WO2022149951A1 - 양극 활물질의 제조방법 및 양극 활물질 - Google Patents

양극 활물질의 제조방법 및 양극 활물질 Download PDF

Info

Publication number
WO2022149951A1
WO2022149951A1 PCT/KR2022/000462 KR2022000462W WO2022149951A1 WO 2022149951 A1 WO2022149951 A1 WO 2022149951A1 KR 2022000462 W KR2022000462 W KR 2022000462W WO 2022149951 A1 WO2022149951 A1 WO 2022149951A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
lithium
positive electrode
mass
formula
Prior art date
Application number
PCT/KR2022/000462
Other languages
English (en)
French (fr)
Inventor
엄준호
안동준
임채진
박나리
이준원
곽노우
김지혜
정병훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP22736928.7A priority Critical patent/EP4243117A4/en
Priority to US18/265,579 priority patent/US20240038983A1/en
Priority to JP2023533758A priority patent/JP2023552355A/ja
Priority to CN202280007710.XA priority patent/CN116529907A/zh
Publication of WO2022149951A1 publication Critical patent/WO2022149951A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/89Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by mass-spectroscopy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method of manufacturing a cathode active material for a lithium secondary battery, a cathode active material manufactured by the manufacturing method, a cathode for a lithium secondary battery including the cathode active material, and a lithium secondary battery.
  • a lithium transition metal oxide is used as a cathode active material for a lithium secondary battery, and among them, lithium cobalt oxide of LiCoO 2 having a high operating voltage and excellent capacity characteristics was mainly used.
  • LiCoO 2 has very poor thermal properties due to destabilization of the crystal structure due to lithium removal and is expensive, so there is a limit to its mass use as a power source in fields such as electric vehicles.
  • lithium manganese composite metal oxide LiMnO 2 or LiMn 2 O 4 , etc.
  • a lithium iron phosphate compound LiFePO 4 etc.
  • a lithium nickel composite metal oxide LiNiO 2 etc.
  • the present invention comprises the steps of: (A) preparing a plastic product by first firing a mixture of a cathode active material precursor and a lithium-containing raw material having a composition of the following Chemical Formula 1-1 or 1-2; (B) mixing the calcined product with the aluminum-containing raw material, performing secondary calcination, washing with water and drying to prepare a lithium transition metal oxide having a composition of the following Chemical Formula 2; and (C) dry-mixing the lithium transition metal oxide and boron-containing raw material and heat-treating to form a coating layer.
  • M 1 is at least one selected from Zr, B, W, Mg Ce, Hf, Ta, La, Ti, Sr, Ba, Ce, Hf, F, P, S and La,
  • M 1 is at least one selected from Zr, B, W, Mg Ce, Hf, Ta, La, Ti, Sr, Ba, Ce, Hf, F, P, S and La,
  • the present invention is a lithium transition metal oxide represented by the following formula (2); and a coating layer comprising boron formed on the surface of the lithium transition metal oxide, wherein the coating layer includes a Li-Al-BO solid solution, and in the time-of-flight secondary ion mass spectrometry spectrum, greater than 27.0 mass and less than or equal to 27.5 mass
  • a positive active material having a ratio of the intensity of the peak detected in and the intensity of the peak of Al + is 1:0.5 to 1:1.5.
  • M 1 is at least one selected from Zr, B, W, Mg Ce, Hf, Ta, La, Ti, Sr, Ba, Ce, Hf, F, P, S and La,
  • the present invention provides a positive electrode for a lithium secondary battery comprising the positive electrode active material according to the present invention.
  • the present invention provides a lithium secondary battery comprising the positive electrode according to the present invention.
  • the cathode active material when the cathode active material is manufactured, aluminum is put in the calcination (second calcination) step after plasticizing (primary calcination) and before water washing (second calcination) to control the degree of doping of aluminum present on the outermost surface, thereby producing a cathode active material
  • Second calcination after plasticizing (primary calcination) and before water washing (second calcination) to control the degree of doping of aluminum present on the outermost surface, thereby producing a cathode active material
  • High-temperature lifespan characteristics, high-temperature resistance characteristics, and high-temperature gas generation characteristics of the battery to which this is applied can be improved.
  • Example 1 is a cation spectrum analysis result of each of the positive active materials of Example 1 and Comparative Example 1.
  • Example 2 is an anion spectrum analysis result of each of the positive active materials of Example 1 and Comparative Example 1.
  • the term “on” means not only a case in which a certain component is formed on the immediate upper surface of another component, but also a case in which a third component is interposed between these components.
  • the method for producing a cathode active material comprises the steps of (A) first firing a mixture of a cathode active material precursor having a composition of the following Chemical Formula 1-1 or 1-2 and a lithium-containing raw material to prepare a plastic product; (B) mixing the calcined product with the aluminum-containing raw material, performing secondary calcination, washing with water and drying to prepare a lithium transition metal oxide having a composition of the following Chemical Formula 2; and (C) dry-mixing the lithium transition metal oxide and boron-containing raw material and heat-treating to form a coating layer.
  • M 1 is at least one selected from Zr, B, W, Mg Ce, Hf, Ta, La, Ti, Sr, Ba, Ce, Hf, F, P, S and La,
  • M 1 is at least one selected from Zr, B, W, Mg Ce, Hf, Ta, La, Ti, Sr, Ba, Ce, Hf, F, P, S and La,
  • the present inventors put aluminum in the secondary sintering (sintering before water washing) stage rather than the primary sintering (plasticizing) stage when manufacturing the positive electrode active material, and by adjusting the doping degree of aluminum present on the outermost surface to be high, the positive electrode manufactured It was found that the high-temperature lifespan characteristics, high-temperature resistance characteristics, and high-temperature gas generation characteristics of the battery to which the active material is applied can be improved.
