WO2022151503A1 - 盘点机器人 - Google Patents

盘点机器人 Download PDF

Info

Publication number
WO2022151503A1
WO2022151503A1 PCT/CN2021/072575 CN2021072575W WO2022151503A1 WO 2022151503 A1 WO2022151503 A1 WO 2022151503A1 CN 2021072575 W CN2021072575 W CN 2021072575W WO 2022151503 A1 WO2022151503 A1 WO 2022151503A1
Authority
WO
WIPO (PCT)
Prior art keywords
bracket
inventory robot
base
lifting mechanism
lifting
Prior art date
Application number
PCT/CN2021/072575
Other languages
English (en)
French (fr)
Inventor
邢一凡
赵万秋
颜彪
单世强
余雄杰
郭杰
Original Assignee
深圳优艾智合机器人科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳优艾智合机器人科技有限公司 filed Critical 深圳优艾智合机器人科技有限公司
Priority to PCT/CN2021/072575 priority Critical patent/WO2022151503A1/zh
Publication of WO2022151503A1 publication Critical patent/WO2022151503A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/02Manipulators mounted on wheels or on carriages travelling along a guideway

Definitions

  • the present application relates to the technical field of goods inventory management, and in particular, to an inventory robot.
  • the prior art proposes a solution for designing an inventory robot to automatically inventory goods.
  • the inventory robots in the prior art still have the following shortcomings:
  • the existing inventory robot includes a base, a scanning assembly, and a lifting mechanism for driving the scanning assembly to move up and down relative to the base.
  • the prior art uses a lifting mechanism to drive the scanning assembly to move, which is easily restricted by the structure of the lifting mechanism, resulting in the scanning assembly. Unable to scan goods placed in a low position;
  • the obstacle avoidance detection design scheme of the inventory robot is to set a lidar on the side of the base to detect obstacles in the horizontal direction.
  • This existing inventory robot can only detect obstacles within the height range of the base. , and it is impossible to detect obstacles within the height range of the lifting mechanism, so it is easy for the lifting mechanism to collide with obstacles during the process of the inventory robot walking or the lifting mechanism. Therefore, the existing inventory robots are still in specific applications. There is a large security risk;
  • the purpose of the present application is to provide an inventory robot, which aims to solve the technical problem that the existing inventory robot cannot scan the goods placed in a low position.
  • an inventory robot including a base, a scanning assembly, and a lifting device for driving the scanning assembly to move up and down relative to the base;
  • the lifting device includes a first lifting mechanism, a second lifting mechanism spaced from the first lifting mechanism, and a beam connected between the first lifting mechanism and the second lifting mechanism, the first lifting mechanism
  • the mechanism is installed on the beam and connected with the scanning assembly, so as to drive the scanning assembly to move up and down; the bottom end of the second lifting mechanism is connected with the base, and the top end is connected with the beam, so as to It is used to drive the cross beam to drive the first lifting mechanism to perform a lifting movement and then drive the scanning assembly to perform a lifting movement.
  • the first lifting mechanism includes a first bracket and a first driving mechanism
  • the first driving mechanism includes a lifting component mounted on the first bracket and connected with the scanning assembly, and a lifting component for driving the
  • the lifting component drives the scanning component to perform a driving component for lifting movement
  • the driving component is mounted on the first bracket and/or the beam
  • the scanning component has a connecting piece connected with the lifting component.
  • the lifting component is a conveyor belt or a transmission chain
  • the drive assembly includes a driven wheel, a driving wheel and a motor
  • the conveyor belt or the transmission chain is wound around the driven wheel and the driving wheel
  • the The motor is in driving connection with the driving wheel
  • the connecting piece clamps and connects the conveyor belt or the transmission chain.
  • the drive assembly further includes a deceleration transmission component that is drivingly connected between the motor and the driving wheel.
  • a guide rail is provided on the first bracket, the scanning assembly further has a sliding member slidably matched with the guide rail, and the connecting member is mounted on the sliding member.
  • the second lifting mechanism includes a fixed sleeve with one end connected to the base, at least one telescopic rod movably connected to the fixed sleeve for driving the beam to move up and down relative to the base, and a telescopic rod for driving
  • the telescopic rod is a second driving mechanism for lifting and lowering movement, and the beam is connected to the telescopic rod of the section farthest from the base.
  • the second driving mechanism is any one of a pneumatic driving mechanism, a hydraulic driving mechanism or an electric driving mechanism; and/or, the second driving mechanism is installed in the base.
  • the inventory robot further includes a first obstacle avoidance detection component for detecting obstacles for the second lifting mechanism.
  • the first obstacle avoidance detection component detects obstacles in a vertical direction, and the first obstacle avoidance detection component is installed on the side of the fixed sleeve or on the top of the base; or,
  • the first obstacle avoidance detection component includes at least two horizontal obstacle avoidance detection components for detecting obstacles in the horizontal direction, and at least one horizontal obstacle detection component is respectively installed on the side of the fixed sleeve and the side of each section of the telescopic rod.
  • An obstacle avoidance detection component is provided, and the horizontal obstacle avoidance detection component on the telescopic rod is arranged on the end of the telescopic rod away from the base.
  • the inventory robot further includes a second obstacle avoidance detection component for detecting obstacles for the base, and the second obstacle avoidance detection component is installed on the side of the base and detects obstacles in a horizontal direction.
  • the lifting device further includes a height distance sensor, and the height distance sensor is disposed on at least one of the beam, the first bracket and the scanning assembly.
  • the scanning assembly includes a second bracket, at least one scanner mounted on the second bracket, and a connecting assembly connected with the second lifting mechanism.
  • the scanning assembly further includes a fill light, and the fill light is arranged on the side of the scanner to fill light for the scanner.
  • the scanning assembly further includes a third bracket, the fill light is mounted on the third bracket, the third bracket is located on the side of the second bracket and is connected to the connecting assembly or the The second bracket is connected.
  • the third bracket is arranged on the side of the second bracket in a manner that can rotate relative to the second bracket; or,
  • the third bracket is arranged on the side of the second bracket in a fixed manner relative to the second bracket, and an included angle of -25° ⁇ 25° is formed between the third bracket and the second bracket .
  • the scanning assembly further includes at least one horizontal distance sensor, and the horizontal distance sensor is mounted on the second bracket.
  • the number of the horizontal distance sensors is the same as the number of the scanners, and one of the horizontal distance sensors is correspondingly disposed on the side of each of the scanners.
  • the scanning assembly further includes a control circuit board, the control circuit board is mounted on the third bracket, and the scanner, the fill light and the horizontal distance sensor are respectively connected with the control circuit board. electrical connection.
  • the base is further provided with a groove directly below the scanning assembly, and the groove has a first groove disposed on the top of the base for the scanning assembly to descend and pass through the groove.
  • An opening and a second opening provided on the side of the base for the scanning assembly to scan the cargo from the recess.
  • the groove further has a third opening, and the second opening and the third opening are respectively provided on opposite sides of the base; and/or,
  • the groove further has a fourth opening, and the second opening and the fourth opening are respectively provided on two adjacent side portions of the base.
  • the inventory robot also includes a cable, a cable reel, a battery and a controller, the cable reel is installed on the top of the base or inside the base, and the cable is partially wound around the base.
  • one end of the cable is connected to the scanning component, the other end is connected to the battery or the controller, and the battery is electrically connected to the controller.
  • the inventory robot further includes a first limiting device, the first limiting device is mounted on the second lifting mechanism, and the first limiting device is provided with a cable for the cable to pass through. A first threaded hole for limiting the cable.
  • the first limiting device includes a first installation frame and a first rolling assembly; the first installation frame is installed on the second lifting mechanism, and the first installation frame is provided with a first passage through the first installation frame.
  • the first rolling assembly is installed in the first through hole, and the first threading hole is formed by the first rolling assembly.
  • the first rolling assembly includes at least two first rollers, wherein the two first rollers are respectively distributed along two opposite inner side walls of the first through hole; or,
  • the first rolling assembly includes a plurality of first balls distributed around the inner sidewall of the first through hole.
  • the inventory robot further includes a second limiting device, the second limiting device is mounted on the cable reel, and the second limiting device is provided for the cable to pass through.
  • a second wire hole for limiting the position of the cable is provided for the second limiting device.
  • the second limiting device includes a second mounting frame and a second rolling assembly, the second mounting frame is mounted on the reel, and a second through hole is formed through the second mounting frame , the second rolling assembly is installed in the second through hole, and the second threading hole is formed by the second rolling assembly.
  • the second rolling assembly includes at least two second rollers, wherein the two second rollers are respectively distributed along two opposite inner side walls of the second through hole; or, the second rolling assembly It includes a plurality of second balls distributed around the inner sidewall of the second through hole.
  • the inventory robot also includes a drag chain, one end of the drag chain is connected to the beam, the other end is connected to the scanning assembly, and the part of the cable between the beam and the scanning assembly passes through. set in the drag chain.
  • the inventory robot by setting the first lifting mechanism connected with the scanning assembly, the first lifting mechanism can directly drive the scanning assembly to perform lifting motion; by setting the second lifting mechanism, the second lifting mechanism connects with the first lifting mechanism through the beam Connected, the second lifting mechanism can drive the beam to lift, and the beam can drive the first lifting mechanism to lift and then drive the scanning assembly to lift. That is, the second lifting mechanism can indirectly drive the scanning assembly to lift. Therefore, the inventory robot provided by this application uses a first lifting mechanism and a second lifting mechanism to drive the scanning assembly to move, that is, two lifting mechanisms are used to drive the scanning assembly to move.
  • This setting method is not limited by the structure of one lifting mechanism, and the scanning Under the driving action of the first lifting mechanism and the second lifting mechanism, the component can scan the goods placed at a low position, thereby reducing the manual participation in the inventory work.
  • Fig. 1 is a three-dimensional schematic diagram of a viewing angle of an inventory robot provided in Embodiment 1 of the present application;
  • FIG. 2 is a three-dimensional schematic diagram of another viewing angle of the inventory robot provided in Embodiment 1 of the present application;
  • FIG. 3 is a perspective schematic view of the first lifting mechanism and the scanning component assembled together according to the first embodiment of the present application;
  • FIG. 4 is a schematic perspective view from another perspective when the first lifting mechanism and the scanning component are assembled together according to the first embodiment of the present application;
  • Fig. 5 is the partial enlarged view of A place in Fig. 4;
  • Fig. 6 is a partial enlarged view at B in Fig. 4;
  • FIG. 7 is a perspective view of the first lifting mechanism and the scanning component assembled together according to the first embodiment of the present application.
  • FIG. 8 is a three-dimensional schematic diagram of another viewing angle of the inventory robot provided in Embodiment 1 of the present application.
  • Fig. 9 is a partial enlarged view at C in Fig. 8;
  • Fig. 10 is a perspective view of the first lifting mechanism and the scanning component assembled together according to the first embodiment of the present application;
  • FIG. 11 is a schematic three-dimensional schematic diagram of another perspective of the inventory robot provided in Embodiment 1 of the present application.
  • FIG. 12 is a simplified schematic diagram of the cable wiring of the inventory robot provided in the first embodiment of the present application.
  • FIG. 13 is a schematic perspective view of the cord reel and the second limiting device assembled together according to the first embodiment of the present application;
  • FIG. 14 is a schematic structural diagram of a first limiting device provided in Embodiment 1 of the present application.
  • FIG. 15 is a schematic structural diagram of a second limiting device provided in Embodiment 1 of the present application.
  • FIG. 16 is a schematic perspective view of the inventory robot provided in Embodiment 2 of the present application.
  • 17 is a schematic diagram of the distribution of the first obstacle avoidance detection component on the second lifting mechanism provided in the third embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of the third bracket provided in the fourth embodiment of the present application in a state where the third bracket is fixed on the side of the second bracket and forms an included angle ⁇ with the second bracket;
  • FIG. 19 is another schematic structural diagram of the third bracket provided in the fourth embodiment of the present application in a state where the third bracket is fixed on the side of the second bracket and forms an included angle ⁇ with the second bracket;
  • FIG. 20 is a three-dimensional schematic diagram of an inventory robot provided in Embodiment 5 of the present application.
  • FIG. 21 is a schematic structural diagram of the first limiting device provided in Embodiment 6 of the present application.
