WO2022152247A1 - 一种led照明设备 - Google Patents

一种led照明设备 Download PDF

Info

Publication number
WO2022152247A1
WO2022152247A1 PCT/CN2022/072036 CN2022072036W WO2022152247A1 WO 2022152247 A1 WO2022152247 A1 WO 2022152247A1 CN 2022072036 W CN2022072036 W CN 2022072036W WO 2022152247 A1 WO2022152247 A1 WO 2022152247A1
Authority
WO
WIPO (PCT)
Prior art keywords
lighting device
led lighting
light
unit
heat exchange
Prior art date
Application number
PCT/CN2022/072036
Other languages
English (en)
French (fr)
Inventor
王名斌
陆健
王广东
Original Assignee
嘉兴山蒲照明电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉兴山蒲照明电器有限公司 filed Critical 嘉兴山蒲照明电器有限公司
Publication of WO2022152247A1 publication Critical patent/WO2022152247A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems

Definitions

  • the invention belongs to the technical field of LED lighting devices, and in particular relates to an LED lighting device.
  • LED lighting is widely used because of its advantages of energy saving and long life.
  • LED lighting devices in the prior art commonly include flat panel lights and grille lights.
  • the prior art LED lighting equipment (such as LED corn lamp) includes a radiator, a lamp housing, a light source, a power source and a lamp cap.
  • the lamp housing is connected with the lamp holder, the power source is arranged in the lamp housing, the radiator is connected with the lamp housing, and the light source is fixed on the radiator.
  • Such LED lighting equipment in the prior art has the following disadvantages: the lamp housing occupies the length space of the whole lamp, therefore, in the length direction, the luminous area of the whole lamp occupies a small proportion, which affects the light output effect; corn lamps usually use fans to dissipate heat , its cost is high, and the life of the fan may affect the life of the whole lamp
  • Embodiments of the present invention provide a new LED lighting device and features in various aspects to solve the above problems.
  • Embodiments of the present invention provide 1.
  • An LED lighting device characterized in that it includes:
  • the light-emitting unit is electrically connected to the power source
  • a heat exchange unit including fins on which the light emitting unit is fixed
  • a second convection channel which dissipates heat from the fins in a convection manner
  • the light-emitting unit includes a first light source and a second light source.
  • the first light source provides at least lateral light emission
  • the second light source and the first light source are configured to face Light in different directions.
  • the second light source when the lamp head is installed in a vertical direction, the second light source provides downward light output.
  • the fins have several groups, the fins are extended along the axial direction of the LED lighting device, and a plurality of the fins form an accommodation on the inner side of the LED lighting device in the radial direction space, and at least a part of the power supply is disposed in the accommodating space.
  • At least 80% of the power supply in the length direction of the embodiment of the present invention is located in the accommodating space.
  • the power supply according to the embodiment of the present invention is completely configured in the accommodating space.
  • the embodiment of the present invention further includes an isolation unit, the isolation unit includes an isolation pipe, the isolation pipe is fixed in the accommodating space, and the power source is fixed in the isolation pipe.
  • a first convection channel is formed in the isolation tube according to the embodiment of the present invention, so as to dissipate heat from the power supply in the isolation tube.
  • the length of the first convection channel in the axial direction of the LED lighting device accounts for more than 50%, 55%, 60%, 65% or 70% of the total length of the LED lighting device.
  • the length of the second convection channel in the axial direction of the LED lighting device accounts for more than 50%, 55%, 60%, 65% or 70% of the total length of the LED lighting device.
  • the isolation tube according to the embodiment of the present invention is filled with thermally conductive material to cover the power supply.
  • the power supply includes an electronic component and a circuit board, the electronic component is fixed on the circuit board, the electronic component includes a heating element, and at least 85% of the surface area of the heating element exposed to the outside is attached to the circuit board.
  • Thermally conductive material is used to form a circuit board.
  • the power supply in the embodiment of the present invention includes an electronic component and a circuit board, the electronic component is fixed on the circuit board, the electronic component includes a heating element, and at least 85% of the surface area of any one of the heating elements exposed to the outside,
  • the thermally conductive material is 90% or 95% attached.
  • the power supply according to the embodiment of the present invention includes electronic components and a circuit board, the electronic components are fixed on the circuit board, the length of the circuit board accounts for more than 60% of the length of the heat exchange unit, and the circuit board completely within the space defined by the heat exchange unit.
  • the length of the circuit board in the embodiment of the present invention accounts for more than 70% of the length of the heat exchange unit.
  • the length of the circuit board in the embodiment of the present invention accounts for more than 80% of the length of the heat exchange unit.
  • the embodiment of the present invention further includes an optical unit, the light-emitting unit includes several groups of first light boards, the first light sources are disposed on the first light boards, the optical unit includes a first optical member, and a group of the first light boards The first optical member corresponds to one or two columns of the first light sources.
  • the area of the outer surface of the first optical member according to the embodiment of the present invention is configured to occupy at least 15% or more of the area of the outer surface in the radial direction of the LED lighting device.
  • the light-emitting unit includes a second light board, the second light source is fixed on the second light board, and the second light board is attached to the end of the heat exchange unit away from the lamp cap.
  • the optical unit On the end face, the optical unit includes a second optical member, and the second optical member is covered outside the second light source.
  • the heat exchange unit includes a base, the base has an outer surface and a mounting surface, the mounting surface is located on the inner side of the outer surface in the radial direction of the LED lighting device, and the After the light-emitting unit is mounted on the mounting surface, its position does not exceed the position of the outer surface in the radial direction of the LED lighting device.
  • the central angle of the radially outer surface of the LED lighting device occupied by the outer surface of the embodiment of the present invention is smaller than the radially outer surface of the LED lighting device occupied by the outer surface of the first optical member. rounded corners.
  • the light of the first light source according to the embodiment of the present invention is projected on the first optical member within the range of its beam angle A, at least 60% or more of the width of the inner surface of the first optical member in the width direction has a width from the first optical member. Direct light within the range of the beam angle A of the first light source.
  • the embodiment of the present invention further includes an electrical connection unit, the electrical connection unit includes an electrical connection board, a circuit layer is arranged on the electrical connection board, and the electrical connection board is configured to be connected with at least two or more groups of the first lamp boards The connection is made, and the electrical connection board is electrically connected to the power supply.
  • the electrical connection plate is provided with a plurality of fixing holes, and the first lamp board passes through the fixing holes and is connected to the electrical connection plate.
  • the fin according to the embodiment of the present invention includes a first part located inside the base and a second part exposed outside the base, and the ratio of the length of the second part to the length of the fin is 1: 4 to 8.
  • the heat exchange unit includes a base, the isolation pipe has a first part and a second part in the axial direction, and the first part and the second part have a length along the length direction of the LED lighting device. Equal lengths, the weight of the thermally conductive material in the first portion is set to be greater than the weight of the thermally conductive material in the second portion.
  • the heat exchange unit includes a base, the isolation pipe has a first part and a second part in the axial direction, and the first part and the second part have a length along the length direction of the LED lighting device. Equal lengths, the number of electronic components in the first section is greater than the number of electronic components in the second section.
  • At least a part of the first part in the embodiment of the present invention corresponds to the fin exposed on the outside of the base.
  • An embodiment of the present invention also provides an LED lighting device, characterized in that it includes:
  • the light-emitting unit is electrically connected to the power source
  • a heat exchange unit which includes fins, and the light-emitting unit is fixed on the heat exchange unit;
  • a second convection channel which dissipates heat from the fins in a convection manner
  • the light-emitting unit includes a first light source, and when the lamp cap is installed in a vertical direction, the first light source provides at least lateral lighting;
  • the length of the first convection channel and/or the second convection channel in the axial direction of the LED lighting device accounts for 50%, 55%, 60%, 65% of the total length of the LED lighting device % or more than 70%.
  • the light-emitting unit further includes a second light source, and the second light source and the first light source are configured to emit light in different directions.
  • the second light source when the lamp head is installed in a vertical direction, the second light source provides downward light output.
  • the fins have several groups, the fins are extended along the axial direction of the LED lighting device, and a plurality of the fins form an accommodation on the inner side of the LED lighting device in the radial direction space, at least a part of the power source is disposed in the accommodating space, and at least 80% of the power source in the length direction is located in the accommodating space.
  • the embodiment of the present invention further includes an isolation unit, the isolation unit includes an isolation pipe, the isolation pipe is fixed in the accommodating space, the power source is fixed in the isolation pipe, and the first pair of the isolation pipe is formed in the isolation pipe a flow channel to dissipate heat from the power supply in the isolation tube.
  • the power supply according to the embodiment of the present invention includes electronic components and a circuit board, the electronic components are fixed on the circuit board, the length of the circuit board accounts for more than 60% of the length of the heat exchange unit, and the circuit board completely within the space defined by the heat exchange unit.
  • the embodiment of the present invention further includes an optical unit, the light-emitting unit includes several groups of first light boards, the first light sources are disposed on the first light boards, the optical unit includes a first optical member, and a group of the first light boards The first optical member corresponds to one or two columns of the first light sources.
  • the light-emitting unit includes a second light board, the second light source is fixed on the second light board, and the second light board is attached to the end of the heat exchange unit away from the lamp cap.
  • the optical unit On the end face, the optical unit includes a second optical member, and the second optical member is covered outside the second light source.
  • the heat exchange unit includes a base, the base has an outer surface and a mounting surface, the mounting surface is located on the inner side of the outer surface in the radial direction of the LED lighting device, and the After the light-emitting unit is mounted on the mounting surface, its position does not exceed the position of the outer surface in the radial direction of the LED lighting device.
  • the central angle of the radially outer surface of the LED lighting device occupied by the outer surface of the embodiment of the present invention is smaller than the radially outer surface of the LED lighting device occupied by the outer surface of the first optical member. rounded corners.
  • the light of the first light source according to the embodiment of the present invention is projected on the first optical member within the range of its beam angle A, at least 60% or more of the width of the inner surface of the first optical member in the width direction has a width from the first optical member. Direct light within the range of the beam angle A of the first light source.
  • the embodiment of the present invention further includes an electrical connection unit, the electrical connection unit includes an electrical connection board, a circuit layer is arranged on the electrical connection board, and the electrical connection board is configured to be connected with at least two or more groups of the first lamp boards The connection is made, and the electrical connection board is electrically connected to the power supply.
  • the electrical connection plate is provided with a plurality of fixing holes, and the first lamp board passes through the fixing holes and is connected to the electrical connection plate.
  • the fin according to the embodiment of the present invention includes a first part located inside the base and a second part exposed outside the base, and the ratio of the length of the second part to the length of the fin is 1: 4 to 8.
  • the present invention has outstanding and beneficial technical effects: when the lamp head is installed in the vertical direction, the first light source can emit light to the side of the LED lighting device, and the second light source can emit light to the bottom of the LED lighting device In this way, the LED lighting equipment can emit more uniform light and prevent the formation of dark areas under the LED lighting equipment; the LED lighting equipment is equipped with a first convection channel to dissipate heat from the power supply in the isolation tube, which can improve heat dissipation efficiency and reduce the weight of the whole lamp ; The LED lighting equipment is configured with a second convection channel to dissipate heat from the fins, which can improve the heat dissipation efficiency; More than 50%, 55%, 60%, 65% or 70% of the total length to ensure that the first convection channel and/or the second convection channel have sufficient length to meet the chimney effect during convection; the circuit of the power supply
  • the length of the board accounts for more than 60% of the length of the heat exchange unit, which can make the circuit board have more
  • FIG. 1 is a schematic front view of an LED lighting device according to an embodiment of the present invention.
  • Fig. 2 is the top schematic view of Fig. 1;
  • Fig. 3 is the bottom view schematic diagram of Fig. 1;
  • FIG. 4 is a schematic cross-sectional view of an LED lighting device according to an embodiment of the present invention.
  • Fig. 5 is the enlarged view of A place in Fig. 4;
  • FIG. 6 is a perspective schematic diagram 1 of an LED lighting device according to an embodiment of the present invention.
  • FIG. 7 is a second schematic perspective view of an LED lighting device according to an embodiment of the present invention.
  • FIG. 8 is a schematic perspective view of the LED lighting device according to the embodiment of the present invention with the cover body and the dust-proof net removed;
  • Fig. 9 is an enlarged view at B in Fig. 8;
  • Fig. 10 is the three-dimensional schematic diagram of isolation pipe
  • FIG. 11 is a schematic front view of a cover body
  • Figure 12 is a schematic front view of the dust filter
  • FIG. 13 is a schematic three-dimensional structure diagram of an LED lighting device in an embodiment
  • Fig. 14 is the sectional structure schematic diagram of Fig. 13;
  • Figure 15 is an enlarged view at C in Figure 14;
  • FIG. 16 is a schematic structural diagram of FIG. 13 with the second optical member removed;
  • FIG. 17 is a schematic view of the structure of FIG. 16 with the lamp panel and the second light source removed;
  • FIG. 18 is a light intensity distribution diagram of an LED lighting device in an embodiment, showing a light intensity distribution diagram of a longitudinal section of the LED lighting device (a section along the axial direction of the LED lighting device);
  • FIG. 19 is a schematic three-dimensional structure diagram of FIG. 13 with the second optical member and the first cover removed;
  • FIG. 20 is a schematic perspective view of FIG. 19 in another direction
  • Fig. 21 is an enlarged view at D in Fig. 19;
  • 22 is a schematic perspective view of an LED lighting device in some embodiments.
  • Figure 23 is a schematic cross-sectional structure diagram of the LED lighting device in Figure 22;
  • Figure 24 is an enlarged view at E in Figure 23;
  • FIG. 25 is a perspective schematic diagram 1 of an LED lighting device in an embodiment
  • FIG. 26 is a second perspective view of an LED lighting device in an embodiment
  • FIG. 27 is a schematic cross-sectional view of an LED lighting device in an embodiment
  • Figure 28 is an enlarged view at F in Figure 27;
  • Fig. 29 is the first perspective view of the LED lighting device in Fig. 25 with the optical unit removed;
  • Figure 30 is an enlarged view at G in Figure 29;
  • FIG. 31 is a second perspective view of the LED lighting device in FIG. 25 with the optical unit removed.
  • FIG. 32 is a schematic diagram 1 of a three-dimensional structure of an LED lighting device in an embodiment.
  • FIG. 33 is a second schematic diagram of a three-dimensional structure of an LED lighting device in an embodiment.
  • FIG. 34 is an enlarged schematic view of J in FIG. 33 .
  • FIG. 35 is a schematic front view of the structure of an LED lighting device in an embodiment.
  • FIG. 36 is a schematic cross-sectional structure diagram of an LED lighting device in an embodiment.
  • FIG. 37 is an enlarged schematic view at H in FIG. 36 .
  • FIG. 38 is a schematic three-dimensional structural diagram of an LED lighting device in an embodiment without the second optical member.
  • FIG. 39 is an enlarged schematic view at I in FIG. 38 .
  • FIG. 40 is a schematic three-dimensional structural diagram of a heat exchange unit of an LED lighting device in an embodiment.
  • FIG. 41 is a schematic three-dimensional structure diagram of an isolation tube of an LED lighting device in an embodiment.
  • FIG. 42 is a schematic cross-sectional structure diagram of an LED lighting device in an embodiment.
  • an embodiment of the present invention provides an LED lighting device (without a fan).
  • the LED lighting equipment includes: a lamp holder 1 , a light-emitting unit 2 , a power source 3 and a heat exchange unit 4 .
  • the lamp cap 1 is configured to be connected to an external power supply unit (such as a lamp socket).
  • the heat exchange unit 4 is directly or indirectly connected to the lamp cap 1 .
  • the light-emitting unit 2 is electrically connected to the power source 3 , the light-emitting unit 2 is fixed on the heat exchange unit 4 , and the light-emitting unit 2 and the heat exchange unit 4 form a heat conduction path, and at least part of the heat generated by the light-emitting unit 2 during operation passes through the heat exchange unit 4 . heat dissipation.
  • the heat exchange unit 4 includes a base 41 , and the light-emitting unit 2 is disposed on the surface of the base 41 .