  • Step (A) is a step of preparing a plastic product by first firing a mixture of a cathode active material precursor having a composition of Formula 1-1 or 1-2 and a lithium-containing raw material.
  • M 1 is at least one selected from Zr, B, W, Mg Ce, Hf, Ta, La, Ti, Sr, Ba, Ce, Hf, F, P, S and La,
  • the a1 denotes an atomic fraction of nickel among the metal elements in the precursor, and may be 0.7 ⁇ a1 ⁇ 1, 0.7 ⁇ a1 ⁇ 0.98, or 0.7 ⁇ a1 ⁇ 0.95.
  • the b1 refers to the atomic fraction of cobalt among the metal elements in the precursor, and may be 0 ⁇ b1 ⁇ 0.3 or 0.01 ⁇ b1 ⁇ 0.3.
  • the c1 refers to the atomic fraction of manganese among the metal elements in the precursor, and may be 0 ⁇ c1 ⁇ 0.3 or 0.01 ⁇ c1 ⁇ 0.3.
  • the d1 refers to the atomic fraction of M 1 among the metal elements in the precursor, and may be 0 ⁇ d1 ⁇ 0.1 or 0 ⁇ d1 ⁇ 0.05.
  • the lithium-containing raw material may include at least one selected from lithium hydroxide hydrate, lithium carbonate, and lithium hydroxide.
  • the lithium-containing raw material may be lithium hydroxide hydrate, more specifically, LiOH ⁇ H 2 O.
  • the reactivity between the precursor having a high atomic fraction of nickel among the metal elements in the precursor and the lithium-containing raw material may be improved.
  • the cathode active material precursor and the lithium-containing raw material may be mixed in a molar ratio of 1:1.0 to 1:1.10, specifically, 1:1.03 to 1:1.09, and more specifically, 1:1.05 to 1:1.09.
  • the lithium-containing raw material is mixed below the above range, there is a risk that the capacity of the produced cathode active material is reduced. , capacity reduction and separation of positive active material particles after firing (causing positive electrode active material impregnation phenomenon) may occur.
  • the first firing temperature may be 600°C to 775°C.
  • the primary firing temperature may be specifically 620 °C to 760 °C, more specifically 620 °C to 700 °C.
  • the primary sintering temperature is within the above range, the crystal structure of the sintered product may be controlled, and as a result, diffusion of aluminum during secondary sintering may be appropriately controlled.
  • the primary firing may be performed in an oxygen atmosphere.
  • a plastic article having a structurally stable phase can be formed.
  • the first firing may be performed for 2 to 15 hours.
  • the calcination may be specifically performed for 3 hours to 10 hours, more specifically 3 hours to 8 hours.
  • firing can be performed well without deviation (uniformly) for each firing position.
  • Residual unreacted lithium exists on the surface of the plastic product, and the amount of such residual lithium can be minimized through steps (B) and (C) according to the present invention.
  • Step (B) is a step of preparing a lithium transition metal oxide having a composition of the following formula (2) by mixing the calcined product prepared in step (A) and the aluminum-containing raw material, performing secondary firing, and washing and drying the mixture.
  • M 1 is at least one selected from Zr, B, W, Mg Ce, Hf, Ta, La, Ti, Sr, Ba, Ce, Hf, F, P, S and La,
  • the a2 denotes an atomic fraction of nickel among metal elements other than lithium in the positive electrode active material, and may be 0.7 ⁇ a2 ⁇ 1.0, 0.7 ⁇ a2 ⁇ 0.98, or 0.7 ⁇ a2 ⁇ 0.95.
  • the b2 denotes an atomic fraction of cobalt among metal elements other than lithium in the positive active material, and may be 0 ⁇ b2 ⁇ 0.3 or 0.01 ⁇ b2 ⁇ 0.3.
  • c2 denotes an atomic fraction of manganese among metal elements other than lithium in the positive electrode active material, and may be 0 ⁇ c2 ⁇ 0.3 or 0.01 ⁇ c2 ⁇ 0.3.
  • d2 denotes an atomic fraction of aluminum among metal elements other than lithium in the positive electrode active material, and may be 0 ⁇ d2 ⁇ 0.2, 0 ⁇ d2 ⁇ 0.1, or 0 ⁇ d2 ⁇ 0.05.
  • the e2 denotes an atomic fraction of M 1 among metal elements other than lithium in the positive active material, and may be 0 ⁇ e2 ⁇ 0.1 or 0 ⁇ e2 ⁇ 0.05.
  • step (B) by mixing the aluminum-containing raw material in step (B) and secondary firing, a coating layer in which aluminum is present in a high concentration is formed on the surface of the resultant positive electrode active material, and a secondary battery including the positive active material of high temperature lifetime characteristics, high temperature resistance characteristics and high temperature gas generation characteristics can be improved.
  • the aluminum-containing raw material is Al(OH) 3 , Al 2 O 3 , AlF 3 , AlBr 3 , AlPO 4 , AlCl 3 , Al(NO) 3 , Al(NO 3 ) 3 9H 2 O, Al 2 (SO 4 ) 3 ⁇ H 2 O, Al(H 2 PO 4 ) 3 , C 2 H 5 O 4 Al, Al(SO) 4 , NaAlO 2 , Al 2 CoO 4 , LaAlO 3 , and MgAl 2 O 4 There may be more than one type.
