WO2022153994A1 - 双腕ロボットシステム - Google Patents

双腕ロボットシステム Download PDF

Info

Publication number
WO2022153994A1
WO2022153994A1 PCT/JP2022/000651 JP2022000651W WO2022153994A1 WO 2022153994 A1 WO2022153994 A1 WO 2022153994A1 JP 2022000651 W JP2022000651 W JP 2022000651W WO 2022153994 A1 WO2022153994 A1 WO 2022153994A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot arm
robot
arm
unit
dual
Prior art date
Application number
PCT/JP2022/000651
Other languages
English (en)
French (fr)
Inventor
充 大髭
啓祐 向井
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN202280010043.0A priority Critical patent/CN116802027A/zh
Priority to EP22739400.4A priority patent/EP4279223A1/en
Priority to KR1020237026297A priority patent/KR20230127332A/ko
Publication of WO2022153994A1 publication Critical patent/WO2022153994A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • B25J9/1676Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0084Programme-controlled manipulators comprising a plurality of manipulators
    • B25J9/0087Dual arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • B25J9/043Cylindrical coordinate type comprising an articulated arm double selective compliance articulated robot arms [SCARA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • B25J9/044Cylindrical coordinate type comprising an articulated arm with forearm providing vertical linear movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/163Programme controls characterised by the control loop learning, adaptive, model based, rule based expert control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39083Robot interference, between two robot arms
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40301Scara, selective compliance assembly robot arm, links, arms in a plane
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40307Two, dual arm robot, arm used synchronously, or each separately, asynchronously