  • an inventory robot 10 provided by an embodiment of the present application includes a base 100, a scanning assembly 200, and a lifting device 300 for driving the scanning assembly 200 to move up and down relative to the base 100;
  • the lifting device 300 includes A first lifting mechanism 1, a second lifting mechanism 2 spaced from the first lifting mechanism 1, and a beam 3 connected between the first lifting mechanism 1 and the second lifting mechanism 2, the first lifting mechanism 1 is mounted on the beam 3
  • the bottom end of the second lifting mechanism 2 is connected with the base 100, and the top end is connected with the beam 3, so as to drive the beam 3 to drive the first lifting mechanism 1 to carry out the lifting movement.
  • the lifting motion further drives the scanning assembly 200 to perform the lifting motion.
  • the first lifting mechanism 1 can directly drive the scanning assembly 200 to perform lifting motion; by setting the second lifting mechanism 2, the second lifting mechanism 2 is connected to the first lifting mechanism through the beam 3 1 connection, the second lifting mechanism 2 can drive the beam 3 to carry out the lifting movement, and the beam 3 can drive the first lifting mechanism 1 to carry out the lifting movement and then drive the scanning assembly 200 to carry out the lifting movement, that is, the second lifting mechanism 2 can indirectly drive the scanning assembly 200.
  • the inventory robot 10 provided in this application adopts the first lifting mechanism 1 and the second lifting mechanism 2 to drive the scanning assembly 200 to move, that is, two lifting mechanisms are used to drive the scanning assembly 200 to move, and this setting method will not be affected by one lifting mechanism. Due to the structural limitation, the scanning assembly 200 can scan the goods placed at a low position under the driving action of the first lifting mechanism 1 and the second lifting mechanism 2, thereby reducing the manual participation in the inventory work.
  • the first lifting mechanism 1 includes a first bracket 11 and a first driving mechanism 12
  • the first driving mechanism 12 includes a lifting component 121 mounted on the first bracket 11 and connected to the scanning assembly 200 and a
  • the driving component 122 for driving the lifting component 121 to drive the scanning component 200 to move up and down is installed on the first bracket 11 and/or the beam 3 .
  • the first bracket 11 is mainly used to realize the connection between the first lifting mechanism 1 and the beam 3
  • the lifting component 121 is mainly used to realize the connection between the first lifting mechanism 1 and the scanning assembly 200
  • the driving component 122 is mainly used to provide driving for the movement of the lifting component 121 . power.
  • the driving component 122 is installed on the first bracket 11; of course, in specific applications, as an alternative implementation, a part of the driving component 122 can also be installed on the first bracket 11, and the other part can be installed on the first bracket 11. Installed on the beam 3 ; alternatively, the drive assembly 122 can also be completely installed on the beam 3 .
  • the lifting component 121 is a conveyor belt
  • the driving assembly 122 includes a driven wheel 1221, a driving wheel 1222 and a motor 1223
  • the conveyor belt is arranged on the driven wheel 1221 and the driving wheel 1222
  • the motor 1223 is connected to the driving wheel 1222 in a driving manner
  • the connector 2101 clamps and connects the conveyor belt.
  • a conveyor belt is used to drive the scanning assembly 200 to perform an ascending and descending motion, which is beneficial to ensure the stability of the ascending and descending motion of the scanning assembly 200 .
  • the elevating member 121 is not limited to a conveyor belt, for example, the elevating member 121 may also be a transmission chain.
  • the driving assembly 122 further includes a deceleration transmission part 1224 that is drivingly connected between the motor 1223 and the driving wheel 1222 .
  • the setting of the deceleration transmission part 1224 can adjust the output speed of the motor 1223 to a suitable speed and transmit it to the driving wheel 1222, so that the moving speed of the conveyor belt is neither too fast nor too slow; on the other hand, the power can be changed. so that the output shaft of the motor 1223 does not have to be coaxial with the drive shaft of the driving wheel 1222.
  • the deceleration transmission part 1224 is a gear reduction box, which has a compact structure and stable transmission, which is beneficial to reduce the volume of the deceleration transmission part 1224 and ensure that the driving assembly 122 drives the scanning assembly 200 to move up and down. stability.
  • the deceleration transmission component 1224 may also be other types of transmission mechanisms.
  • the first bracket 11 is provided with a guide rail 111
  • the scanning assembly 200 further has a sliding member 2102 slidably matched with the guide rail 111
  • the connecting member 2101 is mounted on the sliding member 2102 .
  • the arrangement of the guide rails 111 can guide the ascending and descending motion of the scanning assembly 200 , thereby improving the stability of the ascending and descending motion of the scanning assembly 200 driven by the first lifting mechanism 1 .
  • the drive assembly 122 further includes a driving shaft 1225 and a driven shaft 1226, the driving shaft 1225 is arranged near the top of the guide rail 111, the driven shaft 1226 is arranged near the bottom end of the guide rail 111, and the driving shaft 1225 It is arranged in parallel with the driven shaft 1226, and the driving shaft 1225 and the driven shaft 1226 are both perpendicular to the direction of the scanning assembly 200 moving up and down along the guide rail 111.
  • the driven wheel 1221 is mounted on the driven shaft 1226 .
  • the scanning assembly 200 can move up and down along the entire guide rail 111, the guide rail 111 is fully used, and the driving assembly 122 can be brought close to the top of the first bracket 11, thereby reducing the load-bearing of the bottom end of the first bracket 11, The structural reliability of the first lifting mechanism 1 is improved.
  • the second lifting mechanism 2 includes a fixed sleeve 21 connected to the base 100 at one end, and at least one fixed sleeve 21 is movably connected to drive the beam 3 to move up and down relative to the base 100
  • the telescopic rod 22 and a second driving mechanism (not shown) for driving the telescopic rod 22 to move up and down, the beam 3 is connected to the telescopic rod 22 of the section farthest from the base 100 .
  • the second driving mechanism drives the telescopic rod 22 to rise and fall, so that the beam 3 can drive the first lifting mechanism 1 to move up and down, thereby driving the scanning assembly 200 to rise and fall to different height positions, so that the scanning assembly 200 can scan and count objects in different height ranges. goods.
  • the second drive mechanism is a pneumatic drive member, which includes a compressor, an air tank, an air valve, and an air pipe.
  • the compressor, the air tank, and the air valve are connected by the air pipe to form an air circuit system, and the air circuit system can be
  • the driving force is provided for the lifting and lowering of each telescopic rod 22, so that the second driving mechanism can be lifted and lowered to different heights.
  • the second drive mechanism adopts a pneumatic drive member, and has the characteristics of good environmental adaptability, no pollution, low cost, quick response, convenient adjustment and convenient later maintenance.
  • the second driving mechanism is not limited to adopting a pneumatic solution.
  • the second driving mechanism can also be a hydraulic driving member, that is, the telescopic rod 22 can also be driven up and down by a hydraulic system, or the first
  • the second driving mechanism can also be an electric driving member, that is, the telescopic rod 22 can also be driven up and down by an electric system.
  • the second driving mechanism is installed in the base 100 , that is, the second driving mechanism is completely accommodated in the base 100 , which is beneficial to improve the aesthetic appearance of the inventory robot 10 .
  • the second lifting mechanism 2 includes seven telescopic rods 22, which can be raised to a height of 12 meters and have a wide range of applications.
  • the number of sections and the lifting height of the telescopic rods 22 are not limited to this.
  • the number of sections of the telescopic rods 22 may also be five, six, eight, or nine.
  • the inventory robot 10 further includes a first obstacle avoidance detection component 410 for detecting obstacles for the second lifting mechanism 2 .
  • the arrangement of the first obstacle avoidance detection component 410 is mainly used to detect obstacles within the height range of the second lifting mechanism 2 , which can effectively improve the safety and reliability of the operation of the inventory robot 10 .
  • the first obstacle avoidance detection component 410 detects obstacles in a vertical direction, that is, the first obstacle avoidance detection component 410 detects obstacles in a direction parallel to the fixing sleeve 21 .
  • the first obstacle avoidance detection part 410 can detect obstacles in a vertical plane parallel to the height direction of the fixed sleeve 21 , so that it can be ensured that the first obstacle avoidance detection part 410 can detect obstacles in different height ranges of the second lifting mechanism 2 It fully guarantees the safety and reliability of the operation of the inventory robot 10.
  • the first obstacle avoidance detection component 410 is installed on the side of the fixed sleeve 21 , so that the first obstacle avoidance detection component 410 can detect a certain area on two opposite sides of the second lifting mechanism 2 with the fixed sleeve 21 as the center obstacles within range.
  • the first obstacle avoidance detection part 410 is disposed close to the end of the fixed sleeve 21 away from the base 100 , that is, the first obstacle avoidance detection part 410 is disposed close to the top of the fixed sleeve 21 , so that the first obstacle avoidance detection part 410 is as far as possible A higher obstacle is detected, so as to ensure that even if the second lifting mechanism 2 rises to the maximum height, the first obstacle avoidance detection component 410 can detect the obstacles around the top of the second lifting mechanism 2, thereby facilitating further improvement of the inventory robot 10. Safe and reliable operation.
  • the inventory robot 10 further includes a second obstacle avoidance detection part 420 for detecting obstacles for the base 100 .
  • the second obstacle avoidance detection part 420 is installed on the side of the base 100 and detects obstacles in a horizontal direction.
  • the second obstacle avoidance detection component 420 is mainly used to detect obstacles within the height range of the base 100 , thereby helping to avoid the collision between the base 100 and the obstacle during the walking process of the inventory robot 10 .
  • two second obstacle avoidance detection components 420 are provided, and two second obstacle avoidance detection components 420 are respectively provided on two opposite sides of the base 100 , which have a wide detection range.
  • the first obstacle avoidance detection component 410 and the second obstacle avoidance detection component 420 are both lidars.
  • the first obstacle avoidance detection component 410 and the second obstacle avoidance detection component 410 may also be an infrared distance sensor or an ultrasonic distance sensor or the like.
  • the lifting device 300 further includes a height distance sensor 4 , and the height distance sensor 4 is provided on at least one of the beam 3 , the first bracket 11 and the scanning assembly 200 .
  • the height distance sensor 4 is arranged on the beam 3 and/or the first bracket 11, it can be used to detect the lifting height of the second lifting mechanism 2; when the height distance sensor 4 is arranged on the scanning assembly 200, in addition to realizing the second
  • the scanning assembly 200 can follow the lifting movement to monitor the lifting height of the scanning assembly 200, so as to obtain the accuracy of the shelves and goods. high.
  • the height distance sensor 4 By arranging the height distance sensor 4 on at least one of the beam 3, the first bracket 11 and the scanning mechanism, the lifting height of the inventory robot 10 during the lifting movement can be accurately positioned, so that the cargo information can be obtained quickly and effectively, Thus, the work efficiency of the inventory robot 10 is improved.
  • the height distance sensor 4 is arranged on the beam 3 .
  • the scanning assembly 200 includes a second bracket 220 , at least one scanner 230 mounted on the second bracket 220 , and a connecting assembly 210 connected to the second lifting mechanism 2 .
  • the connecting assembly 210 includes a connecting member 2101 and a sliding member 2102.
  • the first lifting mechanism 1 drives the second bracket 220 to perform lifting movement through the connecting member 210, thereby driving the scanner 230 to perform lifting movement, so as to realize the lifting and lowering movement of the scanner 230 at different heights.
  • the goods on the slot are scanned.
  • the scanner 230 is a barcode scanner for scanning barcodes on pallets of goods.
  • the scanner 230 can also be other types of scanners, such as a radio frequency identification tag scanner, a two-dimensional code scanner, a sound wave locator, etc., wherein the radio frequency identification tag scanner is used to scan the radio frequency on the pallet of goods.
  • Identification labels, QR code scanners are used to scan QR codes on cargo pallets, and sonic locators are used to detect ultrasonic generators on cargo pallets.
  • the scanning assembly 200 further includes a fill light 250 , and the fill light 250 is arranged on the side of the scanner 230 to fill the light for the scanner 230 .
  • the setting of the fill light 250 enables the inventory robot 10 to work in a dark environment.
  • the scanning assembly 200 further includes a third bracket 240 , the fill light 250 is mounted on the third bracket 240 , and the third bracket 240 is located on the side of the second bracket 220 and connected to the connecting assembly 210 or the second bracket 220 .
  • the third bracket 240 is connected to the connecting component 210 .
  • the third bracket 240 can also be connected to the second bracket 220 .
  • the supplementary light 250 may also be mounted on the second bracket 220 .
  • the third bracket 240 is disposed on the side of the second bracket 220 in a manner that can rotate relative to the second bracket 220 .
  • the third frame body is rotatably connected to the connecting assembly 210, and the second frame body is fixed to the connecting assembly 210, so that the third frame body can rotate relative to the second frame body, and it is convenient to adjust to the optimal fill light angle , which is conducive to focusing and eliminating the influence of reflected light on the scanner 230 .
  • the scanning assembly 200 further includes at least one horizontal distance sensor 260 , and the horizontal distance sensor 260 is mounted on the second bracket 220 .
  • the horizontal distance sensor 260 can detect whether there are goods in each storage space on the container in the warehouse, so as to detect the saturation of the storage of goods in the warehouse.
