WO2022153658A1 - エッチング組成物、エッチング方法、半導体デバイスの製造方法及びゲートオールアラウンド型トランジスタの製造方法 - Google Patents

エッチング組成物、エッチング方法、半導体デバイスの製造方法及びゲートオールアラウンド型トランジスタの製造方法 Download PDF

Info

Publication number
WO2022153658A1
WO2022153658A1 PCT/JP2021/041868 JP2021041868W WO2022153658A1 WO 2022153658 A1 WO2022153658 A1 WO 2022153658A1 JP 2021041868 W JP2021041868 W JP 2021041868W WO 2022153658 A1 WO2022153658 A1 WO 2022153658A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
mass
etching composition
etching
quaternary ammonium
Prior art date
Application number
PCT/JP2021/041868
Other languages
English (en)
French (fr)
Inventor
憲 原田
竜暢 鈴木
麻理 阿部
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to EP21919549.2A priority Critical patent/EP4280258A1/en
Priority to CN202180086742.9A priority patent/CN116635986A/zh
Priority to KR1020237010664A priority patent/KR20230058459A/ko
Priority to JP2022575091A priority patent/JPWO2022153658A1/ja
Publication of WO2022153658A1 publication Critical patent/WO2022153658A1/ja
Priority to US18/219,267 priority patent/US20230374383A1/en
Priority to IL304357A priority patent/IL304357A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30608Anisotropic liquid etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Definitions