  • the aluminum-containing raw material may be specifically Al(OH) 3 , Al 2 O 3 , and more specifically, may be Al(OH) 3 . In this case, the melting point of the aluminum-containing raw material is low, so that the aluminum is uniformly diffused, so that it can exist abundantly and uniformly on the surface of the lithium transition metal oxide.
  • the aluminum-containing raw material may be added in an amount of 1,000 ppm to 10,000 ppm, specifically 2,000 ppm to 8,000 ppm, and more specifically, 4,000 ppm to 6,000 ppm with respect to the plastic product.
  • the content of the aluminum-containing raw material is within the above range, when the prepared cathode active material is applied to a battery, a decrease in capacity of the battery may be prevented, and thermal stability may be improved.
  • the secondary firing temperature may be 730 °C to 900 °C.
  • the secondary firing temperature may be specifically 730°C to 850°C, and more specifically 750°C to 800°C.
  • the secondary sintering temperature is within the above range, an appropriate crystal size is formed, and when the prepared cathode active material is applied to a battery, lifespan characteristics of the battery may be improved.
  • the secondary firing temperature is higher than the first firing temperature, and the difference between the second firing temperature and the first firing temperature is 10°C to 150°C, specifically 20°C to 150°C, more specifically 30°C to 140°C.
  • the difference between the secondary sintering temperature and the primary sintering temperature is within the above range, it may be advantageous to control the doping degree of aluminum present on the outermost surface.
  • the secondary firing may be performed in an oxygen atmosphere.
  • cation exchange between lithium and nickel is suppressed, so that when the prepared positive active material is applied to a battery, the capacity expression of the battery may be improved.
  • the secondary firing may be performed for 2 to 15 hours.
  • the calcination may be specifically performed for 3 hours to 10 hours, more specifically 3 hours to 8 hours.
  • firing may be well performed without deviation (uniformly) for each firing position.
  • the washing with water is a process for removing unreacted residual lithium. After washing by mixing the secondary fired product and a water washing solution, the secondary fired product is separated from the water washing solution.
  • the washing solution may be water or ethanol, but is not limited thereto.
  • the washing solution may be mixed in an amount of 60 parts by weight to 200 parts by weight, specifically 60 parts by weight to 150 parts by weight, and more specifically 80 parts by weight to 120 parts by weight based on 100 parts by weight of the secondary fired product. .
  • the content of the washing solution is within the above range, residual lithium present on the surface of the secondary fired product can be easily removed.
  • the content of the washing solution is lower than the above range, since the content of residual lithium present on the surface of the secondary fired product is high, there is a risk of gas generation when it is applied to the battery, and conversely, the content of the washing solution is within the above range If it is higher, the surface of the lithium transition metal oxide may be damaged, and when it is applied to a battery, the life span and resistance increase rate may be increased.
  • the process of separating the secondary fired product from the water washing solution may be such that the water content of the secondary fired product separated from the water washing solution is 3% to 15%.
  • the secondary fired product may have a moisture content of 5% to 12%, more specifically 5% to 10%.
  • the moisture content refers to the moisture content included in the secondary fired product before drying after being separated from the washing solution, and may be calculated according to Equation 1 below.
  • Moisture content (%) f[(mass of secondary fired product before drying)-(mass of secondary fired product after drying)]/(mass of secondary fired product before drying) x 100
  • the drying may be drying the secondary fired product separated from the water washing solution at 130° C. for 300 minutes.
  • the surface state ie, surface properties
  • the lithium transition metal oxide can easily coat a coating layer having a uniform composition and a uniform thickness on the surface.
  • the separation may be performed using a pressure reducing filter having an average pore size of 1 ⁇ m to 50 ⁇ m.
  • the secondary fired product can be separated from the washing solution in a short time.
  • the drying is to remove moisture from the lithium transition metal oxide containing moisture through a water washing process, and after removing moisture using a vacuum pump, it may be performed at 60°C to 150°C. Specifically, the drying may be drying for 3 hours or more under a temperature condition of 60°C to 150°C.
  • Step (C) is a step of dry-mixing the lithium transition metal oxide prepared in step (B) and the boron-containing raw material and heat-treating to form a coating layer.
  • a coating layer containing boron is formed on the surface of the lithium transition metal oxide.
  • a coating layer including a Li-Al-B-O solid solution is formed on the surface of the lithium transition metal oxide. That is, when the lithium transition metal oxide and the boron-containing raw material are dry-mixed and heat-treated, a coating layer including not only a Li-B-O solid solution but also a Li-Al-B-O solid solution is formed. In this case, since the coating layer is strengthened, a side reaction between the positive electrode active material and the electrolyte can be more effectively suppressed.
  • the coating layer may further include an aluminum-rich Ni-Co-Mn-Al solid solution and an aluminum-rich Ni-Co-Mn-Al-B solid solution.
  • the thickness of the coating layer may be 4 nm to 10 nm. When the thickness of the coating layer is within the above range, the lifespan characteristics of the battery may be improved when applied to a battery by suppressing a surface side reaction, and gas generation may be suppressed.
  • the ratio of the intensity of the peak detected at more than 27.0 mass to 27.5 mass or less and the intensity of the peak of Al + may be 1:0.5 to 1:1.5.
  • the boron-containing raw material may be at least one selected from H 3 BO 3 , B 2 H 4 O 4 , B 2 O 3 , LiBO 2 , Li 2 B 4 O 7 and AlBO 3 .
  • the boron-containing raw material may be specifically H 3 BO 3 , B 2 O 3 , and more specifically, H 3 BO 3 . In this case, since the melting point of the boron-containing raw material is low, a uniform coating layer may be formed.