Definitions

  • This disclosure relates to a dual-arm robot system.
  • Japanese Unexamined Patent Publication No. 2013-136109 discloses a dual-arm robot system including a dual-arm robot and an interference determination unit for determining interference between the dual-arm robots.
  • the dual-arm robot includes a pair of horizontal articulated arms attached to a support base.
  • the pair of horizontal articulated arms includes a first link portion and a second link portion, respectively.
  • One end of the first link portion is attached to a support base.
  • One end of the second link portion is attached to the other end of the first link portion.
  • the pair of horizontal articulated arms are attached to the support base in a state of being separated from each other. That is, the rotation shafts (rotation shafts with respect to the support base) at one end of each of the first link portions of the pair of horizontal articulated arms are separated from each other.
  • the interference determination unit of Japanese Patent Application Laid-Open No. 2013-136109 determines whether or not each part of the dual-arm robot interferes with each other when the dual-arm robot operates. Specifically, the interference determination unit determines whether or not the first link unit and the second link unit three-dimensionally interfere with each other.
  • This disclosure has been made in order to solve the above-mentioned problems, and one purpose of this disclosure is a dual-arm robot system capable of suppressing interference between a hand portion and another portion. Is to provide.
  • the dual-arm robot system includes a first robot arm portion and a second robot arm portion including a horizontal link portion to which a hand portion is attached and rotates along a horizontal plane, respectively.
  • the body portion, the hand portion, the horizontal link portion, and the body portion that support the first robot arm portion and the second robot arm portion so that the portions, the first robot arm portion, and the second robot arm portion rotate coaxially.
  • the interference judgment target parts interfere with each other based on whether or not the three-dimensional models generated by using a plurality of parts including at least the hand part of the body part as interference judgment target parts overlap with each other. It is provided with a control unit for determining.
  • the control unit uses a plurality of parts including at least the hand part among the hand part, the horizontal link part, and the body part as interference determination target parts. Based on whether or not the generated three-dimensional models overlap each other, it is determined whether or not the interference determination target portions interfere with each other. As a result, at least the interference determination target portions including the hand portion are determined to interfere with each other, so that it is possible to suppress an operation in which the hand portion and another portion interfere with each other. As a result, it is possible to prevent the hand portion from interfering with other portions.
  • the body portion includes the first robot arm portion and the first robot arm portion so that the first robot arm portion and the second robot arm portion rotate coaxially. 2 Supports the robot arm.
  • the first robot arm portion and the second robot arm portion rotate around different axes, the first robot arm portion and the second robot arm portion need to be arranged apart from each other. For this reason, the dual-arm robot system becomes large.
  • the dual-arm robot system since the first robot arm portion and the second robot arm portion rotate coaxially, the distance between the first robot arm portion and the second robot arm portion can be reduced. It can be arranged in a small state. As a result, the dual-arm robot system can be miniaturized.
  • the dual-arm robot system includes a first robot arm portion and a second robot arm portion including a horizontal link portion to which a hand portion is attached and rotates along a horizontal plane, and a first robot arm portion.
  • the body portion that supports the first robot arm portion and the second robot arm portion, and at least the hand portion of the hand portion, the horizontal link portion, and the body portion so that the robot arm portion and the second robot arm portion rotate.
  • the control unit includes a control unit that determines whether or not the interference determination target units interfere with each other based on whether or not the three-dimensional models generated with a plurality of parts including the interference determination target units overlap each other. Is provided in common to the first robot arm portion and the second robot arm portion.
  • the control unit uses a plurality of parts including at least the hand part among the hand part, the horizontal link part, and the body part as interference determination target parts. Based on whether or not the generated three-dimensional models overlap each other, it is determined whether or not the interference determination target portions interfere with each other. As a result, at least the interference determination target portions including the hand portion are determined to interfere with each other, so that it is possible to suppress an operation in which the hand portion and another portion interfere with each other. As a result, it is possible to prevent the hand portion from interfering with other portions.
  • the control unit is provided in common to the first robot arm unit and the second robot arm unit.
  • the configuration of the dual-arm robot system can be simplified (miniaturized) as compared with the case where the control unit is individually provided for each of the first robot arm unit and the second robot arm unit.
  • the control unit is provided in common to the first robot arm unit and the second robot arm unit, it is possible to save space, reduce costs, and facilitate operation of the dual-arm robot system.
  • the control unit separately provided for the first robot arm unit and the second robot arm unit determines the interference while communicating with each other, the accurate interference determination is performed while suppressing the delay of the determination. It can be carried out.
  • control unit is configured to control the operation of the first robot arm unit and the second robot arm unit in addition to the determination of interference, so that the operation of the first robot arm unit and the second robot arm unit can be performed. Unlike the case where the control is performed by a separate control unit, it is possible to suppress the delay in the operation for avoiding interference.
  • the dual-arm robot system 100 includes a first robot arm unit 10.
  • the first robot arm portion 10 includes a horizontal link portion that rotates along a horizontal plane.
  • the horizontal link portion includes a first horizontal link portion 11 that is rotatably connected to the body portion 30, and a second horizontal link portion 12 that is rotatably connected to the first horizontal link portion 11.
  • one end of the first horizontal link portion 11 is rotatably attached to the body portion 30 above the body portion 30.
  • the other end of the first horizontal link portion 11 is attached to one end of the second horizontal link portion 12.
  • a vertical link portion 13 is attached to the other end of the second horizontal link portion 12.
  • the first horizontal link portion 11 and the second horizontal link portion 12 are examples of the horizontal link portion.
  • the first robot arm portion 10 includes a vertical link portion 13.
  • the vertical link portion 13 is provided on the tip end side of the first robot arm portion 10. Then, the vertical link portion 13 moves along the vertical direction.
  • the vertical link portion 13 is an example of the first vertical link portion.
  • a hand portion 14 is attached to the first robot arm portion 10.
  • the hand portion 14 is attached to the lower end of the vertical link portion 13.
  • the hand portion 14 is composed of, for example, a chuck that grips the work.
  • the dual-arm robot system 100 includes a second robot arm unit 20.
  • the configuration of the second robot arm unit 20 is the same as the configuration of the first robot arm unit 10. That is, the second robot arm portion 20 includes a first horizontal link portion 21, a second horizontal link portion 22, and a vertical link portion 23. A hand portion 24 is attached to the second robot arm portion 20.
  • the first horizontal link portion 21 and the second horizontal link portion 22 are examples of the horizontal link portion.
  • the vertical link portion 23 is an example of the first vertical link portion.
  • the dual-arm robot system 100 includes a body portion 30.
  • the first robot arm portion 10 and the second robot arm portion 20 are supported by the body portion 30 so as to rotate coaxially.
  • one end of the first horizontal link portion 11 and one end of the first horizontal link portion 21 rotate coaxially.
  • one end of the first horizontal link portion 21 is arranged above the first horizontal link portion 11.
  • One end of the first horizontal link portion 21 is rotatably attached to the body portion 30 via the first horizontal link portion 11.
  • the dual-arm robot 100a is composed of the first robot arm portion 10, the second robot arm portion 20, and the body portion 30.
  • one end of the first horizontal link portion 11 rotates around the A1 axis.
  • the other end of the first horizontal link portion 11 (one end of the second horizontal link portion 12) rotates around the A2 axis.
  • the hand portion 14 rotates around the A3 axis.
  • one end of the first horizontal link portion 21 rotates around the A1 axis.
  • the other end of the first horizontal link portion 21 (one end of the second horizontal link portion 22) rotates around the A4 axis.
  • the hand portion 24 rotates around the A5 axis.
  • the A1 to A5 axes are axes along the vertical direction and are arranged parallel to each other.
  • the dual-arm robot system 100 includes a housing 40.
  • the body portion 30 is placed on the housing 40.
  • a control unit 50 which will be described later, is arranged inside the housing 40.
  • first robot arm unit 10 and the second robot arm unit 20 are connected to the control unit 50 arranged inside the housing 40, and the first robot arm unit 10 and the second robot arm unit 20 are provided inside the housing 40 and the body portion 30.
  • a cable 71 is provided.
  • a second cable 72 provided outside the housing 40 and the body portion 30 is provided.
  • the first cable 71 is a signal line or the like for controlling the drive units of the first robot arm unit 10 and the second robot arm unit 20.
  • the second cable 72 is a power supply cable for supplying electric power to the dual-arm robot system 100, an external communication cable for communication between the dual-arm robot system 100 and the outside, and the like.
  • the drive unit is realized by, for example, a servomotor.
  • Each servomotor is provided with a position sensor such as an encoder that detects the rotation angle position of the servomotor (not shown).
  • the rotation angle position is the position of the angle of each joint in the joint coordinate system of each servomotor.
  • the control unit 50 is configured to control the first robot arm unit 10 and the second robot arm unit 20 to an arbitrary posture by controlling the position of the servomotor.
  • an object 60 (obstacle) is arranged around the first robot arm portion 10 and the second robot arm portion 20.
  • the dual-arm robot system 100 includes a control unit 50.
  • the control unit 50 targets a plurality of parts including at least the hand part (14, 24) of the hand part (14, 24), the horizontal link part (11, 12, 21, 22) and the body part 30 for interference determination. Based on whether or not the three-dimensional model Ms generated as the parts overlap each other, it is determined whether or not the interference determination target parts interfere with each other. Specifically, in the first embodiment, the control unit 50 determines interference between the hand unit 14, the first horizontal link unit 11, the second horizontal link unit 12, and the vertical link unit 13 of the first robot arm unit 10. Target part.
  • control unit 50 sets the hand unit 24, the first horizontal link unit 21, the second horizontal link unit 22, and the vertical link unit 23 of the second robot arm unit 20 as interference determination target units. Further, the control unit 50 sets the body unit 30 and the housing 40 as interference determination target units. Further, the three-dimensional model M is individually generated (set) for all of the above-mentioned interference determination target portions.
  • the three-dimensional model M of the horizontal link portion (first horizontal link portion 11, second horizontal link portion 12, first horizontal link portion 21 and second horizontal link portion 22) is the body portion 30. It is set based on the coordinate system of. Further, the three-dimensional model M3 of the body portion 30 is set with reference to the coordinate system of the body portion 30. Further, the three-dimensional model M4 of the housing 40 is set with reference to the coordinate system of the body portion 30. On the other hand, the three-dimensional model M of the hand unit (hand unit 14 and hand unit 24) is set with reference to the tip coordinates of the hand unit (14, 24).
  • the three-dimensional model M1a of the first horizontal link portion 11 of the first robot arm portion 10 has, for example, a substantially oval shape so as to follow the shape of the first horizontal link portion 11 when viewed from above.
  • the length of the first horizontal link portion 11 in the Z direction of the three-dimensional model M1a has a length corresponding to the length of the first horizontal link portion 11 in the Z direction.
  • the three-dimensional model M1c of the vertical link portion 13 of the first robot arm portion 10 has, for example, a substantially oval shape so as to follow the shape of the vertical link portion 13 when viewed from above.
  • the length of the vertical link portion 13 in the Z direction of the three-dimensional model M1c has a length corresponding to the length of the vertical link portion 13 in the Z direction. The same applies to the three-dimensional model M2c of the vertical link portion 23 of the second robot arm portion 20.