  • the present invention relates to an etching composition, an etching method, a method for manufacturing a semiconductor device, and a method for manufacturing a gate all-around transistor.
  • Integrated circuits are becoming finer in accordance with Moore's Law.
  • the structure has been changed to improve performance, such as Fin-type transistors (Fin-type FETs) and gate-all-around-type transistors (GAA-type FETs).
  • Fin-type transistors Fin-type FETs
  • GAA-type FETs gate-all-around-type transistors
  • the Fin-type FET not only increases the number of transistors per unit area by forming Fins in the direction perpendicular to the silicon substrate, but also exhibits excellent performance in ON / OFF control at low voltage. In order to further improve the performance, it is necessary to take measures such as increasing the aspect ratio of the fins, but if the aspect ratio is too large, the fins will collapse in the cleaning process and the drying process for forming the fins. There is a problem.
  • the performance of transistors per unit area is improved by covering the nanosheets and nanowires that serve as channels with gate electrodes and increasing the contact area between the channels and gate electrodes.
  • Patent Document 1 discloses a composition containing a quaternary ammonium hydroxide compound, specifically, ethyltrimethylammonium hydroxide.
  • the etching composition disclosed in Patent Document 1 has a selective solubility of silicon in silicon-germanium due to the fact that the type of the quaternary ammonium hydroxide compound is not optimized or that a chelating agent is not blended. Is not enough. Since silicon having low crystallinity is used as silicon in the structure in which silicon and silicon-germanium are alternately laminated, which is disclosed in Patent Document 1, the structure has high crystallinity, which is often used in actual semiconductor devices. It is unclear whether silicon will provide the same selective solubility.
  • the present inventors have found that the etching composition described later suppresses the dissolution of silicon-germanium, promotes the dissolution of silicon, and is excellent in the selective solubility of silicon in silicon-germanium.
  • the gist of the present invention is as follows.
  • the quaternary ammonium salt (A) having 8 or more carbon atoms is tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrahexylammonium hydroxide, tetraoctylammonium hydroxide and benzyltrimethylammonium.
  • the etching composition according to [1] which comprises at least one compound selected from the group consisting of hydroxydos.
  • the quaternary ammonium salt (A) having 8 or more carbon atoms contains at least one compound selected from the group consisting of tetraethylammonium hydroxide, tetrapropylammonium hydroxide and tetrabutylammonium hydroxide [1]. ] Or [2]. [4] The content of the quaternary alkylammonium salt having the same four alkyl groups in the quaternary ammonium salt (A) having 8 or more carbon atoms is the quaternary ammonium salt (A) 100 having 8 or more carbon atoms.
  • the etching composition according to any one of [1] to [3], which is 50% by mass or more in mass%.
  • the quaternary ammonium salt (A) having 8 or more carbon atoms and the quaternary ammonium salt (A) having 8 or more carbon atoms is a tetraethylammonium hydroxide, a tetrapropylammonium hydroxide, or a tetrabutylammonium hydroxide.
  • the content of the quaternary alkylammonium salt containing at least one compound selected from the group consisting of the above and having the same four alkyl groups in the quaternary ammonium salt (A) having 8 or more carbon atoms has a carbon number of carbon.
  • the content of the quaternary ammonium salt (A) having 8 or more quaternary ammonium salt (A) of 50% by mass or more and having 8 or more carbon atoms in 100% by mass of 100% by mass of the composition is 10% by mass.
  • the above is the etching composition. [14] An etching method for etching a structure containing silicon and silicon germanium using the etching composition according to any one of [1] to [13].
  • a method for manufacturing a semiconductor device which comprises a step of etching a structure containing silicon and silicon germanium using the etching composition according to any one of [1] to [13].
  • a method for producing a gate all-around transistor which comprises a step of etching a structure containing silicon and silicon germanium using the etching composition according to any one of [1] to [13].
  • the etching composition of the present invention suppresses the dissolution of silicon-germanium, promotes the dissolution of silicon, and has excellent selective solubility of silicon in silicon-germanium.
  • the etching method of the present invention using the etching composition of the present invention, the method of manufacturing the semiconductor device of the present invention, and the method of manufacturing the gate all-around transistor of the present invention suppress the dissolution of silicon-germanium in the etching step. , The dissolution of silicon is promoted, and the excellent selective solubility of silicon in silicon-germanium enables high-precision etching to produce a desired product at a high yield.
  • the etching composition of the present invention selects silicon for silicon germanium by containing a quaternary ammonium salt (A) having 8 or more carbon atoms (hereinafter, may be referred to as "component (A)”). Can be dissolved.
  • the etching composition of the present invention may be further referred to as a chelating agent (B) (hereinafter, may be referred to as “component (B)”), water (C) (hereinafter, may be referred to as “component (C)”). ), A water-miscible solvent (D) (hereinafter, may be referred to as "component (D)”) may be contained.
  • the component (A) is a quaternary ammonium salt having 8 or more carbon atoms.
  • a quaternary ammonium salt having 8 or more carbon atoms By containing a quaternary ammonium salt having 8 or more carbon atoms in the etching composition, the effect of dissolving silicon or silicon germanium is exhibited.
  • the carbon number of the component (A) is preferably 8 to 32, more preferably 12 to 24, because it is excellent in the selective solubility of silicon in silicon germanium.
  • Examples of the quaternary ammonium salt having 8 or more carbon atoms in the component (A) include tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrahexylammonium hydroxide, tetraoctylammonium hydroxide, and benzyl. Examples thereof include a quaternary alkylammonium salt such as tetraalkylammonium hydroxide which may have a substituent on an alkyl group such as trimethylammonium hydroxide.
  • the quaternary alkylammonium salt as the component (A) is excellent in the selective solubility of silicon in silicon germanium, it is preferable that the four alkyl groups are the same, and in particular, 4 in 100% by mass of the component (A). It is preferable to contain 50% by mass or more of a quaternary alkylammonium salt in which the two alkyl groups are the same, more preferably 70% by mass or more, further preferably 90% by mass or more, and 4 having the same four alkyl groups. Most preferably, it contains 100% by mass of a secondary alkylammonium salt.
  • quaternary ammonium salts having 8 or more carbon atoms may be used alone or in combination of two or more.
  • quaternary ammonium salts having 8 or more carbon atoms tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, and tetrahexylammoniumhydroxy are excellent in the selective solubility of silicon in silicon germanium.
  • tetraoctylammonium hydroxide, benzyltrimethylammonium hydroxide are preferable, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide are more preferable, tetraethylammonium hydroxide, tetrapropylammonium hydroxide. Hydroxide and tetrabutylammonium hydroxide are more preferable, and tetrabutylammonium hydroxide is most preferable.
  • the content of the component (A) is preferably 1% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, based on 100% by mass of the etching composition, because it is excellent in selective solubility of silicon. ..
  • the content of the component (A) is preferably 70% by mass or less, more preferably 55% by mass or less, still more preferably 40% by mass or less, based on 100% by mass of the etching composition, because it is excellent in selective solubility of silicon. ..
  • the etching composition of the present invention contains the component (A), and the component (A) is selected from the group consisting of tetrapropylammonium hydroxide and tetrabutylammonium hydroxide.
  • the content of the quaternary alkylammonium salt containing at least one compound and having the same four alkyl groups in the component (A) is 50% by mass or more in 100% by mass of the component (A), and the component ( Examples thereof include an etching composition in which the content of A) is 10% by mass or more in 100% by mass of the composition.
  • Ingredient (B) is a chelating agent.
  • a chelating agent By including a chelating agent in the etching composition, the effect of protecting silicon-germanium is exhibited.
  • the chelating agent examples include amine compounds, amino acids, organic acids and the like. These chelating agents may be used alone or in combination of two or more. Among these chelating agents, amine compounds, amino acids, and organic acids are preferable, and amine compounds are more preferable, because they are excellent in the selective solubility of silicon in silicon-germanium.
  • Examples of the amine compound include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, ethylenediamine tetraacetic acid, diethylenetriaminepentacetic acid, triethylenetetraaminehexacetic acid, diethylenetriaminepentakis (methylphosphonic acid), ethylenediamine-N, N'-bis [2- (2-hydroxyphenyl) acetic acid], N, N'-bis (3-aminopropane) ethylenediamine, N-methyl-1,3-diaminopropane, 2-aminoethanol, N-methyldiethanolamine , 2-Amino-2-methyl-1-propanol and the like. These amine compounds may be used alone or in combination of two or more.
  • ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, ethylenediaminetetraacetic acid, diethylenetriaminepentacetic acid, and triethylenetetraamine6 are excellent in the selective solubility of silicon in silicon germanium.
  • pentaacetic acid triethylenetetraamine hexaacetic acid, diethylenetriaminepentakis (methylphosphonic acid), ethylenediamine-N, N'-bis [2- (2-hydroxyphenyl) acetic acid].
  • amino acids examples include glycine, arginine, histidine, (2-dihydroxyethyl) glycine and the like. One of these amino acids may be used alone, or two or more of these amino acids may be used in combination.
  • glycine, arginine, histidine, and (2-dihydroxyethyl) glycine are preferable, and (2-dihydroxyethyl) glycine is more preferable, because they are excellent in the selective solubility of silicon in silicon-germanium.
  • organic acid examples include oxalic acid, citric acid, tartaric acid, malic acid, 2-phosphonobustane-1,2,4-tricarboxylic acid and the like. These organic acids may be used alone or in combination of two or more.
  • oxalic acid, citric acid, tartaric acid, malic acid, and 2-phosphonobutane-1,2,4-tricarboxylic acid are preferable because of their excellent selective solubility of silicon in silicon germanium.
  • 2-Phonobutane-1,2,4-tricarboxylic acid is more preferred.
  • the content of the component (B) is preferably 0.001% by mass or more, more preferably 0.005% by mass or more, based on 100% by mass of the etching composition, because it is excellent in the selective solubility of silicon in silicon-germanium. 0.01% by mass or more is more preferable.
  • the content of the component (B) is preferably 25% by mass or less, more preferably 10% by mass or less, and 6% by mass or less in 100% by mass of the etching composition because it is excellent in the selective solubility of silicon in silicon germanium. Is more preferable.
