り替わる。
 再始動期間では、駐車期間に後続する再始動期間において測位された位置、に基づいて車両位置を特定して車両5を走行させるリスタート制御が実行される。通常走行期間では、検出された磁気マーカ10の位置に基づいて車両位置を特定して車両5を走行させる通常走行制御が実行される。
 本例の制御では、駐車期間と通常走行期間との間に、リスタート制御が適用される再始動期間が設定される。この再始動期間における車両5の制御は、磁気マーカ10の検出を前提としない制御である。通常走行期間と再始動期間とで制御を切り替えれば、駐車期間を経て車両5が移動を開始してから磁気マーカ10を検出するまでの自動走行が可能になる。このような制御方法によれば、車両5の走行を制御可能な領域を拡大でき、汎用性を向上できる。本例の制御方法によれば、道路に配設された磁気マーカ10を利用して高レベルの自動運転を実現可能である。
 なお、本例では、上記のステップS101(図8)でのIGオンへの切替に応じてリスタート制御が開始されたとき、直ちにステップS201(図9)が実行される構成を説明した。これに代えて、図14のごとく、リスタート制御が開始された直後で、車両位置の特定前であるときには(S210:YES)、まず、GPSによる測位精度を評価し(S211)、GPSの測位データに基づいて車両位置を特定するか否かを決定することも良い。
 ここで、GPSによる測位精度の評価としては、例えば、衛星電波を受信可能な衛星数を利用する評価がある。例えば、衛星電波を受信可能な衛星数に基づいて期待できるGPSによる測位精度と、直近のIGオフの際、すなわち直前の駐車期間への移行時に記憶領域に格納された車両位置の推定精度と、を比較する評価が考えられる。例えば、GPSによる測位精度の指標としては、誤差円の大きさがある。例えば、IGオフ時の車両位置の精度の指標としては、慣性航法による車両位置の推定誤差の範囲がある。
 例えば、GPSによる誤差円の大きさが、IGオフ時の車両位置の推定誤差の範囲よりも小さく、GPSによる測位精度が十分である場合(S211:OK)、GPSによる測位データに基づき車両位置を特定すると良い(S212)。すなわち、再始動期間の開始時に、GPSにより測位された車両位置の精度と、直前の駐車期間への移行時の車両位置の推定精度と、の比較を実行し、GPSによる測位精度の方が高い場合には、GPSにより測位された車両位置を、再始動期間の開始時の車両位置として特定すると良い。一方、例えば、GPSによる誤差円の大きさが、IGオフ時の車両位置の推定誤差の範囲よりも大きく、GPSによる測位精度が十分でない場合(S211:NG)、IGオフ時に記録された車両位置を読み出すと良い(S222)。すなわち、再始動期間の開始時に、GPSにより測位された車両位置の精度と、直前の駐車期間への移行時の車両位置の推定精度と、の比較を実行し、直前の駐車期間への移行時の車両位置の推定精度の方が高い場合には、直前の駐車期間への移行時の車両位置の推定精度を、再始動期間の開始時の車両位置として特定すると良い。なお、ステップS212あるいはS222にて車両位置が特定された後の処理については、図9を参照して説明した処理と同様である。
 このように、IGオンへの切替後(図8中のステップS101:YESに相当。)、車両位置が未特定であるときには(S210:YES)、GPSの測位精度を評価した結果がOKかNGかを判断し(S211)、その判断結果に応じてGPSユニットによる測位データに基づいて車両位置を特定するか(S212)、IGオフ時の車両位置を読み出すか(S222)、を切り替えることも良い。当然ながら、地下の駐車場など、衛星電波を受信できないなどGPSを利用出来ない状況の場合には、ステップS211においてNGと判断し、IGオフ時の車両位置を読み出すと良い(S222)。