  • the three-dimensional model M1d of the hand portion 14 of the first robot arm portion 10 has, for example, a substantially quadrangular shape so as to follow the shape of the hand portion 14 when viewed from above.
  • the length of the three-dimensional model M1d of the hand portion 14 in the Z direction has a length corresponding to the length of the hand portion 14 in the Z direction. The same applies to the three-dimensional model M2d of the hand portion 24 of the second robot arm portion 20.
  • the three-dimensional model M3 of the body portion 30 has, for example, a substantially circular shape so as to follow the shape of the body portion 30 when viewed from above. Further, the length of the body portion 30 in the Z direction of the three-dimensional model M3 has a length corresponding to the length of the body portion 30 in the Z direction.
  • the three-dimensional model M4 of the housing 40 has, for example, a substantially rectangular shape so as to follow the shape of the housing 40 when viewed from above. Further, the length of the three-dimensional model M4 of the housing 40 in the Z direction has a length corresponding to the length of the housing 40 in the Z direction.
  • the three-dimensional model M5 of the object 60 arranged around the first robot arm portion 10 and the second robot arm portion 20 has a shape that follows the shape of the object 60 when viewed from above. Further, the length of the three-dimensional model M5 of the object 60 in the Z direction has a length corresponding to the length of the object 60 in the Z direction.
  • the dual-arm robot system 100 includes a storage unit 51.
  • the storage unit 51 is arranged inside the housing 40, for example.
  • the three-dimensional models M (M1a to M1d, M2a to M2d, M3, M4, and M5) are stored in advance in the storage unit 51.
  • the shape (length, etc.) of the three-dimensional model M is fixed.
  • the housing 40 (control unit 50) is moved together with the dual-arm robot 100a.
  • the relative positions of the housing 40 (control unit 50) and the dual-arm robot 100a change, unlike the case where the housing 40 (control unit 50) and the dual-arm robot 100a are arranged separately. Therefore, it is possible to easily determine the interference with the housing 40.
  • the control unit 50 determines whether or not the interference determination target units interfere with each other based on the three-dimensional model M stored in the storage unit 51 in advance.
  • the control unit 50 is a hand unit (14, 24) other than the interference between the first horizontal link unit 11 of the first robot arm unit 10 and the first horizontal link unit 21 of the second robot arm unit 20.
  • the control unit 50 determines whether or not the interference determination target units including the housing 40 interfere with each other.
  • the control unit 50 determines whether or not the interference determination target units including the object 60 arranged around the first robot arm unit 10 and the second robot arm unit 20 interfere with each other.
  • the targets of the interference determination of the first robot arm portion 10 with respect to the first horizontal link portion 11 are the hand portion 14 of its own first robot arm portion 10 and the second robot arm portion 20 on the other side.
  • the target of the interference determination of the first robot arm portion 10 with respect to the second horizontal link portion 12 is the first horizontal link portion of the hand portion 14 of its own first robot arm portion 10 and the second robot arm portion 20 on the other side. 21, the second horizontal link portion 22, the vertical link portion 23, the hand portion 24, and the object 60 arranged around the robot.
  • the targets of the interference determination of the first robot arm portion 10 with respect to the vertical link portion 13 are the hand portion 14 of the first robot arm portion 10 and the first horizontal link portion 21 of the second robot arm portion 20 on the other side.
  • the targets of the interference determination of the first robot arm portion 10 with respect to the hand portion 14 are the first horizontal link portion 21, the second horizontal link portion 22, the vertical link portion 23, and the hand of the second robot arm portion 20 on the other side. It is a part 24. Further, in the first embodiment, in the first robot arm portion 10, it is determined whether or not the hand portion 14, the body portion 30, the housing 40, and the surrounding objects 60 interfere with each other. ..
  • the target of interference determination with respect to the first horizontal link portion 21, the second horizontal link portion 22, the vertical link portion 23, and the hand portion 24 of the second robot arm portion 20 is the same as that of the first robot arm portion 10. ..
  • the control unit 50 is commonly provided in the first robot arm unit 10 and the second robot arm unit 20. Then, the control unit 50 determines whether or not the three-dimensional models M generated for the first robot arm unit 10 and the second robot arm unit 20 overlap each other on the three-dimensional coordinates. .. Then, when the three-dimensional models M overlap each other, it is determined that the interference determination target portions interfere with each other.
  • the control unit 50 controls the operations of the first robot arm unit 10 and the second robot arm unit 20 in addition to determining whether or not the interference determination target units interfere with each other.
  • control unit 50 Next, the operation of the control unit 50 will be described with reference to FIG. 7.
  • step S1 the control unit 50 determines whether or not the interference determination function provided in advance in the dual-arm robot system 100 is effective. In step S1, if yes, the process proceeds to step S2.
  • step S2 the control unit 50 determines whether or not the first robot arm unit 10 and the second robot arm unit 20 are in cooperative operation.
  • the cooperative operation is an operation in which one of the first robot arm unit 10 and the second robot arm unit 20 is used as a master and the other is used as a slave.
  • the slave follows the movement of the master.
  • An example of the cooperative operation is an operation in which the hand unit 14 of the first robot arm unit 10 and the hand unit 24 of the second robot arm unit 20 move the work while holding one work.
  • step S3 the control unit 50 commands the dual-arm robot 100a several cycles ahead based on the deceleration time, which is the time required for decelerating and stopping, which is obtained based on the current operation plan of the dual-arm robot 100a. Calculate the value (command value for the servo motor).
  • step S4 the control unit 50 determines whether or not the interference determination target units interfere with each other based on the calculated command value. That is, the position where the dual-arm robot 100a advances until it decelerates and stops is calculated, and it is determined whether or not the three-dimensional model Ms of the interference determination target portions overlap with each other at the calculated position. Then, the process proceeds to step S5.
  • step S5 the control unit 50 abnormally stops the dual-arm robot 100a in step S6.
  • step S5 in the case of no, in step S7, the control unit 50 calculates a command value (command value for the next processing cycle) for the servomotor of the dual-arm robot 100a. In the case of no in step S1 and yes in step S2, in step S7, the control unit 50 calculates the command value for the servomotor of the dual-arm robot 100a.
  • the control unit 50 is at least the hand unit (14, 24) of the hand unit (14, 24), the horizontal link unit (11, 12, 21, 22) and the body unit 30. It is determined whether or not the interference determination target portions interfere with each other based on whether or not the three-dimensional model Ms generated by using a plurality of portions including 24) as interference determination target portions overlap each other. As a result, mutual interference between the interference determination target parts including at least the hand parts (14, 24) is determined, so that the hand parts (14, 24) and other parts interfere with each other. Can be suppressed. As a result, it is possible to prevent the hand portions (14, 24) from interfering with other portions.
  • the body portion 30 has the first robot arm portion 10 and the second robot arm portion 10 so that the first robot arm portion 10 and the second robot arm portion 20 rotate coaxially. Supports the robot arm portion 20.
  • the first robot arm portion 10 and the second robot arm portion 20 rotate around different axes, the first robot arm portion 10 and the second robot arm portion 20 need to be arranged apart from each other. There is. Therefore, the size of the dual-arm robot system 100 is increased.
  • the dual-arm robot system 100 according to the first embodiment since the first robot arm portion 10 and the second robot arm portion 20 rotate coaxially, the first robot arm portion 10 and the second robot arm portion 20 It can be arranged with the distance between them reduced. As a result, the dual-arm robot system 100 can be miniaturized.
  • the horizontal link portions (11, 12, 21, 22) of the first robot arm portion 10 and the second robot arm portion 20 are rotated with respect to the body portion 30, respectively. It includes a first horizontal link portion (11, 21) movably connected and a second horizontal link portion (12, 22) rotatably connected to the first horizontal link portion (11, 21).
  • the control unit 50 includes a hand unit (14, 24) other than the interference between the first horizontal link unit 11 of the first robot arm unit 10 and the first horizontal link unit 21 of the second robot arm unit 20. Interference determination Determines whether or not the target parts interfere with each other.
  • the control unit 50 is a hand unit (14) other than the interference between the first horizontal link unit 11 of the first robot arm unit 10 and the first horizontal link unit 21 of the second robot arm unit 20. , 24) By determining whether or not the interference determination target portions interfere with each other, the first horizontal link portion 11 of the first robot arm portion 10 and the first horizontal link portion 21 of the second robot arm portion 20. Since it is not determined whether or not the robots interfere with each other, the control load of the control unit 50 can be reduced.
  • control unit 50 determines whether or not the interference determination target units interfere with each other based on the three-dimensional model M stored in the storage unit 51 in advance. Thereby, the interference can be easily determined based on the three-dimensional model M stored in advance in the storage unit 51.
  • the three-dimensional model M of the horizontal link portion (11, 12, 21, 22) and the body portion 30 is set with reference to the coordinate system of the body portion 30.
  • the three-dimensional model M of the hand portion (14, 24) is set with reference to the tip coordinates of the hand portion (14, 24).
  • the horizontal link portion (11, 12, 21, 22) and the body portion 30 do not change in shape and size. Therefore, the horizontal link portion (11, 12, 21, 22) is based on the coordinate system of the body portion 30. 22) and the three-dimensional model M of the body portion 30 can be easily set.
  • the hand portion (14, 24) is referred to by the tip coordinates of the hand portion (14, 24).
  • the three-dimensional model M of 14 and 24) can be appropriately set.
  • control unit 50 determines whether or not the interference determination target units including the housing 40 interfere with each other. As a result, when the body portion 30 is mounted on the housing 40, it is possible to prevent at least the hand portions (14, 24) from interfering with the housing 40.
  • the control unit 50 arranged inside the housing 40 is connected to the first robot arm unit 10 and the second robot arm unit 20, and the housing 40 and the body are connected.
  • a first cable 71 provided inside the portion 30 is provided.
  • the first cable 71 is provided outside the housing 40 and the body portion 30, it is possible to prevent the first cable 71 from interfering with surrounding objects 60 and the like.
  • the interference determination target units including the object 60 arranged around the first robot arm unit 10 and the second robot arm unit 20 interfere with each other. Judge whether or not. As a result, when the object 60 is arranged around the object 60, at least the hand portion (14, 24) interferes with the object 60 arranged around the first robot arm portion 10 and the second robot arm portion 20. Can be suppressed.
  • the control unit 50 is commonly provided in the first robot arm unit 10 and the second robot arm unit 20.
  • the configuration of the dual-arm robot system 100 is simplified (miniaturized) as compared with the case where the control unit 50 is individually provided for each of the first robot arm unit 10 and the second robot arm unit 20. be able to.
  • the control unit 50 is provided in common to the first robot arm unit 10 and the second robot arm unit 20, the space-saving, cost-reducing, and easy-to-operate operation of the dual-arm robot system 100 is achieved. be able to.
  • the control unit 50 separately provided in the first robot arm unit 10 and the second robot arm unit 20 determines the interference while communicating with each other, it is accurate while suppressing the delay in the determination. Interference judgment can be performed.
  • control unit 50 determines whether or not the interference determination target units interfere with each other, and in addition, the first robot arm unit 10 and the second robot arm unit 20. Controls the operation of. As a result, unlike the case where the operations of the first robot arm unit 10 and the second robot arm unit 20 are controlled by the separate control units 50, it is possible to suppress the delay in the operation for avoiding interference.
  • the vertical link portion 113 is provided in the first robot arm portion 10.