  • the cross-sectional shape of the base 41 is configured as a substantially annular structure or a tubular structure, which has an outer surface 411 .
  • the outer surface 411 of the base 41 constitutes the radially outermost side of the LED lighting device.
  • a mounting surface 412 is further configured on the base 41 , and the light-emitting unit 2 is configured on the mounting surface 412 .
  • the mounting surface 412 is located at the inner side of the outer surface 411 in the radial direction of the LED lighting device, and after the light-emitting unit 2 is mounted on the mounting surface 412, its position does not exceed the position of the outer surface 411 in the radial direction of the LED lighting device, Therefore, the outer surface 412 can protect the light-emitting unit 2 to a certain extent, so as to avoid damage to the light-emitting unit 2 due to collision.
  • the light-emitting unit 2 includes a first light board 21 and a first light source 22 , and the first light source 22 is disposed on the first light board 21 .
  • the first light source 22 in this embodiment may be an LED lamp bead in the prior art or other types of light-emitting devices.
  • the first lamp panel 21 is attached to the mounting surface 412 of the base 41 , so that the first lamp panel 21 can quickly conduct heat to the heat exchange unit 4 .
  • the first lamp board 21 is riveted to the heat exchange unit 4 .
  • the first lamp panel 21 and the heat exchange unit are connected by bolts.
  • the first lamp board 21 and the heat exchange unit 4 are welded and fixed.
  • the first lamp board 21 and the heat exchanging unit 4 are fixed by bonding, and the bonding material can be selected from a material with high thermal conductivity.
  • a fixing unit slot is provided on the base 41 for fixing the first light board 21 .
  • the first light board 21 is inserted into the slot (ie, the fixing unit). to cooperate.
  • the first lamp panels 21 in this embodiment are provided with several groups, and the several groups of the first lamp panels 21 are arranged along the circumferential direction of the heat exchange unit 4 . That is, the outer side of the heat exchanging unit 4 has several sets of mounting surfaces 412 in the circumferential direction for mounting a corresponding number of several sets of the first lamp panels 21 .
  • the first light source 22 provides at least lateral light emission.
  • the LED lighting device in this embodiment may further include an optical unit 5 configured to have one or more functions of light transmission, light diffusion, increase in transmittance, or light gathering.
  • the optical unit 5 can also be used to provide physical protection to the light-emitting unit 2 to prevent the light-emitting unit 2 from being damaged by external force.
  • the optical unit 5 includes a first optical member 51 , the first optical member 51 is covered outside the first light source 22 , and the light generated when the first light source 22 works passes through the first optical member 51 and is emitted from the LED lighting device.
  • a mounting groove 413 is formed on the mounting surface 412 due to the positional difference between the mounting surface 412 and the outer surface 411 .
  • at least a part of the first optical member 51 is accommodated in the installation groove 413 .
  • the first optical member 51 is completely accommodated in the mounting groove 413 , that is, the first optical member 51 does not exceed the range defined by the outer surface 411 in the radial direction of the LED lighting device.
  • the outer surface of the first optical member 51 and the outer surface 411 have a substantially smooth transition, so that the appearance integrity of the heat exchange unit 4 of the LED lighting device is stronger.
  • the radius of curvature of the outer surface of the first optical member 51 is substantially or completely the same as the radius of curvature of the outer surface 411 .
  • the outer surface 411 and the outer surface of the first optical member 51 together constitute a radially outer surface of the LED lighting device.
  • the thermal conductivity of the base 41 is greater than the thermal conductivity of the first optical member 51 .
  • the area of the radially outer surface of the LED lighting device occupied by the outer surface 411 is larger than the area of the radially outer surface of the LED lighting device occupied by the outer surface of the first optical member 51, so that the radial direction of the LED lighting device is
  • the outer surface has a more efficient heat dissipation efficiency. Further, the area of the outer surface 411 may account for more than 65% of the area of the outer surface in the radial direction of the LED lighting device.
  • the outer surface of the first optical member 51 is configured to transmit the light generated when the light-emitting unit 2 works, and to visually enhance the light-emitting effect of the radially outer surface of the LED lighting device, the outer surface of the first optical member 51
  • the area of the LED lighting device is configured to account for at least 15% or more of the area of the radially outer surface of the LED lighting device, so as to improve the lateral light-emitting area of the LED lighting device, that is, the area of the outer surface 411 accounts for the diameter of the LED lighting device.
  • the area of the surface to the outside does not exceed 85%.
  • the first optical member 51 extends beyond the range defined by the outer surface 411 (not shown) in the radial direction of the LED lighting device, that is, the first optical member 51 is The outer surface and the outer surface 411 are staggered. Specifically, the curvature radius of the outer surface of the first optical member 51 is smaller than the curvature radius of the outer surface 411 , and the outer surface 411 and the outer surface of the first optical member 51 together constitute the radially outer surface of the LED lighting device.
  • the mounting groove 413 forms a slot 414 at the edge of the mounting surface 412 (ie, a fixing unit fixing unit for fixing the first optical member 51 ).
  • the side of the first optical member 51 has a flange 511 , and the flange 511 is arranged on into the slot 414.
  • the first optical member 51 is inserted into the slot 414 along the axial direction of the heat exchange unit 4 .
  • the first optical member 51 may be further fixed, such as rivets, bolts, glue, snaps, etc., to fix the first optical member 51 to the heat exchange unit 4 .
  • the first optical member 51 in this embodiment has a light diffusing function.
  • the surface of the first optical member 51 is provided with a diffusion coating, so that it has a light diffusion function.
  • the first optical member 51 has a light-diffusing function due to its own material properties, for example, a plastic material with a light-diffusing function in the prior art is used.
  • the central angle occupied by the outer surface 411 occupied by the outer surface in the radial direction of the LED lighting device is smaller than that of the first optical member
  • the outer surface of 51 occupies the central angle occupied by the radially outer surface of the LED lighting device, so that the radially outer surface of the LED lighting device has a larger light emitting area to improve the light emitting effect.
  • the area of the light-emitting portion (the portion of the first optical member 51 exposed to the outside of the LED lighting device, or the unshielded portion) is larger than the area of the light-emitting portion (outer surface 411 ).
  • the central angle (or area) occupied by the outer surface of the outer surface 411 in the radial direction of the LED lighting device and the outer surface of the first optical member 51 occupied by the LED lighting device The ratio of the central angle (or area) occupied by the radially outer surface is not less than 1:2.
  • the heat dissipation performance may be reduced. Therefore, a number of heat dissipation strips 4111 can be arranged on the outer surface 411 to increase the surface area and improve the heat dissipation efficiency (with larger surface area for external radiation), and the disposition of the heat dissipation strips 411 can also play a role of anti-slip.
  • the heat dissipation bars 4111 may extend along the axial direction of the heat exchange unit 4 .
  • a distance is set between adjacent heat dissipation strips 4111 , and the ratio of the size of the distance to the thickness of the heat dissipation strips 4111 is greater than 0.8.
  • the height dimension of the heat dissipation strip 4111 is set to not exceed the thickness dimension of the heat dissipation strip 4111 (or the height dimension of the heat dissipation strip 4111 is set to be less than or equal to the thickness dimension of the heat dissipation strip 4111 ), so as to prevent the heat radiated from the adjacent heat dissipation strips 4111 from affecting each other. (The heat dissipation strips 4111 radiate heat to the adjacent heat dissipation strips 4111).
  • the inner surface of the base 41 opposite to the outer surface 411 may also be provided with heat dissipation strips 4111 . That is, the heat dissipation bars 4111 may be disposed on the outer surface and/or the inner surface of the outer surface 411 .
  • the first light source 22 on the first light board 21 can be set as There are two rows of first light sources 22 distributed along the circumference of the lamp.
  • the number of fins 42 of the heat exchange unit 4 can be set to be the same as the number of the first lamp panels 21 , and the fins 42 are arranged in a one-to-one correspondence with the first lamp panels 21 (the extension direction of the fins 42 corresponds to the back of the lamp panel 21 ). the middle area), thereby reducing the heat conduction path.
  • a plurality of heat dissipation fins 421 may also be disposed on the surface of the fins 42 to increase the overall heat dissipation area of the fins 42 .
  • the first light source 22 may include more than two groups of LED lamp beads of different types (eg, color temperature, luminous flux, size, etc.), so as to provide a basis for color adjustment and dimming of LED lighting equipment.
  • the light exit surface of the first light source 22 maintains a distance from the inner surface of the first optical member 51 , and the distance is, for example, at least greater than 2 mm.
  • the first light source 22 has a beam angle A (the beam angle of the LED lamp bead is defined as the point where the light intensity reaches 50% of the normal light intensity, and the angle formed by the two sides is the beam angle).
  • the first light source 22 When the light is projected to the first optical member 51 within the range of the beam angle A, at least 60% or more of the width in the width direction of the inner surface of the first optical member 51 has direct light within the range of the beam angle A from the first light source 22 .
  • the beam angle A of the first light source 22 after the beam angle A of the first light source 22 is projected onto the first optical member 51 , it covers at least 60% of the width direction of the first optical member 51 .
  • the light emitted from the first light source 22 can be projected to the first optical member 51 as uniformly as possible, preventing the beam angle corresponding to only a local area of the first optical member 51 and causing local strong light, so that the first optical member 51 Visual effects of poor surface yield, such as increased visual graininess.
  • the beam angles A of the two groups of the first light sources 22 at least partially overlap after being projected onto the first optical member 51 .
  • the above criteria can also be met, so as to reduce the visual effects of the first optical members 51 , such as graininess.
  • the LED lighting device may further include an electrical connection unit, and the electrical connection unit is used to electrically connect the plurality of groups of the first light panels 21 .
  • the electrical connection unit includes an electrical connection board 201 on which a circuit layer is arranged, and the electrical connection board 201 is configured to be connected (structurally and/or electrically connected) to at least two or more first light boards 21. ).
  • the electrical connection board 201 is electrically connected to the power supply 3 . In this way, the connection between several groups of the first lamp boards 21 and the power source 3 can be simplified. In one embodiment, several groups of the first light boards 21 are all connected to the electrical connection board 201 .
  • the electrical connection board 201 is configured in a ring shape, and a circuit layer is arranged on the electrical connection board 201 .
  • a circuit layer is arranged on the electrical connection board 201 .
  • at least one end of the fins 42 in the length direction of the heat exchange unit 4 protrudes from the base 41 , that is, a part of the fins 42 is exposed to the base 41 in the length direction of the heat exchange unit 4 . outside.
  • the electrical connection plate 201 is sleeved on the portion of the fin 42 exposed outside the base 41 . At this time, the electrical connection plate 201 corresponds to one end of the first optical member 22 and forms a limit for one end of the first optical member 22 .
  • the electrical connection board 201 is provided with a plurality of fixing holes 2011 , and the first lamp board 21 passes through the fixing holes 2011 and is connected to the electrical connection board 201 .
  • the first lamp board 21 passes through the fixing hole 2011, it is directly fixed to the electrical connection board 201 by welding.
  • the first lamp board 21 passes through the fixing hole 2011 , it is connected to the electrical connection board 201 through wires.
  • the first light board 21 has a first part attached to the base 41 and a second part exposed outside the base 41 , and the second part is set in the fixing hole 2011 , so that the fixing hole can pass through the fixing hole.
  • the electrical connection board 201 uses a PCB (ie, a printed circuit board), while the first light board 21 uses an aluminum substrate.
  • the electrical connection board 201 and the first light board 21 have different thermal expansion coefficients. Since the second part of the first light board 21 is not fixed on the base 41 , when the electrical connection board 201 is heated and expanded, it can move synchronously with the second part of the first light board 21 to prevent the electrical connection between the two parts. The connection point is disconnected.
  • the LED lighting device may further include a first cover body 202 , the first cover body 202 is covered on the electrical connection board 201 to prevent the electrical connection board 201 and the first light board 21 from being directly exposed.
  • the first cover 202 is disposed at one end of the first lamp board 21 and/or the first optical member 22 .
  • the LED lighting device may further include a second cover body 203 , the second cover body 203 is fixed on the heat exchange unit 4 and located at the other end of the first lamp board 21 opposite to the electrical connection board 201 .
  • the second cover body 203 is disposed at the other end of the first lamp board 21 and/or the first optical member 22 opposite to the first cover body 202 . In this way, the positions of the first lamp board 21 and/or the first optical member 22 can be defined by the first cover body 202 and the first cover body 203 .
  • the light emitting unit 2 may further include a second light board 23 and a second light source 24 , and the second light source 24 is fixed on the second light board 23 .
  • the second light source 24 in this embodiment may be an LED lamp bead in the prior art.
  • the second lamp board 23 is attached to the end face of the end of the heat exchange unit 4 away from the lamp cap 1 , so that the second lamp board 23 can quickly conduct heat to the heat exchange unit 4 .
  • the second lamp board 23 is riveted to the heat exchange unit 4 .
  • the second lamp panel 23 and the heat exchange unit are connected by bolts.
  • the second lamp board 23 and the heat exchange unit 4 are welded and fixed. In some embodiments, the second lamp board 23 and the heat exchange unit 4 are fixed by adhesive with high thermal conductivity.
  • the second light panels 23 in this embodiment are provided with one or more groups. After the second light source 24 is disposed on the second lamp board 23 , the second light source 24 is generally distributed in a ring shape. In this embodiment, when the lamp head 1 is installed vertically, the second light source 24 provides downward light emission.
  • the first light source 22 and the second light source 24 are arranged to emit light in different directions.
  • the optical unit 5 may further include a second optical member 52 , and the second optical member 52 is covered outside the second light source 24 .
  • the second optical member 52 in this embodiment has a light diffusing function.
  • the surface of the second optical member 52 is provided with a diffusion coating, so that it has a light diffusion function.
  • the second optical member 52 has a light-diffusing function due to its own material properties, for example, a plastic material with a light-diffusing function in the prior art is used.
  • the second lamp panel 23 is disposed in the middle area of the end surface of the heat exchange unit 4 , and the second lamp panel 23 is only directly or indirectly connected to the fins 42 . That is to say, in the axial projection direction of the heat exchange unit 4 , the second lamp board 23 only overlaps with the fins 42 and does not overlap with the base 41 .
  • the LED lighting device in this embodiment may further include a heat conducting portion 204 to rapidly conduct the heat conducted to the second lamp board 23 to the fins 42 when the second light source 24 is operating.
  • the heat conducting portion 201 in this embodiment has a cup shape and is fixed to the fins 42 by bolts.
  • the second light board 23 can be attached to the heat-conducting portion 204, and the two can be connected by means of bolts, glue, or buckles.
  • the second optical member 52 is covered on the second lamp board 23, as long as the second lamp board 23 is completely covered. Further, the second optical member 52 covers the heat-conducting portion 204 to prevent the heat-conducting portion 204 from being exposed and prevent the outside from directly contacting the heat-conducting portion 204 .
  • the ratio of the light intensity value of any beam angle of the downward light to the light intensity value of any beam angle of the lateral light is set to be 1:0.6 to 1.5. between.
  • the ratio of the light intensity value of any beam angle of the downwardly emitting light to the light intensity value of any beam angle of the sidewardly emitting light is set to be between 1:0.8-1.5.
  • the ratio of the light intensity value of any beam angle of downwardly emitting light to the light intensity value of any beam angle of sidewardly emitting light is set to be between 1:1 and 1.4.
  • the light intensity value of any beam angle of downward emitting light refers to the light intensity value in the light emitting range of -40 to 40 in Fig. 18, and the light intensity value of any beam angle of sideward emitting light refers to It is the light intensity value in the light output range of -40 ⁇ -100 and 40 ⁇ 100 in the attached drawing.
  • the arrangement density of the second light sources 24 may be set to be greater than the arrangement density of the first light sources 21 .
  • the ratio of the arrangement density of the first light sources 21 at the end of the LED lighting device to the arrangement density of the second light sources 24 at the side of the LED lighting device is 1:0.8 ⁇ 1.2. In one embodiment, the arrangement density of the first light sources 21 at the end of the LED lighting device (the number of the first light sources 21 arranged per unit area) and the arrangement density of the second light sources 24 at the side of the LED lighting device (per unit area) The ratio of the number of the second light sources 22) is 1:0.9 ⁇ 1.1. In one embodiment, the ratio of the arrangement density of the first light sources 21 at the end of the LED lighting device to the arrangement density of the second light sources 24 at the side of the LED lighting device is 1:0.95 ⁇ 1.05.
  • the setting density of the second light source 24 at the end of the LED lighting device is the end surface area of the end of the LED lighting device where the second light source 24 is arranged (the end surface outline is a circle or a roughly circular shape, and its diameter is the size of the LED light source 24).