 本例では、磁気マーカ10の上面に、シート状のRFIDタグ15を取り付けた構成を例示しているが、磁気マーカ10とRFIDタグ15とが一体をなしている構成は必須ではない。磁気マーカ10とRFIDタグ15とが同じ位置に配置されていれば良く、磁気マーカ10の鉛直方向上方、あるいは下方にRFIDタグ15が配置されていても良い。
 なお、本例の磁気マーカ10は、RFIDタグ15が一体化されたマーカである。これに代えて、RFIDタグ15が付設されない磁気マーカを含めても良い。例えば、交差点に位置する磁気マーカ10にRFIDタグ15を設ける一方、それ以外の箇所にはタグなしの磁気マーカを配置することも良い。あるいは、5か所毎、10か所毎等の間隔で、RFIDタグ15を備える磁気マーカ10を配置する一方、他をタグなしの磁気マーカとしても良い。
 なお、本例では、磁気マーカ10が配設された幹線道路61を例示する一方、地域60内を移動するための生活道路62には磁気マーカ10が配設されていない構成を例示している。これに代えて、全ての道路に磁気マーカ10を配設することも良い。この場合には、道路に面する駐車場から出発した後、道路に進入して最初に磁気マーカを検出するまでの期間、あるいは路肩に駐車した車両の走行を再開してから最初に磁気マーカを検出するまでの期間、などが再始動期間となる。
 また、少なくともいずれかの磁気マーカ10に対して、補助的な磁気マーカを付設することも良い。例えば、磁気マーカ10を基準として、道路の方向に沿うように補助的な磁気マーカを配置することも良い。磁気マーカ10に対する横ずれ量と、補助的な磁気マーカに対する横ずれ量と、がわかれば、磁気マーカ10と補助的な磁気マーカとを結ぶ方向である道路の方向と、車両の進行方向と、のなす角を演算等により求めることができる。磁気マーカ10と補助的な磁気マーカとの間隔は、車両側の操舵量の変化が少ないと期待できる間隔が良い。例えば、0.2~3.0m程度の間隔、より好ましくは約1.0mの間隔とすると良い。法律等によって定められた道路の制限速度に応じて、間隔を変更することも良い。例えば、制限速度が高い道路では、1.5~3.0mの間隔を設定し、制限速度が時速10~20km程度の道路では0.2~0.4mの間隔を設定することも良い。
(実施例2)
 本例は実施例1の車両5の制御方法に基づき、リスタート制御の内容を変更した例である。この内容について、図15を参照しながら説明する。同図は、実施例1の説明にて参照された図9の置き換え図である。本例のリスタート制御は、GPSによる測位を主体とする実施例1のリスタート制御に代わるものであり、自律航法(デッドレコニング)による測位を主体としている。
 本例の制御ユニット(図6、図7中の符号18に相当。)は、測位ユニット(図6、図7中の符号16に相当。)が出力する角速度(車両のヨー角の変化速度)に加えて、車輪の回転に応じて出力される車速パルスを取り込み可能である。制御ユニットは、角速度や車速パルスを利用し、自律航法による測位を実行可能である。
 本例のリスタート制御(図15)は、IGオンへの切替(図8中のステップS101:YESに相当。)に応じて、制御ユニットが実行する制御である。リスタート制御の開始時には、制御ユニットは、まず、車両位置の特定前か否か、すなわちリスタート制御の開始直後にて車両位置が未特定の状態であるか否か、を判断する(S320)。制御ユニットは、車両位置の特定前であれば(S320:YES)、直近のIGオフ時、すなわち車両が駐車された時に記録した車両位置及び車両方位を読み出す(S321)。