  • the vertical link portion 113 includes plate-shaped members 113a and 113b provided at the tip of the first robot arm portion 10. Further, the plate-shaped members 113a and 113b are provided with a hand attachment member 113c to which the hand portion 14 is attached. Then, the vertical link portion 113 raises and lowers the hand mounting member 113c by rotating the plate-shaped members 113a and 113b around a predetermined axis, and moves the hand portion 14 in the vertical direction. Specifically, the plate-shaped member 113a rotates about the axis A11 with respect to the second horizontal link portion 12. The plate-shaped member 113b rotates about the axis A12 with respect to the plate-shaped member 113a.
  • the plate-shaped member 113a and the plate-shaped member 113b have a substantially oval shape.
  • the second robot arm portion 20 is provided with a vertical link portion 123.
  • the configuration of the vertical link portion 123 is the same as the configuration of the vertical link portion 113. That is, the vertical link portion 123 includes a plate-shaped member 123a, a plate-shaped member 123b, and a hand mounting member 123c.
  • one end of the first horizontal link portion 11 rotates around the A1 axis.
  • the other end of the first horizontal link portion 11 (one end of the second horizontal link portion 12) rotates around the A2 axis.
  • One end of the plate-shaped member 113a rotates around the A11 axis.
  • the other end of the plate-shaped member 113a (one end of the plate-shaped member 113b) rotates around the A12 axis.
  • the other end of the plate-shaped member 113b (hand mounting member 113c) rotates around the A13 axis.
  • the hand portion 14 rotates around the A3 axis.
  • the A11 axis, the A12 axis, and the A13 axis are axes along the horizontal direction and are arranged parallel to each other.
  • one end of the first horizontal link portion 21 rotates around the A1 axis.
  • the other end of the first horizontal link portion 21 (one end of the second horizontal link portion 22) rotates around the A4 axis.
  • One end of the plate-shaped member 123a rotates around the A21 axis.
  • the other end of the plate-shaped member 123a (one end of the plate-shaped member 123b) rotates around the A22 axis.
  • the other end of the plate-shaped member 123b (hand mounting member 123c) rotates around the A23 axis.
  • the hand portion 24 rotates around the A5 axis.
  • the A21 axis, the A22 axis, and the A23 axis are axes along the horizontal direction and are arranged parallel to each other.
  • the storage unit 151 includes a hand unit 14, a hand unit 24, a first horizontal link unit 11, a second horizontal link unit 12, a first horizontal link unit 21, a second horizontal link unit 22, and a body unit 30.
  • the three-dimensional model M is stored in advance.
  • the three-dimensional model M of the housing 40 is stored in advance in the storage unit 151.
  • the storage unit 151 includes a vertical link portion 113 (plate-shaped member 113a, plate-shaped member 113b, hand mounting member 113c) and a vertical link portion 123 (plate-shaped member 123a, plate-shaped member 123b, hand mounting member 123c). ),
  • the three-dimensional model M is stored in advance.
  • the three-dimensional model M of the vertical link portion 113 is centered on a predetermined axis A11 (A12) around which the plate-shaped member 113a (113b) rotates. It is set based on the radius r1 (r2) to be formed, the length L1 (L2) of the plate-shaped member 113a (113b), and the thickness t1 (t2) of the plate-shaped member 113a (113b). Specifically, with respect to the plate-shaped member 113a, the shape of the plate-shaped member 113a having a substantially elliptical shape on an arc is defined based on the radius r1 centered on the axis A11.
  • a three-dimensional model M10a of the plate-shaped member 113a is generated based on the radius r1, the length L1, and the thickness t1.
  • a three-dimensional model M10b of the plate-shaped member 113b is generated based on the radius r2, the length L2, and the thickness t2.
  • the three-dimensional model M10c of the hand mounting member 123c has, for example, a substantially elliptical shape (see FIG. 9) so as to follow the shape of the hand mounting member 123c when viewed from above.
  • the length of the hand mounting member 113c in the Z direction of the three-dimensional model M10c has a length corresponding to the length of the hand mounting member 113c in the Z direction.
  • a cover portion 161b that covers the driving portion 161a that rotates the plate-shaped members 113a and 113b of the first robot arm portion 10 is provided.
  • the cover portion 161b is attached to the vertical link portion 113.
  • the three-dimensional model M12a of the cover portion 161b is set separately from the three-dimensional model M of the vertical link portion 113. Further, in the three-dimensional model M12a of the cover portion 161b, the lengths in the vertical direction and the horizontal direction are set with reference to the rotation axis (A2) of the second horizontal link portion 12.
  • the three-dimensional model M12a of the cover portion 161b has, for example, a substantially quadrangular shape so as to follow the shape of the cover portion 161b when viewed from above. Further, the length of the cover portion 161b in the Z direction of the three-dimensional model M12a has a length corresponding to the length of the cover portion 161b in the Z direction.
  • the objects of the interference determination of the first robot arm unit 10 with respect to the first horizontal link unit 11 by the control unit 150 are the hand unit 14 of the first robot arm unit 10 and the hand unit 14 of the first robot arm unit 10.
  • the second horizontal link portion 22, the hand mounting member 123c, the hand portion 24, the cover portion 162b, the plate-shaped member 123a, and the plate-shaped member 123b of the second robot arm portion 20 on the other side are arranged around the other side.
  • the plate-shaped member 123a is referred to as a plate-shaped member A
  • the plate-shaped member 123b is referred to as a plate-shaped member B.
  • the target of the interference determination of the first robot arm portion 10 with respect to the second horizontal link portion 12 is the first horizontal link portion of the hand portion 14 of its own first robot arm portion 10 and the second robot arm portion 20 on the other side. 21, the second horizontal link portion 22, the hand mounting member 123c, the hand portion 24, the cover portion 162b, the plate-shaped member 123a, the plate-shaped member 123b, and the object 60 arranged around it. ..
  • the targets of the interference determination of the first robot arm portion 10 with respect to the hand mounting member 113c are the hand portion 14 of the first robot arm portion 10 of the first robot arm portion 10 and the first horizontal link portion 21 of the second robot arm portion 20 on the other side.
  • the objects of interference determination with respect to the cover portion 161b of the first robot arm portion 10 are the hand portion 14 of the first robot arm portion 10 of the robot arm portion 10 and the first horizontal link portion 21 of the second robot arm portion 20 on the other side.
  • the objects of the interference determination of the first robot arm portion 10 with respect to the plate-shaped member 113a are the hand portion 14 of the first robot arm portion 10 and the first horizontal link portion 21 of the second robot arm portion 20 on the other side.
  • the plate-shaped member 113a is described as the plate-shaped member A.
  • the objects of the interference determination of the first robot arm portion 10 with respect to the plate-shaped member 113b are the hand portion 14 of its own first robot arm portion 10 and the first horizontal link portion 21 of the second robot arm portion 20 on the other side.
  • the plate-shaped member 113b is referred to as a plate-shaped member B.
  • the objects of the interference determination of the first robot arm portion 10 with respect to the hand portion 14 are the first horizontal link portion 21, the second horizontal link portion 22, the hand mounting member 123c, and the second robot arm portion 20 on the other side.
  • the target of is the same as that of the first robot arm unit 10.
  • the control unit 150 determines whether or not the interference determination target units including the vertical link units (113, 123) interfere with each other. Thereby, the interference can be easily determined based on the three-dimensional model M stored in advance in the storage unit 151.
  • the plate-shaped members (113a, 113b, 123a, 123b) have a substantially oval shape, and the three-dimensional model M of the vertical link portions (113, 123). Is the radius (r1, r2) centered on a predetermined axis (A11, A12, A22, A23), the length of the plate-shaped member (L1, L2), and the thickness of the plate-shaped member (t1, t2). It is set based on.
  • a three-dimensional model of the plate-shaped member is determined by the radius around a predetermined axis (the arcuate shape of the plate-shaped member having a substantially elliptical shape), the length of the plate-shaped member, and the thickness of the plate-shaped member. M can be set appropriately.
  • the control unit 50 determines whether or not the interference determination target units including the cover units (161b, 162b) interfere with each other. As a result, even when the cover portions (161b, 162b) covering the drive portions (161a, 162a) are provided, it is possible to appropriately determine that the interference determination target portions interfere with each other.
  • the cover portions (161b, 162b) are attached to the vertical link portions (113, 123), and the three-dimensional model M of the cover portions (161b, 162b) is It is set separately from the 3D model M of the vertical link part (113, 123), and the length in the vertical direction and the horizontal direction is set with reference to the rotation axis (A2, A4) of the horizontal link part (12, 22). It is set.
  • the cover portion (161b, 162b) and the vertical link portion (113, 123) to which the cover portion (161b, 162b) is attached are represented by one relatively large three-dimensional model M, the cover portion Whether or not (161b, 162b) interferes with other parts can be appropriately determined.
  • the dual-arm robot system 300 includes a first dual-arm robot 300a and a second dual-arm robot 300b, each including a first robot arm portion 10 and a second robot arm portion 20.
  • the configurations of the first dual-arm robot 300a and the second dual-arm robot 300b are the same as those of the dual-arm robot 100a of the first embodiment (or the dual-arm robot 200a of the second embodiment).
  • a control unit 250a for controlling the first dual-arm robot 300a and a control unit 250b for controlling the second dual-arm robot 300b are provided. Interference can be avoided by communicating various information (three-dimensional model of the hand unit, command value for the next processing cycle, command value several cycles ahead, etc.) between the control unit 250a and the control unit 250b (Ethernet, etc.). Control is done for.
  • the control unit 250a and the control unit 250b may be configured by one control unit.
  • control unit 250a determines whether or not the interference determination target units interfere with each other in the first dual-arm robot 300a (see, for example, FIG. 4 of the first embodiment). Further, the control unit 250b determines whether or not the interference determination target units interfere with each other in the second dual-arm robot 300b (see, for example, FIG. 4 of the first embodiment). Further, the control unit 250a and the control unit 250b determine whether or not the interference determination target unit of the first dual-arm robot 300a and the interference determination target unit of the second dual-arm robot 300b interfere with each other.
  • the control unit 250a determines whether or not the interference determination target units interfere with each other in the first dual-arm robot 300a, and the control unit 250b determines whether or not the second dual-arm robot 300b interferes with each other. In, it is determined whether or not the interference determination target units interfere with each other, and the control unit 250a and the control unit 250b are the interference determination target unit of the first dual-arm robot 300a and the interference determination target unit of the second dual-arm robot 300b. Determine if and do interfere with each other.
  • An example is shown in which all of the vertical link portion (113, 123)), the body portion 30, the housing 40, the surrounding object 60, and the cover portion (161b, 162b) (only in the second embodiment) are applied. Disclosure is not limited to this. For example, in the present disclosure, it is not necessary to set all of the above as interference determination target parts.
  • one end of the first horizontal link portion 11 of the first robot arm portion 10 and one end of the first horizontal link portion 21 of the second robot arm portion 20 are coaxial.
  • an example of rotation is shown, the present disclosure is not limited to this.
  • one end of the first horizontal link portion 11 of the first robot arm portion 10 and one end of the first horizontal link portion 21 of the second robot arm portion 20 may rotate on different axes. In this case, the interference between the first horizontal link portion 11 of the first robot arm portion 10 and the first horizontal link portion 21 of the second robot arm portion 20 is also determined.
  • first robot arm portion 10 and the second robot arm portion 20 are provided with vertical link portions (13, 23) or vertical link portions (113, 123).
  • first robot arm portion 10 and the second robot arm portion 20 may not be provided with the vertical link portion.
  • control unit 50 control unit 150, control unit 250
  • control unit 50 control unit 150, control unit 250
  • the control unit 50 may be individually provided in the first robot arm unit 10 and the second robot arm unit 20.
  • the body portion 30 and the housing 40 are separately provided, but the present disclosure is not limited to this.
  • the body portion and the housing may be integrally configured (body portion 330) (that is, the control unit 50 may be provided in the body portion 330).
  • control unit 50 controls the operations of the first robot arm unit 10 and the second robot arm unit 20 in addition to the determination of interference. Disclosure is not limited to this.
  • a control unit 350 for determining interference and an operation control unit 351 for controlling the operations of the first robot arm unit 10 and the second robot arm unit 20 are separately provided. You may.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