  • the number of the horizontal distance sensors 260 is the same as the number of the scanners 230 , and one horizontal distance sensor 260 is correspondingly disposed on the side of each scanner 230 .
  • a horizontal distance sensor 260 is correspondingly disposed on the side of each scanner 230, so that it can simultaneously detect whether there is goods in the cargo space on each container of the warehouse, thereby improving work efficiency.
  • the scanning assembly 200 further includes a control circuit board (not shown), the control circuit board is mounted on the third bracket 240 , and the scanner 230 , the fill light 250 and the horizontal distance sensor 260 are respectively electrically connected to the control circuit board.
  • the control circuit board can supply power to the scanner 230 , the fill light 250 and the horizontal distance sensor 260 , and the control circuit board can also transmit signals to the scanner 230 and the horizontal distance sensor 260 .
  • the scanning assembly 200 further includes an installation box 270, the control circuit board is installed in the installation box 270, and the installation box 270 is arranged on the third frame body. It can be understood that, in other embodiments, the installation box 270 may also be disposed on the second frame body or the connecting assembly 210 .
  • the base 100 is further provided with a groove 110 located directly below the scanning assembly 200 .
  • the groove 110 is provided on the top of the base 100 for the scanning assembly 200 to descend through the groove 110
  • the first opening 1101 is opened upward, and the second opening 1102 is opened toward one side of the base 100 .
  • the lifting device 300 drives the scanning assembly 200 to ascend and descend, so that the scanning assembly 200 can be lifted to different height positions, so that the scanning assembly 200 can scan and count goods in different height ranges.
  • the setting of the groove 110 is mainly used to avoid the scanning assembly 200 lowered to a low position, so that the scanning assembly 200 can scan the goods placed in a low position (a cargo position lower than the top of the base 100 ), thereby eliminating the need for low-level cargo
  • the trouble of manual scanning is helpful for the inventory robot 10 to realize the automatic inventory of the goods in the warehouse.
  • the grooves 110 are only provided in the part of the base 100, so the overall height and lateral dimension of the base 100 are not affected. In this way, it is not only beneficial for the base 100 to have a larger space to accommodate other components, but also to ensure the base
  • the center of gravity of 100 can be set in the center, thereby fully guaranteeing the running stability of the inventory robot 10 .
  • the groove 110 further has a third opening 1103 , and the second opening 1102 and the third opening 1103 are respectively provided on opposite sides of the base 100 , that is, the groove 110 goes from one side of the base 100 to the other opposite side of the base 100 .
  • the structure of the base 100 can be relatively symmetrical, so that the center of gravity of the base 100 can be centered, and the appearance of the base 100 can be improved.
  • the groove 110 is not provided with the third opening 1103 .
  • the groove 110 further has a fourth opening 1104 , and the second opening 1102 and the fourth opening 1104 are respectively provided on two adjacent sides of the base 100 .
  • the setting of the fourth opening 1104 facilitates that when the scanning assembly 200 descends into the groove 110 , the operator can see the scanning assembly 200 from multiple dimensions.
  • the groove 110 may not be provided with the fourth opening 1104 .
  • the side profile of the base 100 is rectangular, which includes a first side portion 101, a second side portion 102, a third side portion 103 and a first side portion 101.
  • the four side parts 104, the first side part 101 and the second side part 102 are arranged oppositely, and the third side part 103 and the fourth side part 104 are arranged oppositely and connected to the first side part 101 and the second side part 102 respectively.
  • a second opening 1102 , a third opening 1103 , and a fourth opening 1104 are provided on the side of the groove 110 , wherein the second opening 1102 is provided on the second side 102 , the third opening 1103 is provided on the second side 102 , and the third opening 1103 is provided on the second side 102 .
  • Four openings 1104 are provided on the third side portion 103 .
  • the inventory robot 10 further includes a cable 500 , a cable reel 600 , a battery 900 and a controller (not shown).
  • the cable reel 600 is installed inside the base 100 , and the cable 500 Part of the cable is wound on the reel 600, and one end of the cable 500 is connected to the scanning assembly 200, and the other end is connected to the battery 900 or the controller, and the battery 900 is electrically connected to the controller.
  • the cable reel 600 By arranging the cable reel 600, the cable 500 can be partially wound on the cable reel 600 to prevent electric leakage due to the disorderly arrangement of the cables 500;
  • the device 600 can allow the cable 500 to expand and contract freely without being pulled off. Installing the wire reel 600 inside the base 100 is beneficial to improve the aesthetic appearance of the inventory robot 10 .
  • the battery is preferably a rechargeable battery, and the battery is used to supply power to various electrical components of the inventory robot 10 .
  • the inventory robot 10 further includes a first limiting device 710 , the first limiting device 710 is mounted on the second lifting mechanism 2 , and the first limiting device 710 is provided with a The first threaded hole 711 for the cable 500 to pass through to limit the position of the cable 500 .
  • the first limiting device 710 can effectively limit the cable 500 , so that the cable 500 can move along the length direction of the second lifting mechanism 2 and remain in the second lifting mechanism 2 Within a fixed distance range on the side, the cable 500 is prevented from hanging on objects such as shelves, thereby improving the safety and reliability of the inventory robot 10.
  • the first limiting device 710 includes a first mounting frame 712 and a first rolling assembly 713 ; the first mounting frame 712 is mounted on the second lifting mechanism 2 , and the first mounting frame 712 A first through hole (not shown in the figure) is formed therethrough, the first rolling element 713 is installed in the first through hole, and a first threading hole 711 is formed by the first rolling element 713 .
  • the friction between the cable 500 during the expansion and contraction process and the first limiting device 710 can be effectively reduced, and the service life of the cable 500 can be prolonged.
  • the first rolling assembly 713 includes at least two first rollers 7131, wherein the two first rollers 7131 are respectively distributed along two opposite inner side walls of the first through hole; in this embodiment, the first through hole is For the rectangular hole, the first rolling assembly 713 includes four first rollers 7131, and the four first rollers 7131 are respectively distributed along the four inner side walls of the first through hole.
  • the inventory robot 10 further includes a second limiting device 720 .
  • the second limiting device 720 is installed on the cord reel 600 .
  • the cord reel 600 is mounted on the base 100
  • the second limiting device 720 is also installed in the base 100 .
  • the second limiting device 720 is provided with a second threading hole 721 for the cable 500 to pass through for limiting the cable 500 .
  • the second limiting device 720 is provided to further increase the limiting effect on the cable 500 .
  • the second limiting device 720 includes a second mounting bracket 722 and a second rolling assembly 723, the second mounting bracket 722 is mounted on the cord reel 600, and a second through hole is formed through the second mounting bracket 722 (Fig. Not shown), the second rolling element 723 is installed in the second through hole, and the second threading hole 721 is formed by the second rolling element 723 enclosed by the second rolling element 723 .
  • the second rolling assembly 723 By arranging the second rolling assembly 723 , the friction between the cable 500 during the expansion and contraction process and the second limiting device 720 can be effectively reduced, and the service life of the cable 500 can be prolonged.
  • the second rolling assembly 723 includes at least two second rollers 7231, wherein the two second rollers 7231 are respectively distributed along two opposite inner side walls of the second through hole.
  • the second through hole is a rectangular hole
  • the second rolling assembly 723 includes four second rollers 7231, and the four second rollers 7231 are respectively distributed along the four inner side walls of the second through hole.
  • the inventory robot 10 further includes a drag chain 800 , one end of the drag chain 800 is connected to the beam 3 and the other end is connected to the scanning assembly 200 , and the part of the cable 500 between the beam 3 and the scanning assembly 200 is passed through in Energy Chain 800.
  • the drag chain 800 By setting the drag chain 800, the part of the cable 500 located between the beam 3 and the scanning assembly 200 is passed through the drag chain 800, so that the drag chain 800 can limit and protect the cable 500 in this part, as far as possible The damage to the cable 500 caused by the scanning assembly 200 during the lifting motion is reduced.
  • the bottom of the base 100 is provided with a traction trolley 20 , and the inventory robot 10 is driven to walk by the traction trolley 20 .
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the difference between the inventory robot 10 provided in this embodiment and the first embodiment is mainly that the setting position of the first obstacle avoidance detection component 410 is different, which is embodied in: in the first embodiment, the first The obstacle avoidance detection component 410 is installed on the side of the fixing sleeve 21 of the second lifting mechanism 2 ; and in this embodiment, the first obstacle avoidance detection component 410 is installed on the top of the base 100 . Since in this embodiment, the first obstacle avoidance detection component 410 also detects obstacles in the vertical direction, the first obstacle avoidance detection component 410 can also detect obstacles in different height ranges of the second lifting mechanism 2, so that the The phenomenon that the second lifting mechanism 2 collides with the obstacle is avoided.
  • the first obstacle avoidance detection component 410 is disposed close to the fixed sleeve 21 , which is beneficial to enable the first obstacle avoidance detection component 410 to detect obstacles on two opposite sides of the second lifting mechanism 2 in a balanced manner.
  • the first obstacle avoidance detection component 410 is disposed close to the bottom end of the fixing sleeve 21 .
  • the first obstacle avoidance detection component 410 is a lidar that detects obstacles in the vertical direction; in this embodiment, the first obstacle avoidance detection component 410 includes at least two detection components in the horizontal direction.
  • the horizontal obstacle avoidance detection component 4101 of the obstacle, at least one horizontal obstacle avoidance detection component 4101 is installed on the side of the fixed sleeve 21 and the side of each telescopic rod 22, and the horizontal obstacle avoidance detection component 4101 on the telescopic rod 22 is provided. at the end of the telescopic rod 22 away from the base 100 .
  • the horizontal obstacle avoidance detection part 4101 includes at least one of an infrared distance sensor, an ultrasonic distance sensor, or a lidar that detects obstacles in a horizontal direction. Any of infrared distance sensors, ultrasonic distance sensors, and lidar can detect obstacles within a certain horizontal range.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the difference between the inventory robot 10 provided in this embodiment and the first embodiment mainly lies in the different setting methods of the third bracket 240 relative to the second bracket 220 .
  • the third bracket 240 is arranged on the side of the second bracket 220 in a way that can rotate relative to the second bracket 220 ; and in this embodiment, the third bracket 240 is fixed relative to the second bracket 220 It is disposed on the side of the second bracket 220 , and an included angle of -25° ⁇ 25° is formed between the third bracket 240 and the second bracket 220 .
  • An included angle of -25°-25° is formed between the third bracket 240 and the second bracket 220 , which facilitates focusing and eliminating the influence of reflected light on the scanner 230 , and improves the effect of the fill light 250 providing fill light for the scanner 230 .
  • the second bracket 220 includes a fifth side portion 2201 and a sixth side portion 2202 arranged oppositely, and the scanner 230 is mounted on the fifth side portion 2201 ;
  • the third bracket 240 includes a seventh side portion 2401 and a sixth side portion 2202 arranged oppositely.
  • Eight side parts 2402, the fill light 250 is installed on the seventh side part 2401, when the fifth side part 2201 and the seventh side part 2401 are arranged in parallel, that is, when the scanner 230 and the fill light 250 face the same direction, the third bracket is defined
  • the included angle ⁇ between 240 and the second bracket 220 is 0°. As shown in FIG. 18 , the included angle ⁇ between the third bracket 240 and the second bracket 220 is -25°; the included angle ⁇ between the third bracket 240 and the second bracket 220 shown in FIG. 19 is 25°.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the difference between the inventory robot 10 provided in this embodiment and the first embodiment mainly lies in the different installation positions of the cord reel 600 , which is embodied in: in the first embodiment, the cord reel 600 is installed on the base 100 In this embodiment, the cord reel 600 is installed outside the base 100 and is located on the top of the base 100 , in addition, the second limiting device 720 is provided on the cord reel 600 and is located outside the base 100 . Installing the cord reel 600 on the top of the base 100 reduces the number of components disposed inside the base 100 , which is beneficial for reducing the volume of the base 100 .
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • both the first rolling assembly 713 and the second rolling assembly 723 are roller structures, and the rolling of the rollers limits the cable 500 and lowers the cable 500 and the first rolling assembly 713 , the friction of the second rolling component 723, and in this embodiment, the first rolling component 713 includes a plurality of first balls 7132 and/or the second rolling component 723 that are distributed along the inner sidewall of the first through hole. The inner sidewall of the second through hole surrounds the distributed second balls (not shown).
  • the inventory robot 10 and other structures provided in this embodiment can be optimally designed with reference to the first embodiment, and will not be described in detail here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种盘点机器人,包括底座(100)、扫描组件(200)和用于驱动扫描组件(200)相对底座(100)进行升降运动的升降装置(300);升降装置(300)包括第一升降机构、与第一升降机构(1)间隔设置的第二升降机构(2)和连接于第一升降机构(1)与第二升降机构(2)之间的横梁(3),第一升降机构(1)安装于横梁(3)上并与扫描组件(200)连接,以用于驱动扫描组件(200)进行升降运动;第二升降机构(2)的底端与底座(100)连接、顶端与横梁(3)连接,以用于驱动横梁(3)带动第一升降机构(1)进行升降运动进而带动扫描组件(200)进行升降运动。该种结构的盘点机器人不受一个升降机构的结构限制,能够扫描到放置于低位的货物,减少人工的参与度。