 制御ユニットは、上記のように車両位置が特定された後は(S320:NO)、測位ユニット16による角速度や車速パルス等を取得し(S322)、自律航法により車両位置及び車両方位を特定する(S202)。具体的には、制御ユニット18は、車両位置及び車両方位を特定できた直近の時点の後の角速度の計測履歴や車速パルスの出力履歴等に基づき、車両5の相対位置あるいは相対方位を推定する。そして、制御ユニットは、基準の時点における車両方位に対して、推定した相対方位を足し合わせることで、最新の車両方位を特定する。さらに、制御ユニットは、基準の時点における車両位置を基準として、最新の車両方位に沿って、推定した相対位置の分だけ移動した位置を、最新の車両位置として特定する。なお、上記のステップS202において車両位置及び車両方位が特定された後の処理については、実施例1において図9を参照して説明した処理と同様である。
 自律航法による測位の方法としては、上記の角速度や車速パルスを利用する方法に代えて、あるいは加えて、時間的に連続して取得された路面画像から変位を検出して車両位置や車両方位を推定する方法を採用することも良い。この方法は、十分に短い時間間隔で撮影された路面画像中の模様等の動きを、パターンマッチング等の画像的な手法により特定し、模様等の動きに基づいて車両の変位を推定する方法である。
 この方法は、例えば光学式マウスにおける動きの検出方法に似通っている。光学式マウスでは、並進の動きのみが検出対象となっているが、並進の動きに加えて、回転の動きを検出することも良い。路面の撮像画像である路面画像から回転の動きを検出できれば、路面画像に基づく自律航法によって車両方位の推定が可能になる。路面画像は、例えば、車両に搭載された撮像カメラを用い、車両の直下の路面を撮影した撮像画像であると良い。例えば、路面画像を撮像する際、赤外線やレーザ光など特定波長の光を照射する一方、路面画像の撮影の際には、その特定波長を透過するフィルタレンズを利用することも良い。例えば、車両の変位を路面画像に基づいて推定する一方、車両方位の変動量を前方画像に基づいて推定することも良い。時間的に連続して取得された前方画像に含まれる例えば、電柱などの横方向の動きを検出すれば、車両方位の変動量を推定可能である。前方画像は、前方を撮影可能なように車両に搭載された撮像カメラを用いて取得できる
 なお、その他の構成及び作用効果については、実施例1と同様である。
 以上、実施例のごとく本発明の具体例を詳細に説明したが、これらの具体例は、特許請求の範囲に包含される技術の一例を開示しているにすぎない。言うまでもなく、具体例の構成や数値等によって、特許請求の範囲が限定的に解釈されるべきではない。特許請求の範囲は、公知技術や当業者の知識等を利用して前記具体例を多様に変形、変更あるいは適宜組み合わせた技術を包含している。
 1 車両システム
 10 磁気マーカ
 14 タグリーダユニット
 15 RFIDタグ(無線タグ)
 16 測位ユニット
 17 ミリ波レーダ
 18 制御ユニット(回路)
 19 画像センサ
 18M マーカデータベース(マーカDB、データベース)
 18T 地図データベース(地図DB)
 21 センサアレイ
 212 検出処理回路
 5 車両
 60 地域
 61 幹線道路
 62 生活道路