  • the boron-containing raw material is mixed in an amount of 0.1 parts by weight to 1.5 parts by weight, specifically 0.2 parts by weight to 1.0 parts by weight, more specifically 0.4 parts by weight to 0.8 parts by weight, based on 100 parts by weight of the lithium transition metal oxide.
  • the content of the boron-containing raw material is within the above range, not only the coating layer is uniformly formed, but also the coating layer of an appropriate thickness is formed, thereby improving the lifespan characteristics of the battery when the prepared cathode active material is applied to the battery.
  • the heat treatment temperature may be 250 °C to 400 °C.
  • the heat treatment temperature may be specifically 250 °C to 350 °C, more specifically 260 °C to 330 °C.
  • the heat treatment temperature is within the above range, the coating layer is uniformly formed on the lithium transition metal oxide, so that when applied to the battery, the lifespan characteristics of the battery can be improved.
  • the heat treatment temperature is lower than the lower limit of the range, the reactivity of the boron-containing raw material is low, and the boron-containing raw material remains on the surface of the lithium transition metal oxide and can act as a resistance rather than the upper limit of the range. , Lithium and boron-containing raw materials present on the surface of the lithium transition metal oxide may overreact, and a large amount of lithium may be present in the coating layer.
  • the positive electrode active material according to the present invention is a lithium transition metal oxide represented by the following formula (2); and a coating layer including boron formed on the surface of the lithium transition metal oxide, wherein the coating layer includes a Li-Al-BO solid solution, and 27.0 mass in the time-of-flight secondary ion mass spectrometry spectrum of the positive active material
  • the ratio of the intensity of the peak detected at an excess of 27.5 mass or less to the intensity of the peak of Al + is 1:0.5 to 1:1.5.
  • M 1 is at least one selected from Zr, B, W, Mg Ce, Hf, Ta, La, Ti, Sr, Ba, Ce, Hf, F, P, S and La,
  • the a2 denotes an atomic fraction of nickel among metal elements other than lithium in the positive electrode active material, and may be 0.7 ⁇ a2 ⁇ 1.0, 0.7 ⁇ a2 ⁇ 0.98, or 0.7 ⁇ a2 ⁇ 0.95.
  • the b2 denotes an atomic fraction of cobalt among metal elements other than lithium in the positive active material, and may be 0 ⁇ b2 ⁇ 0.3 or 0.01 ⁇ b2 ⁇ 0.3.
  • c2 denotes an atomic fraction of manganese among metal elements other than lithium in the positive electrode active material, and may be 0 ⁇ c2 ⁇ 0.3 or 0.01 ⁇ c2 ⁇ 0.3.
  • d2 denotes an atomic fraction of aluminum among metal elements other than lithium in the positive electrode active material, and may be 0 ⁇ d2 ⁇ 0.2, 0 ⁇ d2 ⁇ 0.1, or 0 ⁇ d2 ⁇ 0.05.
  • the e2 denotes an atomic fraction of M 1 among metal elements other than lithium in the positive active material, and may be 0 ⁇ e2 ⁇ 0.1 or 0 ⁇ e2 ⁇ 0.05.
  • the positive active material is manufactured by the above-described manufacturing method, and has a reinforced coating layer due to the presence of a large amount of aluminum on the surface, thereby improving the high-temperature lifespan characteristics, high-temperature resistance characteristics and high-temperature gas generation characteristics of the secondary battery including the positive electrode active material.
  • the coating layer may further include an aluminum-rich Ni-Co-Mn-Al solid solution and an aluminum-rich Ni-Co-Mn-Al-B solid solution. Meanwhile, the thickness of the coating layer may be 4 nm to 10 nm. When the thickness of the coating layer is within the above range, the high-temperature lifespan characteristics and high-temperature resistance characteristics of the battery may be improved when applied to the battery by suppressing side reactions with the electrolyte, and gas generation may be suppressed.
  • the ratio of the intensity of the peak detected at more than 27.0 mass to 27.5 mass or less and the intensity of the peak of Al + is 1:0.5 to 1:1.5, specifically 1:0.6 to 1:1.3, more specifically 1:0.7 to 1:1.2.
  • the peak detected above 27 mass and 27.5 mass or less is a peak of C 2 H 3 + and is a base peak.
  • cycle characteristics as well as capacity characteristics of the battery to which the positive active material according to the present invention is applied may be improved.
  • the high-temperature lifespan characteristics of the battery are improved, and the resistance increase rate and gas generation rate at high temperatures can be suppressed.
  • the ratio of the intensity of the peak detected at 182 mass to 184 mass and the intensity of the peak detected at 172 mass to 174 mass is 1:0.3 to 1:2, specifically may be 1:0.4 to 1:1.5, more specifically 1:0.5 to 1:1.2.
  • side reactions that may occur on the surface of the positive electrode active material are suppressed, so that gas generation during charging and discharging of the secondary battery including the positive active material can be suppressed, and the resistance increase rate of the secondary battery can be improved.
  • the ratio of the intensity of the peak detected at 182 mass to 184 mass and the intensity of the peak detected at 197 mass to 199 mass is 1:0.3 to 1:1.5, specifically may be 1:0.3 to 1:1.2, more specifically 1:0.3 to 1:0.8.
  • side reactions that may occur on the surface of the positive electrode active material may be suppressed, so that gas generation during charging and discharging of a secondary battery including the positive active material may be suppressed, and a resistance increase rate of the secondary battery may be improved.
  • the present invention provides a positive electrode for a lithium secondary battery comprising the positive electrode active material.