Description

盘点机器人 技术领域
本申请涉及货物库存管理技术领域,尤其涉及一种盘点机器人。
背景技术
传统技术中,对仓库内的存货进行盘点一般都是通过人工手持扫描枪逐个扫描货物的标识码,这种盘点方式需要耗费较多的人力和时间。
为了解决上述传统技术的问题,现有技术提出了设计一种盘点机器人来进行自动盘点货物的方案。然而,现有技术中的盘点机器人仍存在以下不足之处:
1)现有的盘点机器人包括底座、扫描组件和用于驱动扫描组件相对底座升降运动的升降机构,现有技术采用一个升降机构驱动扫描组件运动,这样容易受升降机构的结构限制,导致扫描组件无法扫描到放置于低位的货物;
2)现有的盘点机器人在工作时难以对升降高度进行精准定位,不易快速有效地获取不同高度的货物的信息,使得货物信息获取效率不高、盘点效率低下;
3)当仓库比较黑暗,或者货物所在的位置光线不充足时,现有技术中,盘点机器人的扫描组件扫描结果不准确,从而造成盘点结果有误差的情况发生;
4)现有技术中,盘点机器人的避障探测设计方案为在底座的侧部设置沿水平方向探测障碍物的激光雷达,这种现有的盘点机器人只能探测到底座高度范围内的障碍物,而无法探测到升降机构高度范围内的障碍物,从而容易在盘点机器人行走或升降机构升降的过程中,发生升降机构碰撞到障碍物的现象,因此,现有的盘点机器人在具体应用中仍存在较大的安全隐患;
5)盘点机器人在工作时,通常会发生晃动,而货架通常比较高,现有盘点机器人的线缆容易挂搭在货架或者货物等物体上,导致出现盘点故障,同时,由于盘点机器人的升降机构不断的升降,线缆容易和与其接触的零部件发生摩擦而被磨损,严重时会出现漏电、甚至机器人故障等风险。
技术问题
本申请的目的在于提供一种盘点机器人,其旨在解决现有盘点机器人无法扫描到放置于低位的货物的技术问题。
技术解决方案
为达到上述目的,本申请提供的方案是:盘点机器人,包括底座、扫描组件和用于驱动所述扫描组件相对所述底座进行升降运动的升降装置;
所述升降装置包括第一升降机构、与所述第一升降机构间隔设置的第二升降机构和连接于所述第一升降机构与所述第二升降机构之间的横梁,所述第一升降机构安装于所述横梁上并与所述扫描组件连接,以用于驱动所述扫描组件进行升降运动;所述第二升降机构的底端与所述底座连接、顶端与所述横梁连接,以用于驱动所述横梁带动所述第一升降机构进行升降运动进而带动所述扫描组件进行升降运动。
进一步地,所述第一升降机构包括第一支架和第一驱动机构,所述第一驱动机构包括安装于所述第一支架上并与所述扫描组件连接的升降部件和用于驱动所述升降部件带动所述扫描组件进行升降运动的驱动组件,所述驱动组件安装于所述第一支架和/或所述横梁上,所述扫描组件具有与所述升降部件连接的连接件。
进一步地,所述升降部件为传送带或者传动链,所述驱动组件包括从动轮、主动轮和电机,所述传送带或者所述传动链绕设于所述从动轮和所述主动轮上,所述电机与所述主动轮传动连接,所述连接件夹持连接所述传送带或者传动链。
进一步地,所述驱动组件还包括传动连接于所述电机和所述主动轮之间的减速传动部件。
进一步地,所述第一支架上设有导轨,所述扫描组件还具有与所述导轨滑动配合的滑动件,所述连接件安装于所述滑动件上。
进一步地,所述第二升降机构包括一端与所述底座连接的固定套、至少一节活动连接所述固定套以用于带动所述横梁相对所述底座进行升降运动的伸缩杆和用于驱动所述伸缩杆进行升降运动的第二驱动机构,所述横梁与距离所述底座最远的一节的所述伸缩杆连接。
进一步地,所述第二驱动机构为气动驱动机构、液动驱动机构或者电动驱动机构中的任意一种;且/或,所述第二驱动机构安装于所述底座内。
进一步地,所述盘点机器人还包括用于为所述第二升降机构探测障碍物的第一避障探测部件。
进一步地,所述第一避障探测部件沿竖直方向探测障碍物,所述第一避障探测部件安装于所述固定套的侧部或者安装于所述底座的顶部;或者,
所述第一避障探测部件包括至少两个沿水平方向探测障碍物的水平避障探测部件,所述固定套的侧部和每节所述伸缩杆的侧部分别安装有至少一个所述水平避障探测部件,且所述伸缩杆上的所述水平避障探测部件设于所述伸缩杆之远离所述底座的端部。
进一步地,所述盘点机器人还包括用于为所述底座探测障碍物的第二避障探测部件,所述第二避障探测部件安装于所述底座的侧部并沿水平方向探测障碍物。
进一步地,所述升降装置还包括高度距离传感器,所述高度距离传感器设于所述横梁、所述第一支架以及所述扫描组件中的至少一者上。
进一步地,所述扫描组件包括第二支架、至少一个安装于所述第二支架上的扫描仪和与所述第二升降机构连接的连接组件。
进一步地,所述扫描组件还包括补光灯,所述补光灯设于所述扫描仪的旁侧,为所述扫描仪补光。
进一步地,所述扫描组件还包括第三支架,所述补光灯安装于所述第三支架上,所述第三支架位于所述第二支架的旁侧并与所述连接组件或者所述第二支架连接。
进一步地,所述第三支架以能够相对所述第二支架转动的方式设置于所述第二支架的旁侧;或者,
所述第三支架以相对所述第二支架固定的方式设置于所述第二支架的旁侧,且所述第三支架与所述第二支架之间形成-25°~25°的夹角。
进一步地,所述扫描组件还包括至少一个水平距离传感器,所述水平距离传感器安装于所述第二支架上。
进一步地,所述水平距离传感器的数量与所述扫描仪的数量相同,每个所述扫描仪的旁侧分别对应设置一个所述水平距离传感器。
进一步地,所述扫描组件还包括控制电路板,所述控制电路板安装于所述第三支架上,所述扫描仪、所述补光灯和所述水平距离传感器分别与所述控制电路板电连接。
进一步地,所述底座还设有位于所述扫描组件正下方的凹槽,所述凹槽具有设于所述底座顶部以用于供所述扫描组件下降穿设于所述凹槽内的第一开口和设于所述底座侧部以用于供所述扫描组件从所述凹槽内扫描货物的第二开口。
进一步地,所述凹槽还具有第三开口,所述第二开口和所述第三开口分别设于所述底座相对的两侧部;且/或,
所述凹槽还具有第四开口,所述第二开口和所述第四开口分别设于所述底座相邻的两侧部。
进一步地,所述盘点机器人还包括线缆、卷线器、电池和控制器,所述卷线器安装于所述底座的顶部或者安装于所述底座的内部,所述线缆部分卷绕于所述卷线器上,且所述线缆的一端与所述扫描组件连接、另一端与所述电池或者所述控制器连接,所述电池与所述控制器电连接。
进一步地,所述盘点机器人还包括第一限位装置,所述第一限位装置安装于所述第二升降机构上,所述第一限位装置设有用于供所述线缆穿过以用于对所述线缆进行限位的第一穿线孔。
进一步地,所述第一限位装置包括第一安装架和第一滚动组件;所述第一安装架安装于所述第二升降机构上,且所述第一安装架贯穿设有第一通孔,所述第一滚动组件安装于所述第一通孔内,由所述第一滚动组件围合形成所述第一穿线孔。
进一步地,所述第一滚动组件包括至少两个第一辊筒,其中两个所述第一辊筒分别沿所述第一通孔的两相对内侧壁分布;或者,
所述第一滚动组件包括多个沿所述第一通孔的内侧壁环绕分布的第一滚珠。
进一步地,所述盘点机器人还包括第二限位装置,所述第二限位装置安装于所述卷线器上,所述第二限位装置设有用于供所述线缆穿过以用于对所述线缆进行限位的第二穿线孔。
进一步地,所述第二限位装置包括第二安装架和第二滚动组件,所述第二安装架安装于所述卷线器上,且所述第二安装架贯穿设有第二通孔,所述第二滚动组件安装于所述第二通孔内,由所述第二滚动组件围合形成所述第二穿线孔。
进一步地,所述第二滚动组件包括至少两个第二辊筒,其中两个所述第二辊筒分别沿所述第二通孔的两相对内侧壁分布;或者,所述第二滚动组件包括多个沿所述第二通孔的内侧壁环绕分布的第二滚珠。
进一步地,所述盘点机器人还包括拖链,所述拖链的一端连接所述横梁、另一端连接所述扫描组件,所述线缆之位于所述横梁和所述扫描组件之间的部分穿设于所述拖链中。
有益效果
本申请提供的盘点机器人,通过设置与扫描组件连接的第一升降机构,第一升降机构可以直接驱动扫描组件进行升降运动;通过设置第二升降机构,第二升降机构通过横梁与第一升降机构连接,第二升降机构可以驱动横梁进行升降运动,横梁能够带动第一升降机构进行升降运动进而带动扫描组件进行升降运动,也就是第二升降机构可以间接驱动扫描组件进行升降运动。因此,本申请提供的盘点机器人采用第一升降机构和第二升降机构驱动扫描组件运动,也就是采用两个升降机构驱动扫描组件运动,该种设置方式不会受一个升降机构的结构限制,扫描组件在第一升降机构和第二升降机构驱动作用下,能够扫描到放置于低位的货物,进而减少盘点工作中人工的参与度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1是本申请实施例一提供的盘点机器人一个视角的立体示意图;
图2是本申请实施例一提供的盘点机器人另一个视角的立体示意图;
图3是本申请实施例一提供的第一升降机构与扫描组件装配在一起的一个视角的立体示意图;
图4是本申请实施例一提供的第一升降机构与扫描组件装配在一起的另一个视角的立体示意图;
图5是图4中A处的局部放大图;
图6是图4中B处的局部放大图;
图7是本申请实施例一提供的第一升降机构与扫描组件装配在一起的又一个视角的立体示意图;
图8是本申请实施例一提供的盘点机器人又一个视角的立体示意图;
图9是图8中C处的局部放大图;
图10是本申请实施例一提供的第一升降机构与扫描组件装配在一起的再一个视角的立体示意图;
图11是本申请实施例一提供的盘点机器人再一个视角的立体示意图;
图12是本申请实施例一提供的盘点机器人的线缆布线简化示意图;
图13是本申请实施例一提供的卷线器与第二限位装置装配在一起的立体示意图;
图14是本申请实施例一提供的第一限位装置的结构示意图;
图15是本申请实施例一提供的第二限位装置的结构示意图;
图16是本申请实施例二提供的盘点机器人的立体示意图;
图17是本申请实施例三提供的第一避障探测部件在第二升降机构上的分布示意图;
图18是本申请实施例四提供的第三支架固设于第二支架旁侧且与第二支架之间形成夹角α状态下的一种结构示意图;
图19是本申请实施例四提供的第三支架固设于第二支架旁侧且与第二支架之间形成夹角α状态下的另一种结构示意图;
图20是本申请实施例五提供的盘点机器人的立体示意图;
图21是本申请实施例六提供的第一限位装置的结构示意图。
附图标号说明:10、盘点机器人;100、底座;101、第一侧部;102、第二侧部;103、第三侧部;104、第四侧部;110、凹槽;1101、第一开口;1102、第二开口;1103、第三开口;1104、第四开口;200、扫描组件;210、连接组件;2101、连接件;2102、滑动件;220、第二支架;2201、第五侧部;2202、第六侧部;230、扫描仪;240、第三支架;2401、第七侧部;2402、第八侧部;250、补光灯;260、水平距离传感器;270、安装盒;300、升降装置;1、第一升降机构;11、第一支架;111、导轨;12、第一驱动机构;121、升降部件;122、驱动组件;1221、从动轮;1222、主动轮;1223、电机;1224、减速传动部件;1225、主动轴;1226、从动轴;2、第二升降机构;21、固定套;22、伸缩杆;3、横梁;4、高度距离传感器;410、第一避障探测部件;4101、水平避障探测部件;420、第二避障探测部件;500、线缆;600、卷线器;710、第一限位装置;711、第一穿线孔;712、第一安装架;713、第一滚动组件;7131、第一辊筒;7132、第一滚珠;720、第二限位装置;721、第二穿线孔;722、第二安装架;723、第二滚动组件;7231、第二辊筒;800、拖链;900、电池;20、牵引小车。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