Claims (10)

  1.  周辺に磁気を作用する磁気マーカが配設された走路を含む走路を、磁気センサを備える車両が走行するための制御方法であって、
     車両の走行を制御する機能が停止された駐車期間を経て当該機能が再始動された後、車両が移動して最初に磁気マーカを検出するまでの再始動期間と、
     該再始動期間を経て車両が磁気マーカを検出した後の通常走行期間とで、制御を切り替え、
     前記再始動期間では、直前の駐車期間への移行時の車両の位置、あるいは当該再始動期間において測位された位置、に基づいて車両の位置を特定して車両を走行させる制御を実行する一方、
     前記通常走行期間では、検出された磁気マーカの位置に基づいて車両の位置を特定して車両を走行させる制御を実行する制御方法。
  2.  請求項1において、前記再始動期間では、衛星測位システムを利用して車両の位置を測位する制御方法。
  3.  請求項1または2において、前記再始動期間の開始時に、衛星測位システムにより測位された車両位置の精度と、直前の駐車期間への移行時の車両位置の推定精度と、の比較を実行し、精度が高い方の車両位置を、当該再始動期間の開始時の車両位置として特定する制御方法。
  4.  請求項1~3のいずれか1項において、前記再始動期間において、車両に搭載されたセンサを用いて周囲の3次元構造を把握し、3次元地図が表す3次元構造と照合することにより車両位置を特定する制御方法。
  5.  請求項1~4のいずれか1項において、車両の走行による変位量を推定可能であって、基準となる位置と、当該基準となる位置を通過後の走行について推定された変位量と、に基づいて、車両の位置を特定可能である制御方法。
  6.  請求項5において、車両に搭載された撮像カメラを用いて路面の撮像画像を時間的に連続して取得し、取得時点の異なる路面の撮像画像を比較することにより前記変位量を推定する制御方法。
  7.  請求項1~6のいずれか1項において、前記磁気マーカの敷設位置を表す位置情報のデータベースが設けられ、
     車両によっていずれかの磁気マーカが検出されたとき、前記データベースの記憶領域を参照して当該磁気マーカの位置情報を取得し、当該磁気マーカの敷設位置を基準として車両の位置を特定する制御方法。
  8.  請求項1~7のいずれか1項において、いずれかの磁気マーカには、該いずれかの磁気マーカの敷設位置を特定可能な情報を無線出力する無線タグが付設されており、
     車両によって前記いずれかの磁気マーカが検出されたとき、対応する無線タグが出力する情報によって特定される当該いずれかの磁気マーカの敷設位置を基準として車両の位置を特定する制御方法。
  9.  請求項1~8のいずれか1項において、前記磁気マーカが配設された走路では、車両の進行方向を特定するための補助的な磁気マーカが少なくともいずれかの磁気マーカに隣り合わせて配置されており、
     当該補助的な磁気マーカと当該いずれかの磁気マーカとを結ぶ方向に対する車両の進行方向のなす角を、演算により求める制御方法。
  10.  周辺に磁気を作用する磁気マーカが配設された走路を含む走路を、磁気センサを備える車両が走行するための制御システムであって、
     車両の走行を制御する機能が停止された駐車期間を経て当該機能が再始動された後、車両が移動して最初に磁気マーカを検出するまでの再始動期間において、直前の駐車期間への移行時の車両の位置、あるいは当該再始動期間において測位された位置、に基づいて車両の位置を特定して車両を走行させる制御を実行する回路と、
     前記再始動期間を経て車両が最初に磁気マーカを検出した後の通常走行期間において、検出されたいずれかの磁気マーカの位置に基づいて車両の位置を特定して車両を走行させる制御を実行する回路と、
     前記再始動期間から前記通常走行期間へ移行したときに制御の切替を実行する回路と、を備える制御システム。
PCT/JP2022/001230 2021-01-18 2022-01-14 制御方法及び制御システム WO2022154103A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022575657A JPWO2022154103A1 (ja) 2021-01-18 2022-01-14
KR1020237023344A KR20230118642A (ko) 2021-01-18 2022-01-14 제어 방법 및 제어 시스템
CN202280009242.XA CN116783567A (zh) 2021-01-18 2022-01-14 控制方法以及控制系统
EP22739508.4A EP4280012A1 (en) 2021-01-18 2022-01-14 Control method and control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021005587 2021-01-18
JP2021-005587 2021-01-18