  • the density of the first light source 21 on the side of the LED lighting device is the area of the side where the first light source 21 is arranged on the LED lighting device (the side is annular, and its diameter is the diameter of the LED lighting device in the lateral direction, while the length is the length of the base 41 ) divided by the number of the first light sources 21 .
  • a plurality of fins 42 are provided on the inner surface of the heat exchange unit 4 in this embodiment.
  • the fins 42 extend along the axial direction of the LED lighting device, and a plurality of the fins 42 form an accommodating space on the inner side of the LED lighting device in the radial direction, and at least a part of the power source 3 is arranged in the accommodating space within the space.
  • at least 80% of the length direction of the power source 3 is located in the accommodating space to improve space utilization.
  • the power supply 3 is completely arranged in the accommodating space, so that the power supply 3 does not additionally occupy the length dimension of the LED lighting device (the dimension in the axial direction of the LED lighting device), so that the size of the whole lamp is more compact.
  • the length direction of the power source 3 (in the axial direction of the LED lighting device) is all located in the accommodating space.
  • the power source 3 can be directly arranged in the accommodating space, but the heat exchange unit 4 and the power source 3 must be electrically isolated.
  • an isolation unit can also be configured to separate the power supply 3 from the fins 42 to achieve thermal isolation or electrical isolation.
  • the isolation unit includes an isolation tube 6 , the isolation tube 6 is fixed in the accommodating space, and the power supply 3 is fixed in the isolation tube 6 to isolate the power supply 3 from the heat exchange unit 4 .
  • the spacer pipe 6 is extended along the axial direction of the LED lighting device, and the spacer pipe 6 may be arranged coaxially or substantially coaxially with the heat exchange unit 4 .
  • the isolation tube 6 can be configured to have insulation and/or heat insulation functions, for example, plastic, plastic, rubber, plastic steel and other materials that meet the above functions can be selected, so as to prevent the heat generated when the light-emitting unit 2 is working and the power source 3 is working.
  • the isolation tube 6 can be connected to the lamp cap 1 to achieve fixing, and the isolation tube 6 can be fixed to the lamp cap 1 by means of bolts, snaps, or bonding.
  • the isolation pipe 6 can be fixed with the heat exchange unit 4, and the isolation pipe 6 can be fixed with the heat exchange unit 4 by means of bolts, snaps, or bonding.
  • the lamp cap 1 and the heat exchange unit 4 are fixed.
  • the fins 42 of the heat exchange unit 4 are provided with fixing holes, while the lamp holder 1 is provided with holes, and the bolts pass through the holes to realize connection with the fixing holes on the fins.
  • the LED lighting device is configured with a first convection channel 7 , and the first convection channel 7 is formed in the isolation tube 6 to pass the convection.
  • the power supply 3 in the isolation tube 6 is dissipated.
  • the first convection channel 7 forms a first opening 71 at one axial end of the isolation tube 6
  • the first convection channel 7 forms a second opening 72 at the other axial end of the isolation tube 6 .
  • the LED lighting device is configured with a second convection channel 8 , the second convection channel 8 is formed between the fins 42 , and the second convection channel 8
  • the channel 8 dissipates heat to the fins 42 by means of convection (the heat generated when the light emitting unit 2 works will be conducted to the fins 42 and dissipated by the fins 42 ).
  • One end of the second convection channel 8 between the fins forms a third opening 81, and the other end of the second convection channel 8 between the fins (the other end in the axial direction of the LED lighting device) one end) a fourth opening 82 is formed.
  • the surfaces of the fins 42 all correspond to the second convection channels 8 . That is to say, the surfaces of the fins 42 constitute the inner wall of the second convection channel 8 , so that the exchange efficiency between the convective air and the fins 42 is higher.
  • the power source 3 and the light-emitting unit 2 use different convection channels for heat dissipation, so as to prevent the heat of the two from interacting with each other.
  • the length of the first convection channel 7 and/or the second convection channel 8 in the axial direction of the LED lighting device accounts for 50%, 55%, 60%, 65% of the total length of the LED lighting device or more than 70%, to ensure that the first convection channel 7 and/or the second convection channel 8 have a sufficient length to satisfy the chimney effect during convection.
  • the first opening 71 and the third opening 81 are simultaneously located at one end of the heat exchange unit 4 or the isolation tube 6 that is relatively far away from the lamp cap 1 .
  • the first opening 71 and the third opening 81 are one end of the intake air during convection.
  • the LED lighting device in this embodiment is configured with a cover 9 , and the cover 9 covers the first opening 71 and the third opening 81 .
  • the cover 9 may be a separate component.
  • the cover body 9 and the second optical member 52 may be formed as an integral member.
  • the cover body 9 in this embodiment has a first portion 91 , and the first portion 91 corresponds to the first opening 71 .
  • the first air intake hole 911 is arranged in the first portion 91 .
  • the first air intake holes 911 may have one or more groups.
  • the cross-sectional area of the first air inlet hole 911 accounts for at least 30% of the area of one side of the first part 91 and does not exceed 80%, so as to ensure that enough air can enter through the first air inlet hole 911 for Convection, in turn, ensures that the first part 91 can have a sufficient supporting structure to ensure the structural strength of the first part 91 .
  • the maximum inscribed circle diameter of the first air intake hole 911 is configured to be less than 2 mm and greater than 1 mm, so as to prevent the too small first air intake hole 911 from hindering the air intake, and to prevent insects from entering and affecting the power supply. 3 Performance.
  • a dust filter 93 is arranged on one side of the first part 91 in this embodiment, and the dust filter 93 has several holes for air intake.
  • the opening area of a single hole is smaller than that of a single first air intake hole 911 .
  • the dustproof net 93 can be fixed at the first opening 71 of the isolation pipe 6 , or the dustproof net 93 can be fixed on the first part 91 and correspond to the first opening 71 .
  • the cover body 9 in this embodiment has a second portion 92 , and the second portion 92 corresponds to the third opening 81 .
  • the third opening 81 is projected to the plane where the second portion 92 is located, it falls completely or at least 65% within the range of the second portion 92 .
  • the second air intake hole 921 is provided in the second portion 92 .
  • the second air intake holes 921 may have one or more groups.
  • the cross-sectional area of the second air intake hole 921 accounts for at least 30% of the area of one side of the second part 92 and not more than 80%, so as to ensure that enough air can enter through the second air intake hole 921 Carrying out convection also ensures that the second part 92 can have a sufficient supporting structure to ensure the structural strength of the first part 92 .
  • the maximum inscribed circle diameter of the second air intake hole 921 is configured to be larger than the maximum diameter of the first air intake hole 911 The diameter of the inscribed circle is used to improve the air intake of the second air intake hole 921 and improve the heat dissipation efficiency of the second convection channel 8 .
  • the positions of the first opening 71 and the second opening 81 are correspondingly changed.
  • the position of the end of the isolation pipe 6 is changed. Specifically, the end of the isolation pipe 6 is kept at a distance from the end of the LED lighting device (the heat exchange unit 4 ).
  • the convective air enters the first opening 71 after entering from the second opening 81 .
  • the second opening 81 is an unshielded portion of the end surface of the heat exchange unit 4 (not covered by the second optical member 52 and the first cover 202 ).
  • both the first convection channel 7 and the second convection channel 8 take in air from the second opening 81 . Since the position of the end portion of the isolation pipe 6 in this embodiment is changed, at this time, the cover body 9 can be provided on the pipe portion of the isolation pipe 6 . In addition, the cover body 9 can be used in conjunction with the dustproof net.
  • the power supply 3 in this embodiment includes an electronic component 31 and a circuit board 32 , and the electronic component 31 is fixed on the circuit board 32 .
  • the length of the circuit board 32 in this embodiment accounts for more than 60% of the length of the heat exchange unit 4 (the dimension in the axial direction of the LED lighting device), and the circuit board 32 is completely located in the space defined by the heat exchange unit 4 . Further, the length of the circuit board 32 accounts for more than 70% of the length of the heat exchange unit 4 (the dimension of the LED lighting device in the axial direction). Further, the length of the circuit board 32 accounts for more than 80% of the length of the heat exchange unit 4 (the dimension in the axial direction of the LED lighting device).
  • the circuit board 32 can be provided with more dimensions for disposing the electronic components 31, and the heating elements (eg, resistors, transformers, inductors, ICs) in the electronic components can be provided with larger intervals.
  • the heating elements eg, resistors, transformers, inductors, ICs
  • the circuit board 32 can be provided with more dimensions for disposing the electronic components 31, and the heating elements (eg, resistors, transformers, inductors, ICs) in the electronic components can be provided with larger intervals.
  • the heating elements eg, resistors, transformers, inductors, ICs
  • the LED lighting equipment includes: a lamp holder 1 , a light-emitting unit 2 , a power source 3 and a heat exchange unit 4 .
  • the lamp cap 1 is configured to be connected to an external power supply unit (such as a lamp socket).
  • the heat exchange unit 4 is directly or indirectly connected to the lamp cap 1 .
  • the light-emitting unit 2 is electrically connected to the power source 3 , the light-emitting unit 2 is fixed on the heat exchange unit 4 , and the light-emitting unit 2 and the heat exchange unit 4 form a heat conduction path.
  • the heat exchange unit 4 includes a base 41 and fins 42 , and the light-emitting unit 2 is disposed on the surface of the base 41 .
  • the cross-section of the base 41 is configured as a substantially annular structure or a tubular structure.
  • the fins 42 extend along the inner side of the radial direction of the base 41 , and the fins 42 are provided in multiple groups.
  • the light-emitting unit 2 includes a first light board 21 and a first light source 22 .
  • the first light source 22 is disposed on the first light board 21
  • the first light board 21 is disposed on the outer surface of the base 41 .
  • the first light board 21 is attached to the outer surface of the base 41 , so that the first light board 21 can quickly conduct heat to the base 41 .
  • the first light board 21 is extended along the axial direction of the LED lighting device in its length direction.
  • the first lamp board 21 can be fixed to the base 41 in substantially the same manner as in the foregoing embodiments (eg, riveting, bolting, gluing, or connecting through slots, etc.).
  • the first lamp panels 21 in this embodiment are provided with several groups, and the several groups of the first lamp panels 21 are arranged along the circumferential direction of the heat exchange unit 4 .
  • the first light source 22 provides at least lateral light emission.
  • At least a part of the fins 42 on the base 41 in this embodiment directly corresponds to the back surface of the first lamp panel 21 .
  • the fins 42 corresponding to the first lamp panel 21 are projected onto the plane where the first lamp panel 21 is located, they at least partially overlap with the first lamp panel 21 .
  • the fins 42 corresponding to the first lamp panel 21 are projected onto the plane where the first lamp panel 21 is located, they correspond to the middle area of the first lamp panel 21 . In this way, the heat conduction path from the first lamp board 21 to the fins 42 can be reduced, and the heat dissipation efficiency can be improved.
  • the number of the fins 42 may be an integer multiple of the number of the first lamp panels 21 .
  • Each of the first light panels 21 has at least one fin 42 corresponding thereto.
  • the fins 42 in this embodiment include a first part 4201 located inside the base 41 and a second part 4202 exposed outside the base 41 , wherein the second part 4202 exposed outside the base 41 is in the radial direction of the LED lighting device The direction is not blocked by the base 41 .
  • the first part 4201 and the second part 4202 of the fin 42 extend in the same direction, the first part 4201 is completely located inside the base 41 in the axial direction of the base 41 , and the second part 4202 is located in the base 41 .
  • the axial direction is then outside the base 41 .
  • the second part 4202 can directly radiate heat into the air outside the LED lighting equipment, and exposing the second part 4202 to the outside of the base 41 can improve the overall heat dissipation performance of the heat exchange unit 4, and thus, can reduce The desired external dimensions and/or weight of the heat exchange unit 4 .
  • the weight of the heat exchange unit 4 does not exceed 350g, and the LED lighting device can generate a luminous flux of more than 7500 lumens.
  • the weight of the heat exchange unit 4 does not exceed 350g, the heat generated when the luminous flux of 7500 lumens or more is generated can be dissipated. Further, the weight of the heat exchange unit 4 is not more than 320g (greater than 250g), and the LED lighting equipment can generate a luminous flux of more than 8000 lumens (not more than 9000 lumens). On the other hand, the heat exchange unit 4 can dissipate the heat generated by producing a luminous flux of at least 20, 22, 25 or 26 lumens per gram of weight.
  • the ratio of the length of the second portion 4202 to the length of the fins 42 is 1:4 ⁇ 8. In one embodiment, the ratio of the length of the second portion 4202 to the length of the fins 42 is 1:4 ⁇ 6. In one embodiment, the ratio of the length of the second portion 4201 to the length of the fins 42 is 1:4.5 ⁇ 5.5.
  • the above arrangement can make the second part 4202 have a sufficient length for heat dissipation, and at the same time ensure the length of the first lamp board 21 so that it has a longer light-emitting area.
  • the LED lighting device in this embodiment further includes an optical unit 5 configured to have one or more functions of light transmission, light diffusion, increase in transmittance, or light gathering.
  • the light-emitting unit 2 may further include a second light board 23 and a second light source 24 , and the second light source 24 is disposed on the second light board 23 .
  • the second lamp board 23 is disposed at the end of the heat exchange unit 4 and forms a heat conduction path with the heat exchange unit 4 , so that the heat generated when the second light source 24 operates can be quickly conducted to the heat exchange unit 4 .
  • the second lamp board 23 can simultaneously contact at least part of the end of the base 41 and at least part of the end of the fin 42 .
  • the second light panel 23 may be arranged in a ring shape.
  • the second lamp board 23 may be fixed to the heat exchange unit 4 by means of riveting, bolting, gluing, or the like.
  • the second lamp board 23 in this embodiment is connected to the heat exchange unit 4 by means of riveting.
  • a riveting hole or a riveting groove is formed on the base 41 , and the rivet is fixed into the riveting hole or the riveting groove after passing through the second lamp board 23 .
  • the first lamp board 21 and the second lamp board 24 are connected by direct welding, and the electrical connection is realized. Therefore, the connection can be connected without arranging connecting wires, the structure is simpler, and the breaking of the connecting wires is avoided. or risk of solder joints falling off.
  • the second lamp board 24 is provided with a hole or a positioning groove 231. After the end of the first light board 21 is inserted into the hole or positioning groove 231 for positioning, the two are directly connected by welding.
  • a positioning groove 231 is provided on the outer edge of the second light board 24 , and the first light board 21 is inserted into the positioning groove 231 for cooperation.
  • the aforementioned holes or positioning grooves may not be provided, and the end of the first lamp panel 21 is attached to the outer edge of the second lamp panel 24 and then connected by welding.
  • the optical unit 5 may include a first optical member 51 , and the first optical member 51 is covered outside the first light source 22 .
  • the first optical members 51 are provided in multiple groups and correspond to the first lamp panels 21 .
  • the structure and installation method of the first optical member 51 can be substantially the same as the foregoing embodiments.
  • the optical unit 5 may further include a second optical member 52 , and the second optical member 52 is covered outside the second light source 24 (the second light panel 23 ).
  • the second optical member 52 in this embodiment may have a light diffusing function.
  • the surface of the second optical member 52 is provided with a diffusion coating, so that it has a light diffusion function.
  • the second optical member 52 has a light-diffusing function due to its own material properties, for example, a plastic material with a light-diffusing function in the prior art is used.
  • the basic structure of the second optical member 52 in this embodiment can also be the same as the previous embodiment.
  • the base 41 includes a first unit 4101 and a second unit 4102 .
  • the first units 4101 and the second units 4102 are alternately distributed in the circumferential direction of the base 41 .
  • the first light board 21 is disposed on the first unit 4101, the first optical member 51 is covered outside the first unit 4101, and the outer surface of the second unit 4102 is exposed to the outside of the LED lighting equipment, so that the It can directly dissipate heat to the outside (radiate heat to the outside air).
  • the first unit 4101 is provided with a first slot 41011, and the first light board 21 is inserted into the first slot 41011 for positioning and fixing.
  • At least one of the fins 42 is disposed on the inner surface of the first unit 4101 for heat dissipation.
  • the second unit 4102 is provided with a second slot 41021, and the first optical member 51 is inserted into the second slot 41021 for positioning and fixing.
  • the outer surface of the second unit 4102 is concave or convex to increase the heat dissipation area of the outer surface.
  • At least one of the fins 42 is disposed on the inner surface of the second unit 4101 for heat dissipation.
  • a riveting hole or riveting groove on the base 41 is formed between the first unit 4101 and the second unit 4102 .
  • the isolation unit includes an isolation tube 6 , the isolation tube 6 is extended along the axial direction of the LED lighting device, and the power supply is arranged inside the isolation tube 6 .
  • the spacer tube 6 can be connected to the lamp cap 1 .
  • the isolation pipe 6 can also be connected to the heat exchange unit 4 .
  • the power supply in the isolation tube 6 is dissipated by natural convection (no active heat dissipation system design, such as a fan).
  • a part of the isolation tube 6 is located inside the first part 4201 of the fin 42 , and a part is located inside the second part 4202 of the fin 42 .