この双腕ロボットシステム(100)は、ハンド部(14、24)、水平リンク部(11、12、21、22)および胴体部(30)のうちの、少なくともハンド部(14、24)を含む複数の部位を干渉判定対象部として生成された3次元モデル同士が重複するか否かに基づいて、干渉判定対象部同士が互いに干渉するか否かを判定する制御部(50)を備える。

Description

双腕ロボットシステム
 この開示は、双腕ロボットシステムに関する。
 従来、リンク部同士が互いに干渉するか否かを判定する双腕ロボットシステムが知られている。このような双腕ロボットシステムは、たとえば、特開2013-136109号公報に開示されている。
 特開2013-136109号公報には、双腕ロボットと、双腕ロボットの干渉を判定する干渉判定部とを備える双腕ロボットシステムが開示されている。特開2013-136109号公報では、双腕ロボットは、支持台に取り付けられた一対の水平多関節アームを含む。一対の水平多関節アームは、各々、第1リンク部と、第2リンク部とを含む。第1リンク部の一方端は、支持台に取り付けられている。第1リンク部の他方端には、第2リンク部の一方端が取り付けられている。また、一対の水平多関節アームは、互いに離間した状態で、支持台に取り付けられている。つまり、一対の水平多関節アームの各々の第1リンク部の一方端の回動軸(支持台に対する回動軸)は、互いに離間している。
 また、特開2013-136109号公報の干渉判定部は、双腕ロボットが動作する際に、双腕ロボットの各部位が互いに干渉するか否かを判定する。具体的には、干渉判定部は、第1リンク部、第2リンク部が、3次元的に互いに干渉するか否かを判定する。
特開2013-136109号公報
 しかしながら、特開2013-136109号公報に記載のような従来の双腕ロボットには、水平多関節アームの先端にハンド部が取り付けられる。そして、ハンド部以外の水平多関節アームの部位同士が干渉しない場合でも、ハンド部と他の部位とが干渉する場合があるという問題点がある。
 この開示は、上記のような課題を解決するためになされたものであり、この開示の1つの目的は、ハンド部と他の部位とが干渉するのを抑制することが可能な双腕ロボットシステムを提供することである。
 上記目的を達成するために、この開示の第1の局面による双腕ロボットシステムは、ハンド部が取り付けられ水平面に沿って回動する水平リンク部を各々含む第1ロボットアーム部および第2ロボットアーム部と、第1ロボットアーム部と第2ロボットアーム部とが同軸で回動するように、第1ロボットアーム部と第2ロボットアーム部とを支持する胴体部と、ハンド部、水平リンク部および胴体部のうちの、少なくともハンド部を含む複数の部位を干渉判定対象部として生成された3次元モデル同士が重複するか否かに基づいて、干渉判定対象部同士が互いに干渉するか否かを判定する制御部とを備える。
 この開示の第1の局面による双腕ロボットシステムでは、上記のように、制御部は、ハンド部、水平リンク部および胴体部のうちの、少なくともハンド部を含む複数の部位を干渉判定対象部として生成された3次元モデル同士が重複するか否かに基づいて、干渉判定対象部同士が互いに干渉するか否かを判定する。これにより、少なくともハンド部を含む干渉判定対象部同士の互いの干渉が判定されるので、ハンド部と他の部位とが干渉するような動作が行わるのを抑制することができる。その結果、ハンド部と他の部位とが干渉するのを抑制することができる。
 また、第1の局面による双腕ロボットシステムでは、上記のように、胴体部は、第1ロボットアーム部と第2ロボットアーム部とが同軸で回動するように、第1ロボットアーム部と第2ロボットアーム部とを支持する。ここで、第1ロボットアーム部と第2ロボットアーム部とが互いに異なる軸周りに回動する場合では、第1ロボットアーム部と第2ロボットアーム部とを離間して配置する必要がある。このため、双腕ロボットシステムが大型化する。一方、第1の局面による双腕ロボットシステムでは、第1ロボットアーム部と第2ロボットアーム部とが同軸で回動するので、第1ロボットアーム部と第2ロボットアーム部との間の距離を小さくした状態で配置することができる。これにより、双腕ロボットシステムを小型化することができる。
 この開示の第2の局面による双腕ロボットシステムは、ハンド部が取り付けられ水平面に沿って回動する水平リンク部を各々含む第1ロボットアーム部および第2ロボットアーム部と、第1ロボットアーム部と第2ロボットアーム部とが回動するように、第1ロボットアーム部と第2ロボットアーム部とを支持する胴体部と、ハンド部、水平リンク部および胴体部のうちの、少なくともハンド部を含む複数の部位を干渉判定対象部として生成された3次元モデル同士が重複するか否かに基づいて、干渉判定対象部同士が互いに干渉するか否かを判定する制御部とを備え、制御部は、第1ロボットアーム部と第2ロボットアーム部とに共通に設けられている。
 この開示の第2の局面による双腕ロボットシステムでは、上記のように、制御部は、ハンド部、水平リンク部および胴体部のうちの、少なくともハンド部を含む複数の部位を干渉判定対象部として生成された3次元モデル同士が重複するか否かに基づいて、干渉判定対象部同士が互いに干渉するか否かを判定する。これにより、少なくともハンド部を含む干渉判定対象部同士の互いの干渉が判定されるので、ハンド部と他の部位とが干渉するような動作が行わるのを抑制することができる。その結果、ハンド部と他の部位とが干渉するのを抑制することができる。
 また、第2の局面による双腕ロボットシステムでは、上記のように、制御部は、第1ロボットアーム部と第2ロボットアーム部とに共通に設けられている。これにより、第1ロボットアーム部と第2ロボットアーム部との各々に個別に制御部が設けられている場合と比べて、双腕ロボットシステムの構成を簡略化(小型化)することができる。また、制御部が、第1ロボットアーム部と第2ロボットアーム部とに共通に設けられているので、双腕ロボットシステムの省スペース化、低コスト化、操作の容易化を図ることができる。また、第1ロボットアーム部と第2ロボットアーム部とに別個に設けられている制御部で互いに通信を行いながら干渉の判定を行う場合と異なり、判定の遅延を抑制しながら正確な干渉判定を行うことができる。また、制御部が、干渉の判定に加えて、第1ロボットアーム部および第2ロボットアーム部の動作の制御を行うように構成することにより、第1ロボットアーム部および第2ロボットアーム部の動作の制御を別個の制御部で行う場合と異なり、干渉回避のための動作が遅延するのを抑制することができる。
 本開示によれば、上記のように、ハンド部と他の部位とが干渉するのを抑制することができる。
第1実施形態による双腕ロボットシステムの側面図である。 第1実施形態による双腕ロボットシステムの上面図である。 第1実施形態による双腕ロボットシステムの3次元モデルを示す図である。 第1実施形態による双腕ロボットシステムの干渉判定対象部を説明するための図である。 第1実施形態による双腕ロボットシステムの干渉の判定を説明するための図(1)である。 第1実施形態による双腕ロボットシステムの干渉の判定を説明するための図(2)である。 第1実施形態による双腕ロボットシステムの制御フロー図である。 第2実施形態による双腕ロボットシステムの側面図である。 第2実施形態による双腕ロボットシステムの上面図である。 第2実施形態による双腕ロボットシステムの3次元モデルを示す図(1)である。 第2実施形態による双腕ロボットシステムの3次元モデルを示す図(2)である。 第2実施形態による双腕ロボットシステムの3次元モデルを示す図(3)である。 第2実施形態による双腕ロボットシステムの干渉判定対象部を説明するための図である。 第2実施形態による双腕ロボットシステムの干渉の判定を説明するための図(1)である。 第2実施形態による双腕ロボットシステムの干渉の判定を説明するための図(2)である。 第2実施形態による双腕ロボットシステムの干渉の判定を説明するための図(3)である。 第2実施形態による双腕ロボットシステムの干渉の判定を説明するための図(4)である。 第3実施形態による双腕ロボットシステムの側面図である。 第1変形例による双腕ロボットシステムの側面図である。 第2変形例による双腕ロボットシステムの側面図である。
 以下、本開示を具体化した本開示の一実施形態を図面に基づいて説明する。
 [第1実施形態]
 図1~図7を参照して、第1実施形態による双腕ロボットシステム100の構成について説明する。
 双腕ロボットシステム100は、第1ロボットアーム部10を備えている。第1ロボットアーム部10は、水平面に沿って回動する水平リンク部を含む。水平リンク部は、胴体部30に対して回動可能に接続される第1水平リンク部11と、第1水平リンク部11に回動可能に接続される第2水平リンク部12とを含む。具体的には、第1水平リンク部11の一方端は、胴体部30の上方において、胴体部30に対して回動可能に取り付けられている。第1水平リンク部11の他方端は、第2水平リンク部12の一方端に取り付けられている。第2水平リンク部12の他方端には、鉛直リンク部13が取り付けられている。なお、第1水平リンク部11および第2水平リンク部12は、水平リンク部の一例である。
 また、第1ロボットアーム部10は、鉛直リンク部13を含む。鉛直リンク部13は、第1ロボットアーム部10の先端側に設けられている。そして、鉛直リンク部13は、鉛直方向に沿って移動する。なお、鉛直リンク部13は、第1鉛直リンク部の一例である。
 また、第1ロボットアーム部10には、ハンド部14が取り付けられている。ハンド部14は、鉛直リンク部13の下端に取り付けられている。ハンド部14は、たとえば、ワークを把持するチャックから構成されている。
 また、双腕ロボットシステム100は、第2ロボットアーム部20を備えている。第2ロボットアーム部20の構成は、第1ロボットアーム部10の構成と同様である。すなわち、第2ロボットアーム部20は、第1水平リンク部21と、第2水平リンク部22と、鉛直リンク部23とを含む。また、第2ロボットアーム部20には、ハンド部24が取り付けられている。なお、第1水平リンク部21および第2水平リンク部22は、水平リンク部の一例である。また、鉛直リンク部23は、第1鉛直リンク部の一例である。
 また、双腕ロボットシステム100は、胴体部30を備えている。そして、第1ロボットアーム部10と第2ロボットアーム部20とは、同軸で回動するように、胴体部30に支持されている。具体的には、第1水平リンク部11の一方端と、第1水平リンク部21の一方端とが同軸で回動する。また、第1水平リンク部21の一方端は、第1水平リンク部11の上方に配置されている。第1水平リンク部21の一方端は、第1水平リンク部11を介して、胴体部30に対して回動可能に取り付けられている。
 双腕ロボットシステム100では、第1ロボットアーム部10、第2ロボットアーム部20、および、胴体部30により、双腕ロボット100aが構成されている。
 双腕ロボット100aでは、第1水平リンク部11の一方端は、A1軸周りに回動する。第1水平リンク部11の他方端(第2水平リンク部12の一方端)は、A2軸周りに回動する。ハンド部14は、A3軸周りに回動する。
 また、双腕ロボット100aでは、第1水平リンク部21の一方端は、A1軸周りに回動する。第1水平リンク部21の他方端(第2水平リンク部22の一方端)は、A4軸周りに回動する。ハンド部24は、A5軸周りに回動する。A1~A5軸は、鉛直方向に沿う軸であるとともに、互いに平行に配置されている。
 また、双腕ロボットシステム100は、筐体40を備えている。筐体40には、胴体部30が載置される。また、筐体40の内部には、後述する制御部50が配置される。
 また、筐体40の内部に配置される制御部50と、第1ロボットアーム部10および第2ロボットアーム部20とを接続し、筐体40および胴体部30の内部に設けられている第1ケーブル71が設けられている。また、筐体40および胴体部30の外部に設けられている第2ケーブル72が設けられている。第1ケーブル71は、第1ロボットアーム部10および第2ロボットアーム部20の駆動部を制御するための信号線などである。また、第2ケーブル72は、双腕ロボットシステム100に電力を供給するための電源供給用ケーブルや、双腕ロボットシステム100と外部との通信のための外部通信用ケーブルなどである。
 本実施形態では、駆動部は、例えばサーボモータによって実現される。各サーボモータには、サーボモータの回転角度位置を検出するエンコーダ等の位置センサが設けられる(図示しない)。ここで回転角度位置とは、各サーボモータの関節座標系における各関節の角度の位置である。制御部50は、サーボモータを位置制御することにより、第1ロボットアーム部10、および、第2ロボットアーム部20を任意の姿勢に制御するように構成される。
 また、第1ロボットアーム部10および第2ロボットアーム部20の周囲には、物体60(障害物)が配置されている。
 ここで、第1実施形態では、図2および図3に示すように、双腕ロボットシステム100は、制御部50を備えている。制御部50は、ハンド部(14、24)、水平リンク部(11、12、21、22)および胴体部30のうちの、少なくともハンド部(14、24)を含む複数の部位を干渉判定対象部として生成された3次元モデルM同士が重複するか否かに基づいて、干渉判定対象部同士が互いに干渉するか否かを判定する。具体的には、第1実施形態では、制御部50は、第1ロボットアーム部10のハンド部14、第1水平リンク部11、第2水平リンク部12、および、鉛直リンク部13を干渉判定対象部とする。また、制御部50は、第2ロボットアーム部20のハンド部24、第1水平リンク部21、第2水平リンク部22、および、鉛直リンク部23を干渉判定対象部とする。また、制御部50は、胴体部30、および、筐体40を干渉判定対象部とする。また、3次元モデルMは、上記の干渉判定対象部の全てに対して個別に生成(設定)される。
 また、第1実施形態では、水平リンク部(第1水平リンク部11、第2水平リンク部12、第1水平リンク部21および第2水平リンク部22)の3次元モデルMは、胴体部30の座標系を基準として設定されている。また、胴体部30の3次元モデルM3は、胴体部30の座標系を基準として設定されている。また、筐体40の3次元モデルM4は、胴体部30の座標系を基準として設定されている。一方、ハンド部(ハンド部14およびハンド部24)の3次元モデルMは、ハンド部(14、24)の先端座標を基準として設定されている。
 たとえば、第1ロボットアーム部10の第1水平リンク部11の3次元モデルM1aは、上方向から見て、第1水平リンク部11の形状に沿うように、たとえば略長円形状を有する。また、第1水平リンク部11の3次元モデルM1aのZ方向の長さは、第1水平リンク部11のZ方向の長さに対応する長さを有する。また、第1ロボットアーム部10の第2水平リンク部12の3次元モデルM1bについても同様である。また、第2ロボットアーム部20の第1水平リンク部21の3次元モデルM2a、および、第2水平リンク部22の3次元モデルM2bについても同様である。
 また、第1ロボットアーム部10の鉛直リンク部13の3次元モデルM1cは、上方向から見て、鉛直リンク部13の形状に沿うように、たとえば略長円形状を有する。また、鉛直リンク部13の3次元モデルM1cのZ方向の長さは、鉛直リンク部13のZ方向の長さに対応する長さを有する。また、第2ロボットアーム部20の鉛直リンク部23の3次元モデルM2cについても同様である。
 また、第1ロボットアーム部10のハンド部14の3次元モデルM1dは、上方向から見て、ハンド部14の形状に沿うように、たとえば略四角形形状を有する。また、ハンド部14の3次元モデルM1dのZ方向の長さは、ハンド部14のZ方向の長さに対応する長さを有する。また、第2ロボットアーム部20のハンド部24の3次元モデルM2dについても同様である。