还需要说明的是,当元件被称为“固定于”或“设置于”另一个元件上时,它可以直接在另一个元件上或者可能同时存在居中元件。当一个元件被称为是“连接”另一个元件,它可以是直接连接另一个元件或者可能同时存在居中元件。
另外,在本申请中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
实施例一:
如图1和图2所示,本申请实施例提供的一种盘点机器人10,包括底座100、扫描组件200和用于驱动扫描组件200相对底座100进行升降运动的升降装置300;升降装置300包括第一升降机构1、与第一升降机构1间隔设置的第二升降机构2和连接于第一升降机构1与第二升降机构2之间的横梁3,第一升降机构1安装于横梁3上并与扫描组件200连接,以用于驱动扫描组件200进行升降运动;第二升降机构2的底端与底座100连接、顶端与横梁3连接,以用于驱动横梁3带动第一升降机构1进行升降运动进而带动扫描组件200进行升降运动。通过设置与扫描组件200连接的第一升降机构1,第一升降机构1可以直接驱动扫描组件200进行升降运动;通过设置第二升降机构2,第二升降机构2通过横梁3与第一升降机构1连接,第二升降机构2可以驱动横梁3进行升降运动,横梁3能够带动第一升降机构1进行升降运动进而带动扫描组件200进行升降运动,也就是第二升降机构2可以间接驱动扫描组件200进行升降运动。因此,本申请提供的盘点机器人10采用第一升降机构1和第二升降机构2驱动扫描组件200运动,也就是采用两个升降机构驱动扫描组件200运动,该种设置方式不会受一个升降机构的结构限制,扫描组件200在第一升降机构1和第二升降机构2驱动作用下,能够扫描到放置于低位的货物,进而减少盘点工作中人工的参与度。
请参阅图2和图3,第一升降机构1包括第一支架11和第一驱动机构12,第一驱动机构12包括安装于第一支架11上并与扫描组件200连接的升降部件121和用于驱动升降部件121带动扫描组件200进行升降运动的驱动组件122,驱动组件122安装于第一支架11和/或横梁3上,扫描组件200具有与升降部件121连接的连接件2101。第一支架11主要实现第一升降机构1与横梁3的连接,升降部件121主要用于实现第一升降机构1与扫描组件200的连接,驱动组件122主要用于为升降部件121的运动提供驱动动力。作为本实施例的一较佳实施方案,驱动组件122安装于第一支架11上;当然,具体应用中,作为替代的实施方案,驱动组件122也可以一部分安装于第一支架11上,另一部分安装于横梁3上;或者,驱动组件122也可以完全安装于横梁3上。
请参阅图3至图6,升降部件121为传送带,驱动组件122包括从动轮1221、主动轮1222和电机1223,传送带设于从动轮1221和主动轮1222上,电机1223与主动轮1222传动连接,连接件2101夹持连接传送带。电机1223驱动主动轮1222转动时,主动轮1222的转动可以带动传送带和从动轮1221一起运动,传送带的运动可以带动扫描组件200进行升降运动,从而实现由第一升降机构1驱动扫描组件200升降运动的效果。本实施例中,采用传送带带动扫描组件200进行升降运动,利于保障扫描组件200升降运动的平稳性。当然,具体应用中,升降部件121不限于传送带,例如升降部件121为传动链也是可以的。
请再次参阅图3和图5,驱动组件122还包括传动连接于电机1223和主动轮1222之间的减速传动部件1224。减速传动部件1224的设置,一方面可以将电机1223输出的转速调节至合适的转速并传递至主动轮1222,从而使得传送带的运动速度不会太快也不会太慢;另一方面可以改变动力的传递方向,以使得电机1223的输出轴不一定要与主动轮1222的驱动轴同轴。作为本实施例的一较佳实施方案,减速传动部件1224为齿轮减速箱,其结构紧凑,传动平稳,这样,利于减小减速传动部件1224的体积和保证驱动组件122驱动扫描组件200升降运动的平稳性。当然,具体应用中,减速传动部件1224也可以为其它类型的传动机构。
请参阅图2、图3和图7,第一支架11上设有导轨111,扫描组件200还具有与导轨111滑动配合的滑动件2102,连接件2101安装于滑动件2102上。导轨111的设置,可以对扫描组件200的升降运动起到导向作用,从而利于提高第一升降机构1驱动扫描组件200升降运动的平稳性。
请参阅图2、图5至图7,驱动组件122还包括主动轴1225和从动轴1226,主动轴1225靠近导轨111的顶端设置,从动轴1226靠近导轨111的底端设置,主动轴1225和从动轴1226平行设置,且主动轴1225和从动轴1226都与扫描组件200沿导轨111升降运动的方向垂直,减速传动部件1224安装在电机1223和主动轴1225之间,主动轮1222安装于主动轴1225上,从动轮1221安装于从动轴1226上。通过该种设置方式,扫描组件200能够沿整个导轨111进行升降运动,导轨111得到充分地使用,且可使得驱动组件122靠近第一支架11的顶端,从而减小第一支架11底端的承重,提高第一升降机构1的结构可靠性。
请参阅图1、图2、图8和图9,第二升降机构2包括一端与底座100连接的固定套21、至少一节活动连接固定套21以用于带动横梁3相对底座100进行升降运动的伸缩杆22和用于驱动伸缩杆22进行升降运动的第二驱动机构(图未示),横梁3与距离底座100最远的一节的伸缩杆22连接。第二驱动机构通过驱动伸缩杆22升降,从而可以使得横梁3带动第一升降机构1进行升降运动,进而带动扫描组件200升降至不同的高度位置,以便于扫描组件200扫描清点不同高度范围内的货物。
优选地,本实施例中,第二驱动机构为气动驱动构件,其包括压缩机、气罐、气阀和气管,压缩机、气罐、气阀通过气管连接形成气路系统,气路系统可以为各节伸缩杆22的升降提供驱动力,从而使得第二驱动机构可以升降至不同的高度。第二驱动机构采用气动驱动构件,具有环境适应性好、无污染、成本低、反应快、调节方便和便于后期维护的特性。当然,具体应用中,第二驱动机构不限于采用气动方案,例如,作为替代的实施方案,第二驱动机构也可以为液动驱动构件,即伸缩杆22也可以通过液压系统驱动升降,或者第二驱动机构也可以为电动驱动构件,即伸缩杆22也可以通过电动系统驱动升降。
优选地,第二驱动机构安装于底座100内,即第二驱动机构完全收容于底座100内,这样,利于提高盘点机器人10的外形美观性。
本实施例中,第二升降机构2包括七节伸缩杆22,其可以上升至12米的高度,其适用范围广。当然,具体应用中,伸缩杆22的节数和升降高度不限于此,例如,伸缩杆22的节数也可以是五节或者六节或者八节或者九节等。
请再次参阅图2、图8和图9,盘点机器人10还包括用于为第二升降机构2探测障碍物的第一避障探测部件410。第一避障探测部件410的设置,主要用于探测第二升降机构2高度范围内的障碍物,其可有效提高了盘点机器人10运行的安全可靠性。
优选地,第一避障探测部件410沿竖直方向探测障碍物,即第一避障探测部件410沿与固定套21平行的方向探测障碍物。第一避障探测部件410能够探测到与固定套21高度方向平行的竖直平面内的障碍物,这样,可以保证第一避障探测部件410能探测第二升降机构2不同高度范围内的障碍物,充分保证了盘点机器人10运行的安全可靠性。在本实施例中,第一避障探测部件410安装于固定套21的侧部,这样,利于第一避障探测部件410以固定套21为中心,探测第二升降机构2两相对侧一定区域范围内的障碍物。
优选地,第一避障探测部件410靠近固定套21之远离底座100的端部设置,即第一避障探测部件410靠近固定套21的顶端设置,从而使得第一避障探测部件410尽可能探测到更高位的障碍物,以保障即使第二升降机构2上升到最大高度,第一避障探测部件410能探测到第二升降机构2最顶端周围的障碍物,从而利于进一步提高盘点机器人10运行的安全可靠性。
优选地,盘点机器人10还包括用于为底座100探测障碍物的第二避障探测部件420,第二避障探测部件420安装于底座100的侧部并沿水平方向探测障碍物。第二避障探测部件420主要用于探测底座100高度范围内的障碍物,从而利于避免盘点机器人10在行走过程中,底座100与障碍物发生碰撞的现象发生。
优选地,第二避障探测部件420设有两个,底座100的两相对侧分别设有一个第二避障探测部件420,其探测范围广。
在本实施例中,第一避障探测部件410和第二避障探测部件420均为激光雷达,当然了,具体应用中,作为替代的实施方案,第一避障探测部件410和第二避障探测部件420也可以为红外线距离传感器或者超声波距离传感器等。
优选地,升降装置300还包括高度距离传感器4,高度距离传感器4设于横梁3、第一支架11以及扫描组件200中的至少一者上。当高度距离传感器4设于横梁3和/或第一支架11上时,可用于探测第二升降机构2的升降高度;当高度距离传感器4设于扫描组件200上时,除了可以实现对第二升降机构2的升降高度进行监测外,还可以在监测第二升降机构2的升降高度之后,跟随扫描组件200做升降运动,以对扫描组件200的升降高度进行监测,从而获取货架、货物的精准高度。通过在横梁3、第一支架11以及扫描机构中的至少一者上设置高度距离传感器4,可以对盘点机器人10在升降运动过程中的升降高度进行精准定位,进而可以快速有效地获取货物信息,从而提高盘点机器人10的工作效率。请参阅图1和图9,高度距离传感器4设于横梁3上。
请参阅图1至图3、图10,扫描组件200包括第二支架220、至少一个安装于第二支架220上的扫描仪230和与第二升降机构2连接的连接组件210。在本实施例中,连接组件210包括连接件2101和滑动件2102,第一升降机构1通过连接组件210驱动第二支架220进行升降运动,从而带动扫描仪230进行升降运动,实现对位于不同高度的货位上的货物进行扫描。
优选地,扫描仪230为条形码扫描仪,其用于扫描货物托盘上的条码。当然,具体应用中,扫描仪230也可以其它类型的扫描仪,例如射频识别标签扫描仪、二维码扫描仪、声波定位仪等,其中,射频识别标签扫描仪用于扫描货物托盘上的射频识别标签,二维码扫描仪用于扫描货物托盘上的二维码,声波定位仪用于检测货物托盘上的超声波发生器。
优选地,扫描组件200还包括补光灯250,补光灯250设于扫描仪230的旁侧,为扫描仪230补光。补光灯250的设置,使得盘点机器人10可以在黑暗的环境中工作。
优选地,扫描组件200还包括第三支架240,补光灯250安装于第三支架240上,第三支架240位于第二支架220的旁侧并与连接组件210或者第二支架220连接。本实施例中,第三支架240与连接组件210连接,当然,具体应用中,作为替代的实施方案,第三支架240与第二支架220连接也是可以的。可以理解,在其他实施例中,补光灯250安装于第二支架220上也是可以的。
优选地,第三支架240以能够相对第二支架220转动的方式设置于第二支架220的旁侧。具体应用中,第三架体转动连接于连接组件210,第二架体固设于连接组件210,从而使第三架体能够相对于第二架体进行转动,方便调整至最佳补光角度,利于聚焦和消除反射光对扫描仪230的影响。
优选地,扫描组件200还包括至少一个水平距离传感器260,水平距离传感器260安装于第二支架220上。水平距离传感器260可以探测仓库货柜上的各货位是否有货物,从而可以检测仓库中货物存储的饱和度。
优选地,水平距离传感器260的数量与扫描仪230的数量相同,每个扫描仪230的旁侧分别对应设置一个水平距离传感器260。在每个扫描仪230的旁侧分别对应设置一个水平距离传感器260,从而可以同时探测仓库各货柜上的货位是否有货物,提高工作效率。