  • the etching composition of the present invention preferably contains water (C) (component (C)) in addition to the component (A) and the component (B).
  • the content of the component (C) is preferably 25% by mass or more, more preferably 40% by mass or more, and further 55% by mass or more in 100% by mass of the etching composition because the etching composition can be easily produced.
  • the content of the component (C) is preferably 90% by mass or less, more preferably 85% by mass or less, still more preferably 75% by mass or less, based on 100% by mass of the etching composition, because the etch rate can be improved.
  • the etching composition of the present invention preferably contains a water-miscible solvent (D) (component (D)) in addition to the component (A) and the component (B).
  • a water-miscible solvent in addition to the component (A) and the component (B).
  • the water-miscible solvent (D) may be any solvent having excellent solubility in water, and a solvent having a solubility parameter (SP value) of 7.0 or more is preferable.
  • the water-miscible solvent of the component (D) include polar protonic solvents such as isopropanol, ethylene glycol, propylene glycol, methanol, ethanol, propanol, butanol, glycerol, and 2- (2-aminoethoxyethanol); acetone, Polar aprotonic solvents such as dimethyl sulfoxide, N, N-dimethylformamide, N-methylpyrrolidone, acetonitrile; non-polar solvents such as hexane, benzene, toluene, diethyl ether and the like can be mentioned.
  • water-miscible solvents may be used alone or in combination of two or more.
  • glycerol, 2- (2-aminoethoxyethanol), ethylene glycol, and propylene glycol are preferable because they are excellent in the selective solubility of silicon in silicon-germanium.
  • the content of the component (D) is 0.01 mass in 100% by mass of the etching composition because it is excellent in the selective solubility of silicon in silicon germanium. % Or more is preferable, 0.1% by mass or more is more preferable, and 1% by mass or more is further preferable.
  • the content of the component (D) is preferably 30% by mass or less, more preferably 20% by mass or less, and 15% by mass or less in 100% by mass of the etching composition because it is excellent in the selective solubility of silicon in silicon germanium. Is more preferable.
  • the etching composition of the present invention may contain other components in addition to the component (A), the component (B), the component (C), and the component (D).
  • surfactants such as anionic surfactants, nonionic surfactants, cationic surfactants
  • polyvinyl alcohol polyethylene glycol, polypropylene glycol, polyethyleneimine, polypropyleneimine, polyacrylic acid and the like.
  • Water-soluble polymers oxidizing agents such as hydrogen peroxide, perchloric acid, and perioic acid
  • reducing agents such as ascorbic acid, gallic acid, pyrogallol, pyrocatechol, resorcinol, hydroquinone, and 8-hydroxyquinoline.
  • the mass ratio of the component (A) to the component (B) in the etching composition of the present invention is preferably 5 to 5000, more preferably 5 to 3000, because it is excellent in the selective solubility of silicon in silicon germanium. 10 to 3000 is more preferable.
  • the mass ratio of the component (A) to the component (D) (mass of the component (A) / mass of the component (D), hereinafter, "(A) / (D)”. ) ”) Is excellent in the selective solubility of silicon in silicon germanium, and is preferably 0.01 to 1000, more preferably 0.1 to 100.
  • the mass ratio of the component (B) to the component (D) (mass of component (B) / mass of component (D), hereinafter, "(B) / (D)”. ) ”) Is excellent in the selective solubility of silicon in silicon germanium, and is preferably 2 to 2000, more preferably 5 to 1000.
  • the method for producing the etching composition of the present invention is not particularly limited, and by mixing the component (A) with the component (B), the component (C), the component (D), and other components as necessary. Can be manufactured.
  • the order of mixing is not particularly limited, and all the components may be mixed at once, or some components may be mixed in advance and then the remaining components may be mixed.
  • the etch rate ER Si of silicon in the etching composition of the present invention is preferably 1 nm / min or more, more preferably 3 nm / min or more, because it is excellent in the selective solubility of silicon in silicon germanium.
  • the etch rate ER SiGe of silicon germanium of the etching composition of the present invention is preferably 1 nm / min or less, more preferably 0.8 nm / min or less, and more preferably 0.5 nm, because it is excellent in the selective solubility of silicon in silicon germanium. It is more preferably less than / minute.
  • the dissolution selectivity (ER Si / ER SiGe ) of silicon germanium and silicon in the etching composition of the present invention is preferably 4 or more, more preferably 10 or more, because it is excellent in the selective solubility of silicon in silicon germanium.
  • the etch rate ER Si , the etch rate ER SiGe , and the dissolution selectivity are measured and calculated by the method described in the section of Examples described later.
  • the etching composition of the present invention suppresses the dissolution of silicon-germanium, promotes the dissolution of silicon, and is excellent in the selective solubility of silicon in silicon-germanium. Therefore, the etching composition of the present invention is suitable for a structure containing silicon and silicon germanium as an etching target, for example, a semiconductor device, and silicon and silicon germanium necessary for forming a GAA type FET are alternately laminated. It is particularly suitable for the structure.
  • the content of silicon in the silicon germanium to be etched is preferably 10% by mass or more, more preferably 20% by mass or more, based on 100% by mass of silicon germanium, because it is suitable for etching by the etching composition of the present invention. ..
  • the content of silicon in silicon germanium is preferably 95% by mass or less, more preferably 85% by mass or less, based on 100% by mass of silicon germanium, because it is suitable for etching with the etching composition of the present invention.
  • the content of germanium in silicon germanium is preferably 5% by mass or more, more preferably 15% by mass or more, based on 100% by mass of silicon germanium, because it is suitable for etching by the etching composition of the present invention.
  • the content of germanium in silicon germanium is preferably 90% by mass or less, more preferably 80% by mass or less, based on 100% by mass of silicon germanium, because it is suitable for etching by the etching composition of the present invention.
  • the silicon-germanium alloy film may be produced by forming a film by a known method, but it is preferable to form a film by a crystal growth method because it is excellent in the mobility of electrons and holes after the transistor is formed.
  • Silicon oxide, silicon nitride, silicon carbonitride, etc. may be exposed in the structure containing silicon and silicon germanium or the structure in which silicon and silicon germanium are alternately laminated.
  • the component (A) is contained, and the component (A) contains at least one compound selected from the group consisting of tetraethylammonium hydroxide, tetrapropylammonium hydroxide and tetrabutylammonium hydroxide, and is contained in the component (A).
  • the content of the quaternary alkylammonium salt having the same four alkyl groups is 50% by mass or more in 100% by mass of the component (A), and the content of the component (A) is in 100% by mass of the composition. Since the etching composition of the present invention having an amount of 10% by mass or more is excellent in the selective solubility of silicon in silicon ammonium, it can be suitably used for a structure containing silicon and silicon ammonium.
  • the etching method of the present invention is a method of etching a structure containing silicon and silicon germanium by using the etching composition of the present invention.
  • etching style a known style can be used, and examples thereof include a batch type and a single-wafer type.
  • the temperature at the time of etching is preferably 15 ° C. or higher, more preferably 20 ° C. or higher, because the etching rate can be improved.
  • the temperature at the time of etching is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, from the viewpoint of reducing damage to the substrate and etching stability.
  • the temperature at the time of etching corresponds to the temperature of the etching composition at the time of etching.
  • the etching composition of the present invention and the etching method of the present invention can be suitably used for manufacturing a semiconductor device including a step of etching a structure containing silicon and silicon germanium, suppress the dissolution of silicon germanium, and suppress silicon. It promotes the dissolution of silicon and has excellent selective solubility of silicon in silicon-germanium. Therefore, the etching composition of the present invention and the etching method of the present invention can be particularly preferably used for manufacturing a GAA type FET including a step of etching a structure containing silicon and silicon germanium.
  • the cross section of the substrate after immersion was observed with an electron microscope, the width (nm) of the silicon germanium layer was measured, and the etch rate ER SiGe [nm / min] of the silicon germanium layer was calculated using the following formula (2).
  • ER SiGe [nm / min] (width of silicon-germanium layer before immersion-width of silicon-germanium layer after immersion) ⁇ 15 minutes (2)
  • Dissolution selectivity ER Si [nm / min] ⁇ ER SiGe [nm / min] (3)
  • Example 1 Each component is mixed so that the component (A-1) is 26% by mass, the component (B-1) is 0.01% by mass, and the component (C-1) is the balance in 100% by mass of the etching composition.
  • An etching composition was obtained. The evaluation results of the obtained etching composition are shown in Table 1.
  • Examples 2 to 22, Comparative Examples 1 to 8 The same operation as in Example 1 was carried out to obtain an etching composition, except that the types and contents of the raw materials shown in Table 1 were set and the balance was the component (C-1). The evaluation results of the obtained etching composition are shown in Table 1.
  • the etching compositions obtained in Examples 1 to 22 suppressed the dissolution of silicon-germanium, promoted the dissolution of silicon, and had excellent selective solubility of silicon in silicon-germanium.
  • Comparative Examples 1 to 8 in which the type of the component (A) is different from that of the present invention, the etching compositions obtained in Comparative Examples 3 to 7 promote the dissolution of silicon germanium and select silicon with respect to silicon germanium. Poor solubility. Comparative Examples 1, 2 and 8 were relatively excellent in the selective solubility of silicon in silicon germanium, but inferior in the solubility of silicon.
  • the etching composition of the present invention and the etching method of the present invention using this etching composition suppress the dissolution of silicon germanium, promote the dissolution of silicon, and are excellent in the selective solubility of silicon in silicon germanium. Therefore, the etching composition of the present invention and the etching method of the present invention using the etching composition can be suitably used for manufacturing a semiconductor device, and particularly preferably for manufacturing a GAA type FET.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Weting (AREA)