  • the positive electrode for the secondary battery includes a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector, and the positive electrode active material layer includes the positive electrode active material according to the present invention.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, stainless steel, aluminum, nickel, titanium, fired carbon, or carbon, nickel, titanium on the surface of aluminum or stainless steel. , silver or the like surface-treated may be used.
  • the positive electrode current collector may typically have a thickness of 3 ⁇ m to 500 ⁇ m, and may increase the adhesion of the positive electrode active material by forming fine irregularities on the surface of the current collector.
  • it may be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven body.
  • the positive active material layer may optionally include a binder together with the positive active material, a conductive material, and if necessary.
  • the positive active material may be included in an amount of 80 wt% to 99 wt%, more specifically 85 wt% to 98.5 wt%, based on the total weight of the cathode active material layer.
  • excellent capacity characteristics may be exhibited.
  • the conductive material is used to impart conductivity to the electrode, and in the configured battery, it can be used without any particular limitation as long as it has electronic conductivity without causing chemical change.
  • Specific examples include graphite such as natural graphite and artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or a conductive polymer such as a polyphenylene derivative, and the like, and one type alone or a mixture of two or more types thereof may be used.
  • the conductive material may be included in an amount of 0.1 wt% to 15 wt% based on the total weight of the positive electrode active material layer.
  • the binder serves to improve adhesion between the positive active material particles and the adhesion between the positive active material and the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC) ), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and any one of them or a mixture of two or more thereof may be used.
  • the binder may be included in an amount of 0.1 wt% to 15 wt% based on the total weight of the positive electrode active
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the above positive electrode active material. Specifically, the positive electrode active material and, optionally, a composition for forming a positive electrode active material layer prepared by dissolving or dispersing a binder and a conductive material in a solvent may be coated on a positive electrode current collector, followed by drying and rolling.
  • the solvent may be a solvent generally used in the art, dimethyl sulfoxide (DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone (acetone) or water and the like, and any one of them or a mixture of two or more thereof may be used.
  • the amount of the solvent used is enough to dissolve or disperse the positive electrode active material, the conductive material, and the binder in consideration of the application thickness of the slurry and the production yield, and to have a viscosity capable of exhibiting excellent thickness uniformity during application for subsequent positive electrode manufacturing. do.
  • the positive electrode may be prepared by casting the composition for forming the positive electrode active material layer on a separate support, and then laminating a film obtained by peeling from the support on the positive electrode current collector.
  • the present invention can manufacture an electrochemical device including the positive electrode.
  • the electrochemical device may specifically be a battery, a capacitor, or the like, and more specifically, may be a lithium secondary battery.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, and a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is the same as described above, so detailed description is omitted, Hereinafter, only the remaining components will be described in detail.
  • the lithium secondary battery may optionally further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the anode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, sintered carbon, copper or stainless steel surface. Carbon, nickel, titanium, silver, etc. surface-treated, aluminum-cadmium alloy, etc. may be used.
  • the negative electrode current collector may have a thickness of typically 3 ⁇ m to 500 ⁇ m, and similarly to the positive electrode current collector, fine irregularities may be formed on the surface of the current collector to strengthen the bonding force of the negative electrode active material.
  • it may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam body, a nonwoven body, and the like.
  • the anode active material layer optionally includes a binder and a conductive material together with the anode active material.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; metal compounds capable of alloying with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy; metal oxides capable of doping and dedoping lithium, such as SiO ⁇ (0 ⁇ ⁇ ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide;
  • a composite including the metallic compound and a carbonaceous material such as a Si-C composite or a Sn-C composite may be used, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • both low crystalline carbon and high crystalline carbon may be used.
  • Soft carbon and hard carbon are representative of low-crystalline carbon
  • high-crystalline carbon is natural or artificial graphite, Kish graphite (Kish) in amorphous, plate-like, flaky, spherical or fibrous shape graphite), pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, liquid crystal pitches (Mesophase pitches), and petroleum and coal tar pitch (petroleum or coal tar pitch)
  • High-temperature calcined carbon such as derived cokes
  • the anode active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of the anode active material layer.
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector, and is typically added in an amount of 0.1 wt% to 10 wt% based on the total weight of the anode active material layer.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro roethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluororubber, and various copolymers thereof.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene polymer
  • EPDM ethylene-propylene-diene
  • the conductive material is a component for further improving the conductivity of the anode active material, and may be added in an amount of 10 wt% or less, specifically 5 wt% or less, based on the total weight of the anode active material layer.
  • a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskeys such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • a conductive material such as a polyphenylene derivative may be used.
  • the anode active material layer is prepared by applying and drying a composition for forming an anode active material layer prepared by dissolving or dispersing an anode active material, and optionally a binder and a conductive material in a solvent, on the anode current collector and drying, or the anode It can be prepared by casting the composition for forming an active material layer on a separate support, and then laminating a film obtained by peeling it off the support on a negative electrode current collector.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions to move, and as long as it is used as a separator in a lithium secondary battery, it can be used without any particular limitation, especially for the movement of ions in the electrolyte It is preferable to have a low resistance to and excellent electrolyte moisture content.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, and an ethylene/methacrylate copolymer, or these
  • a laminated structure of two or more layers of may be used.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used.
  • a coated separator containing a ceramic component or a polymer material may be used, and may optionally be used in a single-layer or multi-layer structure.