 また、胴体部30の3次元モデルM3は、上方向から見て、胴体部30の形状に沿うように、たとえば略円形状を有する。また、胴体部30の3次元モデルM3のZ方向の長さは、胴体部30のZ方向の長さに対応する長さを有する。
 また、筐体40の3次元モデルM4は、上方向から見て、筐体40の形状に沿うように、たとえば略四角形形状を有する。また、筐体40の3次元モデルM4のZ方向の長さは、筐体40のZ方向の長さに対応する長さを有する。
 また、第1ロボットアーム部10および第2ロボットアーム部20の周囲に配置される物体60の3次元モデルM5は、上方向から見て、物体60の形状に沿う形状を有する。また、物体60の3次元モデルM5のZ方向の長さは、物体60のZ方向の長さに対応する長さを有する。
 また、第1実施形態では、図1に示すように、双腕ロボットシステム100は、記憶部51を備えている。記憶部51は、たとえば、筐体40の内部に配置されている。そして、記憶部51には、上記の3次元モデルM(M1a~M1d、M2a~M2d、M3、M4、および、M5)が予め記憶されている。3次元モデルMの形状(長さなど)は、固定されている。また、筐体40(制御部50)は、双腕ロボット100aと共に移動される。これにより、筐体40(制御部50)と、双腕ロボット100aとが別個に配置されている場合と異なり、筐体40(制御部50)と双腕ロボット100aとの相対的な位置が変化しないので、筐体40に対する干渉の判定を容易に行うことができる。
 そして、第1実施形態では、制御部50は、予め記憶部51に記憶された3次元モデルMに基づいて、干渉判定対象部同士が互いに干渉するか否かを判定する。具体的には、制御部50は、第1ロボットアーム部10の第1水平リンク部11と、第2ロボットアーム部20の第1水平リンク部21との干渉以外の、ハンド部(14、24)を含む干渉判定対象部同士が互いに干渉するか否かを判定する。また、第1実施形態では、制御部50は、筐体40を含む干渉判定対象部同士が互いに干渉するか否かを判定する。さらに、制御部50は、第1ロボットアーム部10および第2ロボットアーム部20の周囲に配置される物体60を含む干渉判定対象部同士が互いに干渉するか否かを判定する。
 (干渉判定の対象)
 次に、図4を参照して、干渉判定の対象となる部位について説明する。図4では、干渉判定の対象となる部位同士を「〇」で表し、干渉判定の対象とならない部位同士を「×」で表している。
 図4に示すように、第1ロボットアーム部10の第1水平リンク部11に対する干渉判定の対象は、自身の第1ロボットアーム部10のハンド部14と、相手側の第2ロボットアーム部20の、第2水平リンク部22、鉛直リンク部23およびハンド部24と、周囲に配置される物体60と、である。つまり、第1ロボットアーム部10の第1水平リンク部11と、第2ロボットアーム部20の第1水平リンク部21とが干渉するか否かは判定されない。
 第1ロボットアーム部10の第2水平リンク部12に対する干渉判定の対象は、自身の第1ロボットアーム部10のハンド部14と、相手側の第2ロボットアーム部20の、第1水平リンク部21、第2水平リンク部22、鉛直リンク部23およびハンド部24と、周囲に配置される物体60と、である。
 第1ロボットアーム部10の鉛直リンク部13に対する干渉判定の対象は、自身の第1ロボットアーム部10のハンド部14と、相手側の第2ロボットアーム部20の、第1水平リンク部21、第2水平リンク部22、鉛直リンク部23およびハンド部24と、周囲に配置される物体60と、である。
 第1ロボットアーム部10のハンド部14に対する干渉判定の対象は、相手側の第2ロボットアーム部20の、第1水平リンク部21、第2水平リンク部22、鉛直リンク部23、および、ハンド部24とである。さらに、第1実施形態では、第1ロボットアーム部10において、ハンド部14と、胴体部30、筐体40、および、周囲に配置される物体60と、が互いに干渉するか否かを判定する。
 なお、第2ロボットアーム部20の第1水平リンク部21、第2水平リンク部22、鉛直リンク部23、および、ハンド部24に対する干渉判定の対象は、第1ロボットアーム部10と同様である。
 また、第1実施形態では、図1に示すように、制御部50は、第1ロボットアーム部10と第2ロボットアーム部20とに共通に設けられている。そして、制御部50は、第1ロボットアーム部10と第2ロボットアーム部20とに対して各々生成された3次元モデルM同士が、3次元の座標上において、重複するか否かを判定する。そして、3次元モデルM同士が重複する場合、干渉判定対象部同士が互いに干渉すると判定する。なお、制御部50は、干渉判定対象部同士が互いに干渉するか否かを判定することに加えて第1ロボットアーム部10および第2ロボットアーム部20の動作の制御を行う。
 (干渉判定の例)
 図5および図6に示すように、上方から見て、ハンド部14およびハンド部24がオーバラップしている一方、ハンド部14とハンド部24との高さ位置が互いに異なる場合において、ハンド部14およびハンド部24に対して、2次元モデルを設定すると、2次元的には重複するので、ハンド部14とハンド部24とが干渉すると誤って判定されてしまう。そこで、第1実施形態のように、ハンド部14とハンド部24とに対して、それぞれ、3次元モデルM1dとおよびM2dとを設定することにより、誤判定を抑制することが可能になる。
 次に、図7を参照して、制御部50の動作について説明する。
 ステップS1において、制御部50は、双腕ロボットシステム100に予め設けられている干渉判定機能が有効か否かを判定する。ステップS1において、yesの場合、ステップS2に進む。
 ステップS2において、制御部50は、第1ロボットアーム部10と第2ロボットアーム部20とが協調動作中であるか否かを判定する。なお、協調動作とは、第1ロボットアーム部10と第2ロボットアーム部20とのうちの一方をマスタとし、他方をスレーブとする動作である。協調動作では、マスタの動きにスレーブが追従する。協調動作の例は、第1ロボットアーム部10のハンド部14と、第2ロボットアーム部20のハンド部24とによって1つのワークを把持した状態でワークを移動させる動作である。ステップS2において、noの場合、ステップS3に進む。
 ステップS3において、制御部50は、現在の双腕ロボット100aの動作計画に基づいて求められる、減速して停止するまでの時間である減速時間に基づいて、双腕ロボット100aに対する数サイクル先の指令値(サーボモータに対する指令値)を計算する。
 ステップS4において、制御部50は、計算された指令値に基づいて、干渉判定対象部同士が互いに干渉するか否かを判定する。つまり、双腕ロボット100aが減速して停止するまでに進む位置を算出し、算出された位置において、干渉判定対象部の3次元モデルM同士が重複するか否かが判定される。そして、ステップS5に進む。
 ステップS5において、yes(3次元モデルM同士が重複する)の場合、ステップS6において、制御部50は、双腕ロボット100aを異常停止させる。
 ステップS5において、noの場合、ステップS7において、制御部50は、双腕ロボット100aのサーボモータに対する指令値(次の処理周期に対する指令値)を計算する。なお、ステップS1においてnoの場合、および、ステップS2においてyesの場合、ステップS7において、制御部50は、双腕ロボット100aのサーボモータに対する指令値を計算する。
 なお、上記のステップS1~S7の動作は、双腕ロボット100aの動作中、常に行われている。
 [第1実施形態の効果]
 第1実施形態では、以下のような効果を得ることができる。
 第1実施形態では、上記のように、制御部50は、ハンド部(14、24)、水平リンク部(11、12、21、22)および胴体部30のうちの、少なくともハンド部(14、24)を含む複数の部位を干渉判定対象部として生成された3次元モデルM同士が重複するか否かに基づいて、干渉判定対象部同士が互いに干渉するか否かを判定する。これにより、少なくともハンド部(14、24)を含む干渉判定対象部同士の互いの干渉が判定されるので、ハンド部(14、24)と他の部位とが干渉するような動作が行わるのを抑制することができる。その結果、ハンド部(14、24)と他の部位とが干渉するのを抑制することができる。
 また、第1実施形態では、上記のように、胴体部30は、第1ロボットアーム部10と第2ロボットアーム部20とが同軸で回動するように、第1ロボットアーム部10と第2ロボットアーム部20とを支持する。ここで、第1ロボットアーム部10と第2ロボットアーム部20とが互いに異なる軸周りに回動する場合では、第1ロボットアーム部10と第2ロボットアーム部20とを離間して配置する必要がある。このため、双腕ロボットシステム100が大型化する。一方、第1実施形態による双腕ロボットシステム100では、第1ロボットアーム部10と第2ロボットアーム部20とが同軸で回動するので、第1ロボットアーム部10と第2ロボットアーム部20との間の距離を小さくした状態で配置することができる。これにより、双腕ロボットシステム100を小型化することができる。
 また、第1実施形態では、上記のように、第1ロボットアーム部10および第2ロボットアーム部20の水平リンク部(11、12、21、22)は、各々、胴体部30に対して回動可能に接続される第1水平リンク部(11、21)と、第1水平リンク部(11、21)に回動可能に接続される第2水平リンク部(12、22)とを含む。そして、制御部50は、第1ロボットアーム部10の第1水平リンク部11と、第2ロボットアーム部20の第1水平リンク部21との干渉以外の、ハンド部(14、24)を含む干渉判定対象部同士が互いに干渉するか否かを判定する。ここで、第1ロボットアーム部10の第1水平リンク部11と、第2ロボットアーム部20の第1水平リンク部21とが同軸で回動するので、第1ロボットアーム部10の第1水平リンク部11と、第2ロボットアーム部20の第1水平リンク部21とが互いに干渉することはない。そこで、上記のように、制御部50は、第1ロボットアーム部10の第1水平リンク部11と、第2ロボットアーム部20の第1水平リンク部21との干渉以外の、ハンド部(14、24)を含む干渉判定対象部同士が互いに干渉するか否かを判定することによって、第1ロボットアーム部10の第1水平リンク部11と第2ロボットアーム部20の第1水平リンク部21とが干渉するか否かの判定は行われないので、制御部50の制御負担を軽減することができる。
 また、第1実施形態では、上記のように、第1ロボットアーム部10および第2ロボットアーム部20の各々において、ハンド部(14、24)と、胴体部30とが互いに干渉するか否かを判定する。これにより、ハンド部(14、24)の移動に伴ってハンド部(14、24)と胴体部30とが互いに干渉するのを容易に抑制することができる。
 また、第1実施形態では、上記のように、制御部50は、予め記憶部51に記憶された3次元モデルMに基づいて、干渉判定対象部同士が互いに干渉するか否かを判定する。これにより、記憶部51に予め記憶された3次元モデルMに基づいて、容易に、干渉の判定を行うことができる。
 また、第1実施形態では、上記のように、水平リンク部(11、12、21、22)および胴体部30の3次元モデルMは、胴体部30の座標系を基準として設定されており、ハンド部(14、24)の3次元モデルMは、ハンド部(14、24)の先端座標を基準として設定されている。これにより、水平リンク部(11、12、21、22)および胴体部30は、形状および大きさが変化しないので、胴体部30の座標系を基準として、水平リンク部(11、12、21、22)および胴体部30の3次元モデルMを容易に設定することができる。また、ハンド部(14、24)の形状および大きさは、ハンド部(14、24)の動作によって変化する場合があるので、ハンド部(14、24)の先端座標を基準として、ハンド部(14、24)の3次元モデルMを適切に設定することができる。
 また、第1実施形態では、上記のように、制御部50は、筐体40を含む干渉判定対象部同士が互いに干渉するか否かを判定する。これにより、筐体40に胴体部30が載置されている場合において、少なくともハンド部(14、24)と、筐体40とが干渉するのを抑制することができる。
 また、第1実施形態では、上記のように、筐体40の内部に配置される制御部50と、第1ロボットアーム部10および第2ロボットアーム部20とを接続し、筐体40および胴体部30の内部に設けられている第1ケーブル71が設けられている。これにより、第1ケーブル71が筐体40および胴体部30の外部に設けられる場合と異なり、第1ケーブル71が周囲の物体60などと干渉するのを抑制することができる。
 また、第1実施形態では、上記のように、制御部50は、第1ロボットアーム部10および第2ロボットアーム部20の周囲に配置される物体60を含む干渉判定対象部同士が互いに干渉するか否かを判定する。これにより、周囲に物体60が配置されている場合において、少なくともハンド部(14、24)と、第1ロボットアーム部10および第2ロボットアーム部20の周囲に配置される物体60とが干渉するのを抑制することができる。
 また、第1実施形態では、上記のように、制御部50は、第1ロボットアーム部10と第2ロボットアーム部20とに共通に設けられている。これにより、第1ロボットアーム部10と第2ロボットアーム部20との各々に個別に制御部50が設けられている場合と比べて、双腕ロボットシステム100の構成を簡略化(小型化)することができる。また、制御部50が、第1ロボットアーム部10と第2ロボットアーム部20とに共通に設けられているので、双腕ロボットシステム100の省スペース化、低コスト化、操作の容易化を図ることができる。また、第1ロボットアーム部10と第2ロボットアーム部20とに別個に設けられている制御部50で互いに通信を行いながら干渉の判定を行う場合と異なり、判定の遅延を抑制しながら正確な干渉判定を行うことができる。
 また、第1実施形態では、上記のように、制御部50は、干渉判定対象部同士が互いに干渉するか否かを判定することに加えて第1ロボットアーム部10および第2ロボットアーム部20の動作の制御を行う。これにより、第1ロボットアーム部10および第2ロボットアーム部20の動作の制御を別個の制御部50で行う場合と異なり、干渉回避のための動作が遅延するのを抑制することができる。
 [第2実施形態]
 図8~図17を参照して、第2実施形態による双腕ロボットシステム200の構成について説明する。
 また、第2実施形態では、双腕ロボットシステム200では、第1ロボットアーム部10には、鉛直リンク部113が設けられている。鉛直リンク部113は、第1ロボットアーム部10の先端に設けられる板状部材113aおよび113bを含む。また、板状部材113aおよび113bには、ハンド部14が取り付けられるハンド取付部材113cが設けられている。そして、鉛直リンク部113は、所定の軸周りに板状部材113aおよび113bを回動させることによりハンド取付部材113cを昇降させて、ハンド部14を鉛直方向に移動させる。具体的には、板状部材113aは、第2水平リンク部12に対して、軸A11回りに回動する。板状部材113bは、板状部材113aに対して、軸A12回りに回動する。板状部材113aおよび板状部材113bは、略長円形状を有している。
 また、第2ロボットアーム部20には、鉛直リンク部123が設けられている。鉛直リンク部123の構成は、鉛直リンク部113の構成と同様である。つまり、鉛直リンク部123は、板状部材123aおよび板状部材123bと、ハンド取付部材123cとを含む。
 双腕ロボット200aでは、第1水平リンク部11の一方端は、A1軸周りに回動する。第1水平リンク部11の他方端(第2水平リンク部12の一方端)は、A2軸周りに回動する。板状部材113aの一方端は、A11軸周りに回動する。板状部材113aの他方端(板状部材113bの一方端)は、A12軸周りに回動する。板状部材113bの他方端(ハンド取付部材113c)は、A13軸周りに回動する。ハンド部14は、A3軸周りに回動する。A11軸、A12軸およびA13軸は、水平方向に沿う軸であるとともに、互いに平行に配置されている。