Abstract

炭素数が8以上の4級アンモニウム塩(A)を含む、シリコンマニウムに対してシリコンを選択的に溶解するエッチング組成物。更にキレート剤(B)を含んでいてもよい。このエッチング組成物を用いて、シリコンとシリコンゲルマニウムとを含む構造体をエッチングする、エッチング方法。シリコンゲルマニウムの溶解を抑制し、シリコンの溶解を促進する、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れるエッチング組成物と、このエッチング組成物を用いたエッチング方法、半導体デバイスの製造方法及びゲートオールアラウンド型トランジスタの製造方法が提供される。

Description

エッチング組成物、エッチング方法、半導体デバイスの製造方法及びゲートオールアラウンド型トランジスタの製造方法
 本発明は、エッチング組成物、エッチング方法、半導体デバイスの製造方法及びゲートオールアラウンド型トランジスタの製造方法に関する。
 ムーアの法則に則り、集積回路の微細化が進んでいる。
 近年では、従来の平面型トランジスタのサイズを小さくするだけではなく、Fin型トランジスタ(Fin型FET)やゲートオールアラウンド型トランジスタ(GAA型FET)のように、構造を変化させて性能を向上させると共に、更なる微細化や集積化を進めるための検討がされている。
 Fin型FETでは、シリコン基板に対して垂直方向にFinを形成することにより、単位面積あたりのトランジスタ数を増やすだけでなく、低い電圧時のON/OFF制御に優れた性能を示す。
 更なる性能向上を発揮させるためには、Finのアスペクト比を大きくする等の工夫が必要となるが、アスペクト比が大き過ぎると、Fin形成のための洗浄工程や乾燥工程においてFinが倒壊する等の課題がある。
 GAA型FETでは、チャネルとなるナノシートやナノワイヤーをゲート電極で覆い、チャネルとゲート電極の接触面積を増やすことにより、単位面積あたりのトランジスタの性能を向上させる。
 GAA型FETを形成させるためには、シリコンとシリコンゲルマニウムが交互に積層された構造体から、シリコン又はシリコンゲルマニウムを選択的にエッチングするためのエッチング組成物が必要となる。
 そのようなエッチング組成物として、特許文献1には、4級水酸化アンモニウム化合物、具体的にはエチルトリメチルアンモニウムヒドロキシドを含む組成物が開示されている。
特開2019-050364号公報
 特許文献1で開示されているエッチング組成物は、4級水酸化アンモニウム化合物の種類が好適化されていないことにより、或いはキレート剤が配合されていないことにより、シリコンゲルマニウムに対するシリコンの選択的溶解性が十分とは言えない。
 特許文献1で開示されているシリコンとシリコンゲルマニウムが交互に積層された構造体には、シリコンとして結晶性の低いポリシリコンが用いられているため、実際の半導体デバイスで多用される結晶性の高いシリコンでも同等の選択的溶解性が得られるかは不明である。
 従前、特許文献1にように、様々な成分を含むエッチング組成物が検討されてきたが、いずれもシリコンゲルマニウムに対するシリコンの選択的溶解性が十分とは言えなかった。
 本発明の目的は、シリコンゲルマニウムの溶解を抑制し、シリコンの溶解を促進し、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れるエッチング組成物を提供することにある。
 また、本発明の目的は、このエッチング組成物を用いたエッチング方法、半導体デバイスの製造方法及びゲートオールアラウンド型トランジスタの製造方法を提供することにある。
 本発明者らは、後述するエッチング組成物が、シリコンゲルマニウムの溶解を抑制し、シリコンの溶解を促進し、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることを見出した。
 即ち、本発明の要旨は、以下の通りである。
[1] 炭素数が8以上の4級アンモニウム塩(A)を含む、シリコンゲルマニウムに対してシリコンを選択的に溶解するエッチング組成物。
[2] 炭素数が8以上の4級アンモニウム塩(A)が、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラヘキシルアンモニウムヒドロキシド、テトラオクチルアンモニウムヒドロキシド及びベンジルトリメチルアンモニウムヒドロキシドからなる群より選ばれる少なくとも1種の化合物を含む、[1]に記載のエッチング組成物。
[3] 炭素数が8以上の4級アンモニウム塩(A)が、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド及びテトラブチルアンモニウムヒドロキシドからなる群より選ばれる少なくとも1種の化合物を含む、[1]又は[2]に記載のエッチング組成物。
[4] 炭素数が8以上の4級アンモニウム塩(A)中の4つのアルキル基が同一である4級アルキルアンモニウム塩の含有率が、炭素数が8以上の4級アンモニウム塩(A)100質量%中、50質量%以上である、[1]~[3]のいずれかに記載のエッチング組成物。
[5] 炭素数が8以上の4級アンモニウム塩(A)の含有率が、エッチング組成物100質量%中、10質量%以上である、[1]~[4]のいずれかに記載のエッチング組成物。
[6] 更に、キレート剤(B)を含む、[1]~[5]のいずれかに記載のエッチング組成物。
[7] キレート剤(B)の含有率が、エッチング組成物100質量%中、0.001質量%~25質量%である、[6]に記載のエッチング組成物。
[8] キレート剤(B)に対する炭素数が8以上の4級アンモニウム塩(A)の質量比が、5~5000である、[6]又は[7]に記載のエッチング組成物。
[9] 更に、水(C)を含む、[1]~[8]のいずれかに記載のエッチング組成物。
[10] 更に、水混和性溶媒(D)を含む、[1]~[9]のいずれかに記載のエッチング組成物。
[11] 水混和性溶媒(D)の含有率が、エッチング組成物100質量%中、15質量%以下である、[10]に記載のエッチング組成物。
[12] 水混和性溶媒(D)に対する炭素数が8以上の4級アンモニウム塩(A)の質量比が、1以上である、[10]又は[11]に記載のエッチング組成物。
[13] 炭素数が8以上の4級アンモニウム塩(A)を含み、炭素数が8以上の4級アンモニウム塩(A)が、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド及びテトラブチルアンモニウムヒドロキシドからなる群より選ばれる少なくとも1種の化合物を含み、炭素数が8以上の4級アンモニウム塩(A)中の4つのアルキル基が同一である4級アルキルアンモニウム塩の含有率が、炭素数が8以上の4級アンモニウム塩(A)100質量%中、50質量%以上であり、炭素数が8以上の4級アンモニウム塩(A)の含有率が、組成物100質量%中、10質量%以上である、エッチング組成物。
[14] [1]~[13]のいずれかに記載のエッチング組成物を用いて、シリコンとシリコンゲルマニウムとを含む構造体をエッチングする、エッチング方法。
[15] [1]~[13]のいずれかに記載のエッチング組成物を用いて、シリコンとシリコンゲルマニウムとを含む構造体をエッチングする工程を含む、半導体デバイスの製造方法。
[16] [1]~[13]のいずれかに記載のエッチング組成物を用いて、シリコンとシリコンゲルマニウムとを含む構造体をエッチングする工程を含む、ゲートオールアラウンド型トランジスタの製造方法。
 本発明のエッチング組成物は、シリコンゲルマニウムの溶解を抑制し、シリコンの溶解を促進し、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れる。
 このような本発明のエッチング組成物を用いる本発明のエッチング方法、本発明の半導体デバイスの製造方法及び本発明のゲートオールアラウンド型トランジスタの製造方法は、エッチング工程において、シリコンゲルマニウムの溶解を抑制し、シリコンの溶解を促進し、シリコンゲルマニウムに対するシリコンの優れた選択的溶解性により、高精度のエッチングを行って所望の製品を歩留りよく製造することができる。
 以下に本発明について詳述する。本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。本明細書において「~」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いるものとする。
 本発明のエッチング組成物は、炭素数が8以上の4級アンモニウム塩(A)(以下、「成分(A)」と称す場合がある。)を含むことで、シリコンゲルマニウムに対してシリコンを選択的に溶解することができる。
 本発明のエッチング組成物は、更にキレート剤(B)(以下、「成分(B)」と称す場合がある。)、水(C)(以下、「成分(C)」と称す場合がある。)、水混和性溶媒(D)(以下、「成分(D)」と称す場合がある。)を含んでいてもよい。
<成分(A)>
 成分(A)は、炭素数が8以上の4級アンモニウム塩である。エッチング組成物に炭素数が8以上の4級アンモニウム塩を含むことで、シリコンやシリコンゲルマニウムを溶解する効果を発現する。
 成分(A)の炭素数は、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、8~32が好ましく、12~24がより好ましい。成分(A)の炭素数が8以上の4級アンモニウム塩としては、例えば、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラヘキシルアンモニウムヒドロキシド、テトラオクチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド等のアルキル基に置換基を有していてもよいテトラアルキルアンモニウムヒドロキシド等の4級アルキルアンモニウム塩などが挙げられる。
 成分(A)としての4級アルキルアンモニウム塩は、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、4つのアルキル基が同一であることが好ましく、特に成分(A)100質量%中に4つのアルキル基が同一である4級アルキルアンモニウム塩を50質量%以上含むことが好ましく、70質量%以上含むことがより好ましく、90質量%以上含むことが更に好ましく、4つのアルキル基が同一の4級アルキルアンモニウム塩を100質量%含むことが最も好ましい。