  • the electrolyte used in the present invention may include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte, which can be used in the manufacture of a lithium secondary battery, and is limited to these. it's not going to be
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without any particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, ⁇ -caprolactone
  • ether-based solvents such as dibutyl ether or tetrahydrofuran
  • ketone solvents such as cyclohexanone
  • aromatic hydrocarbon solvents such as benzene and fluorobenzene
  • alcohol solvents such as ethyl alcohol and isopropyl alcohol
  • nitriles such as R-CN (R is a linear, branched, or cyclic hydrocarbon group having 2
  • a carbonate-based solvent is preferable, and a cyclic carbonate (eg, ethylene carbonate or propylene carbonate, etc.) having high ionic conductivity and high dielectric constant capable of increasing the charge/discharge performance of the battery, and a low-viscosity linear carbonate-based compound (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • the cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9, the electrolyte may exhibit excellent performance.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2.
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 , etc. may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has appropriate conductivity and viscosity, excellent electrolyte performance may be exhibited, and lithium ions may move effectively.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, tri Ethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
  • One or more additives such as taxdine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol or aluminum trichloride may be further included. In this case, the additive may be included in an amount of 0.1 wt% to 5 wt% based on the total weight of the electrolyte.
  • the lithium secondary battery including the positive electrode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics and lifespan characteristics, portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful in the field of electric vehicles such as hybrid electric vehicle, HEV).
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack is a power tool (Power Tool); electric vehicles, including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it may be used as a power source for any one or more medium and large-sized devices in a system for power storage.
  • Power Tool Power Tool
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs);
  • PHEVs plug-in hybrid electric vehicles
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape using a can, a prismatic shape, a pouch type, or a coin type.
  • the lithium secondary battery according to the present invention can be used not only in a battery cell used as a power source for a small device, but also can be preferably used as a unit cell in a medium or large battery module including a plurality of battery cells.
  • Ni 0.88 Co 0.05 Mn 0.07 (OH) 2 and LiOHH 2 O which are cathode active material precursors, are mixed so that the molar ratio of Li:transition metal (Ni+Co+Mn) is 1.07:1, and primary calcination at 640° C. for 5 hours Thus, a plastic product (including Ni 0.88 Co 0.05 Mn 0.07 O 2 ) was prepared.
  • the calcined product and Al(OH) 3 were mixed so that the molar ratio of Ni:Co:Mn:Al was 0.86:0.05:0.07:0.02, and secondary calcined at 775° C. for 6 hours, the calcined product (LiNi 0.86 Co 0.05 Mn 0.07 Al 0.02 O 2 ) was prepared.
  • the fired product and water were mixed in a weight ratio of 1:1.2, washed with water for 5 minutes, treated with a reduced pressure filter to have a moisture content of 5% to 10%, and then dried at 130° C., LiNi 0.86 Co 0.05 Mn 0.07 Al 0.02 A lithium transition metal oxide having a composition of O 2 was prepared.
  • the lithium transition metal oxide and H 3 BO 3 are mixed in a weight ratio of 100:0.57, and heat-treated at 300° C. for 4 hours, including a Li-Al-BO solid solution, a Li-BO solid solution and a BO solid solution on the surface
  • a cathode active material having a coating layer formed thereon was prepared.
  • a positive active material was prepared in the same manner as in Example 1, except that the primary firing temperature in Example 1 was adjusted to 720°C.
  • the cathode active material precursor Ni 0.88 Co 0.05 Mn 0.07 (OH) 2 , LiOHH 2 O and Al(OH) 3 were mixed so that the molar ratio of Li: Ni:Co:Mn:Al was 1.05:0.86:0.05:0.07:0.02, and , after primary firing at 640° C. for 5 hours, and then secondary firing at 775° C. for 6 hours, a fired product (including LiNi 0.86 Co 0.05 Mn 0.07 Al 0.02 O 2 ) was prepared.
  • LiNi LiNi A lithium transition metal oxide having a composition of 0.86 Co 0.05 Mn 0.07 Al 0.02 O 2 was prepared.
  • the lithium transition metal oxide and H 3 BO 3 were mixed in a weight ratio of 100:0.57 and heat-treated at 300° C. for 4 hours to prepare a cathode active material in which a coating layer including Li-BO and BO solid solution was formed on the surface.
  • Lithium transition metal oxide LiNi 0.88 Co 0.05 Mn 0.07 O 2 and H 3 BO 3 and Al(OH) 3 were mixed in a weight ratio of 100:0.2:0.3 and heat-treated at 700° C. for 4 hours, on the surface of Li-Al-BO A positive electrode active material having a coating layer including a solid solution was prepared.
  • Example 1 The cation spectrum and anion spectrum of the surface of the positive active material prepared in Example 1 and Comparative Example 1 were measured using a time-of-flight secondary ion mass spectrometer (TOF-SIMS5, ION-TOF GmbH), and the results are shown in FIG. 1 and FIG. 2 .
  • TOF-SIMS5 time-of-flight secondary ion mass spectrometer
  • the ratio of the intensity of the peak (C 2 H 3 + peak) detected at more than 27.0 mass to 27.1 mass or less and the intensity of the Al + peak is 1:0.9.
  • the ratio of the intensity of the peak (C 2 H 3 + peak) detected at more than 27.0 mass to 27.1 mass or less and the intensity of the Al + peak is 1:0.2.
  • Example 1 As a result of anion analysis of the outermost surface of the positive electrode active material prepared in Example 1 and Comparative Example 1, in the case of Example 1, a peak related to aluminum was strongly observed in the range of 172 mass to 174 mass, and in the range of 197 mass to 198 mass. While the peak related to aluminum is strongly observed, in Comparative Example 1, it can be seen that the peak is weakly observed in the region.