 また、双腕ロボット200aでは、第1水平リンク部21の一方端は、A1軸周りに回動する。第1水平リンク部21の他方端(第2水平リンク部22の一方端)は、A4軸周りに回動する。板状部材123aの一方端は、A21軸周りに回動する。板状部材123aの他方端(板状部材123bの一方端)は、A22軸周りに回動する。板状部材123bの他方端(ハンド取付部材123c)は、A23軸周りに回動する。ハンド部24は、A5軸周りに回動する。A21軸、A22軸およびA23軸は、水平方向に沿う軸であるとともに、互いに平行に配置されている。
 また、記憶部151には、ハンド部14、ハンド部24、第1水平リンク部11、第2水平リンク部12、第1水平リンク部21、第2水平リンク部22、および、胴体部30の3次元モデルMが予め記憶されている。また、記憶部151には、筐体40の3次元モデルMが予め記憶されている。また、記憶部151には、鉛直リンク部113(板状部材113a、板状部材113b、ハンド取付部材113c)、および、鉛直リンク部123(板状部材123a、板状部材123b、ハンド取付部材123c)の3次元モデルMが予め記憶されている。
 また、第2実施形態では、図9~図12に示すように、鉛直リンク部113の3次元モデルMは、板状部材113a(113b)が回動する所定の軸A11(A12)を中心とする半径r1(r2)と、板状部材113a(113b)の長さL1(L2)と、板状部材113a(113b)の厚みt1(t2)とに基づいて設定されている。具体的には、板状部材113aに対して、軸A11を中心とする半径r1に基づいて、略長円形状の板状部材113aの円弧上の形状を規定する。そして、半径r1、長さL1および厚みt1に基づいて、板状部材113aの3次元モデルM10aを生成する。同様に、半径r2、長さL2および厚みt2に基づいて、板状部材113bの3次元モデルM10bを生成する。また、ハンド取付部材123cの3次元モデルM10cは、上方向から見て、ハンド取付部材123cの形状に沿うように、たとえば略楕円形状(図9参照)を有する。また、ハンド取付部材113cの3次元モデルM10cのZ方向の長さは、ハンド取付部材113cのZ方向の長さに対応する長さを有する。
 第2ロボットアーム部20の鉛直リンク部123の板状部材123aの3次元モデルM11a、板状部材123bの3次元モデルM11b、および、ハンド取付部材123cの3次元モデルM11cについても同様に設定される。
 また、第2実施形態では、図9に示すように、第1ロボットアーム部10の板状部材113aおよび113bを回動する駆動部161aを覆うカバー部161bが設けられている。カバー部161bは、鉛直リンク部113に取り付けられている。そして、カバー部161bの3次元モデルM12aは、鉛直リンク部113の3次元モデルMとは別個に設定されている。また、カバー部161bの3次元モデルM12aは、第2水平リンク部12の回動軸(A2)を基準として、鉛直方向および水平方向の長さが設定されている。カバー部161bの3次元モデルM12aは、上方向から見て、カバー部161bの形状に沿うように、たとえば略四角形形状を有する。また、カバー部161bの3次元モデルM12aのZ方向の長さは、カバー部161bのZ方向の長さに対応する長さを有する。
 第2ロボットアーム部20の板状部材123aおよび123bを回動する駆動部162aを覆うカバー部162bの3次元モデルM12bについても、同様に設定される。
 (干渉判定の対象)
 図13に示すように、制御部150(図8参照)による第1ロボットアーム部10の第1水平リンク部11に対する干渉判定の対象は、自身の第1ロボットアーム部10のハンド部14と、相手側の第2ロボットアーム部20の、第2水平リンク部22と、ハンド取付部材123cと、ハンド部24と、カバー部162bと、板状部材123aと、板状部材123bと、周囲に配置される物体60と、である。なお、図13では、板状部材123aを、板状部材Aと記載し、板状部材123bを、板状部材Bと記載している。
 第1ロボットアーム部10の第2水平リンク部12に対する干渉判定の対象は、自身の第1ロボットアーム部10のハンド部14と、相手側の第2ロボットアーム部20の、第1水平リンク部21と、第2水平リンク部22と、ハンド取付部材123cと、ハンド部24と、カバー部162bと、板状部材123aと、板状部材123bと、周囲に配置される物体60と、である。
 第1ロボットアーム部10のハンド取付部材113cに対する干渉判定の対象は、自身の第1ロボットアーム部10のハンド部14と、相手側の第2ロボットアーム部20の、第1水平リンク部21と、第2水平リンク部22と、ハンド取付部材123cと、ハンド部24と、カバー部162bと、板状部材123aと、板状部材123bと、周囲に配置される物体60と、である。
 第1ロボットアーム部10のカバー部161bに対する干渉判定の対象は、自身の第1ロボットアーム部10のハンド部14と、相手側の第2ロボットアーム部20の、第1水平リンク部21と、第2水平リンク部22と、ハンド取付部材123cと、ハンド部24と、カバー部162bと、板状部材123aと、板状部材123bと、周囲に配置される物体60と、である。
 第1ロボットアーム部10の板状部材113aに対する干渉判定の対象は、自身の第1ロボットアーム部10のハンド部14と、相手側の第2ロボットアーム部20の、第1水平リンク部21と、第2水平リンク部22と、ハンド取付部材123cと、ハンド部24と、カバー部162bと、板状部材123aと、板状部材123bと、周囲に配置される物体60と、である。なお、図13では、板状部材113aを、板状部材Aと記載している。
 第1ロボットアーム部10の板状部材113bに対する干渉判定の対象は、自身の第1ロボットアーム部10のハンド部14と、相手側の第2ロボットアーム部20の、第1水平リンク部21と、第2水平リンク部22と、ハンド取付部材123cと、ハンド部24と、カバー部162bと、板状部材123aと、板状部材123bと、周囲に配置される物体60と、である。なお、図13では、板状部材113bを、板状部材Bと記載している。
 第1ロボットアーム部10のハンド部14に対する干渉判定の対象は、相手側の第2ロボットアーム部20の、第1水平リンク部21と、第2水平リンク部22と、ハンド取付部材123cと、ハンド部24と、カバー部162bと、板状部材123aと、板状部材123bと、胴体部30と、筐体40と、周囲に配置される物体60と、である。
 なお、第2ロボットアーム部20の第1水平リンク部21、第2水平リンク部22、ハンド取付部材123c、カバー部162b、板状部材123a、板状部材123b、および、ハンド部24に対する干渉判定の対象は、第1ロボットアーム部10と同様である。
 (干渉判定の例)
 図14に示すように、ハンド部14と、鉛直リンク部113(板状部材113a、板状部材113b、ハンド取付部材113c)とが干渉するか否かが判定されるので、ハンド部14と、鉛直リンク部113との干渉を抑制することが可能になる。
 また、図15に示すように、カバー部161bの3次元モデルM12aの大きさが適切に設定されることにより、カバー部161bと、第1水平リンク部21とが干渉すると誤って判定されるのを抑制することが可能になる。
 また、図16に示すように、第1ロボットアーム部10の板状部材113aと、第2ロボットアーム部20の第1水平リンク部21とが干渉するか否かが判定されるので、第1ロボットアーム部10の板状部材113aと、第2ロボットアーム部20の第1水平リンク部21との干渉を抑制することが可能になる。
 また、図17に示すように、胴体部30の3次元モデルM3が設定されることにより、胴体部30と、ハンド部14および24との干渉を抑制することが可能になる。
 [第2実施形態の効果]
 第2実施形態では、以下のような効果を得ることができる。
 第2実施形態では、上記のように、制御部150は、鉛直リンク部(113、123)を含む干渉判定対象部同士が互いに干渉するか否かを判定する。これにより、記憶部151に予め記憶された3次元モデルMに基づいて、容易に、干渉の判定を行うことができる。
 また、第2実施形態では、上記のように、板状部材(113a、113b、123a、123b)は、略長円形状を有しており、鉛直リンク部(113、123)の3次元モデルMは、所定の軸(A11、A12,A22、A23)を中心とする半径(r1、r2)と、板状部材の長さ(L1、L2)と、板状部材の厚み(t1、t2)とに基づいて設定されている。これにより、所定の軸を中心とする半径(略長円形状の板状部材の円弧状の形状)と、板状部材の長さと、板状部材の厚みとによって、板状部材の3次元モデルMを適切に設定することができる。
 また、第2実施形態では、上記のように、制御部50は、カバー部(161b、162b)を含む干渉判定対象部同士が互いに干渉するか否かを判定する。これにより、駆動部(161a、162a)を覆うカバー部(161b、162b)が設けられる場合でも、干渉判定対象部同士が互いに干渉するのを適切に判定することができる。
 また、第2実施形態では、上記のように、カバー部(161b、162b)は、鉛直リンク部(113、123)に取り付けられており、カバー部(161b、162b)の3次元モデルMは、鉛直リンク部(113、123)の3次元モデルMとは別個に設定され、水平リンク部(12、22)の回動軸(A2、A4)を基準として、鉛直方向および水平方向の長さが設定されている。これにより、カバー部(161b、162b)と、カバー部(161b、162b)が取り付けられた鉛直リンク部(113、123)とを比較的大きな1つの3次元モデルMで表す場合と異なり、カバー部(161b、162b)が、他の部位と干渉するか否かを適切に判定することができる。
 [第3実施形態]
 図18を参照して、第3実施形態による双腕ロボットシステム300の構成について説明する。
 双腕ロボットシステム300は、第1ロボットアーム部10および第2ロボットアーム部20を各々含む、第1双腕ロボット300aおよび第2双腕ロボット300bを備えている。なお、第1双腕ロボット300aおよび第2双腕ロボット300bの構成は、上記第1実施形態の双腕ロボット100a(または、上記第2実施形態の双腕ロボット200a)と同様である。
 また、第1双腕ロボット300aを制御する制御部250aと、第2双腕ロボット300bを制御する制御部250bとが設けられている。制御部250aと制御部250bとの間において、各種情報(ハンド部の3次元モデル、次の処理周期に対する指令値、数サイクル先の指令値等)を通信(イーサネットなど)することにより、干渉回避のための制御が行われる。なお、制御部250aおよび制御部250bを1つの制御部により構成してもよい。
 そして、制御部250aは、第1双腕ロボット300aにおいて干渉判定対象部同士が互いに干渉するか否かを判定する(たとえば、第1実施形態の図4参照)。また、制御部250bは、第2双腕ロボット300bにおいて干渉判定対象部同士が互いに干渉するか否かを判定する(たとえば、第1実施形態の図4参照)。さらに、制御部250aと、制御部250bとは、第1双腕ロボット300aの干渉判定対象部と、第2双腕ロボット300bの干渉判定対象部とが互いに干渉するか否かを判定する。
 [第3実施形態の効果]
 第3実施形態では、以下のような効果を得ることができる。
 第3実施形態では、上記のように、制御部250aは、第1双腕ロボット300aにおいて干渉判定対象部同士が互いに干渉するか否かを判定し、制御部250bは、第2双腕ロボット300bにおいて干渉判定対象部同士が互いに干渉するか否かを判定し、制御部250aおよび制御部250bは、第1双腕ロボット300aの干渉判定対象部と、第2双腕ロボット300bの干渉判定対象部とが互いに干渉するか否かを判定する。これにより、2つの第1双腕ロボット300aおよび第2双腕ロボット300bが設けられている場合でも、第1双腕ロボット300a自身(第2双腕ロボット300b自身)の中での干渉だけでなく、他の双腕ロボットとの干渉を抑制することができる。
 [変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
 たとえば、上記第1~第3実施形態では、干渉判定対象部として、ハンド部(14、24)、水平リンク部(11、12、21、22)、鉛直リンク部(13、23)、(または鉛直リンク部(113、123))、胴体部30、筐体40、周囲の物体60、カバー部(161b、162b)(第2実施形態のみ)の全てが適用される例を示したが、本開示はこれに限られない。たとえば、本開示では、上記の全てを干渉判定対象部としなくてもよい。
 また、上記第1~第3実施形態では、第1ロボットアーム部10の第1水平リンク部11の一方端と、第2ロボットアーム部20の第1水平リンク部21の一方端とが同軸で回動する例を示したが、本開示はこれに限られない。たとえば、第1ロボットアーム部10の第1水平リンク部11の一方端と、第2ロボットアーム部20の第1水平リンク部21の一方端とが、互いに異なる軸で回動してもよい。この場合、第1ロボットアーム部10の第1水平リンク部11と、第2ロボットアーム部20の第1水平リンク部21との干渉も判定される。
 また、上記第1~第3実施形態では、第1ロボットアーム部10および第2ロボットアーム部20に、鉛直リンク部(13、23)、または、鉛直リンク部(113、123)が設けられる例を示したが、本開示はこれに限られない。たとえば、第1ロボットアーム部10および第2ロボットアーム部20に、鉛直リンク部が設けられていなくてもよい。
 また、上記第1~第3実施形態では、制御部50(制御部150、制御部250)が、第1ロボットアーム部10と第2ロボットアーム部20とに共通に設けられている例を示したが、本開示はこれに限られない。たとえば、制御部50(制御部150、制御部250)が、第1ロボットアーム部10と第2ロボットアーム部20とに個別に設けられていてもよい。
 また、上記第1~第3実施形態では、胴体部30と筐体40とが別個に設けられている例を示したが、本開示はこれに限られない。たとえば、図19に示すように、胴体部と筐体とが一体に構成(胴体部330)されていてもよい(つまり、胴体部330の中に制御部50が設けられていてもよい)。
 また、上記第1~第3実施形態では、制御部50が、干渉の判定に加えて、第1ロボットアーム部10および第2ロボットアーム部20の動作の制御を行う例を示したが、本開示はこれに限られない。たとえば、図20に示すように、干渉の判定を行う制御部350と、第1ロボットアーム部10および第2ロボットアーム部20の動作の制御を行う動作用制御部351とが別個に設けられていてもよい。
 10 第1ロボットアーム部
 11、21 第1水平リンク部(水平リンク部)
 12、22 第2水平リンク部(水平リンク部)
 13、23 鉛直リンク部(第1鉛直リンク部)
 14、24 ハンド部
 20 第2ロボットアーム部
 30,330 胴体部
 40 筐体
 50、150、250、250a、250b、350 制御部
 51、151 記憶部
 60 物体
 71 第1ケーブル
 72 第2ケーブル
 100、200、300 双腕ロボットシステム
 113、123 鉛直リンク部(第2鉛直リンク部)
 113a、123a 板状部材
 113b、123b 板状部材
 113c、123c ハンド取付部材
 161a、162a 駆動部
 161b、162b カバー部
 300a 第1双腕ロボット
 300b 第2双腕ロボット
 351 動作用制御部
 L1、L2長さ
 M、M1a、M1b,M1c、M1d、M2a、M2b、M2c、M2d、M3、M4、M5、M10a、M10b、M10c、M11a、M11b、M11c、M12a、M12b 3次元モデル
 r1、r2 半径
 t1、t2 厚み
 