 これらの炭素数が8以上の4級アンモニウム塩は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの炭素数が8以上の4級アンモニウム塩の中でも、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラヘキシルアンモニウムヒドロキシド、テトラオクチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシドが好ましく、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシドがより好ましく、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシドが更に好ましく、テトラブチルアンモニウムヒドロキシドが最も好ましい。
 成分(A)の含有率は、シリコンの選択的溶解性に優れることから、エッチング組成物100質量%中、1質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上が更に好ましい。
 成分(A)の含有率は、シリコンの選択的溶解性に優れることから、エッチング組成物100質量%中、70質量%以下が好ましく、55質量%以下がより好ましく、40質量%以下が更に好ましい。
 上記した成分(A)の好適態様から、本発明のエッチング組成物としては、成分(A)を含み、成分(A)が、テトラプロピルアンモニウムヒドロキシド及びテトラブチルアンモニウムヒドロキシドからなる群より選ばれる少なくとも1種の化合物を含み、成分(A)中の4つのアルキル基が同一である4級アルキルアンモニウム塩の含有率が、成分(A)100質量%中、50質量%以上であり、成分(A)の含有率が、組成物100質量%中、10質量%以上であるエッチング組成物が挙げられる。
<成分(B)>
 成分(B)は、キレート剤である。エッチング組成物にキレート剤を含むことで、シリコンゲルマニウムを保護する効果を発現する。
 キレート剤としては、例えば、アミン化合物、アミノ酸、有機酸等が挙げられる。これらのキレート剤は、1種を単独で用いてもよく、2種以上を併用してもよい。これらのキレート剤の中でも、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、アミン化合物、アミノ酸、有機酸が好ましく、アミン化合物がより好ましい。
 アミン化合物としては、例えば、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラアミン六酢酸、ジエチレントリアミンペンタキス(メチルホスホン酸)、エチレンジアミン-N,N’-ビス[2-(2-ヒドロキシフェニル)酢酸]、N,N’-ビス(3-アミノプロパン)エチレンジアミン、N-メチル-1,3-ジアミノプロパン、2-アミノエタノール、N-メチルジエタノールアミン、2-アミノ-2-メチル-1-プロパノール等が挙げられる。これらのアミン化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらのアミン化合物の中でも、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラアミン六酢酸、ジエチレントリアミンペンタキス(メチルホスホン酸)、エチレンジアミン-N,N’-ビス[2-(2-ヒドロキシフェニル)酢酸]、N,N’-ビス(3-アミノプロパン)エチレンジアミン、N-メチル-1,3-ジアミノプロパン、2-アミノエタノール、N-メチルジエタノールアミン、2-アミノ-2-メチル-1-プロパノールが好ましく、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラアミン六酢酸、ジエチレントリアミンペンタキス(メチルホスホン酸)、エチレンジアミン-N,N’-ビス[2-(2-ヒドロキシフェニル)酢酸]がより好ましい。
 アミノ酸としては、例えば、グリシン、アルギニン、ヒスチジン、(2-ジヒドロキシエチル)グリシン等が挙げられる。これらのアミノ酸は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらのアミノ酸の中でも、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、グリシン、アルギニン、ヒスチジン、(2-ジヒドロキシエチル)グリシンが好ましく、(2-ジヒドロキシエチル)グリシンがより好ましい。
 有機酸としては、例えば、シュウ酸、クエン酸、酒石酸、リンゴ酸、2-ホスホノブタン-1,2,4-トリカルボン酸等が挙げられる。これらの有機酸は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの有機酸の中でも、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、シュウ酸、クエン酸、酒石酸、リンゴ酸、2-ホスホノブタン-1,2,4-トリカルボン酸が好ましく、クエン酸、2-ホスホノブタン-1,2,4-トリカルボン酸がより好ましい。
 成分(B)の含有率は、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、エッチング組成物100質量%中、0.001質量%以上が好ましく、0.005質量%以上がより好ましく、0.01質量%以上が更に好ましい。
 成分(B)の含有率は、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、エッチング組成物100質量%中、25質量%以下が好ましく、10質量%以下がより好ましく、6質量%以下が更に好ましい。
<成分(C)>
 本発明のエッチング組成物は、成分(A)、成分(B)以外に、水(C)(成分(C))を含むことが好ましい。
 成分(C)の含有率は、エッチング組成物の製造が容易であることから、エッチング組成物100質量%中、25質量%以上が好ましく、40質量%以上がより好ましく、55質量%以上が更に好ましい。
 成分(C)の含有率は、エッチレートを向上させることができることから、エッチング組成物100質量%中、90質量%以下が好ましく、85質量%以下がより好ましく、75質量%以下が更に好ましい。
<成分(D)>
 本発明のエッチング組成物は、成分(A)、成分(B)以外に、水混和性溶媒(D)(成分(D))を含むことが好ましい。エッチング液に水混和性溶媒を含むことで、シリコンゲルマニウムを保護する効果を発現する。
 水混和性溶媒(D)としては、水に対する溶解性に優れるものであればよく、溶解パラメータ(SP値)が7.0以上の溶媒が好ましい。
 成分(D)の水混和性溶媒としては、例えば、イソプロパノール、エチレングリコール、プロピレングリコール、メタノール、エタノール、プロパノール、ブタノール、グリセロール、2-(2-アミノエトキシエタノール)等の極性プロトン性溶媒;アセトン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N-メチルピロリドン、アセトニトリル等の極性非プロトン性溶媒;ヘキサン、ベンゼン、トルエン、ジエチルエーテル等の非極性溶媒等が挙げられる。これらの水混和性溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの水混和性溶媒の中でも、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、グリセロール、2-(2-アミノエトキシエタノール)、エチレングリコール、プロピレングリコールが好ましい。
 本発明のエッチング組成物が成分(D)を含む場合、成分(D)の含有率は、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、エッチング組成物100質量%中、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、1質量%以上が更に好ましい。
 成分(D)の含有率は、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、エッチング組成物100質量%中、30質量%以下が好ましく、20質量%以下がより好ましく、15質量%以下が更に好ましい。
<他の成分>
 本発明のエッチング組成物は、成分(A)、成分(B)、成分(C)、成分(D)以外に、他の成分を含んでもよい。
 他の成分としては、例えば、アニオン型界面活性剤、ノニオン型界面活性剤、カチオン型界面活性剤等の界面活性剤;ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンイミン、ポリプロピレンイミン、ポリアクリル酸等の水溶性高分子;過酸化水素、過塩素酸、過ヨウ素酸等の酸化剤;アスコルビン酸、没食子酸、ピロガロール、ピロカテコール、レゾルシノール、ヒドロキノン、8-ヒドロキシキノリン等の還元剤等が挙げられる。これらの他の成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
<各成分の質量比>
 本発明のエッチング組成物が成分(A)と成分(B)を含む場合、本発明のエッチング組成物中の成分(B)に対する成分(A)の質量比(成分(A)の質量/成分(B)の質量、以下、「(A)/(B)」と記載する。)は、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、5~5000が好ましく、5~3000がより好ましく、10~3000が更に好ましい。
 本発明のエッチング液が成分(D)を含む場合、成分(D)に対する成分(A)の質量比(成分(A)の質量/成分(D)の質量、以下、「(A)/(D)」と記載する。)は、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、0.01~1000であることが好ましく、0.1~100であることがより好ましい。
 本発明のエッチング液が成分(D)を含む場合、成分(D)に対する成分(B)の質量比(成分(B)の質量/成分(D)の質量、以下、「(B)/(D)」と記載する。)は、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、2~2000であることが好ましく、5~1000であることがより好ましい。