  • the isolation tube 6 can be configured to have insulation and/or heat insulation functions, so as to prevent the heat generated when the light emitting unit 2 operates and the heat generated during the operation of the power supply from interacting, and achieve electrical isolation of the power supply and the heat exchange unit 4 .
  • the isolation tube 6 can be made of insulating material, such as plastic.
  • the second portion 4202 of the fin 42 in this embodiment is fastened to the isolation pipe 6 to connect the heat exchange unit 4 to the isolation pipe 6 .
  • the isolation tube 6 is connected with the lamp cap 1 .
  • the LED lighting device is also configured with a first convection channel 7 , and the first convection channel 7 is formed in the isolation tube 6 to The power supply in the isolation tube 6 dissipates heat.
  • the first convection channel 7 forms a first opening 71 at one axial end of the isolation tube 6
  • the first convection channel 7 forms a second opening 72 at the other axial end of the isolation tube 6 .
  • the LED lighting equipment may not be provided with the first convection channel (in this case, the first opening 71 and the first air intake hole 911 on the first part 91 of the cover 9 are not required), but the heat conduction channel is used. way to dissipate heat from the power supply 3 .
  • the power source 3 is disposed inside the isolation tube 6 , the isolation tube 6 is filled with a thermally conductive material 601 to cover the power supply 3 , and the power supply 3 forms a thermal conduction path with the isolation tube 6 through the thermally conductive material 601 .
  • the thermally conductive material 601 may be thermally conductive glue.
  • the power source 3 is covered by the thermally conductive material 601 , so that the power source 3 can be waterproof and moisture-proof.
  • the power source 3 includes an electronic component 31 and a circuit board 32 , and the electronic component 31 is fixed on the circuit board 32 .
  • the electronic components 31 include a heating element 311, which is an electronic component that generates relatively high heat when the LED lighting equipment works, such as a resistor, a transformer, an inductor, an IC, a transistor, and the like.
  • the surface area of the heating element 311 exposed to the outside is at least The thermally conductive material 601 is 85% attached.
  • At least 90% of the surface area of the heating element 311 exposed to the outside is attached to the thermally conductive material 601 .
  • at least 95% of the surface area of the heating element 311 exposed to the outside is attached to the thermally conductive material 601 .
  • at least 85%, 90% or 95% of the exposed surface area of any heating element 311 (excluding the contact surface when installed with the power board) is attached to the thermally conductive material 305 . In this way, heat flow bottlenecks on the heat conduction path can be avoided as much as possible.
  • the isolation tube 6 has a first part 61 and a second part 62 in the axial direction thereof, and the first part 61 and the second part 62 have equal lengths along the length direction of the LED lighting device. In some embodiments, the sum of the lengths of the first portion 61 and the second portion 62 is equal to the length of the spacer tube 6 .
  • the weight of the thermally conductive material 601 in the first portion 61 is set to be greater than the weight of the thermally conductive material 601 in the second portion 62 . At least a portion of the first portion 61 corresponds to the fin 42 exposed to the outside of the base 41 (ie, the second portion 4202 of the fin 42 ).
  • the portion of the fins 42 exposed to the outside of the base 41 has higher heat dissipation efficiency. Therefore, the portion of the isolation pipe 6 that directly corresponds to the fins 42 exposed to the outside of the base 41 can have higher heat dissipation efficiency. Therefore, by arranging more thermally conductive materials and or electronic components 31 in the first part 61, the electronic components 31 in the first part 61 can have a better heat dissipation effect. In other words, more electronic components 31 or thermally conductive materials may be disposed in the first portion 61 to more efficiently utilize the heat dissipation effect of the fins 42 exposed outside the base 41 .
  • the first portion 61 of the isolation tube 6 corresponds to the fins 42 exposed to the outside of the base 41 (ie, the second portion 4202 of the fins 42 ). Therefore, more Many electronic components 31 . That is, the number of electronic components 31 in the first part 61 is greater than the number of electronic components 31 in the second part 62 . In some embodiments, the number of heating elements 311 in the first portion 61 is greater than the number of heating elements 311 in the second portion 62 .
  • the first portion 61 of the isolation tube 6 corresponds to the fins 42 exposed to the outside of the base 41 (ie, the second portion 4202 of the fins 42 ), so that the Electronic components 31 generate more heat. That is, the total heat-generating surface area of the electronic components 31 in the first portion 61 is greater than the total heat-generating surface area of the electronic components 31 in the second portion 62 . In some embodiments, the total surface area of the heating elements 311 in the first portion 61 is greater than the total surface area of the heating elements 311 in the second portion 62 .
  • a thermally conductive material 101 is provided inside the lamp cap 1 in this embodiment.
  • the thermally conductive material 101 inside the lamp cap 1 is integrated with the thermally conductive material 601 in the isolation tube 6 to increase the stability of the connection between the isolation tube 6 and the lamp cap 1 .
  • by arranging the thermally conductive material 101 inside the lamp cap 1 at least a part of the heat generated when the power source 3 operates can be dissipated through the lamp cap 1 to the outside.
  • the LED lighting device is also configured with a second convection channel 8, the second convection channel 8 is formed between the fins 42, and the second convection channel 8 is convective
  • the fins 42 (the heat generated when the light emitting unit 2 is working will be conducted to the fins 42 and dissipated by the fins 42 ) for heat dissipation.
  • One end of the second convection channel 8 between the fins forms a third opening 81, and the other end of the second convection channel 8 between the fins (the other end in the axial direction of the LED lighting device) one end) a fourth opening 82 is formed.
  • the power supply 3 and the light-emitting unit 2 use different convection channels or different heat dissipation methods for heat dissipation, and the isolation pipe 6 (the isolation pipe 6 is made of a material with a low thermal conductivity, such as plastic) can prevent the The heat of the two affects each other.
  • the length of the first convection channel 7 and/or the second convection channel 8 in the axial direction of the LED lighting device accounts for 50%, 55%, 60%, 65% of the total length of the LED lighting device or more than 70%, to ensure that the first convection channel 7 and/or the second convection channel 8 have a sufficient length to satisfy the chimney effect during convection.
  • the first opening 71 and the third opening 81 are simultaneously located at one end of the heat exchange unit 4 or the isolation tube 6 that is relatively far away from the lamp cap 1 .
  • the first opening 71 and the third opening 81 are one end of the intake air during convection.
  • the LED lighting device in this embodiment is configured with a cover body 9 , and the cover body 9 covers the first opening 71 and the third opening 81 .
  • the cover 9 may be a separate component.
  • the cover body 9 and the second optical member 52 may be formed as an integral member.
  • the cover body 9 in this embodiment has a first portion 91 , and the first portion 91 corresponds to the first opening 71 .
  • the first air intake hole 911 is arranged in the first portion 91 .
  • the first air intake holes 911 may have one or more groups.
  • the cross-sectional area of the first air inlet hole 911 accounts for at least 30% of the area of one side of the first part 91 and does not exceed 80%, so as to ensure that enough air can enter through the first air inlet hole 911 for Convection, in turn, ensures that the first part 91 can have a sufficient supporting structure to ensure the structural strength of the first part 91 .
  • the maximum inscribed circle diameter of the first air intake hole 911 is configured to be less than 2 mm and greater than 1 mm, so as to prevent the too small first air intake hole 911 from hindering the air intake, and to prevent insects from entering and affecting the power supply. 3 Performance.
  • the cover body 9 in this embodiment has a second portion 92 corresponding to the third opening 81 .
  • the second air intake hole 921 is provided in the second portion 92 .
  • the second air intake holes 921 may have one or more groups.
  • the cross-sectional area of the second air intake hole 921 accounts for at least 30% of the area of one side of the second part 92 and not more than 80%, so as to ensure that enough air can enter through the second air intake hole 921 Carrying out convection also ensures that the second part 92 can have a sufficient supporting structure to ensure the structural strength of the first part 92 .
  • the maximum inscribed circle diameter of the second air intake hole 921 is configured to be larger than the maximum diameter of the first air intake hole 911 The diameter of the inscribed circle is used to improve the air intake of the second air intake hole 921 and improve the heat dissipation efficiency of the second convection channel 8 .
  • the LED lighting equipment includes: a lamp holder 1 , a light-emitting unit 2 , a power supply and a heat exchange unit 4 .
  • the lamp cap 1 is configured to be connected to an external power supply unit (such as a lamp socket).
  • the heat exchange unit 4 is directly or indirectly connected to the lamp cap 1 .
  • the light-emitting unit 2 is electrically connected to the power source 3 , the light-emitting unit 2 is fixed on the heat exchange unit 4 , and the light-emitting unit 2 and the heat exchange unit 4 form a heat conduction path.
  • the heat exchange unit 4 includes a first heat dissipation unit 401 and a second heat dissipation unit 402.
  • the first heat dissipation unit 401 and the second heat dissipation unit 402 are distributed along the axial direction of the LED lighting equipment, and the second heat dissipation unit 401 and the second heat dissipation unit 402 are distributed along the axial direction of the LED lighting equipment.
  • the heat dissipation unit 402 is closer to the base 1 in the axial direction of the LED lighting device.
  • the first heat dissipation unit 401 includes a first base 4011 and a first fin 4012 disposed in the first base 4011 .
  • the light-emitting unit 2 includes a first light board 21 and a first light source 22 .
  • the first light source 22 is disposed on the first light board 21
  • the first light board 21 is disposed on the outer surface of the first base 4011 .
  • the first light board 21 in this embodiment is attached to the outer surface of the first base 4011 , so that the first light board 21 can quickly conduct heat to the first base 4011 .
  • the first light board 21 is extended along the axial direction of the LED lighting device in its length direction.
  • the first light board 21 can be fixed to the first base 4011 in the same manner as in the previous embodiment (eg, riveted, bolted, glued, or connected by a slot, etc.).
  • the first lamp panels 21 in this embodiment are provided with several groups, and the several groups of the first lamp panels 21 are arranged along the circumferential direction of the heat exchange unit 4 .
  • the first light source 22 provides at least lateral light emission.
  • At least a part of the first fins 4012 on the first base 4011 directly corresponds to the back surface of the first lamp panel 21 .
  • the first fin 4012 corresponding to the first lamp panel 21 is projected onto the plane where the first lamp panel 21 is located, it at least partially overlaps with the first lamp panel 21 .
  • the first fins 4012 corresponding to the first lamp panel 21 are projected onto the plane where the first lamp panel 21 is located, they correspond to the middle area of the first lamp panel 21 . In this way, the heat conduction path from the first lamp board 21 to the first fins 4012 can be reduced, and the heat dissipation efficiency can be improved.
  • the number of the first fins 4012 may be an integer multiple of the number of the first lamp panels 21 .
  • Each of the first light panels 21 has at least one corresponding first fin 4012 .
  • the second heat dissipation unit 402 in this embodiment is connected to the first heat dissipation unit 401 .
  • the first heat dissipation unit 401 and the second heat dissipation unit 402 may be formed as an integral structure.
  • a heat conduction path may be formed between the first heat dissipation unit 401 and the second heat dissipation unit 402 .
  • the second heat dissipation unit 402 includes a second base 4021 and second fins 4022 , the second fins 4022 are disposed on the outer surface of the second base 4021 , and a plurality of second fins 4022 are disposed.
  • the plurality of second fins 4022 are arranged along the circumferential direction of the second base 4021 .
  • a connecting portion 4013 is disposed on the first base 4011 of the first heat dissipation unit 401 , and the connecting portion 4013 is inserted into the second base 4021 and abuts against the inner wall of the second base 4021 to form a heat conduction path.
  • the connecting portion 4013 and the second base 4021 adopt an interference fit.
  • the connecting portion 4013 is fused with the second base 4021 to reduce thermal resistance.
  • the end of the connecting portion 4013 may further be provided with a limiting portion 4014 .
  • the connecting portion 4013 is inserted into the second base 4021 , the limiting portion 4014 abuts against the end of the second base 4021 .
  • the LED lighting device in this embodiment further includes an optical unit 5 configured to have one or more functions of light transmission, light diffusion, increase in transmittance, or light gathering.
  • the optical unit 5 entirely covers the radially outer surface of the first base 4011 and covers the first lamp board 21 . The light generated when the first light source 22 works is transmitted to the outside of the LED lighting device through the optical unit 5 .
  • the optical unit 2 may further include a second light board 23 and a second light source 24 , and the second light source 24 is disposed on the second light board 23 .
  • the second light plate 23 is disposed at the end of the second heat dissipation unit 402 and forms a heat conduction path with the second heat dissipation unit 402 , so that the heat generated when the second light source 24 operates can be quickly conducted to the second heat dissipation unit 402 .
  • the second light source 24 is disposed downward to provide downward light output.
  • the second light board 23 (including the second light source 24 ) can also be regarded as being disposed between the first heat dissipation unit 401 and the second heat dissipation unit 402 , or disposed between the first heat dissipation unit 401 or the second heat dissipation unit 402 and the other above the junction of the one.
  • the optical unit 5 in this embodiment is also covered outside the second light source 24 to perform light processing on the light generated by the second light source 24 .
  • the first light source 22 and the second light source 24 use the same optical unit 5 to input and output light, which makes it easier to control the light output effect, and the cost is relatively reduced.
  • the diameter of the cross section of the optical unit 5 gradually increases in the direction toward the lamp cap 1 , and the outer contour of the side portion of the optical unit 5 is in a circular arc shape.
  • the optical unit 5 can be connected with the heat exchange unit 4 by glue or snaps.
  • third fins 4015 can be further disposed on the first base 4011.
  • the third fins 4015 can abut against the surface of the second lamp board 23 to prevent This positions or fixes the second light panel 23 .
  • the isolation unit includes an isolation tube 6 , the isolation tube 6 is arranged along the axial direction of the LED lighting device, and the power supply is arranged inside the isolation tube 6 .
  • the spacer tube 6 can be connected to the lamp cap 1 .
  • the isolation pipe 6 can also be connected to the heat exchange unit 4 .
  • the power supply in the isolation tube 6 is dissipated by natural convection (fanless design).
  • a part of the isolation pipe 6 is located inside the first heat dissipation unit 401 , and a part is located inside the second heat dissipation unit 402 .
  • the isolation tube 6 can be configured to have insulation and/or heat insulation functions, so as to prevent the heat generated when the light emitting unit 2 operates and the heat generated during the operation of the power supply from interacting, and achieve electrical isolation of the power supply and the heat exchange unit 4 .
  • the LED lighting device is also configured with a first convection channel 7, and the first convection channel 7 is formed in the isolation tube 6 to dissipate heat from the power supply in the isolation tube 6 by means of convection.
  • the first convection channel 7 forms a first opening 71 at one axial end of the isolation tube 6
  • the first convection channel 7 forms a second opening 72 at the other axial end of the isolation tube 6 .
  • the LED lighting device is also configured with a second convection channel 8 , and the second convection channel 8 is formed on the first heat dissipation unit 401 and the second heat dissipation unit 402 . And the second convection channel 8 dissipates heat to the first fins 4011 and the second fins 4021 in a convection manner.
  • One end of the second convection channel 8 between the first fins 4011 forms a third opening 81
  • the other end of the second convection channel 8 between the second fins 4021 (the LED lighting device The other end in the axial direction of the device) forms a fourth opening 82 .
  • the second heat dissipation unit 402 and the isolation tube 6 are spaced apart to form a space, and the space constitutes a part of the second convection channel 8 .
  • the second opening 72 of the isolation pipe 6 corresponds to the space, and maintains a distance from the second heat dissipation unit 402 in the radial direction of the LED lighting device.
  • the first opening 71 and the third opening 81 are simultaneously located at one end of the heat exchange unit 4 or the isolation tube 6 that is relatively far away from the lamp cap 1 .
  • the first opening 71 and the third opening 81 are one end of the intake air during convection.
  • An end cap 51 is formed on the optical unit 5 , the end cap 51 covers the first opening 71 and the third opening 81 , and a hole is formed on the end cap 51 for air intake.
  • the end cap 51 in this embodiment includes a light emitting portion 511 configured to emit light, and at least a part of the light generated when the light emitting unit 2 operates is emitted from the LED lighting device through the light emitting portion 511 .
  • the light emitting portion 511 is located outside the first heat dissipation unit 401 in the axial direction of the LED lighting device.
  • the end cap 51 further includes a first portion 512 .
  • the first portion 512 corresponds to (covers) the third opening 82 and has a first hole 5121 .
  • the end cap 51 further includes a second portion 513 .
  • the second portion 513 corresponds to the first opening 71 and has a second hole 5121 .
  • the total area of the second holes 5121 in this embodiment is smaller than the total area of the first holes 5121 .
  • the maximum inscribed circle of the second hole 5121 in this embodiment directly does not exceed 2 mm.
  • the area of the light emitting portion 511 accounts for at least 5% or more of the total area of the end cap 51 . In one embodiment, the area of the light emitting portion 511 accounts for at least 10% or more of the total area of the end cap 51 . In this way, a certain downward light output can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