优选地,扫描组件200还包括控制电路板(图未示),控制电路板安装于第三支架240上,扫描仪230、补光灯250和水平距离传感器260分别与控制电路板电连接。控制电路板可以为扫描仪230、补光灯250和水平距离传感器260供电,并且控制电路板还可以为扫描仪230和水平距离传感器260传送信号。在本实施例中,扫描组件200还包括安装盒270,控制电路板安装在安装盒270内,安装盒270设置在第三架体上。可以理解,在其他实施例中,安装盒270设置在第二架体上或者连接组件210上也是可以的。
请参阅图1、图8和图11,底座100还设有位于扫描组件200正下方的凹槽110,凹槽110具有设于底座100顶部以用于供扫描组件200下降穿设于凹槽110内的第一开口1101和设于底座100侧部以用于供扫描组件200从凹槽110内扫描货物的第二开口1102。第一开口1101向上敞开设置,第二开口1102朝向底座100的一侧部敞开设置。升降装置300通过驱动扫描组件200升降,从而可以使得扫描组件200能够升降至不同的高度位置,以便于扫描组件200扫描清点不同高度范围内的货物。凹槽110的设置,主要用于对下降至低位的扫描组件200进行避让,以使得扫描组件200能够扫描到放置于低位(低于底座100顶部的货位)处的货物,从而消除低位货物需要人工扫描的麻烦,利于盘点机器人10实现对仓库内货物的全自动盘点。此外,本实施例中,只是在底座100的局部设置凹槽110,所以不影响底座100的整体高度和横向尺寸,这样,既利于底座100内部具有较大的空间收容其它部件,又利于保证底座100的重心可以居中设置,从而充分保障了盘点机器人10运行的平稳性。
优选地,凹槽110还具有第三开口1103,第二开口1102和第三开口1103分别设于底座100相对的两侧部,即凹槽110从底座100的一侧朝向底座100的另一相对侧贯穿设置,这样,可使得底座100的结构比较对称,从而利于底座100的重心可以居中设置,且利于提高底座100的外形美观性。当然,具体应用中,作为替代的实施方案,凹槽110不设置第三开口1103也是可以的。
优选地,凹槽110还具有第四开口1104,第二开口1102和第四开口1104分别设于底座100相邻的两侧部。第四开口1104的设置,便于在扫描组件200下降至凹槽110内时,工作人员可以从多维度看到扫描组件200。当然,具体应用中,作为替代的实施方案,凹槽110不设置第四开口1104也是可以的。
请再次参阅图8和图11,作为本实施例的一较佳实施方案,底座100的侧部轮廓呈矩形,其包括第一侧部101、第二侧部102、第三侧部103和第四侧部104,第一侧部101和第二侧部102相对设置,第三侧部103和第四侧部104相对设置并分别与第一侧部101、第二侧部102连接。凹槽110的侧部设有第二开口1102、第三开口1103、第四开口1104,其中,第二开口1102设于第二侧部102,第三开口1103设于第二侧部102,第四开口1104设于第三侧部103。
请参阅图1、图12和图13,盘点机器人10还包括线缆500、卷线器600、电池900和控制器(图未示),卷线器600安装于底座100的内部,线缆500部分卷绕于卷线器600上,且线缆500的一端与扫描组件200连接、另一端与电池900或者控制器连接,电池900与控制器电连接。通过设置卷线器600,可以将线缆500部分卷绕于卷线器600上,防止因线缆500凌乱摆放,出现漏电情况;另外,当第二升降机构2进行升降运动时,卷线器600可使得线缆500自由伸缩而不会出现被拉断的现象。将卷线器600安装于底座100的内部,有利于提高盘点机器人10的外形美观性。电池优选为可充电式电池,电池用于为盘点机器人10的各用电部件进行供电。
请参阅图1、图9、图12和图14,盘点机器人10还包括第一限位装置710,第一限位装置710安装于第二升降机构2上,第一限位装置710设有用于供线缆500穿过以用于对线缆500进行限位的第一穿线孔711。通过设置第一限位装置710,第一限位装置710可以对线缆500进行有效的限位,使得线缆500能够顺着第二升降机构2的长度方向运动并保持在第二升降机构2旁侧固定的距离范围内,以避免线缆500挂搭在货架等物体上,从而提高盘点机器人10工作的安全可靠性。
请再次参阅图1、图12和14,第一限位装置710包括第一安装架712和第一滚动组件713;第一安装架712安装于第二升降机构2上,且第一安装架712贯穿设有第一通孔(图未示),第一滚动组件713安装于第一通孔内,由第一滚动组件713围合形成第一穿线孔711。通过设置第一滚动组件713,可以有效减小线缆500在伸缩过程与第一限位装置710之间的摩擦,延长线缆500使用寿命。
优选地,第一滚动组件713包括至少两个第一辊筒7131,其中两个第一辊筒7131分别沿第一通孔的两相对内侧壁分布;在本实施例中,第一通孔为矩形孔,第一滚动组件713包括四个第一辊筒7131,且四个第一辊筒7131分别沿第一通孔的四个内侧壁分布。
请参阅图11至图13、图15,盘点机器人10还包括第二限位装置720,第二限位装置720安装于卷线器600上,在本实施例中,卷线器600安装于底座100内,第二限位装置720也安装于底座100内。第二限位装置720设有用于供线缆500穿过以用于对线缆500进行限位的第二穿线孔721。设置第二限位装置720,进一步增加对线缆500的限位作用。
优选地,第二限位装置720包括第二安装架722和第二滚动组件723,第二安装架722安装于卷线器600上,且第二安装架722贯穿设有第二通孔(图未示),第二滚动组件723安装于第二通孔内,由第二滚动组件723围合形成第二穿线孔721。通过设置第二滚动组件723,可以有效减小线缆500在伸缩过程与第二限位装置720之间的摩擦,延长线缆500使用寿命。
优选地,第二滚动组件723包括至少两个第二辊筒7231,其中两个第二辊筒7231分别沿第二通孔的两相对内侧壁分布。在本实施例中,第二通孔为矩形孔,第二滚动组件723包括四个第二辊筒7231,且四个第二辊筒7231分别沿第二通孔的四个内侧壁分布。
请参阅图11和图12,盘点机器人10还包括拖链800,拖链800的一端连接横梁3、另一端连接扫描组件200,线缆500之位于横梁3和扫描组件200之间的部分穿设于拖链800中。通过设置拖链800,将线缆500之位于横梁3和扫描组件200之间的部分穿设于拖链800中,使得拖链800可以对该部分的线缆500进行限位和保护,尽可能降低扫描组件200在升降运动中对线缆500造成的损伤。
请参阅图1和图8,具体地,底座100的底部设有牵引小车20,盘点机器人10通过牵引小车20驱动行走。
实施例二:
请参阅图2、图8和图16,本实施例提供的盘点机器人10与实施例一的区别主要在于第一避障探测部件410的设置位置不同,具体体现在:实施例一中,第一避障探测部件410安装在第二升降机构2的固定套21侧部;而本实施例中,第一避障探测部件410安装于底座100的顶部。由于本实施例中,第一避障探测部件410也是沿竖直方向探测障碍物,所以第一避障探测部件410也可以探测到第二升降机构2不同高度范围内的障碍物,从而也可避免第二升降机构2与障碍物发生碰撞的现象发生。
优选地,第一避障探测部件410靠近固定套21设置,这样利于使得第一避障探测部件410能够较均衡地探测到第二升降机构2两相对侧的障碍物。作为本实施例的一较佳实施方案,第一避障探测部件410贴着固定套21的底端设置。
除了上述不同之外,本实施例提供的盘点机器人10的其它结构均可参照实施例一进行对应优化设计,在此不再详述。
实施例三:
请参阅图2、图8、图16和图17,本实施例提供的盘点机器人10与实施例一、实施例二的区别主要在于第一避障探测部件410的探测方向不同,具体体现在:实施例一和实施例二中,第一避障探测部件410都为沿竖直方向探测障碍物的激光雷达;而本实施例中,第一避障探测部件410包括至少两个沿水平方向探测障碍物的水平避障探测部件4101,固定套21的侧部和每节伸缩杆22的侧部分别安装有至少一个水平避障探测部件4101,且伸缩杆22上的水平避障探测部件4101设于伸缩杆22之远离底座100的端部。采用本实施例的方案,也可以实现探测第二升降机构2不同高度范围内的障碍物,从而也可避免第二升降机构2与障碍物发生碰撞的现象发生。
具体地,水平避障探测部件4101包括红外线距离传感器或者超声波距离传感器或者沿水平方向探测障碍物的激光雷达中的至少一者。红外线距离传感器、超声波距离传感器和激光雷达中任一者都可以实现在一定水平范围内进行探测障碍物。
除了上述不同之外,本实施例提供的盘点机器人10的其它结构均可参照实施例一进行对应优化设计,在此不再详述。
实施例四:
请参阅图1、图3、图10、图18和图19,本实施例提供的盘点机器人10与实施例一的区别主要在于第三支架240相对于第二支架220的设置方式不同,具体体现在:实施例一中,第三支架240以能够相对第二支架220转动的方式设置于第二支架220的旁侧;而本实施例中,第三支架240以相对第二支架220固定的方式设置于第二支架220的旁侧,且第三支架240与第二支架220之间形成-25°~25°的夹角。第三支架240与第二支架220之间形成-25°~25°的夹角,利于聚焦和消除反射光对扫描仪230的影响,提高补光灯250为扫描仪230提供补光的效果。
具体应用中,第二支架220包括相对设置的第五侧部2201和第六侧部2202,扫描仪230安装于第五侧部2201;第三支架240包括相对设置的第七侧部2401和第八侧部2402,补光灯250安装于第七侧部2401,当第五侧部2201和第七侧部2401平行设置,也就是扫描仪230和补光灯250朝向相同时,定义第三支架240与第二支架220之间的夹角α为0°。其中图18所示,第三支架240与第二支架220之间的夹角α为-25°;图19所示第三支架240与第二支架220之间的夹角α为25°。
除了上述不同之外,本实施例提供的盘点机器人10的其它结构均可参照实施例一进行对应优化设计,在此不再详述。
实施例五:
请参阅图1和图20,本实施例提供的盘点机器人10与实施例一的区别主要在于卷线器600的设置位置不同,具体体现在:实施例一中,卷线器600安装在底座100的内部;而本实施例中,卷线器600安装在底座100外且位于底座100的顶部,另外,第二限位装置720设置在卷线器600上,并位于底座100的外部。将卷线器600安装在底座100的顶部,减少设于底座100内部的部件,有利于降低底座100的体积。
除了上述不同之外,本实施例提供的盘点机器人10的其它结构均可参照实施例一进行对应优化设计,在此不再详述。
实施例六:
请参阅图1、图12、图15和图21,本实施例与实施例一的区别主要在于第一滚动组件713、第二滚动组件723的结构不同。在实施例一中,第一滚动组件713和第二滚动组件723中,都是辊筒结构,通过辊筒的滚动,从而对线缆500进行限位并且降低线缆500与第一滚动组件713、第二滚动组件723的摩擦,而本实施例中,第一滚动组件713包括多个沿第一通孔的内侧壁环绕分布的第一滚珠7132和/或第二滚动组件723包括多个沿第二通孔的内侧壁环绕分布的第二滚珠(图未示)。
除了上述不同之外,本实施例提供的盘点机器人10及其它结构都可参照实施例一进行优化设计,在此不再详述。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (28)