<エッチング組成物の製造方法>
 本発明のエッチング組成物の製造方法は、特に限定されず、成分(A)と、必要に応じて成分(B)、成分(C)、成分(D)、及び他の成分を混合することで製造することができる。
 混合の順番は、特に限定されず、一度にすべての成分を混合してもよく、一部の成分を予め混合した後に残りの成分を混合してもよい。
<エッチング組成物の物性>
 本発明のエッチング組成物のシリコンのエッチレートERSiは、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、1nm/分以上が好ましく、3nm/分以上がより好ましい。
 本発明のエッチング組成物のシリコンゲルマニウムのエッチレートERSiGeは、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、1nm/分以下が好ましく、0.8nm/分以下がより好ましく、0.5nm/分以下が更に好ましい。
 本発明のエッチング組成物のシリコンゲルマニウムとシリコンの溶解選択比(ERSi/ERSiGe)は、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、4以上が好ましく、10以上がより好ましい。
 エッチレートERSi、エッチレートERSiGe、溶解選択比は、後掲の実施例の項に記載の方法で測定、算出される。
<エッチング組成物のエッチング対象>
 本発明のエッチング組成物は、シリコンゲルマニウムの溶解を抑制し、シリコンの溶解を促進し、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れる。このため、本発明のエッチング組成物は、エッチング対象として、シリコンとシリコンゲルマニウムとを含む構造体、例えば、半導体デバイスに好適であり、GAA型FETの形成に必要なシリコンとシリコンゲルマニウムが交互に積層された構造体に特に好適である。
 エッチング対象となるシリコンゲルマニウム中のシリコンの含有率は、本発明のエッチング組成物によるエッチングに好適であることから、シリコンゲルマニウム100質量%中、10質量%以上が好ましく、20質量%以上がより好ましい。
 一方、シリコンゲルマニウム中のシリコンの含有率は、本発明のエッチング組成物によるエッチングに好適であることから、シリコンゲルマニウム100質量%中、95質量%以下が好ましく、85質量%以下がより好ましい。
 また、シリコンゲルマニウム中のゲルマニウムの含有率は、本発明のエッチング組成物によるエッチングに好適であることから、シリコンゲルマニウム100質量%中、5質量%以上が好ましく、15質量%以上がより好ましい。
 一方、シリコンゲルマニウム中のゲルマニウムの含有率は、本発明のエッチング組成物によるエッチングに好適であることから、シリコンゲルマニウム100質量%中、90質量%以下が好ましく、80質量%以下がより好ましい。
 シリコンゲルマニウムの合金膜は、公知の方法で成膜して製造すればよいが、トランジスタ形成後の電子やホールの移動性に優れることから、結晶成長法で成膜して製造することが好ましい。
 シリコンとシリコンゲルマニウムとを含む構造体やシリコンとシリコンゲルマニウムが交互に積層された構造体は、シリコン酸化物、シリコン窒化物、シリコン炭窒化物等が露出していてもよい。
 また、成分(A)を含み、成分(A)が、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド及びテトラブチルアンモニウムヒドロキシドからなる群より選ばれる少なくとも1種の化合物を含み、成分(A)中の4つのアルキル基が同一である4級アルキルアンモニウム塩の含有率が、成分(A)100質量%中、50質量%以上であり、成分(A)の含有率が、組成物100質量%中、10質量%以上である本発明のエッチング組成物は、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れることから、シリコンとシリコンゲルマニウムとを含む構造体に好適に用いることができる。
<エッチング方法>
 本発明のエッチング方法は、本発明のエッチング組成物を用いて、シリコンとシリコンゲルマニウムとを含む構造体をエッチングする方法である。
 エッチング様式は、公知の様式を用いることができ、例えば、バッチ式、枚葉式等が挙げられる。
 エッチング時の温度は、エッチレートを向上させることができることから、15℃以上が好ましく、20℃以上がより好ましい。
 エッチング時の温度は、基板へのダメージ低減とエッチングの安定性の観点から、100℃以下が好ましく、80℃以下がより好ましい。
 ここで、エッチング時の温度とは、エッチング時のエッチング組成物の温度に該当する。
<用途>
 本発明のエッチング組成物及び本発明のエッチング方法は、シリコンとシリコンゲルマニウムとを含む構造体をエッチングする工程を含む半導体デバイスの製造に好適に用いることができ、シリコンゲルマニウムの溶解を抑制し、シリコンの溶解を促進し、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れる。このため、本発明のエッチング組成物及び本発明のエッチング方法は、シリコンとシリコンゲルマニウムとを含む構造体をエッチングする工程を含むGAA型FETの製造に特に好適に用いることができる。
 以下、実施例を用いて本発明を更に具体的に説明する。本発明は、その要旨を逸脱しない限り、以下の実施例の記載に限定されるものではない。
<原料>
 以下の実施例及び比較例において、エッチング組成物の製造原料としては、以下のものを用いた。
 成分(A-1):テトラブチルアンモニウムヒドロキシド
 成分(A-2):テトラプロピルアンモニウムヒドロキシド
 成分(A’-1):アンモニア
 成分(A’-2):テトラメチルアンモニウムヒドロキシド
 成分(A’-3):エチルトリメチルアンモニウムヒドロキシド
 成分(B-1):エチレンジアミン
 成分(B-2):1,3-ジアミノプロパン
 成分(B-3):エチレンジアミン四酢酸
 成分(B-4):ジエチレントリアミン五酢酸
 成分(B-5):ジエチレントリアミンペンタキス(メチルホスホン酸)
 成分(B-6):エチレンジアミン-N,N’-ビス[2-(2-ヒドロキシフェニル)酢酸]
 成分(B-7):N,N’-ビス(3-アミノプロパン)エチレンジアミン
 成分(B-8):N-メチル-1,3-ジアミノプロパン
 成分(B-9):2-ホスホノブタン-1,2,4-トリカルボン酸
 成分(B-10):2-アミノエタノール
 成分(B-11):N-メチルジエタノールアミン
 成分(B-12):2-アミノ-2-メチル-1-プロパノール
 成分(C-1):水
 成分(D-1):グリセロール
 成分(D-2):2-(2-アミノエトキシエタノール)
 その他の成分:8-ヒドロキシキノリン(表1中、「(E-1)」と記載する。)
<シリコンのエッチレート>
 膜厚10nmのシリコンゲルマニウムと膜厚10nm(浸漬前のシリコン層の幅=10nm)のシリコンが積層された構造体を含む基板を0.5質量%のフッ化水素酸水溶液に30秒浸漬させた後、超純水でリンスし、その後、実施例及び比較例で得られたエッチング組成物に40℃で15分間浸漬させた。浸漬後の基板断面を電子顕微鏡で観察してシリコン層の幅(nm)を測定し、下記式(1)を用いてシリコンのエッチレートERSi[nm/分]を算出した。
 ERSi[nm/分]=(浸漬前のシリコン層の幅-浸漬後のシリコン層の幅)÷15分   (1)
<シリコンゲルマニウムのエッチレート>
 膜厚10nm(浸漬前のシリコンゲルマニウム層の幅=10nm)のシリコンゲルマニウムと膜厚10nmのシリコンが積層された構造体を含む基板を0.5質量%のフッ化水素酸水溶液に30秒浸漬させた後、超純水でリンスし、その後、実施例及び比較例で得られたエッチング組成物に40℃で15分間浸漬させた。浸漬後の基板断面を電子顕微鏡で観察して、シリコンゲルマニウム層の幅(nm)を測定し、下記式(2)を用いてシリコンゲルマニウム層のエッチレートERSiGe[nm/分]を算出した。
 ERSiGe[nm/分]=(浸漬前のシリコンゲルマニウム層の幅-浸漬後のシリコンゲルマニウム層の幅)÷15分   (2)
<シリコンとシリコンゲルマニウムの溶解選択比>
 下記式(3)を用いて、シリコンゲルマニウムとシリコンの溶解選択比を算出した。
 溶解選択比=ERSi[nm/分]÷ERSiGe[nm/分]   (3)
[実施例1]
 エッチング組成物100質量%中、成分(A-1)が26質量%、成分(B-1)が0.01質量%、成分(C-1)が残部となるよう、各成分を混合し、エッチング組成物を得た。
 得られたエッチング組成物の評価結果を、表1に示す。
[実施例2~22、比較例1~8]
 表1に示す原料の種類、含有率とし、残部が成分(C-1)となるようにしたこと以外は、実施例1と同様に操作を行い、エッチング組成物を得た。
 得られたエッチング組成物の評価結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1からも分かるように、実施例1~22で得られたエッチング組成物は、シリコンゲルマニウムの溶解を抑制し、シリコンの溶解を促進し、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れた。
 一方、成分(A)の種類が本発明とは異なる比較例1~8のうち、比較例3~7で得られたエッチング組成物は、シリコンゲルマニウムの溶解を促進し、シリコンゲルマニウムに対するシリコンの選択的溶解性に劣った。
 比較例1、2及び8は、シリコンゲルマニウムに対するシリコンの選択的溶解性に比較的優れたものの、シリコンの溶解性に劣った。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2021年1月12日付で出願された日本特許出願2021-002880に基づいており、その全体が引用により援用される。
 本発明のエッチング組成物及びこのエッチング組成物を用いた本発明のエッチング方法は、シリコンゲルマニウムの溶解を抑制し、シリコンの溶解を促進し、シリコンゲルマニウムに対するシリコンの選択的溶解性に優れる。このため、本発明のエッチング組成物及びこのエッチング組成物を用いた本発明のエッチング方法は、半導体デバイスの製造に好適に用いることができ、特にGAA型FETの製造に好適に用いることができる。