一种LED照明设备,包括:灯头(1);发光单元(2);电源(3),发光单元(2)与电源(3)电性连接;热交换单元(4),其包括鳍片(42),发光单元(2)固定在热交换单元(4)上;以及第二对流通道(8),其以对流的方式对鳍片(42)进行散热;发光单元(2)包括第一光源(22)与第二光源(24),当灯头(1)沿竖直方向安装时,第一光源(22)至少提供侧向的发光,第二光源(24)与第一光源(22)配置为朝不同的方向出光。

Description

一种LED照明设备 技术领域
本发明属于LED照明装置的技术领域,具体地说是涉及一种LED照明设备。
背景技术
LED照明因为具有节能、寿命长等优点而被广泛采用。现有技术中的LED照明设备,常见的包括平板灯和格栅灯。
现有技术中的LED照明设备(如LED玉米灯),其包括散热器、灯壳、光源、电源和灯头。其中灯壳与灯头连接,电源设于灯壳内,散热器与灯壳连接,光源固定在散热器上。现有技术中的这种LED照明设备具有以下缺点:灯壳占用整灯的长度空间,因此,长度方向上,整灯的可发光区域占比较少,影响出光效果;玉米灯通常采用风扇进行散热,其成本较高,且风扇的寿命可能影响到整灯的寿命
综上所述,鉴于现有技术的LED照明设备存在的不足和缺陷,如何设计LED照明设备,来解决散热及出光的问题,是亟待本领域技术人员解决的技术问题。
发明内容
在此摘要描述关于本发明的许多实施例。然而所述词汇本发明仅仅用来描述在此说明书中揭露的某些实施例(不管是否已在权利要求项中),而不是所有可能的实施例的完整描述。以上被描述为本发明的各个特征或方面的某些实施例可以不同方式合并以形成LED照明设备或其中一部分。
本发明实施例提供一种新的LED照明设备,以及各个方面的特征,以解决上述问题。
本发明实施例提供1、一种LED照明设备,其特征在于,包括:
灯头;
发光单元;
电源,所述发光单元与所述电源电性连接;
热交换单元,其包括鳍片,所述发光单元固定在所述热交换单元上;以及
第二对流通道,其以对流的方式对所述鳍片进行散热;
所述发光单元包括第一光源与第二光源,当所述灯头沿竖直方向安装时,所述第一光源至少提供侧向的发光,所述第二光源与所述第一光源配置为朝不同的方向出光。
本发明实施例当所述灯头沿竖直方向安装时,所述第二光源提供向下的出光。
本发明实施例所述鳍片具有若干组,所述鳍片沿所述LED照明设备的轴向方向延伸设置,并且若干所述鳍片在所述LED照明设备的径向的内侧形成一容置空间,所述电源至少一部分配置于所述容置空间内。
本发明实施例所述电源长度方向上的至少80%位于所述容置空间内。
本发明实施例所述电源完全配置于所述容置空间内。
本发明实施例还包括隔离单元,所述隔离单元包括隔离管,所述隔离管固定于所述容置空间内,所述电源固定于所述隔离管内。
本发明实施例所述隔离管内形成第一对流通道,以对所述隔离管内的所述电源进行散热。
本发明实施例所述第一对流通道在LED照明设备的轴向方向上的长度占所述LED照明设备的总长度的50%、55%、60%、65%或70%以上。
本发明实施例所述第二对流通道在LED照明设备的轴向方向上的长度占所述LED照明设备的总长度的50%、55%、60%、65%或70%以上。
本发明实施例所述隔离管内部填充导热材料以包覆所述电源。
本发明实施例所述电源包括电子元件及电路板,所述电子元件固定于所述电路板上,所述电子元件包括发热元件,所述发热元件露于外部的表面积的至少85%附着所述导热材料。
本发明实施例所述电源包括电子元件及电路板,所述电子元件固定于所述电路板上,所述电子元件包括发热元件,任意一所述发热元件露于外部的表面积的至少85%、90%或95%附着所述导热材料。
本发明实施例所述电源包括电子元件及电路板,所述电子元件固定于所述电路板上,所述电路板的长度占所述热交换单元的长度的60%以上,且所述电路板完全位于所述热交换单元限定的空间内。
本发明实施例所述电路板的长度占所述热交换单元的长度的70%以上。
本发明实施例所述电路板的长度占所述热交换单元的长度的80%以上。
本发明实施例还包括光学单元,所述发光单元包括若干组第一灯板,所述第一光源设置于所述第一灯板上,所述光学单元包括第一光学构件,一组所述第一光学构件对应一列或两列所述第一光源。
本发明实施例所述第一光学构件的外表面的面积配置为至少占所述LED照明设备的径向的外侧的表面的面积的15%以上。
本发明实施例所述发光单元包括第二灯板,所述第二光源固定在所述第二灯板上,所述第二灯板贴合于所述热交换单元远离所述灯头的一端的端面,所述光学单元包括第二光学构件,所述第二光学构件罩设于所述第二光源外。
本发明实施例所述热交换单元包括基座,所述基座具有外侧表面和安装表面,所述安装表面位于所述外侧表面于所述LED照明设备的径向方向的更内侧,且所述发光单元安装于所述安装表面后,其位置在所述LED照明设备的径向方向上不超出所述外侧表面的位置。
本发明实施例所述外侧表面所占所述LED照明设备的径向的外侧的表面的圆心角小于所述第一光学构件的外表面所占所述LED照明设备的径向的外侧的表面 的圆心角。
本发明实施例所述第一光源的光在其光束角A范围内投射至所述第一光学构件时,所述第一光学构件的内表面的宽度方向上至少60%以上宽度有来自所述第一光源的光束角A范围内的直射的光。
本发明实施例还包括电连接单元,所述电连接单元包括电连接板,所述电连接板上布置有电路层,所述电连接板配置为至少与两组以上的所述第一灯板实现连接,而所述电连接板与所述电源电连接。
本发明实施例所述电连接板上设置有若干固定孔,所述第一灯板穿过所述固定孔,并与所述电连接板连接。
本发明实施例所述鳍片包括位于所述基座内部的第一部分及露于所述基座外部的第二部分,所述第二部分的长度与所述鳍片的长度的比值为1:4~8。
本发明实施例所述热交换单元包括基座,所述隔离管在其轴向上具有第一部分和第二部分,所述第一部分和所述第二部分沿所述LED照明设备长度方向上具有相等的长度,所述第一部分内的导热材料的重量设置为大于所述第二部分内的导热材料的重量。
本发明实施例所述热交换单元包括基座,所述隔离管在其轴向上具有第一部分和第二部分,所述第一部分和所述第二部分沿所述LED照明设备长度方向上具有相等的长度,所述第一部分内的电子元件的数量多于所述第二部分内的电子元件的数量。
本发明实施例所述第一部分的至少一部分对应于露于所述基座的外部的鳍片。
本发明实施例还提供一种LED照明设备,其特征在于,包括:
灯头;
发光单元;
电源,所述发光单元与所述电源电性连接;
热交换单元,其包括鳍片,所述发光单元固定在所述热交换单元上;
第一对流通道,其以对流的方式对所述电源进行散热;以及
第二对流通道,其以对流的方式对所述鳍片进行散热;
所述发光单元包括第一光源,当所述灯头沿竖直方向安装时,所述第一光源至少提供侧向的发光;
所述第一对流通道和/或所述第二对流通道在所述LED照明设备的轴向方向上的长度占所述LED照明设备的总长度的50%、55%、60%、65%或70%以上。
本发明实施例所述发光单元还包括第二光源,所述第二光源与所述第一光源配置为朝不同的方向出光。
本发明实施例当所述灯头沿竖直方向安装时,所述第二光源提供向下的出光。
本发明实施例所述鳍片具有若干组,所述鳍片沿所述LED照明设备的轴向方向 延伸设置,并且若干所述鳍片在所述LED照明设备的径向的内侧形成一容置空间,所述电源至少一部分配置于所述容置空间内,所述电源长度方向上的至少80%位于所述容置空间内。
本发明实施例还包括隔离单元,所述隔离单元包括隔离管,所述隔离管固定于所述容置空间内,所述电源固定于所述隔离管内,所述隔离管内形成所述第一对流通道,以对所述隔离管内的所述电源进行散热。
本发明实施例所述电源包括电子元件及电路板,所述电子元件固定于所述电路板上,所述电路板的长度占所述热交换单元的长度的60%以上,且所述电路板完全位于所述热交换单元限定的空间内。
本发明实施例还包括光学单元,所述发光单元包括若干组第一灯板,所述第一光源设置于所述第一灯板上,所述光学单元包括第一光学构件,一组所述第一光学构件对应一列或两列所述第一光源。
本发明实施例所述发光单元包括第二灯板,所述第二光源固定在所述第二灯板上,所述第二灯板贴合于所述热交换单元远离所述灯头的一端的端面,所述光学单元包括第二光学构件,所述第二光学构件罩设于所述第二光源外。
本本发明实施例所述热交换单元包括基座,所述基座具有外侧表面和安装表面,所述安装表面位于所述外侧表面于所述LED照明设备的径向方向的更内侧,且所述发光单元安装于所述安装表面后,其位置在所述LED照明设备的径向方向上不超出所述外侧表面的位置。
本发明实施例所述外侧表面所占所述LED照明设备的径向的外侧的表面的圆心角小于所述第一光学构件的外表面所占所述LED照明设备的径向的外侧的表面的圆心角。
本发明实施例所述第一光源的光在其光束角A范围内投射至所述第一光学构件时,所述第一光学构件的内表面的宽度方向上至少60%以上宽度有来自所述第一光源的光束角A范围内的直射的光。
本发明实施例还包括电连接单元,所述电连接单元包括电连接板,所述电连接板上布置有电路层,所述电连接板配置为至少与两组以上的所述第一灯板实现连接,而所述电连接板与所述电源电连接。
本发明实施例所述电连接板上设置有若干固定孔,所述第一灯板穿过所述固定孔,并与所述电连接板连接。
本发明实施例所述鳍片包括位于所述基座内部的第一部分及露于所述基座外部的第二部分,所述第二部分的长度与所述鳍片的长度的比值为1:4~8。
本发明相比现有技术突出且有益的技术效果是:当灯头沿竖直方向安装时,第一光源可对LED照明设备的侧向进行出光,第二光源可对LED照明设备的下方进行出光,以此可使LED照明设备出光更加均匀,防止在LED照明设备的下方形成 暗区;LED照明设备配置第一对流通道对隔离管内的电源进行散热,可提高散热效率,且降低整灯重量;LED照明设备配置第二对流通道对鳍片进行散热,可提高散热效率;第一对流通道和/或第二对流通道在LED照明设备的轴向方向上的长度占LED照明设备的总长度的50%、55%、60%、65%或70%以上,可以保证第一对流通道和/或第二对流通道具有足够的长度,以满足对流时的烟囱效应;电源的电路板的长度占热交换单元的长度的60%以上,可使电路板具有更多的尺寸来设置电子元件,并且可使电子元件中的发热元件之间可设置更大的间隔,当电子元件数量一定时,电路板长度越长,则更易配置电子元件的分布方式,以防止电子元件过分集中而相互热影响。
附图说明
图1是本发明实施例的LED照明设备的主视示意图;
图2是图1的俯视示意图;
图3是图1的仰视示意图;
图4是本发明实施例的LED照明设备的剖视示意图;
图5是图4中A处的放大图;
图6是本发明实施例的LED照明设备的立体示意图一;
图7是本发明实施例的LED照明设备的立体示意图二;
图8是本发明实施例的LED照明设备去掉罩体及防尘网的立体示意图;
图9是图8中的B处的放大图;
图10是隔离管的立体示意图;
图11是罩体的主视示意图;
图12是防尘网的主视示意图;
图13是一实施例中的LED照明设备的立体结构示意图;
图14是图13的剖视结构示意图;
图15是图14中的C处的放大图;
图16是图13去掉第二光学构件的结构示意图;
图17是图16去掉灯板及第二光源的结构示意图;
图18是一实施例中的LED照明设备的光强分布图,显示LED照明设备纵向切面(沿LED照明设备的轴向的切面)的光强分布图;
图19是图13去掉第二光学构件及第一盖体的立体结构示意图;
图20是图19的另一方向的立体结构示意图;
图21是图19中的D处的放大图;
图22是一些实施例中的LED照明设备的立体示意图;
图23是图22中LED照明设备的剖视结构示意图;
图24是图23中E处的放大图;
图25是一实施例中的LED照明设备的立体示意图一;
图26是一实施例中的LED照明设备的立体示意图二;
图27是一实施例中的LED照明设备的剖视示意图;
图28是图27中F处的放大图;
图29是图25中的LED照明设备去掉光学单元的立体示意图一;
图30是图29中的G处的放大图;
图31是图25中的LED照明设备去掉光学单元的立体示意图二。
图32是一实施例中的LED照明设备的立体结构示意图一。
图33是一实施例中的LED照明设备的立体结构示意图二。
图34是图33中J处的放大示意图。
图35是一实施例中的LED照明设备的主视结构示意图。
图36是一实施例中的LED照明设备的剖视结构示意图。
图37是图36中H处的放大示意图。
图38是一实施例中的LED照明设备去掉第二光学构件的立体结构示意图。
图39是图38中I处的放大示意图。
图40是一实施例中的LED照明设备的热交换单元的立体结构示意图。
图41是一实施例中的LED照明设备的隔离管的立体结构示意图。
图42是一实施例中的LED照明设备的剖视结构示意图。
具体实施方式
现在将在下文中参考附图更完整地描述本发明的实施例,在这些附图中示出了本发明的实施例。然而,本发明可以以诸多不同的形式体现,并且不应被解释为限于本文中阐述的实施例。相反,提供这些实施例使得本公开将为彻底且完整的,并且将向本领域中的技术人员完全地传达本发明的范围。相同的标号在图中指示相同的元件。
将理解的是,尽管用语第一、第二等可在本文中使用来描述各种元件,但这些元件不应由这些用语限制。这些用语仅用于将一种元件与另一种元件彼此区分开。例如,第一元件可被称为第二元件,并且类似地,第二元件可被称为第一元件,而不脱离本发明的范围。当在本文中使用时,用语“和/或”包含相关联的所列项目中的一个或多个的任意组合和全部组合。
将理解的是,当诸如层、区域或衬底的元件称为“在”另一个元件“上”或延伸“到”另一个元件“之上”时,元件可直接地在另一个元件上或直接地延伸到另一个元件之上,或也可存在中间元件。相反地,当元件被称为“直接地在”另一个元件“上”或“直接地延伸到”另一个元件“之上”时,不存在中间元件。还将理解的是,当元件称为“连接”或“联接”到另一个元件上时,其可直接地连接或联接到另一个元件上,或可存在中间元件。相反地,当元件称为“直接地连接”或“直接地联接”到另一个元件上时,不存在中间元件。
可在本文中使用诸如“下方”或“上方”或“上部”或“下部”或“水平”或“垂直”的相对用语来描述如图中所图示的一个元件、层或区域与另一个元件、层或区域的关系。将理解的是,这些用语意在涵盖除图中所描绘的定向之外的不同的器件定向。在本发明中,所 述“垂直”、“水平”、“平行”定义为:包括在标准定义的基础上±10%的情形。例如,垂直通常指相对基准线夹角为90度,但在本发明中,垂直指的是包括80度至100以内的情形。
本文中使用的用语仅出于描述特定实施例的目的,并且并非意在限制本发明。当在本文中使用时,除非上下文另外清楚地说明,否则单数形式“一种”、“一个”和“该”意在也包含复数形式。还将理解的是,当在本文中使用时,用语“包括”、“包括了”、“包含”和/或“包含了”指定了所陈述的特征、整数、步骤、操作、元件和/或部件的存在,但并不排除一个或多个其它特征、整数、步骤、操作、元件、部件和/或它们的组合的存在或增加。
除非另外限定,否则本文中使用的所有用语(包含技术和科学用语)具有与本发明所属领域中的普通技术人员通常所理解的含义相同的含义。还将理解的是,本文中使用的用语应解释为具有与它们在本说明书的上下文和相关领域中的含义相一致的含义,并且不应以理想化或过度正式的意义来解释,除非在本文中明确地如此限定。
除非另外明确地声明,否则比较性数量用语(诸如“小于”和“大于”)意在涵盖相等的概念。作为示例,“小于”不仅可表示最严格的数学意义上的“小于”,而且也可表示“小于或等于”。
如图1至图5所示,本发明一实施例中提供一种LED照明设备(无风扇)。该LED照明设备包括:灯头1、发光单元2、电源3及热交换单元4。其中,灯头1配置为用于连接至外部的供电单元(如灯座)。热交换单元4直接或间接的连接至灯头1。发光单元2与电源3电性连接,发光单元2固定在热交换单元4上,且发光单元2与热交换单元4形成热传导路径,发光单元2工作时产生的至少部分热量通过热交换单元4进行散热。
本实施例中,热交换单元4包括一基座41,所述发光单元2设置于所述基座41的表面。具体的,基座41的截面形状配置为大致的环状结构或管状结构,其具有一外侧表面411。一实施例中,基座41的外侧表面411构成LED照明设备的径向的最外侧。基座41上还配置有安装表面412,所述发光单元2配置于所述安装表面412上。安装表面412位于外侧表面411于LED照明设备的径向方向的更内侧,且使发光单元2安装于安装表面412后,其位置在LED照明设备的径向方向上不超出外侧表面411的位置,从而使得外侧表面412对发光单元2起到一定的保护作用,避免因碰撞而损坏发光单元2。
本实施例中,发光单元2包括第一灯板21及第一光源22,第一光源22设置于第一灯板21上。本实施例中的第一光源22可以是现有技术中的LED灯珠或是其他类型的发光器件。第一灯板21贴合于基座41的安装表面412,以利于第一灯板21快速的将热量传导至热交换单元4。具体的,于一些实施例中,第一灯板21与热交换单元4铆接。于一些实施例中,第一灯板21与热交换单元通过螺栓连接。于一些实施例中,第一灯板21与热交换单元4焊接固定。于一些实施例中,第一灯板21与热交换单元4黏接固定,黏接质可选择采用具有高导热系数的材料。如图5所示,于一些实施例中,基座41上设置固定单元(插槽),以用于固定第一灯板21,具体的,第一灯板21插入插槽(即固定单元)进行配合。本实施例中的第一灯板21设置有若干组,且若干组第一灯板21沿热交换单元4的周向排布。即,热交换单 元4的外侧在周向上具有若干组安装表面412,以用于安装对应数量的若干组第一灯板21。本实施例中,灯头1沿竖直方向安装时,第一光源22至少提供侧向的发光。
本实施例中的LED照明设备可进一步包括光学单元5,光学单元5配置为具有光透过、光扩散、增加透射率或聚光中的一种或多种功能。此外,光学单元5亦可用以对发光单元2提供物理保护作用,避免发光单元2因受外力造成损毁。
光学单元5包括第一光学构件51,第一光学构件51罩设于第一光源22外,第一光源22工作时产生的光通过第一光学构件51后从LED照明设备射出。本实施例中,安装表面412由于与外侧表面411的位置落差而形成一安装槽413。一实施例中,第一光学构件51至少一部分容置于所述安装槽413内。一实施例中,第一光学构件51完全容置于所述安装槽413内,也就是说,第一光学构件51在LED照明设备的径向方向上不超出外侧表面411限定的范围。另外,第一光学构件51的外表面与外侧表面411大致平滑过渡,以使LED照明设备的热交换单元4外表整体性更强。具体的,第一光学构件51的外表面的曲率半径大致或完全与外侧表面411的曲率半径相同。本实施例中,外侧表面411和第一光学构件51的外表面共同构成LED照明设备的径向的外侧的表面。其中,基座41的导热系数大于第一光学构件51的导热系数。而外侧表面411所占LED照明设备的径向的外侧的表面的面积大于第一光学构件51的外表面所占LED照明设备的径向的外侧的表面的面积,以使LED照明设备的径向外侧的表面具有更高效的散热效率。进一步的,外侧表面411的面积可占LED照明设备的径向的外侧的表面的面积的65%以上。另外,第一光学构件51的外表面配置为供发光单元2工作时产生的光线透过,为视觉上提升LED照明设备的径向的外侧的表面的出光效果,第一光学构件51的外表面的面积配置为至少占LED照明设备的径向的外侧的表面的面积的15%以上,以提高LED照明设备的侧向的出光面积,也就是说,外侧表面411的面积占LED照明设备的径向的外侧的表面的面积不超过85%。