Publications (1)

Publication Number Publication Date
WO2022154103A1 true WO2022154103A1 (ja) 2022-07-21

Family

ID=82448495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001230 WO2022154103A1 (ja) 2021-01-18 2022-01-14 制御方法及び制御システム

Country Status (5)

Country Link
EP (1) EP4280012A1 (ja)
JP (1) JPWO2022154103A1 (ja)
KR (1) KR20230118642A (ja)
CN (1) CN116783567A (ja)
WO (1) WO2022154103A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2626676A (en) * 2024-02-08 2024-07-31 Chen Hongming A system and method for guiding navigation of automated guided vehicles (AGVS)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566713A (ja) * 1991-09-10 1993-03-19 Hitachi Ltd ナビゲーシヨン装置
JP2002334400A (ja) 2001-05-10 2002-11-22 Mitsubishi Motors Corp 運転支援装置
JP2008002992A (ja) * 2006-06-23 2008-01-10 Toyota Motor Corp 姿勢角検出装置と姿勢角検出方法
JP2013184491A (ja) * 2012-03-06 2013-09-19 Nissan Motor Co Ltd 車両走行支援装置
WO2016038931A1 (ja) * 2014-09-11 2016-03-17 本田技研工業株式会社 運転支援装置
JP2020098566A (ja) * 2018-09-28 2020-06-25 先進モビリティ株式会社 自動運転システム
WO2020175438A1 (ja) * 2019-02-27 2020-09-03 愛知製鋼株式会社 点群データの取得方法及び点群データ取得システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566713A (ja) * 1991-09-10 1993-03-19 Hitachi Ltd ナビゲーシヨン装置
JP2002334400A (ja) 2001-05-10 2002-11-22 Mitsubishi Motors Corp 運転支援装置
JP2008002992A (ja) * 2006-06-23 2008-01-10 Toyota Motor Corp 姿勢角検出装置と姿勢角検出方法
JP2013184491A (ja) * 2012-03-06 2013-09-19 Nissan Motor Co Ltd 車両走行支援装置
WO2016038931A1 (ja) * 2014-09-11 2016-03-17 本田技研工業株式会社 運転支援装置
JP2020098566A (ja) * 2018-09-28 2020-06-25 先進モビリティ株式会社 自動運転システム
WO2020175438A1 (ja) * 2019-02-27 2020-09-03 愛知製鋼株式会社 点群データの取得方法及び点群データ取得システム

Also Published As

Publication number Publication date
CN116783567A (zh) 2023-09-19
KR20230118642A (ko) 2023-08-11
JPWO2022154103A1 (ja) 2022-07-21
EP4280012A1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
EP3520095B1 (en) Dynamic routing for autonomous vehicles
JP7464870B2 (ja) 自動駐車システム
US20200180612A1 (en) Navigation in vehicle crossing scenarios
RU2659341C2 (ru) Система автоматического управления транспортным средством
KR102022773B1 (ko) 자율주행차량의 정밀위치감지 장치, 감지방법, 그 정밀위치감지장치를 통한 정차지원 시스템 및 정차지원방법
CN115031743A (zh) 对收集的相对于公共道路路段的信息关联的系统和方法
WO2018175441A1 (en) Navigation by augmented path prediction
WO2020057105A1 (zh) 用于控制车辆的自动驾驶的方法、设备、介质和系统
KR102425735B1 (ko) 로드뷰 또는 항공뷰 맵 정보를 이용한 자율주행 방법 및 그 시스템
RU2745936C1 (ru) Устройство определения положения стоп-линии и система управления транспортным средством
CN113173181A (zh) 自动驾驶装置
CN114792475B (zh) 自动停车系统
US20220366175A1 (en) Long-range object detection, localization, tracking and classification for autonomous vehicles
TWI802975B (zh) 自動駕駛車停車偵測
JP2020173730A (ja) 道路種別判定装置および運転支援装置
WO2022154103A1 (ja) 制御方法及び制御システム
CN106840177A (zh) 汽车同步建图与障碍识别方法
CN114194186B (zh) 车辆行驶控制装置
CN111964673A (zh) 一种无人车定位系统
US12054144B2 (en) Road information generation apparatus
CN115050203B (zh) 地图生成装置以及车辆位置识别装置
CN114944073A (zh) 地图生成装置和车辆控制装置
US20230271630A1 (en) Operation system and operation system control method
US12123739B2 (en) Map generation apparatus
US20220291014A1 (en) Map generation apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739508

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022575657

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280009242.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237023344

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022739508

Country of ref document: EP

Effective date: 20230818

WWE Wipo information: entry into national phase

Ref document number: 11202305308R

Country of ref document: SG