 

Claims (16)

  1.  炭素数が8以上の4級アンモニウム塩(A)を含む、シリコンゲルマニウムに対してシリコンを選択的に溶解するエッチング組成物。
  2.  炭素数が8以上の4級アンモニウム塩(A)が、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラヘキシルアンモニウムヒドロキシド、テトラオクチルアンモニウムヒドロキシド及びベンジルトリメチルアンモニウムヒドロキシドからなる群より選ばれる少なくとも1種の化合物を含む、請求項1に記載のエッチング組成物。
  3.  炭素数が8以上の4級アンモニウム塩(A)が、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド及びテトラブチルアンモニウムヒドロキシドからなる群より選ばれる少なくとも1種の化合物を含む、請求項1又は2に記載のエッチング組成物。
  4.  炭素数が8以上の4級アンモニウム塩(A)中の4つのアルキル基が同一である4級アルキルアンモニウム塩の含有率が、炭素数が8以上の4級アンモニウム塩(A)100質量%中、50質量%以上である、請求項1~3のいずれか1項に記載のエッチング組成物。
  5.  炭素数が8以上の4級アンモニウム塩(A)の含有率が、エッチング組成物100質量%中、10質量%以上である、請求項1~4のいずれか1項に記載のエッチング組成物。
  6.  更に、キレート剤(B)を含む、請求項1~5のいずれか1項に記載のエッチング組成物。
  7.  キレート剤(B)の含有率が、エッチング組成物100質量%中、0.001質量%~25質量%である、請求項6に記載のエッチング組成物。
  8.  キレート剤(B)に対する炭素数が8以上の4級アンモニウム塩(A)の質量比が、5~5000である、請求項6又は7に記載のエッチング組成物。
  9.  更に、水(C)を含む、請求項1~8のいずれか1項に記載のエッチング組成物。
  10.  更に、水混和性溶媒(D)を含む、請求項1~9のいずれか1項に記載のエッチング組成物。
  11.  水混和性溶媒(D)の含有率が、エッチング組成物100質量%中、15質量%以下である、請求項10に記載のエッチング組成物。
  12.  水混和性溶媒(D)に対する炭素数が8以上の4級アンモニウム塩(A)の質量比が、1以上である、請求項10又は11に記載のエッチング組成物。
  13.  炭素数が8以上の4級アンモニウム塩(A)を含み、炭素数が8以上の4級アンモニウム塩(A)が、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド及びテトラブチルアンモニウムヒドロキシドからなる群より選ばれる少なくとも1種の化合物を含み、炭素数が8以上の4級アンモニウム塩(A)中の4つのアルキル基が同一である4級アルキルアンモニウム塩の含有率が、炭素数が8以上の4級アンモニウム塩(A)100質量%中、50質量%以上であり、炭素数が8以上の4級アンモニウム塩(A)の含有率が、組成物100質量%中、10質量%以上である、エッチング組成物。
  14.  請求項1~13のいずれか1項に記載のエッチング組成物を用いて、シリコンとシリコンゲルマニウムとを含む構造体をエッチングする、エッチング方法。
  15.  請求項1~13のいずれか1項に記載のエッチング組成物を用いて、シリコンとシリコンゲルマニウムとを含む構造体をエッチングする工程を含む、半導体デバイスの製造方法。
  16.  請求項1~13のいずれか1項に記載のエッチング組成物を用いて、シリコンとシリコンゲルマニウムとを含む構造体をエッチングする工程を含む、ゲートオールアラウンド型トランジスタの製造方法。