在另一实施例中,为了产生更好的光处理效果,第一光学构件51在LED照明设备的径向方向上超出外侧表面411限定的范围(图未示),即第一光学构件51的外表面与外侧表面411呈现交错型态。具体的,第一光学构件51的外表面的曲率半径小于外侧表面411的曲率半径,外侧表面411和第一光学构件51的外表面共同构成LED照明设备的径向的外侧的表面。
安装槽413于安装表面412的边缘处形成插槽414(即用于固定第一光学构件51的固定单元固定单元),第一光学构件51的侧部具有凸缘511,凸缘511配置于所述插槽414内。安装时,将第一光学构件51沿热交换单元4的轴向插入插槽414内。一些实施例中,还可对第一光学构件51作进一步的固定,如设置铆钉、螺栓、胶、卡扣等连接件,以将第一光学构件51固定至热交换单元4。
本实施例中的第一光学构件51具有光扩散功能。一实施例中,第一光学构件51表面设置扩散涂层,以使其具有光扩散功能。一实施例中,第一光学构件51以其自身的材料属性而具有光扩散功能,如采用现有技术具有光扩散功能的塑料材质。
如图22至图24所示,一些实施例中,为提升灯具侧面的出光效果,可设置为外侧表面 411所占LED照明设备的径向的外侧的表面所占的圆心角小于第一光学构件51的外表面所占LED照明设备的径向的外侧的表面所占的圆心角,以使LED照明设备的径向外侧的表面具有更大的出光面积,以提升出光效果。也就是说,LED照明设备的侧部上,其出光部分的面积(第一光学构件51露于LED照明设备外部,或未被遮挡的部分)大于不出光部分(外侧表面411)的面积。但为保证外侧表面411对外的散热,需保证外侧表面411所占LED照明设备的径向的外侧的表面所占的圆心角(或面积)与第一光学构件51的外表面所占LED照明设备的径向的外侧的表面所占的圆心角(或面积)的比值不小于1:2。由于外侧表面411总体所占圆心角减小,因此,散热性能可能降低,为此,可在外侧表面411上设置若干散热条4111,以此增加其表面面积,以提升散热效率(具有更大的对外辐射的表面积),另外散热条411的设置也可起到防滑的作用。散热条4111可沿热交换单元4的轴向延伸设置。
如图22至图24所示,相邻的散热条4111之间设置间距,该间距的尺寸与散热条4111的厚度的尺寸的比值大于0.8。散热条4111的高度尺寸设置为不超过散热条4111的厚度尺寸(或散热条4111的高度尺寸设置为小于等于散热条4111的厚度尺寸),以防止相邻的散热条4111对外辐射的热量相互影响(散热条4111将热量辐射至相邻的散热条4111)。
如图22至图24所示,基座41相对外侧表面411的内侧表面也可设置散热条4111。也就是说,散热条4111可以设置于外侧表面411的外侧表面和/或内侧表面。
如图22至图24所示,由于第一光学构件51外表面所占LED照明设备的径向的外侧的表面所占的圆心角增加,第一灯板21上的第一光源22可设置为两列,这两列第一光源22沿灯具的周向分布。热交换单元4的鳍片42数量可设置为与第一灯板21的数量相同,且鳍片42与第一灯板21一一对应配置(鳍片42的延伸方向对应于灯板21的背面的中间区域),从而可减小热传导路径。为提升鳍片42的散热效率,还可在鳍片42的表面设置若干散热片421,以增加鳍片42整体的散热面积。第一光源22可包括两组以上不同种类(例如色温、光通量、尺寸等)的LED灯珠,以为LED照明设备的调色、调光提供基础。
如图23所示,第一光源22的出光面与第一光学构件51的内表面保持间距,该间距例如至少大于2mm。第一光源22具有光束角A(LED灯珠的光束角的定义为光强达到法线光强的50%处、两边所形成的夹角为光束角),在图23中,第一光源22的光在光束角A范围内投射至第一光学构件51时,第一光学构件51的内表面的宽度方向上至少60%以上宽度有来自第一光源22的光束角A范围内的直射的光。也就是说,第一光源22的光束角A投影至第一光学构件51后,覆盖第一光学构件51的宽度方向上的至少60%。以上设置方式,可将第一光源22的出光尽可能均匀的投射至第一光学构件51,防止光束角仅对应于第一光学构件51的局部区域而造成局部强光,使得第一光学构件51表面产收不佳的视觉影响,例如视觉颗粒感增强。如图23所示,两组第一光源22的光束角A投影至第一光学构件51后至少部分重叠。其他实施例中,一组第一光学构件51仅对应一列第一光源22时,也可符合上述标准,以降低第一光学构件51在视觉上产生的影响,例如颗粒感。
如图13至图17及图19至图21所示,一实施例中,LED照明设备可进一步包括电连接 单元,电连接单元用于使多组第一灯板21实现电性连接。电连接单元包括电连接板201,所述电连接板201上布置有电路层,所述电连接板201配置为至少与两组以上的第一灯板21实现连接(结构连接和/或电连接)。而电连接板201与电源3实现电连接。以此,可简化若干组第一灯板21与电源3之间的连接。一实施例中,若干组第一灯板21均与电连接板201实现连接。
如图19至图21所示,一实施例中,电连接板201配置为环状,且电连接板201上布置电路层。本实施例中的至少一部分鳍片42在热交换单元4的长度方向上的一端超出基座41,也就是说,鳍片42的一部分在热交换单元4的长度方向上是露于基座41外的。电连接板201套设于鳍片42露于基座41外的部分上。此时,电连接板201对应于第一光学构件22的一端,并对第一光学构件22的一端形成限位。
本实施例中的电连接板201上设置若干固定孔2011,第一灯板21穿过固定孔2011,并与电连接板201连接。例如,第一灯板21穿过固定孔2011后,通过焊接的方式,直接与电连接板201固定。又例如,第一灯板21穿过固定孔2011后,通过导线与电连接板201连接。本实施例中,第一灯板21具有贴设于基座41的第一部分,及露于基座41外部的第二部分,第二部分则设于固定孔2011内,以此,通过固定孔2011可对第二部分起到固定作用,限定第一灯板21的第二部分在LED照明设备径向方向的活动。另外,电连接板201采用PCB(即印制电路板),而第一灯板21采用铝基板,电连接板201与第一灯板21的热膨胀系数不同。由于第一灯板21的第二部分并不固定于基座41上,因此,电连接板201受热膨胀时,可与第一灯板21的第二部分同步活动,防止两者之间的电连接点断开。
LED照明设备可进一步包括第一盖体202,第一盖体202罩设于电连接板201上,以防止电连接板201和第一灯板21直接暴露。本实施例中,第一盖体202配置于在第一灯板21和/或第一光学构件22的一端。
LED照明设备可进一步包括第二盖体203,第二盖体203固定于热交换单元4上,且位于第一灯板21相对电连接板201的另一端。并且,第二盖体203配置于第一灯板21和/或第一光学构件22相对第一盖体202的另一端。以此,通过第一盖体202及第一盖体203,可限定第一灯板21和/或第一光学构件22的位置。
如图1至图5、图8和图9所示,发光单元2还可包括第二灯板23及第二光源24,第二光源24固定在第二灯板23上。本实施例中的第二光源24可以是现有技术中的LED灯珠。第二灯板23贴合于热交换单元4远离灯头1的一端的端面,以利于第二灯板23快速的将热量传导至热交换单元4。具体的,于一些实施例中,第二灯板23与热交换单元4铆接。于一些实施例中,第二灯板23与热交换单元通过螺栓连接。于一些实施例中,第二灯板23与热交换单元4焊接固定。于一些实施例中,第二灯板23与热交换单元4采用高导热系数的黏胶黏接固定。本实施例中的第二灯板23设置有1组或多组。第二光源24设于第二灯板23后,第二光源24大致呈环状分布。本实施例中,灯头1竖直安装时,第二光源24提供向下的发光。第一光源22与第二光源24设置为朝不同的方向出光。
光学单元5还可包括第二光学构件52,第二光学构件52罩设于第二光源24外。本实施例中的第二光学构件52具有光扩散功能。一实施例中,第二光学构件52表面设置扩散涂层,以使其具有光扩散功能。一实施例中,第二光学构件52以其自身的材料属性而具有光扩散功能,如采用现有技术具有光扩散功能的塑料材质。
如图13至图17所示,一实施例中,第二灯板23设于热交换单元4的端面的中间区域,且第二灯板23仅与鳍片42直接或间接的连接。也就是说,在热交换单元4的轴向的投影方向上,第二灯板23仅与鳍片42重叠,而不与基座41重叠。为解决第二灯板23的散热,本实施例中的LED照明设备可进一步包括一导热部204,以将第二光源24工作时传导至第二灯板23的热快速传导至鳍片42。本实施例中,鳍片42沿LED照明设备轴向方向投影至第二灯板23时所占第二灯板23的面积小于导热部204与鳍片42的接触面积。本实施例,如果将鳍片42的端面直接接触第二灯板23,则可能因换热面积不足,而无法达到散热要求。本实施例中的导热部201呈杯状,且通过螺栓固定至鳍片42。而第二灯板23则可贴设于导热部204,并可通过螺栓、胶或卡扣等方式使两者实现连接。同时,第二光学构件52罩设于第二灯板23上,只要将第二灯板23完全覆盖即可。进一步的,第二光学构件52覆盖导热部204,以防止导热部204露出,避免外部直接接触到导热部204。
为提升LED照明设备的光分布的均匀性,本实施例需平衡LED照明设备侧向出光方向的光强值及向下出光方向的光强值。例如,在LED照明设备的纵向截面方向的光强分布中,设定向下出光的任意光束角的光强值与侧向出光的任意光束角的光强值的比值为1:0.6~1.5之间。进一步的,设定向下出光的任意光束角的光强值与侧向出光的任意光束角的光强值的比值为1:0.8~1.5之间。更进一步的,设定向下出光的任意光束角的光强值与侧向出光的任意光束角的光强值的比值为1:1~1.4之间。本实施例中,向下出光的任意光束角的光强值指的是附图18中-40~40的出光范围内的光强值,而侧向出光的任意光束角的光强值指的是附图中-40~-100及40~100的出光范围内光强值。如图18至图19所示,一实施例中,为使光分布更加均匀,可设置为第二光源24的设置密度大于第一光源21的设置密度。一实施例中,LED照明设备的端部的第一光源21的设置密度与LED照明设备的侧部的第二光源24的设置密度的比值为1:0.8~1.2。一实施例中,LED照明设备的端部的第一光源21的设置密度(单位面积上的第一光源21的设置数量)与LED照明设备的侧部的第二光源24的设置密度(单位面积上的第二光源22的设置数量)的比值为1:0.9~1.1。一实施例中,LED照明设备的端部的第一光源21的设置密度与LED照明设备的侧部的第二光源24的设置密度的比值为1:0.95~1.05。上述实施例中,LED照明设备的端部的第二光源24的设置密度为LED照明设备设置有第二光源24的一端的端面面积(端面轮廓为圆形或大致的圆形,其直径为LED照明设备横向方向的直径)除以第二光源24的数量得出的值。而LED照明设备的侧部的第一光源21的设置密度为LED照明设备设置有第一光源21的侧部的面积(侧部为环状,其直径为LED照明设备横向方向的直径,而长度为基座41的长度)除以第一光源21的数量得出的值。
如图1至图4所示,本实施例中的热交换单元4的内层表面设置若干鳍片42。所述鳍片42沿LED照明设备的轴向方向延伸设置,并且若干所述鳍片42在LED照明设备的径向的内侧形成一容置空间,所述电源3至少一部分配置于所述容置空间内。一实施例中,电源3长度方向(在LED照明设备的轴向方向)上的至少80%位于容置空间内,以提升空间利用率。本实施例中电源3完全配置于容置空间内,以此使得电源3不会额外占用LED照明设备的长度尺寸(在LED照明设备的轴向方向的尺寸),使得整灯尺寸更加紧凑。一实施例中的,电源3长度方向(在LED照明设备的轴向方向)上全部位于容置空间内。
电源3可直接配置于容置空间,但须做好热交换单元4与电源3的电隔离。
本实施例中还可配置一隔离单元,以将电源3与鳍片42分隔开,以起到热隔离或电隔离的作用。隔离单元包括隔离管6,隔离管6固定于容置空间内,电源3则固定于隔离管6内,以将电源3与热交换单元4隔离。隔离管6沿LED照明设备的轴向方向延伸设置,并且隔离管6可与热交换单元4同轴或大致同轴设置。隔离管6可配置具有绝缘和/或隔热功能,例如选用塑料、塑胶、橡胶、塑钢等符合上述功能的材料,以此,可防止发光单元2工作时产生的热及电源3工作时产生的热相互影响,及实现电源3与热交换单元4的电隔离。一实施例中,隔离管6可连接至灯头1而实现固定,隔离管6可通过螺栓、卡扣或粘接等方式与灯头1实现固定。一实施例中,隔离管6可与热交换单元4固定,隔离管6可通过螺栓、卡扣或粘接等方式与热交换单元4实现固定。本实施例中,灯头1与热交换单元4固定。具体的,如图20所示,热交换单元4的鳍片42上设置固定孔,而灯头1上设置孔洞,螺栓穿过孔洞而与鳍片上的固定孔实现连接。
如图4、图8和图10所示,本实施例中,LED照明设备配置一第一对流通道7,第一对流通道7形成于所述隔离管6内,以通过对流的方式,对隔离管6内的电源3进行散热。第一对流通道7于隔离管6轴向的一端形成第一开口71,第一对流通道7于隔离管6轴向的另一端形成第二开口72。
如图4、图7、图8所示,本实施例中,LED照明设备配置一第二对流通道8,第二对流通道8形成于所述鳍片42之间,且第二对流通道8以对流的方式对鳍片42(发光单元2工作时产生的热会传导至鳍片42,并借由鳍片42进行散热)进行散热。第二对流通道8于鳍片间的一端(LED照明设备轴向方向的一端)形成第三开口81,第二对流通道8于鳍片间的另一端(LED照明设备轴向方向的另一端)形成第四开口82。本实施例中,鳍片42的表面均对应于第二对流通道8。也就是说,鳍片42的表面构成第二对流通道8的内壁,以此使得对流的空气与鳍片42的交换效率更高。
本实施例中,电源3和发光单元2采用不同的对流通道进行散热,以防止两者的热相互影响。
本实施例中,第一对流通道7和/或第二对流通道8在LED照明设备的轴向方向上的长度占LED照明设备的总长度的50%、55%、60%、65%或70%以上,以保证第一对流通道7和/或第二对流通道8具有足够的长度,以满足对流时的烟囱效应。
本实施例中,第一开口71及第三开口81同时位于热交换单元4或隔离管6相对远离灯头1的一端。第一开口71及第三开口81为对流时的进气的一端。如图4至图11所示,本实施例中的LED照明设备配置一罩体9,该罩体9覆盖第一开口71及第三开口81。一实施例中,罩体9可以为一单独的部件。一实施例中,罩体9可以与第二光学构件52为一体式构件构成。
本实施例中的罩体9具有第一部分91,第一部分91对应第一开口71。例如,第一开口71投影至第一部分91所在平面时,完全落入第一部分91的范围内。第一部分91上配置第一进气孔911。第一进气孔911可具有一组或多组。第一进气孔911的截面积占第一部分91的单侧的面积的至少30%以上,且不超过80%,以此,既保证了可透过第一进气孔911进入足够的空气进行对流,又保证了第一部分91可具有足够的支撑结构,保证第一部分91的结构强度。进一步的,第一进气孔911的最大内切圆直径配置为小于2mm且大于1mm,以防止过小的第一进气孔911对进气造成阻碍,并且可防止初步防止虫子进入而影响电源3性能。
如图4至图12所示,本实施例中的第一部分91的一侧配置防尘网93,防尘网93上具有若干孔洞,以用于进气。单个孔洞的开口面积小于单个第一进气孔911。防尘网93可固定于隔离管6的第一开口71处,或者防尘网93可固定于第一部分91上并对应于第一开口71。
如图4至图11所示,本实施例中的罩体9具有第二部分92,第二部分92对应于第三开口81。例如,第三开口81投影至第二部分92所在平面时,完全落入或至少65%落入第二部分92的范围内。第二部分92上配置第二进气孔921。第二进气孔921可具有一组或多组。第二进气孔921的截面积占第二部分92的单侧的面积的至少30%以上,且不超过80%,以此,既保证了可透过第二进气孔921进入足够的空气进行对流,又保证了第二部分92可具有足够的支撑结构,保证第一部分92的结构强度。在无需考虑虫子等对第二对流通道8的影响时(第二对流通道8内无电源),第二进气孔921的最大内切圆直径配置为大于第一进气孔911的最大内切圆直径,以提高第二进气孔921的进气,提升第二对流通道8的散热效率。
如图13至图16所示,一实施例中,当第二灯板23设于热交换单元4的端面的中间区域时,第一开口71及第二开口81的位置相应改变。本实施例中,隔离管6端部的位置改变,具体的,隔离管6的端部与LED照明设备的端部(热交换单元4)保持间距。对流的空气从第二开口81进入后,在进入到第一开口71。第二开口81为热交换单元4端面上未被遮挡的部分(未被第二光学构件52及第一盖体202覆盖)。本实施例中,第一对流通道7和第二对流通道8均从第二开口81进气。由于本实施例中的隔离管6端部的位置改变,此时,可将罩体9设于隔离管6的管部。并且,罩体9可配合防尘网使用。
如图1至图4所示,本实施例中的电源3包括电子元件31及电路板32,电子元件31固定于电路板32上。本实施例中的电路板32的长度占热交换单元4的长度(LED照明设备轴向方向的尺寸)的60%以上,并且,电路板32完全位于热交换单元4限定的空间内。进一步的,电路板32的长度占热交换单元4的长度(LED照明设备轴向方向的尺寸)的70%以上。更进一步的,电路板32的长度占热交换单元4的长度(LED照明设备轴向方向的尺寸)的 80%以上。以此,可使电路板32具有更多的尺寸来设置电子元件31,并且可使电子元件中的发热元件(如电阻、变压器、电感、IC)之间可设置更大的间隔。当电子元件31数量一定时,电路板32长度越长,则更易配置电子元件31的分布方式。以防止电子元件31过分集中而相互热影响。并且,电子元件31过度集中时,还可能影响对流的空气通过的速率,影响散热效率。
如图32至图42所示,示出一种LED照明设备,其基本结构同前述实施例。该LED照明设备包括:灯头1、发光单元2、电源3及热交换单元4。其中,灯头1配置为用于连接至外部的供电单元(如灯座)。热交换单元4直接或间接的连接至灯头1。发光单元2与电源3电性连接,发光单元2固定在热交换单元4上,且发光单元2与热交换单元4形成热传导路径。
如图32至图37所示,热交换单元4包括基座41和鳍片42,所述发光单元2设置于所述基座41的表面。具体的,基座41的截面配置为大致的环状结构或管状结构。鳍片42沿基座41的径向的内侧延伸设置,且鳍片42设置有多组。
发光单元2包括第一灯板21及第一光源22,第一光源22设置于第一灯板21上,而第一灯板21设置于所述基座41的外侧表面。本实施例中的第一灯板21贴合于基座41的外侧表面,以利于第一灯板21快速的将热量传导至基座41。第一灯板21在其长度方向沿LED照明设备的轴向方向延伸设置。第一灯板21可采用与前述实施例大致相同的方式固定至基座41上(如铆接、螺栓连接、黏接或通过插槽连接等)。本实施例中的第一灯板21设置有若干组,且若干组第一灯板21沿热交换单元4的周向排布。本实施例中,灯头1竖直安装时,第一光源22至少提供侧向的发光。
本实施例中的基座41上的鳍片42中的至少一部分直接对应于第一灯板21的背面。例如,与第一灯板21对应的鳍片42,投影至第一灯板21所在平面时,其与第一灯板21至少部分重合。进一步的,与第一灯板21对应的鳍片42,投影至第一灯板21所在平面时,其对应于第一灯板21的中部区域。以此,可减小第一灯板21至鳍片42的热传导路径,提高散热效率。鳍片42的数量可为第一灯板21的数量的整数倍。每一第一灯板21至少有一与其对应的鳍片42。