  1. 盘点机器人,其特征在于,包括底座、扫描组件和用于驱动所述扫描组件相对所述底座进行升降运动的升降装置;
    所述升降装置包括第一升降机构、与所述第一升降机构间隔设置的第二升降机构和连接于所述第一升降机构与所述第二升降机构之间的横梁,所述第一升降机构安装于所述横梁上并与所述扫描组件连接,以用于驱动所述扫描组件进行升降运动;所述第二升降机构的底端与所述底座连接、顶端与所述横梁连接,以用于驱动所述横梁带动所述第一升降机构进行升降运动进而带动所述扫描组件进行升降运动。
  2. 如权利要求1所述的盘点机器人,其特征在于,所述第一升降机构包括第一支架和第一驱动机构,所述第一驱动机构包括安装于所述第一支架上并与所述扫描组件连接的升降部件和用于驱动所述升降部件带动所述扫描组件进行升降运动的驱动组件,所述驱动组件安装于所述第一支架和/或所述横梁上,所述扫描组件具有与所述升降部件连接的连接件。
  3. 如权利要求2所述的盘点机器人,其特征在于,所述升降部件为传送带或者传动链,所述驱动组件包括从动轮、主动轮和电机,所述传送带或者所述传动链绕设于所述从动轮和所述主动轮上,所述电机与所述主动轮传动连接,所述连接件夹持连接所述传送带或者传动链。
  4. 如权利要求3所述的盘点机器人,其特征在于,所述驱动组件还包括传动连接于所述电机和所述主动轮之间的减速传动部件。
  5. 如权利要求2所述的盘点机器人,其特征在于,所述第一支架上设有导轨,所述扫描组件还具有与所述导轨滑动配合的滑动件,所述连接件安装于所述滑动件上。
  6. 如权利要求1至5任一项所述的盘点机器人,其特征在于,所述第二升降机构包括一端与所述底座连接的固定套、至少一节活动连接所述固定套以用于带动所述横梁相对所述底座进行升降运动的伸缩杆和用于驱动所述伸缩杆进行升降运动的第二驱动机构,所述横梁与距离所述底座最远的一节的所述伸缩杆连接。
  7. 如权利要求6所述的盘点机器人,其特征在于,所述第二驱动机构为气动驱动机构、液动驱动机构或者电动驱动机构中的任意一种;且/或,所述第二驱动机构安装于所述底座内。
  8. 如权利要求6所述的盘点机器人,其特征在于,所述盘点机器人还包括用于为所述第二升降机构探测障碍物的第一避障探测部件。
  9. 如权利要求8所述的盘点机器人,其特征在于,所述第一避障探测部件沿竖直方向探测障碍物,所述第一避障探测部件安装于所述固定套的侧部或者安装于所述底座的顶部;或者,
    所述第一避障探测部件包括至少两个沿水平方向探测障碍物的水平避障探测部件,所述固定套的侧部和每节所述伸缩杆的侧部分别安装有至少一个所述水平避障探测部件,且所述伸缩杆上的所述水平避障探测部件设于所述伸缩杆之远离所述底座的端部。
  10. 如权利要求6所述的盘点机器人,其特征在于,所述盘点机器人还包括用于为所述底座探测障碍物的第二避障探测部件,所述第二避障探测部件安装于所述底座的侧部并沿水平方向探测障碍物。
  11. 如权利要求2至5任一项所述的盘点机器人,其特征在于,所述升降装置还包括高度距离传感器,所述高度距离传感器设于所述横梁、所述第一支架以及所述扫描组件中的至少一者上。
  12. 如权利要求1至5任一项所述的盘点机器人,其特征在于,所述扫描组件包括第二支架、至少一个安装于所述第二支架上的扫描仪和与所述第二升降机构连接的连接组件。
  13. 如权利要求12所述的盘点机器人,其特征在于,所述扫描组件还包括补光灯,所述补光灯设于所述扫描仪的旁侧,为所述扫描仪补光。
  14. 如权利要求13所述的盘点机器人,其特征在于,所述扫描组件还包括第三支架,所述补光灯安装于所述第三支架上,所述第三支架位于所述第二支架的旁侧并与所述连接组件或者所述第二支架连接。
  15. 如权利要求14所述的盘点机器人,其特征在于,所述第三支架以能够相对所述第二支架转动的方式设置于所述第二支架的旁侧;或者,
    所述第三支架以相对所述第二支架固定的方式设置于所述第二支架的旁侧,且所述第三支架与所述第二支架之间形成-25°~25°的夹角。
  16. 如权利要求14所述的盘点机器人,其特征在于,所述扫描组件还包括至少一个水平距离传感器,所述水平距离传感器安装于所述第二支架上。
  17. 如权利要求16所述的盘点机器人,其特征在于,所述水平距离传感器的数量与所述扫描仪的数量相同,每个所述扫描仪的旁侧分别对应设置一个所述水平距离传感器。
  18. 如权利要求16所述的盘点机器人,其特征在于,所述扫描组件还包括控制电路板,所述控制电路板安装于所述第三支架上,所述扫描仪、所述补光灯和所述水平距离传感器分别与所述控制电路板电连接。
  19. 如权利要求1至5任一项所述的盘点机器人,其特征在于,所述底座还设有位于所述扫描组件正下方的凹槽,所述凹槽具有设于所述底座顶部以用于供所述扫描组件下降穿设于所述凹槽内的第一开口和设于所述底座侧部以用于供所述扫描组件从所述凹槽内扫描货物的第二开口。
  20. 如权利要求19所述的盘点机器人,其特征在于,所述凹槽还具有第三开口,所述第二开口和所述第三开口分别设于所述底座相对的两侧部;且/或,
    所述凹槽还具有第四开口,所述第二开口和所述第四开口分别设于所述底座相邻的两侧部。
  21. 如权利要求1至5任一项所述的盘点机器人,其特征在于,所述盘点机器人还包括线缆、卷线器、电池和控制器,所述卷线器安装于所述底座的顶部或者安装于所述底座的内部,所述线缆部分卷绕于所述卷线器上,且所述线缆的一端与所述扫描组件连接、另一端与所述电池或者所述控制器连接,所述电池与所述控制器电连接。
  22. 如权利要求21所述的盘点机器人,其特征在于,所述盘点机器人还包括第一限位装置,所述第一限位装置安装于所述第二升降机构上,所述第一限位装置设有用于供所述线缆穿过以用于对所述线缆进行限位的第一穿线孔。
  23. 如权利要求22所述的盘点机器人,其特征在于,所述第一限位装置包括第一安装架和第一滚动组件;所述第一安装架安装于所述第二升降机构上,且所述第一安装架贯穿设有第一通孔,所述第一滚动组件安装于所述第一通孔内,由所述第一滚动组件围合形成所述第一穿线孔。
  24. 如权利要求23所述的盘点机器人,其特征在于,所述第一滚动组件包括至少两个第一辊筒,其中两个所述第一辊筒分别沿所述第一通孔的两相对内侧壁分布;或者,
    所述第一滚动组件包括多个沿所述第一通孔的内侧壁环绕分布的第一滚珠。
  25. 如权利要求21所述的盘点机器人,其特征在于,所述盘点机器人还包括第二限位装置,所述第二限位装置安装于所述卷线器上,所述第二限位装置设有用于供所述线缆穿过以用于对所述线缆进行限位的第二穿线孔。
  26. 如权利要求25所述的盘点机器人,其特征在于,所述第二限位装置包括第二安装架和第二滚动组件,所述第二安装架安装于所述卷线器上,且所述第二安装架贯穿设有第二通孔,所述第二滚动组件安装于所述第二通孔内,由所述第二滚动组件围合形成所述第二穿线孔。
  27. 如权利要求26所述的盘点机器人,其特征在于,所述第二滚动组件包括至少两个第二辊筒,其中两个所述第二辊筒分别沿所述第二通孔的两相对内侧壁分布;或者,所述第二滚动组件包括多个沿所述第二通孔的内侧壁环绕分布的第二滚珠。
  28. 如权利要求21所述的盘点机器人,其特征在于,所述盘点机器人还包括拖链,所述拖链的一端连接所述横梁、另一端连接所述扫描组件,所述线缆之位于所述横梁和所述扫描组件之间的部分穿设于所述拖链中。
PCT/CN2021/072575 2021-01-18 2021-01-18 盘点机器人 WO2022151503A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072575 WO2022151503A1 (zh) 2021-01-18 2021-01-18 盘点机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072575 WO2022151503A1 (zh) 2021-01-18 2021-01-18 盘点机器人