     
PCT/JP2021/041868 2021-01-12 2021-11-15 エッチング組成物、エッチング方法、半導体デバイスの製造方法及びゲートオールアラウンド型トランジスタの製造方法 WO2022153658A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21919549.2A EP4280258A1 (en) 2021-01-12 2021-11-15 Etching composition, etching method, production method for semiconductor device, and production method for gate-all-around transistor
CN202180086742.9A CN116635986A (zh) 2021-01-12 2021-11-15 蚀刻组合物、蚀刻方法、半导体器件的制造方法和全环绕栅极型晶体管的制造方法
KR1020237010664A KR20230058459A (ko) 2021-01-12 2021-11-15 에칭 조성물, 에칭 방법, 반도체 디바이스의 제조 방법 및 게이트 올 어라운드형 트랜지스터의 제조 방법
JP2022575091A JPWO2022153658A1 (ja) 2021-01-12 2021-11-15
US18/219,267 US20230374383A1 (en) 2021-01-12 2023-07-07 Etching Composition, Etching Method, Method for Manufacturing Semiconductor Device, and Method for Manufacturing Gate-All-Around-Type Transistor
IL304357A IL304357A (en) 2021-01-12 2023-07-10 Etching composition, etching method, fabrication method for a semiconductor device, and fabrication method for an all-gate transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-002880 2021-01-12
JP2021002880 2021-01-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/219,267 Continuation US20230374383A1 (en) 2021-01-12 2023-07-07 Etching Composition, Etching Method, Method for Manufacturing Semiconductor Device, and Method for Manufacturing Gate-All-Around-Type Transistor

Publications (1)

Publication Number Publication Date
WO2022153658A1 true WO2022153658A1 (ja) 2022-07-21

Family

ID=82447140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041868 WO2022153658A1 (ja) 2021-01-12 2021-11-15 エッチング組成物、エッチング方法、半導体デバイスの製造方法及びゲートオールアラウンド型トランジスタの製造方法

Country Status (8)

Country Link
US (1) US20230374383A1 (ja)
EP (1) EP4280258A1 (ja)
JP (1) JPWO2022153658A1 (ja)
KR (1) KR20230058459A (ja)
CN (1) CN116635986A (ja)
IL (1) IL304357A (ja)
TW (1) TW202235581A (ja)
WO (1) WO2022153658A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015103146A1 (en) * 2013-12-31 2015-07-09 Advanced Technology Materials, Inc. Formulations to selectively etch silicon and germanium
JP2019050364A (ja) * 2017-08-25 2019-03-28 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー 半導体デバイスの製造中にシリコン−ゲルマニウム/シリコン積層体からシリコン−ゲルマニウム合金に対してシリコンを選択的に除去するためのエッチング液
JP2021002880A (ja) 2016-11-01 2021-01-07 マクセル株式会社 コンテンツの保護方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015103146A1 (en) * 2013-12-31 2015-07-09 Advanced Technology Materials, Inc. Formulations to selectively etch silicon and germanium
JP2021002880A (ja) 2016-11-01 2021-01-07 マクセル株式会社 コンテンツの保護方法
JP2019050364A (ja) * 2017-08-25 2019-03-28 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー 半導体デバイスの製造中にシリコン−ゲルマニウム/シリコン積層体からシリコン−ゲルマニウム合金に対してシリコンを選択的に除去するためのエッチング液

Also Published As

Publication number Publication date
US20230374383A1 (en) 2023-11-23
CN116635986A (zh) 2023-08-22
EP4280258A1 (en) 2023-11-22
IL304357A (en) 2023-09-01
TW202235581A (zh) 2022-09-16
KR20230058459A (ko) 2023-05-03
JPWO2022153658A1 (ja) 2022-07-21

Similar Documents

Publication Publication Date Title
EP3447109B1 (en) Etching solution for selectively removing silicon over silicon-germanium alloy from a silicon-germanium/ silicon stack during manufacture of a semiconductor device
EP3447791B1 (en) Etching solution for selectively removing silicon-germanium alloy from a silicon-germanium/ silicon stack during manufacture of a semiconductor device
US9691629B2 (en) Compositions and methods for the selective removal of silicon nitride
KR102396018B1 (ko) 반도체 디바이스의 제조 과정에서 규소-게르마늄/규소 스택으로부터 규소 및 규소-게르마늄 합금을 동시 제거하기 위한 에칭 용액
KR101804850B1 (ko) 변성 레지스트의 박리 방법, 이것에 이용하는 변성 레지스트의 박리액 및 반도체 기판 제품의 제조 방법
JP2016213461A (ja) 窒化チタンハードマスク及びエッチ残留物除去
JP2012199521A (ja) キャパシタ構造の形成方法及びこれに用いられるシリコンエッチング液
KR102283745B1 (ko) 반도체 소자의 제조 동안 질화티탄에 비해 질화탄탈을 선택적으로 제거하기 위한 에칭액
KR20160079856A (ko) 변성 레지스트의 박리액, 이것을 이용한 변성 레지스트의 박리 방법 및 반도체 기판 제품의 제조 방법
KR20170009240A (ko) 비불소계 실리콘 질화막 식각 조성물
JP2022552196A (ja) 湿式エッチング湿式エッチング組成物及び方法
KR101554191B1 (ko) 반도체 기판 제품의 제조방법 및 에칭액
WO2022153658A1 (ja) エッチング組成物、エッチング方法、半導体デバイスの製造方法及びゲートオールアラウンド型トランジスタの製造方法
KR102105333B1 (ko) 반도체 기판 제품의 제조 방법 및 에칭액
WO2023172378A2 (en) Etching compositions
WO2023079908A1 (ja) エッチング液、エッチング方法、半導体デバイスの製造方法及びゲートオールアラウンド型トランジスタの製造方法
KR102379074B1 (ko) 식각액 조성물
KR102379072B1 (ko) 식각액 조성물
TW202246579A (zh) 於製造一半導體裝置時用於從一矽-鍺/矽堆疊選擇性移除矽-鍺合金的蝕刻溶液
KR102372879B1 (ko) 식각액 조성물
JP2020173301A (ja) 底部反射防止膜の除去液、及び半導体素子の製造方法
JP2022094679A (ja) エッチング組成物、エッチング方法、半導体デバイスの製造方法及びゲートオールアラウンド型トランジスタの製造方法
KR20240076737A (ko) 실리콘 에칭액, 기판의 처리 방법 및 실리콘 디바이스의 제조 방법
KR20170064736A (ko) 유기용매를 이용한 포토레지스트 제거방법
TW202311497A (zh) 用於選擇性蝕刻矽的組成物的用途和用於選擇性蝕刻矽的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575091

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237010664

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180086742.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021919549

Country of ref document: EP

Effective date: 20230814