本实施例中的鳍片42包括位于基座41内部的第一部分4201及露于基座41外部的第二部分4202,其中露于基座41外部的第二部分4202在LED照明设备的径向方向上不被基座41遮挡。具体的,鳍片42的第一部分4201和第二部分4202沿同一方向延伸设置,第一部分4201在基座41的轴向方向上完全位于基座41内部,而第二部分4202在基座41的轴向方向上则位于基座41的外部。第二部分4202可直接将热量热辐射至LED照明设备的外部的空气中,将第二部分4202暴露于基座41外部,可提升热交换单元4的整体的散热性能,并以此,可降低热交换单元4的所需的外形尺寸和/或重量。本实施例中,在LED照明设备不采用主动式散热的前提下(即不采用风扇等进行散热),热交换单元4的重量不超过350g,而LED照明设备可产生7500流明以上的光通量。也就是说,热交换单元4的重量不超过350g, 即可消散产生7500流明以上光通量时所产生的热。进一步的,热交换单元4的重量不超过320g(大于250g),而LED照明设备可产生8000流明以上(不超过9000流明)的光通量。另一方面来讲,热交换单元4每克的重量可消散产生至少20、22、25或26流明的光通量所产生的热量。
一实施例中,第二部分4202的长度与鳍片42的长度的比值为1:4~8。一实施例中,第二部分4202的长度与鳍片42的长度的比值为1:4~6。一实施例中,第二部分4201的长度与鳍片42的长度的比值为1:4.5~5.5。上述的设置,可使第二部分4202具有足够的长度进行散热的同时,保证第一灯板21的长度,以使其具有较长的发光区域。
本实施例中的LED照明设备进一步包括光学单元5,光学单元5配置为具有光透过、光扩散、增加透射率或聚光中的一种或多种功能。
如图38和图39所示,发光单元2还可包括第二灯板23和第二光源24,第二光源24设置于第二灯板23上。第二灯板23设置于热交换单元4的端部,并与热交换单元4形成导热路径,以使第二光源24工作时产生的热量可快速传导至热交换单元4上。具体的,第二灯板23可同时接触基座41的至少部分端部及鳍片42的至少部分端部。第二灯板23可设置为环状。当灯头1竖直安装时,第二光源24向下设置,以提供向下的出光,且第二光源24位于热交换单元4的下端。
第二灯板23可通过铆接、螺栓连接、黏接等方式固定至热交换单元4。本实施例中的第二灯板23通过铆接的方式连接至热交换单元4。具体的,基座41上形成铆接孔或铆接槽,铆钉穿过第二灯板23后,固定至铆接孔或铆接槽内。
本实施例中的第一灯板21和第二灯板24采用直接焊接的方式连接,并实现电性连接,以此,可无需布置连接导线进行连接,结构更加简单,且避免了连接导线断裂或焊点脱落的风险。具体的,第二灯板24上设置孔洞或定位槽231,第一灯板21的端部插入所述孔洞或定位槽231进行定位后,两者再通过焊接而直接连接。本实施例中,第二灯板24的外侧边缘设置定位槽231,第一灯板21插入所述定位槽231配合。一些实施例中,也可不设置前述的孔洞或定位槽,第一灯板21的端部贴设于第二灯板24的外缘,再通过焊接而连接。
如图32至图37所示,光学单元5可包括第一光学构件51,第一光学构件51罩设于第一光源22外。具体,第一光学构件51设置有多组,并与第一灯板21对应。第一光学构件51的结构和安装方式均可大致同前述实施例。
光学单元5还可包括第二光学构件52,第二光学构件52罩设于第二光源24(第二灯板23)外。本实施例中的第二光学构件52可具有光扩散功能。一实施例中,第二光学构件52表面设置扩散涂层,以使其具有光扩散功能。一实施例中,第二光学构件52以其自身的材料属性而具有光扩散功能,如采用现有技术具有光扩散功能的塑料材质。本实施例中的第二光学构件52的基本结构也可同前述实施例。
如图36和图37所示,本实施例中,基座41包括第一单元4101和第二单元4102。第一单元4101和第二单元4102于基座41的周向上交替分布。其中,第一灯板21设置于第一单 元4101上,且第一光学构件51罩设于第一单元4101的外部,而第二单元4102的外表面则露于LED照明设备的外部,以使其可直接对外进行散热(将热量热辐射至外部的空气)。第一单元4101上设置第一插槽41011,第一灯板21插入所述第一插槽41011进行定位固定。本实施例中,第一单元4101的内侧表面上设置至少一所述鳍片42,以进行散热。第二单元4102上设置第二插槽41021,第一光学构件51插入所述第二插槽41021进行定位固定。第二单元4102的外表面呈内凹状或外凸状,以增加其外表面的散热面积。第二单元4101的内侧表面上设置至少一所述鳍片42,以进行散热。基座41上的铆接孔或铆接槽形成于第一单元4101和第二单元4102之间。
如图39至图41所示,本实施例中同样设置前述的隔离单元。隔离单元包括隔离管6,隔离管6沿LED照明设备的轴向延伸设置,电源设置于隔离管6内部。隔离管6可与灯头1连接。隔离管6也可与热交换单元4连接。隔离管6内的电源以自然对流的方式进行散热(无主动式散热系统设计,例如风扇)。隔离管6的一部分位于鳍片42的第一部分4201内侧,一部分位于鳍片42的第二部分4202内侧。隔离管6可配置具有绝缘和/或隔热功能,以此,可防止发光单元2工作时产生的热及电源工作时产生的热相互影响,及实现电源与热交换单元4的电隔离。隔离管6可采用绝缘材质,如塑料。
本实施例中的鳍片42的第二部分4202扣合于隔离管6,以将热交换单元4与隔离管6连接。另外,隔离管6与灯头1实现连接。
如图32至图41所示,本实施例中,LED照明设备同样也配置一第一对流通道7,第一对流通道7形成于所述隔离管6内,以通过对流的方式,对隔离管6内的电源进行散热。第一对流通道7于隔离管6轴向的一端形成第一开口71,第一对流通道7于隔离管6轴向的另一端形成第二开口72。
如图42所示,LED照明设备也可不设置第一对流通道(此时便不需要第一开口71及罩体9的第一部分91上配置第一进气孔911),而是以热传导的方式对电源3进行散热。具体的,电源3设置于隔离管6内部,隔离管6内部填充导热材料601以包覆电源3,电源3通过导热材料601而与隔离管6形成导热路径。示例性的,所述导热材料601可以为导热胶。并且通过导热材料601包覆电源3,还可对电源3起到防水和防潮作用。
本实施例中,电源3包括电子元件31及电路板32,电子元件31固定于电路板32上。电子元件31中包括发热元件311,发热元件311为LED照明设备工作时,产生热量相对较高的电子元件,例如电阻,变压器,电感,IC,晶体管等。在一实施例中,为保证发热元件311工作时产生的热量尽快的通过导热材料601的热传导而散去,发热元件311露于外部的表面积(除去与电源板32安装时的接触面)的至少85%附着所述导热材料601。在一实施例中,发热元件311露于外部的表面积(除去与电源板安装时的接触面)的至少90%附着所述导热材料601。在一实施例中,发热元件311露于外部的表面积(除去与电源板安装时的接触面)的至少95%附着所述导热材料601。在一实施例中,任意一发热元件311露于外部的表面积(除去与电源板安装时的接触面)的至少85%、90%或95%附着所述导热材料305。以此, 可尽量避免导热通路上的热流瓶颈。
本实施例中,隔离管6在其轴向上具有第一部分61和第二部分62,第一部分61和第二部分62沿LED照明设备长度方向上具有相等的长度。一些实施例中,第一部分61和第二部分62的长度之和等于隔离管6的长度。第一部分61内的导热材料601的重量设置为大于第二部分62内的导热材料601的重量。第一部分61的至少一部分对应于露于基座41的外部的鳍片42(即鳍片42的第二部分4202)。露于基座41的外部的鳍片42部分具有更高的散热效率,因此,隔离管6与露于基座41的外部的鳍片42直接对应的部分可具有更高的散热效率。因此,通过在第一部分61设置更多的导热材料和或电子元件31,可使第一部分61内的电子元件31具有更好的散热效果。换句话讲,第一部分61内可设置更多的电子元件31或导热材料,以更高效的利用露于基座41的外部的鳍片42的散热作用。
一些实施例中,隔离管6的第一部分61的至少一部分对应于露于基座41的外部的鳍片42(即鳍片42的第二部分4202),因此,可在第一部分61中设置更多的电子元件31。即第一部分61内的电子元件31的数量多于第二部分62内的电子元件31数量。一些实施例中,第一部分61内的发热元件311的数量多于第二部分62内的发热元件311数量。
一些实施例中,隔离管6的第一部分61的至少一部分对应于露于基座41的外部的鳍片42(即鳍片42的第二部分4202),因此,可容许在第一部分61中的电子元件31产生更多的热量。即第一部分61内的电子元件31的总发热表面积大于第二部分62内的电子元件31的总发热表面积。一些实施例中,第一部分61内的发热元件311的总表面积大于第二部分62内发热元件311的总表面积。
本实施例中的灯头1的内部设置导热材料101。灯头1的内部的导热材料101与隔离管6内的导热材料601结合为一体,以增加隔离管6与灯头1连接的稳固性。另外,通过在灯头1内部设置导热材料101,可使电源3工作时产生的热量的至少一部分通过灯头1而向外散热。
同样的,本实施例中,LED照明设备同样也配置一第二对流通道8,第二对流通道8形成于所述鳍片42之间,且第二对流通道8以对流的方式对鳍片42(发光单元2工作时产生的热会传导至鳍片42,并借由鳍片42进行散热)进行散热。第二对流通道8于鳍片间的一端(LED照明设备轴向方向的一端)形成第三开口81,第二对流通道8于鳍片间的另一端(LED照明设备轴向方向的另一端)形成第四开口82。
本实施例中,电源3和发光单元2采用不同的对流通道或采用不同的散热方式进行散热,并且通过隔离管6(隔离管6采用导热系数较低的材质制成,如塑料)可防止两者的热相互影响。
本实施例中,第一对流通道7和/或第二对流通道8在LED照明设备的轴向方向上的长度占LED照明设备的总长度的50%、55%、60%、65%或70%以上,以保证第一对流通道7和/或第二对流通道8具有足够的长度,以满足对流时的烟囱效应。
本实施例中,第一开口71及第三开口81同时位于热交换单元4或隔离管6相对远离灯头1的一端。第一开口71及第三开口81为对流时的进气的一端。本实施例中的LED照明设 备配置一罩体9,该罩体9覆盖第一开口71及第三开口81。一实施例中,罩体9可以为一单独的部件。一实施例中,罩体9可以与第二光学构件52为一体式构件构成。
本实施例中的罩体9具有第一部分91,第一部分91对应第一开口71。例如,第一开口71投影至第一部分91所在平面时,完全落入第一部分91的范围内。第一部分91上配置第一进气孔911。第一进气孔911可具有一组或多组。第一进气孔911的截面积占第一部分91的单侧的面积的至少30%以上,且不超过80%,以此,既保证了可透过第一进气孔911进入足够的空气进行对流,又保证了第一部分91可具有足够的支撑结构,保证第一部分91的结构强度。进一步的,第一进气孔911的最大内切圆直径配置为小于2mm且大于1mm,以防止过小的第一进气孔911对进气造成阻碍,并且可防止初步防止虫子进入而影响电源3性能。
本实施例中的罩体9具有第二部分92,第二部分92对应于第三开口81。例如,第三开口81投影至第二部分92所在平面时,完全落入或至少65%落入第二部分92的范围内。第二部分92上配置第二进气孔921。第二进气孔921可具有一组或多组。第二进气孔921的截面积占第二部分92的单侧的面积的至少30%以上,且不超过80%,以此,既保证了可透过第二进气孔921进入足够的空气进行对流,又保证了第二部分92可具有足够的支撑结构,保证第一部分92的结构强度。在无需考虑虫子等对第二对流通道8的影响时(第二对流通道8内无电源),第二进气孔921的最大内切圆直径配置为大于第一进气孔911的最大内切圆直径,以提高第二进气孔921的进气,提升第二对流通道8的散热效率。
如图25至图31所示,示出一种LED照明设备,其基本结构同前述实施例。该LED照明设备包括:灯头1、发光单元2、电源及热交换单元4。其中,灯头1配置为用于连接至外部的供电单元(如灯座)。热交换单元4直接或间接的连接至灯头1。发光单元2与电源3电性连接,发光单元2固定在热交换单元4上,且发光单元2与热交换单元4形成热传导路径。
如图27至图31所示,热交换单元4包括第一散热单元401及第二散热单元402,第一散热单元401与第二散热单元402沿LED照明设备的轴向方向分布,且第二散热单元402在LED照明设备的轴向上更靠近灯头1。其中第一散热单元401包括第一基座4011及设置于所述第一基座4011内的第一鳍片4012。发光单元2包括第一灯板21及第一光源22,第一光源22设置于第一灯板21上,而第一灯板21设置于所述第一基座4011的外侧表面。本实施例中的第一灯板21贴合于第一基座4011的外侧表面,以利于第一灯板21快速的将热量传导至第一基座4011。第一灯板21在其长度方向沿LED照明设备的轴向方向延伸设置。第一灯板21可采用与前述实施例相同的方式固定至第一基座4011上(如铆接、螺栓连接、黏接或通过插槽连接等)。本实施例中的第一灯板21设置有若干组,且若干组第一灯板21沿热交换单元4的周向排布。本实施例中,灯头1竖直安装时,第一光源22至少提供侧向的发光。
第一基座4011上的第一鳍片4012中的至少一部分直接对应于第一灯板21的背面。例如,与第一灯板21对应的第一鳍片4012,投影至第一灯板21所在平面时,其与第一灯板21至少部分重合。进一步的,与第一灯板21对应的第一鳍片4012,投影至第一灯板21所在平面时,其对应于第一灯板21的中部区域。以此,可减小第一灯板21至第一鳍片4012的热传导 路径,提高散热效率。第一鳍片4012的数量可为第一灯板21的数量的整数倍。每一第一灯板21至少有一与其对应的第一鳍片4012。
本实施例中的第二散热单元402与第一散热单元401连接。其他实施例中,第一散热单元401与第二散热单元402可以为一体式结构构成。第一散热单元401与第二散热单元402之间可形成热传导路径。具体的,第二散热单元402包括第二基座4021和第二鳍片4022,第二鳍片4022设置于第二基座4021的外侧表面,且第二鳍片4022设置有多个。多个第二鳍片4022沿第二基座4021的周向排布。第一散热单元401的第一基座4011上设置连接部4013,连接部4013插入第二基座4021内并与第二基座4021的内壁抵接,以形成导热路径。一些实施例中,连接部4013与第二基座4021采用过盈配合。一些实施例中,连接部4013与第二基座4021融合,以降低热阻。
进一步的,连接部4013的端部还可设置一限位部4014,连接部4013插入第二基座4021后,限位部4014抵于第二基座4021的端部。
本实施例中的LED照明设备进一步包括光学单元5,光学单元5配置为具有光透过、光扩散、增加透射率或聚光中的一种或多种功能。光学单元5整体的覆盖于第一基座4011径向外侧的表面,并覆盖所述第一灯板21。第一光源22工作时产生的光透过光学单元5而射至LED照明设备外部。
光学单元2还可包括第二灯板23和第二光源24,第二光源24设置于第二灯板23上。第二灯板23设置于第二散热单元402的端部,并与第二散热单元402形成导热路径,以使第二光源24工作时产生的热量可快速传导至第二散热单元402上。当灯头1竖直安装时,第二光源24向下设置,以提供向下的出光。第二灯板23(含第二光源24)亦可视为设置于第一散热单元401和第二散热单元402之间,或设置于第一散热单元401或第二散热单元402任一与另一者的交界位置之上。
本实施例中的光学单元5同样罩设于第二光源24外,以对第二光源24产生的光学进行光处理。本实施例中,第一光源22与第二光源24采用同一光学单元5进出光,更易控制出光效果,成本相对降低。光学单元5的横截面上的直径,在往灯头1方向逐渐递增,并且,光学单元5的侧部的外轮廓呈圆弧状。光学单元5可通过胶或卡扣与热交换单元4连接。
本实施例中的第一基座4011上还可设置第三鳍片4015,第一散热单元401与第二散热单元402连接时,第三鳍片4015可抵于第二灯板23表面,以此定位或固定第二灯板23。
本实施例中同样设置前述的隔离单元,隔离单元包括隔离管6,隔离管6沿LED照明设备的轴向延伸设置,电源设置于隔离管6内部。隔离管6可与灯头1连接。隔离管6也可与热交换单元4连接。隔离管6内的电源以自然对流的方式进行散热(无风扇设计)。隔离管6的一部分位于第一散热单元401的内部,而一部分位于第二散热单元402的内部。隔离管6可配置具有绝缘和/或隔热功能,以此,可防止发光单元2工作时产生的热及电源工作时产生的热相互影响,及实现电源与热交换单元4的电隔离。
本实施例中,LED照明设备同样也配置一第一对流通道7,第一对流通道7形成于所述 隔离管6内,以通过对流的方式,对隔离管6内的电源进行散热。第一对流通道7于隔离管6轴向的一端形成第一开口71,第一对流通道7于隔离管6轴向的另一端形成第二开口72。
同样的,本实施例中,LED照明设备同样也配置一第二对流通道8,第二对流通道8形成于第一散热单元401和第二散热单元402上。且第二对流通道8以对流的方式对第一鳍片4011及第二鳍片4021进行散热。第二对流通道8于第一鳍片4011间的一端(LED照明设备轴向方向的一端)形成第三开口81,第二对流通道8于第二鳍片4021间的另一端(LED照明设备轴向方向的另一端)形成第四开口82。本实施例中的第二散热单元402与隔离管6保持间距,从而形成一空间,该空间构成第二对流通道8的一部分。并且,隔离管6的第二开口72对应于所述空间,并与第二散热单元402在LED照明设备的径向方向上保持间距。通过使第二散热单元402与隔离管6的第二开口72保持间距,可防止第二散热单元402的热过度影响第二开口72处的空气温度,导致降低隔离管6内的对流效率。
本实施例中,第一开口71及第三开口81同时位于热交换单元4或隔离管6相对远离灯头1的一端。第一开口71及第三开口81为对流时的进气的一端。光学单元5上形成端盖51,所述端盖51覆盖于所述第一开口71及第三开口81处,且端盖51上开设孔洞,以用于进气。本实施例中的端盖51包括出光部511,其配置为用于出光,发光单元2工作时产生的光的至少一部分通过出光部511而从LED照明设备射出。出光部511在LED照明设备的轴向上位于第一散热单元401的外侧。端盖51进一步包括第一部分512,第一部分512对应于(覆盖于)第三开口82处,并具有第一孔洞5121。端盖51进一步包括第二部分513,第二部分513对应于第一开口71处,并具有第二孔洞5121。本实施例中的第二孔洞5121的总面积小于第一孔洞5121的总面积。本实施例中的第二孔洞5121的最大内切圆直接不超过2mm。
一实施例中,出光部511的面积至少占端盖51的总面积5%以上。一实施例中,出光部511的面积至少占端盖51的总面积10%以上。以此可提供一定的向下的出光。
应该理解,以上描述是为了进行图示说明而不是为了进行限制。通过阅读上述描述,在所提供的示例之外的许多实施方式和许多应用对本领域技术人员来说都将是显而易见的。因此,本教导的范围不应该参照上述描述来确定,而是应该参照所附权利要求以及这些权利要求所拥有的等价物的全部范围来确定。出于全面之目的,所有文章和参考包括专利申请和公告的公开都通过参考结合在本文中。在前述权利要求中省略这里公开的主题的任何方面并不是为了放弃该主体内容,也不应该认为发明人没有将该主题考虑为所公开的发明主题的一部分。