Claims (16)

  1.  ハンド部が取り付けられ水平面に沿って回動する水平リンク部を各々含む第1ロボットアーム部および第2ロボットアーム部と、
     前記第1ロボットアーム部と前記第2ロボットアーム部とが同軸で回動するように、前記第1ロボットアーム部と前記第2ロボットアーム部とを支持する胴体部と、
     前記ハンド部、前記水平リンク部および前記胴体部のうちの、少なくとも前記ハンド部を含む複数の部位を干渉判定対象部として生成された3次元モデル同士が重複するか否かに基づいて、前記干渉判定対象部同士が互いに干渉するか否かを判定する制御部とを備える、双腕ロボットシステム。
  2.  前記第1ロボットアーム部および前記第2ロボットアーム部の前記水平リンク部は、各々、前記胴体部に対して回動可能に接続される第1水平リンク部と、前記第1水平リンク部に回動可能に接続される第2水平リンク部とを含み、
     前記制御部は、前記第1ロボットアーム部の前記第1水平リンク部と、前記第2ロボットアーム部の前記第1水平リンク部との干渉以外の、前記ハンド部を含む前記干渉判定対象部同士が互いに干渉するか否かを判定する、請求項1に記載の双腕ロボットシステム。
  3.  前記第1ロボットアーム部および前記第2ロボットアーム部の各々において、前記ハンド部と、前記胴体部とが互いに干渉するか否かを判定する、請求項1または2に記載の双腕ロボットシステム。
  4.  前記第1ロボットアーム部および前記第2ロボットアーム部の各々の先端側に設けられ、鉛直方向に沿って移動する第1鉛直リンク部と、
     前記ハンド部、前記水平リンク部、前記胴体部および前記第1鉛直リンク部の前記3次元モデルが予め記憶されている記憶部とをさらに備え、
     前記制御部は、予め前記記憶部に記憶された前記3次元モデルに基づいて、前記干渉判定対象部同士が互いに干渉するか否かを判定する、請求項1~3のいずれか1項に記載の双腕ロボットシステム。
  5.  前記第1ロボットアーム部および前記第2ロボットアーム部の各々の先端に設けられる板状部材と、前記板状部材に設けられ前記ハンド部が取り付けられるハンド取付部材とを含み、所定の軸周りに前記板状部材を回動させることにより前記ハンド取付部材を昇降させて、前記ハンド部を鉛直方向に移動させる第2鉛直リンク部と、
     前記ハンド部、前記水平リンク部、前記板状部材、前記ハンド取付部材、および、前記胴体部の前記3次元モデルが予め記憶されている記憶部とをさらに備え、
     前記制御部は、前記第2鉛直リンク部を含む前記干渉判定対象部同士が互いに干渉するか否かを判定する、請求項1~3のいずれか1項に記載の双腕ロボットシステム。
  6.  前記板状部材は、略長円形状を有しており、
     前記第2鉛直リンク部の前記3次元モデルは、前記所定の軸を中心とする半径と、前記板状部材の長さと、前記板状部材の厚みとに基づいて設定されている、請求項5に記載の双腕ロボットシステム。
  7.  前記板状部材を回動する駆動部を覆うカバー部をさらに備え、
     前記制御部は、前記カバー部を含む前記干渉判定対象部同士が互いに干渉するか否かを判定する、請求項5または6に記載の双腕ロボットシステム。
  8.  前記カバー部は、前記第2鉛直リンク部に取り付けられており、
     前記カバー部の前記3次元モデルは、前記第2鉛直リンク部の前記3次元モデルとは別個に設定され、前記水平リンク部の回動軸を基準として、鉛直方向および水平方向の長さが設定されている、請求項7に記載の双腕ロボットシステム。
  9.  前記水平リンク部および前記胴体部の前記3次元モデルは、前記胴体部の座標系を基準として設定されており、
     前記ハンド部の前記3次元モデルは、前記ハンド部の先端座標を基準として設定されている、請求項1~8のいずれか1項に記載の双腕ロボットシステム。
  10.  前記胴体部が載置されるとともに、内部に前記制御部が配置される筐体をさらに備え、
     前記制御部は、前記筐体を含む前記干渉判定対象部同士が互いに干渉するか否かを判定する、請求項1~9のいずれか1項に記載の双腕ロボットシステム。
  11.  前記筐体の内部に配置される前記制御部と、前記第1ロボットアーム部および前記第2ロボットアーム部とを接続し、前記筐体および前記胴体部の内部に設けられている第1ケーブルと、
     前記筐体および前記胴体部の外部に設けられている第2ケーブルとをさらに備える、請求項10に記載の双腕ロボットシステム。
  12.  前記制御部は、前記第1ロボットアーム部および前記第2ロボットアーム部の周囲に配置される物体を含む前記干渉判定対象部同士が互いに干渉するか否かを判定する、請求項1~11のいずれか1項に記載の双腕ロボットシステム。
  13.  前記制御部は、前記第1ロボットアーム部と前記第2ロボットアーム部とに共通に設けられている、請求項1~12のいずれか1項に記載の双腕ロボットシステム。
  14.  前記制御部は、前記干渉判定対象部同士が互いに干渉するか否かを判定することに加えて前記第1ロボットアーム部および前記第2ロボットアーム部の動作の制御を行うか、または、前記干渉判定対象部同士が互いに干渉するか否かを判定するための前記制御部とは別個に、前記第1ロボットアーム部および前記第2ロボットアーム部の動作の制御を行う動作用制御部をさらに備える、請求項1~13のいずれか1項に記載の双腕ロボットシステム。
  15.  前記第1ロボットアーム部および前記第2ロボットアーム部を各々含む、第1双腕ロボットおよび第2双腕ロボットをさらに備え、
     前記制御部は、
      前記第1双腕ロボットにおいて前記干渉判定対象部同士が互いに干渉するか否かを判定し、
      前記第2双腕ロボットにおいて前記干渉判定対象部同士が互いに干渉するか否かを判定し、
      前記第1双腕ロボットの前記干渉判定対象部と、前記第2双腕ロボットの前記干渉判定対象部とが互いに干渉するか否かを判定する、請求項1~14のいずれか1項に記載の双腕ロボットシステム。
  16.  ハンド部が取り付けられ水平面に沿って回動する水平リンク部を各々含む第1ロボットアーム部および第2ロボットアーム部と、
     前記第1ロボットアーム部と前記第2ロボットアーム部とが回動するように、前記第1ロボットアーム部と前記第2ロボットアーム部とを支持する胴体部と、
     前記ハンド部、前記水平リンク部および前記胴体部のうちの、少なくとも前記ハンド部を含む複数の部位を干渉判定対象部として生成された3次元モデル同士が重複するか否かに基づいて、前記干渉判定対象部同士が互いに干渉するか否かを判定する制御部とを備え、
     前記制御部は、前記第1ロボットアーム部と前記第2ロボットアーム部とに共通に設けられている、双腕ロボットシステム。
PCT/JP2022/000651 2021-01-14 2022-01-12 双腕ロボットシステム WO2022153994A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280010043.0A CN116802027A (zh) 2021-01-14 2022-01-12 双臂机器人系统
EP22739400.4A EP4279223A1 (en) 2021-01-14 2022-01-12 Dual-arm robot system
KR1020237026297A KR20230127332A (ko) 2021-01-14 2022-01-12 쌍완 로봇 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-004006 2021-01-14
JP2021004006A JP2022108837A (ja) 2021-01-14 2021-01-14 双腕ロボットシステム

Publications (1)

Publication Number Publication Date
WO2022153994A1 true WO2022153994A1 (ja) 2022-07-21

Family

ID=82448398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000651 WO2022153994A1 (ja) 2021-01-14 2022-01-12 双腕ロボットシステム

Country Status (5)

Country Link
EP (1) EP4279223A1 (ja)
JP (1) JP2022108837A (ja)
KR (1) KR20230127332A (ja)
CN (1) CN116802027A (ja)
WO (1) WO2022153994A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001315087A (ja) * 2000-05-09 2001-11-13 Toshiba Mach Co Ltd ロボットアームのリアルタイム干渉チェック方法
JP2013136109A (ja) 2011-12-28 2013-07-11 Nitto Seiko Co Ltd 干渉判定装置及び干渉判定方法
JP2020001103A (ja) * 2018-06-25 2020-01-09 川崎重工業株式会社 ロボット制御システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001315087A (ja) * 2000-05-09 2001-11-13 Toshiba Mach Co Ltd ロボットアームのリアルタイム干渉チェック方法
JP2013136109A (ja) 2011-12-28 2013-07-11 Nitto Seiko Co Ltd 干渉判定装置及び干渉判定方法
JP2020001103A (ja) * 2018-06-25 2020-01-09 川崎重工業株式会社 ロボット制御システム

Also Published As

Publication number Publication date
JP2022108837A (ja) 2022-07-27
KR20230127332A (ko) 2023-08-31
CN116802027A (zh) 2023-09-22
EP4279223A1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
US8694160B2 (en) NC machine tool system
JP2011101918A (ja) ロボット及びロボットシステム
US4967125A (en) Tool posture control method for a robot
CN107791244A (zh) 控制器、作业控制装置、多轴动作控制装置和驱动控制装置
JPH0438553B2 (ja)
KR101871212B1 (ko) 로봇의 제어 장치 및 제어 방법
WO2022153994A1 (ja) 双腕ロボットシステム
KR101486098B1 (ko) 다관절 용접 로봇
CN111496798B (zh) 机器人传送带跟踪方法、设备及存储装置
JP7144754B2 (ja) 多関節ロボットおよび多関節ロボットシステム
JP2019055440A (ja) ロボットシステムおよびワークの製造方法
WO2019208785A1 (ja) ロボットの教示方法及びロボットの教示システム
US20230191603A1 (en) Input shaping control of a robot arm in different reference spaces
JP3638676B2 (ja) ベンディング用6軸垂直多関節型ロボット
CN111650882A (zh) 一种基于粗插补的混联机器人误差在线补偿系统及方法
JP2000326280A (ja) スカラ型ロボットにおける干渉チェック方法
JP2021030368A (ja) ロボットシステム、コントローラ及び制御方法
JP2548409Y2 (ja) フロント組立体の自動搭載装置
US20210229267A1 (en) Robot system
JP7414426B2 (ja) ロボットシステム
JP3054555U (ja) ハンドリングロボット
CN114055442A (zh) 机器人以及机器人系统
JPH0413579A (ja) 無反動装置
JPH055270U (ja) ウイービング動作をするアーク溶接ロボツト
JP2023183658A (ja) 移動ロボット及び移動ロボットシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739400

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280010043.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237026297

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237026297

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022739400

Country of ref document: EP

Effective date: 20230814