Publications (1)

Publication Number Publication Date
WO2022151503A1 true WO2022151503A1 (zh) 2022-07-21

Family

ID=82446811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072575 WO2022151503A1 (zh) 2021-01-18 2021-01-18 盘点机器人

Country Status (1)

Country Link
WO (1) WO2022151503A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW537560U (en) * 2001-12-19 2003-06-11 Avision Inc Scanning module with an adjustable height
GB2453627A (en) * 2007-09-05 2009-04-15 Nuctech Co Ltd Device for rotating and inspecting cargo container
CN106346495A (zh) * 2016-11-16 2017-01-25 南京景曜智能科技有限公司 一种智能盘点机器人
CN109130084A (zh) * 2018-09-21 2019-01-04 太仓市天丝利塑化有限公司 一种用于注塑件加工的高强度伸缩式机械手臂梁及其工作方法
CN110142752A (zh) * 2019-06-26 2019-08-20 安阳工学院 一种智检平衡起重机械臂装置
WO2019219659A1 (en) * 2018-05-14 2019-11-21 Deutsche Post Ag Autonomous robot vehicle for checking and counting stock in a warehouse
CN211967521U (zh) * 2020-04-09 2020-11-20 福建威而特旋压科技有限公司 一种冲压视觉上料机械手

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW537560U (en) * 2001-12-19 2003-06-11 Avision Inc Scanning module with an adjustable height
GB2453627A (en) * 2007-09-05 2009-04-15 Nuctech Co Ltd Device for rotating and inspecting cargo container
CN106346495A (zh) * 2016-11-16 2017-01-25 南京景曜智能科技有限公司 一种智能盘点机器人
WO2019219659A1 (en) * 2018-05-14 2019-11-21 Deutsche Post Ag Autonomous robot vehicle for checking and counting stock in a warehouse
CN109130084A (zh) * 2018-09-21 2019-01-04 太仓市天丝利塑化有限公司 一种用于注塑件加工的高强度伸缩式机械手臂梁及其工作方法
CN110142752A (zh) * 2019-06-26 2019-08-20 安阳工学院 一种智检平衡起重机械臂装置
CN211967521U (zh) * 2020-04-09 2020-11-20 福建威而特旋压科技有限公司 一种冲压视觉上料机械手

Similar Documents

Publication Publication Date Title
JP5770110B2 (ja) 保管用設備、並びに特にこの設備用の倉庫ラック及び荷役機械
WO2021227550A1 (zh) 一种搬运机器人及仓储物流系统
US20100322752A1 (en) Article Transporting Apparatus
KR101684406B1 (ko) 셔틀과 스태커 크레인 및 이를 구비한 자동창고시스템
WO2014001558A1 (en) Inventory monitoring system and method
CN106185698B (zh) 基于agv的重载举升移动平台
CN111170121B (zh) 一种电梯导轨质量检测装置和方法
CN112912295A (zh) 移动体
WO2022151503A1 (zh) 盘点机器人
CN211920788U (zh) 一种“l”型运输机器人
CN214981070U (zh) 盘点机器人
CN115571537B (zh) 一种长杆件电力物资自装卸机器人及自装卸系统
KR20200061114A (ko) 승강수단이 구비된 운반 로봇
US11673779B2 (en) Carrier and mobile lifting conveyor containing the same
CN207106076U (zh) Agv自动升降牵引杆组件
CN210914108U (zh) 综合运输车自动定位装置
CN214981071U (zh) 盘点机器人
CN219156254U (zh) 一种钢卷磁吸吊具及钢卷吊装装置
CN214924445U (zh) 盘点机器人
CN215060544U (zh) 盘点机器人
CN219341651U (zh) 叉车走线机构及无人化叉车
CN220617423U (zh) 一种用于固定位转运码垛的龙门装置
CN215037503U (zh) 盘点机器人
CN111747341A (zh) 一种带空间扫描与定位结构的叉车机器人
CN220582190U (zh) 一种输电线路探伤装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/11/2023)