Claims (41)

  1. 一种LED照明设备,其特征在于,包括:
    灯头;
    发光单元;
    电源,所述发光单元与所述电源电性连接;
    热交换单元,其包括鳍片,所述发光单元固定在所述热交换单元上;以及
    第二对流通道,其以对流的方式对所述鳍片进行散热;
    所述发光单元包括第一光源与第二光源,当所述灯头沿竖直方向安装时,所述第一光源至少提供侧向的发光,所述第二光源与所述第一光源配置为朝不同的方向出光。
  2. 根据权利要求1所述的LED照明设备,其特征在于:当所述灯头沿竖直方向安装时,所述第二光源提供向下的出光。
  3. 根据权利要求1所述的LED照明设备,其特征在于:所述鳍片具有若干组,所述鳍片沿所述LED照明设备的轴向方向延伸设置,并且若干所述鳍片在所述LED照明设备的径向的内侧形成一容置空间,所述电源至少一部分配置于所述容置空间内。
  4. 根据权利要求3所述的LED照明设备,其特征在于:所述电源长度方向上的至少80%位于所述容置空间内。
  5. 根据权利要求3所述的LED照明设备,其特征在于:所述电源完全配置于所述容置空间内。
  6. 根据权利要求1或3或4或5所述的LED照明设备,其特征在于:还包括隔离单元,所述隔离单元包括隔离管,所述隔离管固定于所述容置空间内,所述电源固定于所述隔离管内。
  7. 根据权利要求6所述的LED照明设备,其特征在于:所述隔离管内形成第一对流通道,以对所述隔离管内的所述电源进行散热。
  8. 根据权利要求1所述的LED照明设备,其特征在于:所述第一对流通道在LED照明设备的轴向方向上的长度占所述LED照明设备的总长度的50%、55%、60%、65%或70%以上。
  9. 根据权利要求7所述的LED照明设备,其特征在于:所述第二对流通道在LED照明设备的轴向方向上的长度占所述LED照明设备的总长度的50%、55%、60%、65%或70%以上。
  10. 根据权利要求6所述的LED照明设备,其特征在于:所述隔离管内部填充导热材料以包覆所述电源。
  11. 根据权利要求10所述的LED照明设备,其特征在于:所述电源包括电子元件及电路板,所述电子元件固定于所述电路板上,所述电子元件包括发热元件,所述发热元件露于外部的表面积的至少85%附着所述导热材料。
  12. 根据权利要求10所述的LED照明设备,其特征在于:所述电源包括电子元件及电路板,所述电子元件固定于所述电路板上,所述电子元件包括发热元件,任意一所述发热元件露于外部的表面积的至少85%、90%或95%附着所述导热材料。
  13. 根据权利要求1或6或10所述的LED照明设备,其特征在于:所述电源包括电子元件及电路板,所述电子元件固定于所述电路板上,所述电路板的长度占所述热交换单元的长度的60%以上,且所述电路板完全位于所述热交换单元限定的空间内。
  14. 根据权利要求13所述的LED照明设备,其特征在于:所述电路板的长度占所述热交换单元的长度的70%以上。
  15. 根据权利要求14所述的LED照明设备,其特征在于:所述电路板的长度占所述热交换单元的长度的80%以上。
  16. 根据权利要求1所述的LED照明设备,其特征在于:还包括光学单元,所述发光单元包括若干组第一灯板,所述第一光源设置于所述第一灯板上,所述光学单元包括第一光学构件,一组所述第一光学构件对应一列或两列所述第一光源。
  17. 根据权利要求16所述的LED照明设备,其特征在于:所述第一光学构件的外表面的面积配置为至少占所述LED照明设备的径向的外侧的表面的面积的15%以上。
  18. 根据权利要求16所述的LED照明设备,其特征在于:所述发光单元包括第二灯板,所述第二光源固定在所述第二灯板上,所述第二灯板贴合于所述热交换单元远离所述灯头的一端的端面,所述光学单元包括第二光学构件,所述第二光学构件罩设于所述第二光源外。
  19. 根据权利要求16所述的LED照明设备,其特征在于:所述热交换单元包括基座,所述基座具有外侧表面和安装表面,所述安装表面位于所述外侧表面于所述LED照明设备的径向方向的更内侧,且所述发光单元安装于所述安装表面后,其位置在所述LED照明设备的径向方向上不超出所述外侧表面的位置。
  20. 根据权利要求19所述的LED照明设备,其特征在于:所述外侧表面所占所述LED照明设备的径向的外侧的表面的圆心角小于所述第一光学构件的外表面所占所述LED照明设备的径向的外侧的表面的圆心角。
  21. 根据权利要求16所述的LED照明设备,其特征在于:所述第一光源的光在其光束角A范围内投射至所述第一光学构件时,所述第一光学构件的内表面的宽度方向上至少60%以上宽度有来自所述第一光源的光束角A范围内的直射的光。
  22. 根据权利要求16所述的LED照明设备,其特征在于:还包括电连接单元,所述电连接单元包括电连接板,所述电连接板上布置有电路层,所述电连接板配置为至少与两组以上的所述第一灯板实现连接,而所述电连接板与所述电源电连接。
  23. 根据权利要求22所述的LED照明设备,其特征在于:所述电连接板上设 置有若干固定孔,所述第一灯板穿过所述固定孔,并与所述电连接板连接。
  24. 根据权利要求19所述的LED照明设备,其特征在于:所述鳍片包括位于所述基座内部的第一部分及露于所述基座外部的第二部分,所述第二部分的长度与所述鳍片的长度的比值为1:4~8。
  25. 根据权利要求10所述的LED照明设备,其特征在于:所述热交换单元包括基座,所述隔离管在其轴向上具有第一部分和第二部分,所述第一部分和所述第二部分沿所述LED照明设备长度方向上具有相等的长度,所述第一部分内的导热材料的重量设置为大于所述第二部分内的导热材料的重量。
  26. 根据权利要求10所述的LED照明设备,其特征在于:所述热交换单元包括基座,所述隔离管在其轴向上具有第一部分和第二部分,所述第一部分和所述第二部分沿所述LED照明设备长度方向上具有相等的长度,所述第一部分内的电子元件的数量多于所述第二部分内的电子元件的数量。
  27. 根据权利要求25或26所述的LED照明设备,其特征在于:所述第一部分的至少一部分对应于露于所述基座的外部的鳍片。
  28. 一种LED照明设备,其特征在于,包括:
    灯头;
    发光单元;
    电源,所述发光单元与所述电源电性连接;
    热交换单元,其包括鳍片,所述发光单元固定在所述热交换单元上;
    第一对流通道,其以对流的方式对所述电源进行散热;以及
    第二对流通道,其以对流的方式对所述鳍片进行散热;
    所述发光单元包括第一光源,当所述灯头沿竖直方向安装时,所述第一光源至少提供侧向的发光;
    所述第一对流通道和/或所述第二对流通道在所述LED照明设备的轴向方向上的长度占所述LED照明设备的总长度的50%、55%、60%、65%或70%以上。
  29. 根据权利要求28所述的LED照明设备,其特征在于:所述发光单元还包括第二光源,所述第二光源与所述第一光源配置为朝不同的方向出光。
  30. 根据权利要求29所述的LED照明设备,其特征在于:当所述灯头沿竖直方向安装时,所述第二光源提供向下的出光。
  31. 根据权利要求28所述的LED照明设备,其特征在于:所述鳍片具有若干组,所述鳍片沿所述LED照明设备的轴向方向延伸设置,并且若干所述鳍片在所述LED照明设备的径向的内侧形成一容置空间,所述电源至少一部分配置于所述容置空间内,所述电源长度方向上的至少80%位于所述容置空间内。
  32. [根据细则91更正 17.02.2022] 
    根据权利要求31所述的LED照明设备,其特征在于:还包括隔离单元,所述隔离单元包括隔离管,所述隔离管固定于所述容置空间内,所述电源固定于所 述隔离管内,所述隔离管内形成所述第一对流通道,以对所述隔离管内的所述电源进行散热。
  33. [根据细则91更正 17.02.2022] 
    根据权利要求28所述的LED照明设备,其特征在于:所述电源包括电子元件及电路板,所述电子元件固定于所述电路板上,所述电路板的长度占所述热交换单元的长度的60%以上,且所述电路板完全位于所述热交换单元限定的空间内。
  34. [根据细则91更正 17.02.2022] 
    根据权利要求28所述的LED照明设备,其特征在于:还包括光学单元,所述发光单元包括若干组第一灯板,所述第一光源设置于所述第一灯板上,所述光学单元包括第一光学构件,一组所述第一光学构件对应一列或两列所述第一光源。
  35. [根据细则91更正 17.02.2022] 
    根据权利要求29所述的LED照明设备,其特征在于:所述发光单元包括第二灯板,所述第二光源固定在所述第二灯板上,所述第二灯板贴合于所述热交换单元远离所述灯头的一端的端面,所述光学单元包括第二光学构件,所述第二光学构件罩设于所述第二光源外。
  36. [根据细则91更正 17.02.2022] 
    根据权利要求34所述的LED照明设备,其特征在于:所述热交换单元包括基座,所述基座具有外侧表面和安装表面,所述安装表面位于所述外侧表面于所述LED照明设备的径向方向的更内侧,且所述发光单元安装于所述安装表面后,其位置在所述LED照明设备的径向方向上不超出所述外侧表面的位置。
  37. [根据细则91更正 17.02.2022] 
    根据权利要求36所述的LED照明设备,其特征在于:所述外侧表面所占所述LED照明设备的径向的外侧的表面的圆心角小于所述第一光学构件的外表面所占所述LED照明设备的径向的外侧的表面的圆心角。
  38. [根据细则91更正 17.02.2022] 
    根据权利要求34所述的LED照明设备,其特征在于:所述第一光源的光在其光束角A范围内投射至所述第一光学构件时,所述第一光学构件的内表面的宽度方向上至少60%以上宽度有来自所述第一光源的光束角A范围内的直射的光。
  39. [根据细则91更正 17.02.2022] 
    根据权利要求34所述的LED照明设备,其特征在于:还包括电连接单元,所述电连接单元包括电连接板,所述电连接板上布置有电路层,所述电连接板配置为至少与两组以上的所述第一灯板实现连接,而所述电连接板与所述电源电连接。
  40. [根据细则91更正 17.02.2022] 
    根据权利要求39所述的LED照明设备,其特征在于:所述电连接板上设置有若干固定孔,所述第一灯板穿过所述固定孔,并与所述电连接板连接。
  41. [根据细则91更正 17.02.2022] 
    根据权利要求36所述的LED照明设备,其特征在于:所述鳍片包括位于所述基座内部的第一部分及露于所述基座外部的第二部分,所述第二部分的长度与所述鳍片的长度的比值为1:4~8。
PCT/CN2022/072036 2021-01-18 2022-01-14 一种led照明设备 WO2022152247A1 (zh)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN202110061698 2021-01-18
CN202110061698.8 2021-01-18
CN202110289316 2021-03-18
CN202110289316.7 2021-03-18
CN202110405922.0 2021-04-15
CN202110405922 2021-04-15
CN202110440020.0 2021-04-23
CN202110440020 2021-04-23
CN202110516065.1 2021-05-12
CN202110516065 2021-05-12
CN202110698102 2021-06-23
CN202110698102.5 2021-06-23
CN202210003647.4 2022-01-04
CN202210003647 2022-01-04

Publications (1)

Publication Number Publication Date
WO2022152247A1 true WO2022152247A1 (zh) 2022-07-21

Family

ID=82447970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072036 WO2022152247A1 (zh) 2021-01-18 2022-01-14 一种led照明设备

Country Status (1)

Country Link
WO (1) WO2022152247A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115240538A (zh) * 2022-08-23 2022-10-25 惠州市瀚达美电子有限公司 一种用于显示装置的光分布均匀的led背光源

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044716A1 (ja) * 2007-10-01 2009-04-09 Koha Co., Ltd. 発光装置
CN202024159U (zh) * 2011-04-28 2011-11-02 宁波普锐电子科技有限公司 一种采用低压贴片led的灯具
CN202216079U (zh) * 2011-07-29 2012-05-09 天津津港宇达电子科技有限公司 中华灯灯头
CN202927514U (zh) * 2012-06-19 2013-05-08 覃有尝 鳍片式led玉米灯
CN202946953U (zh) * 2012-11-08 2013-05-22 浙江阳光照明电器集团股份有限公司 一种液体传热的led球形灯
CN204153522U (zh) * 2014-10-21 2015-02-11 深圳供电局有限公司 一种高流明led照明灯
CN204829373U (zh) * 2015-07-16 2015-12-02 中山市永安路灯有限公司 一种led玉米灯
CN206738964U (zh) * 2017-03-15 2017-12-12 深圳市思坎普科技有限公司 Led鳍片玉米灯

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044716A1 (ja) * 2007-10-01 2009-04-09 Koha Co., Ltd. 発光装置
CN202024159U (zh) * 2011-04-28 2011-11-02 宁波普锐电子科技有限公司 一种采用低压贴片led的灯具
CN202216079U (zh) * 2011-07-29 2012-05-09 天津津港宇达电子科技有限公司 中华灯灯头
CN202927514U (zh) * 2012-06-19 2013-05-08 覃有尝 鳍片式led玉米灯
CN202946953U (zh) * 2012-11-08 2013-05-22 浙江阳光照明电器集团股份有限公司 一种液体传热的led球形灯
CN204153522U (zh) * 2014-10-21 2015-02-11 深圳供电局有限公司 一种高流明led照明灯
CN204829373U (zh) * 2015-07-16 2015-12-02 中山市永安路灯有限公司 一种led玉米灯
CN206738964U (zh) * 2017-03-15 2017-12-12 深圳市思坎普科技有限公司 Led鳍片玉米灯

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115240538A (zh) * 2022-08-23 2022-10-25 惠州市瀚达美电子有限公司 一种用于显示装置的光分布均匀的led背光源

Similar Documents

Publication Publication Date Title
US11125394B2 (en) LED lamp with lamp shell and passive heat dissipating element
JP6352292B2 (ja) 平坦な照明装置
CN101785117B (zh) 照明装置
JP4945433B2 (ja) 照明装置
JP5706536B2 (ja) Led照明器具
CN202834855U (zh) 带有分离的驱动电路的led发光设备
US8482014B2 (en) Lighting apparatus
CN101566325B (zh) 发光二极管灯具
WO2017173778A1 (zh) 一种全方位对流的主动型散热器及应用该散热器的舞台灯
CN212456342U (zh) 一种led灯
JP2010531536A (ja) 線形放熱部材を備えた放熱装置及びこれを備えたファンレスled照明器具
KR101413509B1 (ko) 다수의 히트싱크가 구비된 엘이디 방열체
CN102644866A (zh) 一种具有良好散热的led灯泡
JP2009032590A (ja) 多段層基板によって達成されかつ熱を即座に放散するledランプ
CN111911820B (zh) 一种led照明设备
WO2022152247A1 (zh) 一种led照明设备
JP6202363B2 (ja) 照明装置
CN217584104U (zh) 一种led照明设备
CN202484683U (zh) 具有良好散热的led灯泡
JP5247928B2 (ja) 照明装置
JP5155463B2 (ja) 照明装置
CN220453607U (zh) 一种led照明设备
KR20150012025A (ko) 엘이디 조명 장치
CN217302610U (zh) 一种上下出光的照明装置
CN110220121A (zh) 一种led灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739122

Country of ref document: EP

Kind code of ref document: A1