  • the ratio of the intensity of the peak detected at 182 mass to 184 mass and the intensity of the peak detected at 172 mass to 174 mass is 1:1.1, and 182 mass to 184 mass It can be seen that the ratio of the intensity of the peak detected at 197 mass to the intensity of the peak detected at 199 mass is 1:0.5.
  • Lithium secondary batteries were respectively prepared using the positive active materials prepared in Examples 1 and 2 and Comparative Examples 1 and 2, respectively, and their capacity and resistance characteristics were checked. At this time, each lithium secondary battery was manufactured using the following method except for using the positive active materials prepared in Examples 1 and 2 and Comparative Examples 1 and 2, respectively.
  • lithium metal is laminated together with a porous polyethylene separator, put in a battery case, and ethylene carbonate (EC): dimethyl carbonate (DMD): ethyl methyl carbonate (EMC) in a ratio of 3:4:3 Lithium secondary batteries according to Examples 1 and 2 and Comparative Examples 1 and 2 were prepared by injecting an electrolyte solution in which 1M LiPF 6 and other additives were dissolved in a mixed solvent mixed with .
  • EC ethylene carbonate
  • DMD dimethyl carbonate
  • EMC ethyl methyl carbonate
  • CC/CV mode charging was performed at 45°C to 4.25V with a constant current of 0.33C (CV 0.05C), and then CC mode discharge was performed until 3V.
  • the charging and discharging behavior is set as one cycle, and after repeating this cycle 30 times, the initial discharge capacity (unit: mAh/g), capacity retention rate ( Unit: %) and resistance increase rate (unit: %) were measured, and are shown in Table 2 and FIGS. 3 to 5 below.
  • FIG. 4 is a graph showing high-temperature lifespan characteristics of secondary batteries prepared in Examples 1 and 2 and Comparative Examples 1 and 2; Specifically, FIG. 4 is a diagram illustrating data related to capacity retention at high temperatures.
  • FIG. 5 is a graph showing high-temperature resistance characteristics of secondary batteries prepared in Examples 1 and 2 and Comparative Examples 1 and 2; Specifically, FIG. 5 is a diagram illustrating data related to a resistance increase rate at a high temperature.
  • Lithium secondary batteries were respectively prepared using the positive active materials prepared in Examples 1 and 2 and Comparative Examples 1 and 2, respectively, and their capacity and resistance characteristics were checked. At this time, each lithium secondary battery was manufactured using the following method except for using the positive active materials prepared in Examples 1 and 2 and Comparative Examples 1 and 2, respectively.
  • a negative electrode active material natural graphite
  • a conductive material carbon black
  • a binder SBR+CMC
  • An electrode assembly was prepared by interposing a separator between the positive electrode and the negative electrode, and then placed inside a battery case, and then electrolyte was injected to prepare three mono cells each having an electrode size of 3 cm ⁇ 4 cm.
  • an electrolyte an electrolyte in which 1M LiPF 6 was dissolved in an organic solvent in which ethylene carbonate:ethylmethyl carbonate:diethyl carbonate was mixed in a volume ratio of 3:3:4 was used.
  • the three mono cells were subjected to CC/CV mode charging at 45° C. with a constant current of 0.33 C to 4.25 V (CV 0.05 C), and then the positive electrode was separated.
  • the separated anodes were put in a cell pouch, an electrolyte was added thereto, and then sealed to prepare a sample.
  • Cell volume change rate (unit: %) was measured while the sample was stored at 60° C. for 4 weeks, and it is shown in Table 3 and FIG. 6 below.
  • the present invention provides a positive electrode manufactured by adjusting the doping degree of aluminum present on the outermost surface by adding aluminum after plasticizing (primary firing) and before water washing (secondary firing) when manufacturing the positive electrode active material. It can be seen that not only the capacity characteristics of the battery to which the active material is applied, but also the cycle characteristics, particularly, the high temperature life characteristics can be improved. In addition, it can be seen that it is possible to suppress an increase in resistance at a high temperature and gas generation at a high temperature of a battery to which the positive active material is applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 (A) 본 명세서에 기재된 화학식 1-1 또는 1-2의 조성을 가지는 양극 활물질 전구체와 리튬 함유 원료물질을 혼합한 혼합물을 1차 소성하여 가소성품을 제조하는 단계; (B) 상기 가소성품과 알루미늄 함유 원료물질을 혼합하고 2차 소성한 후, 수세 및 건조하여 본 명세서에 기재된 화학식 2의 조성을 가지는 리튬 전이금속 산화물을 제조하는 단계; 및 (C) 상기 리튬 전이금속 산화물과 붕소 함유 원료물질을 건식 혼합하고 열처리하여 코팅층을 형성하는 단계;를 포함하는 양극 활물질의 제조방법, 상기 제조 방법에 의해 제조된 양극 활물질, 상기 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지에 관한 것이다.

Description

양극 활물질의 제조방법 및 양극 활물질
관련 출원과의 상호 인용
본 출원은 2021년 01월 11일자 한국특허출원 제10-2021-0003193호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원이 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 리튬 이차전지용 양극 활물질의 제조방법 및 상기 제조방법에 의해 제조된 양극 활물질, 상기 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지의 양극 활물질로는 리튬 전이금속 산화물이 이용되고 있으며, 이중에서도 작용 전압이 높고 용량 특성이 우수한 LiCoO2의 리튬 코발트 산화물이 주로 사용되었다. 그러나, LiCoO2는 탈 리튬에 따른 결정 구조의 불안정화로 열적 특성이 매우 열악하고, 또 고가이기 때문에 전기 자동차 등과 같은 분야의 동력원으로 대량 사용하기에는 한계가 있다.
상기 LiCoO2를 대체하기 위한 재료로서, 리튬 망간 복합금속 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4 등) 또는 리튬 니켈 복합금속 산화물(LiNiO2 등) 등이 개발되었다. 이 중에서도 약 200 mAh/g의 높은 가역 용량을 가져 대용량의 전지 구현이 용이한 리튬 니켈 복합금속 산화물에 대한 연구 개발이 보다 활발히 연구되고 있다. 그러나, 상기 LiNiO2는 LiCoO2와 비교하여 열안정성이 열위하고, 충전 상태에서 외부로부터의 압력 등에 의해 내부 단락이 생기면 양극 활물질 그 자체가 분해되어 전지의 파열 및 발화를 초래하는 문제가 있었다. 이에 따라 LiNiO2의 우수한 가역 용량은 유지하면서도 낮은 열안정성을 개선하기 위한 방법으로서, 니켈의 일부를 코발트로 치환한 LiNi1-αCoαO2(α=0.1~0.3) 또는, 니켈의 일부를 Mn, Co 또는 Al로 치환한 리튬니켈복합금속 산화물이 개발되었다.
그러나, 상기 리튬니켈복합금속 산화물의 경우, 용량이 낮다는 문제점이 있었다. 상기 리튬니켈복합금속 산화물의 용량을 증가시키기 위하여, 리튬니켈복합금속 산화물에 포함되는 니켈의 함량을 증가시키는 방법이 연구되었으나, 이 경우 표면에 미반응된 잔류 리튬의 존재로 인하여 수세 공정이 필수적이었으며, 수세 공정에 의해 양극 활물질 표면 결함(defect)이 발생하여 전지의 수명 특성이 저하되었다.
이를 극복하고자, 종래에는 양극 활물질의 수세 후 저온에서 양극 활물질의 표면에 코팅층을 형성하는 방법이 연구되었으나, 고온 수명 특성, 저항 특성 및 고온 가스 발생 특성 개선 측면에서 여전히 한계가 있다.
따라서, 고용량 특성을 가질 뿐만 아니라, 고온 수명 특성, 고온 저항 특성 및 고온 가스 발생 특성이 개선된 양극 활물질에 대한 개발이 요구되고 있다.
본 발명의 목적은 고용량 특성을 가질 뿐만 아니라, 고온 수명 특성, 고온 저항 특성 및 고온 가스 발생 특성이 개선된 양극 활물질을 제조하는 방법 및 이에 의해 제조된 양극 활물질을 제공하는 것이다.
다만, 본 발명이 해결하고자 하는 과제는 상기 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 하기의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위하여, 본 발명은 (A) 하기 화학식 1-1 또는 1-2의 조성을 가지는 양극 활물질 전구체와 리튬 함유 원료물질을 혼합한 혼합물을 1차 소성하여 가소성품을 제조하는 단계; (B) 상기 가소성품과 알루미늄 함유 원료물질을 혼합하고 2차 소성한 후, 수세 및 건조하여 하기 화학식 2의 조성을 가지는 리튬 전이금속 산화물을 제조하는 단계; 및 (C) 상기 리튬 전이금속 산화물과 붕소 함유 원료물질을 건식 혼합하고 열처리하여 코팅층을 형성하는 단계;를 포함하는 양극 활물질의 제조방법을 제공한다.
[화학식 1-1]
Nia1Cob1Mnc1M1 d1(OH)2
[화학식 1-2]
Nia1Cob1Mnc1M1 d1O·OH
상기 화학식 1-1 및 1-2에서,
M1은 Zr, B, W, Mg Ce, Hf, Ta, La, Ti, Sr, Ba, Ce, Hf, F, P, S 및 La 중에서 선택되는 1종 이상이고,
0.7≤a1≤1.0, 0≤b1≤0.3, 0≤c1≤0.3, 0≤d1≤0.1이며,
[화학식 2]
LixNia2Cob2Mnc2Ald2M1 e2O2
상기 화학식 2에서,
M1은 Zr, B, W, Mg Ce, Hf, Ta, La, Ti, Sr, Ba, Ce, Hf, F, P, S 및 La 중에서 선택되는 1종 이상이고,
0.9≤x≤1.12, 0.7≤a2≤1.0, 0≤b2≤0.3, 0≤c2≤0.3, 0<d2≤0.2, 0≤e2≤0.1이다.
또한, 본 발명은 하기 화학식 2로 표시되는 리튬 전이금속 산화물; 및 상기 리튬 전이금속 산화물의 표면 상에 형성된 붕소를 포함하는 코팅층;을 포함하고, 상기 코팅층은 Li-Al-B-O 고용체를 포함하며, 비행 시간형 2차 이온 질량 분석 스펙트럼에서 27.0질량 초과 27.5질량 이하에서 검출되는 피크의 강도와 Al+의 피크의 강도의 비가 1:0.5 내지 1:1.5인 양극 활물질을 제공한다.
[화학식 2]
LixNia2Cob2Mnc2Ald2M1 e2O2
상기 화학식 2에서,
M1은 Zr, B, W, Mg Ce, Hf, Ta, La, Ti, Sr, Ba, Ce, Hf, F, P, S 및 La 중에서 선택되는 1종 이상이고,
0.9≤x≤1.12, 0.7≤a2≤1.0, 0≤b2≤0.3, 0≤c2≤0.3, 0<d2≤0.2, 0≤e2≤0.1이다.
그리고, 본 발명은 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지용 양극을 제공한다.
또한, 본 발명은 본 발명에 따른 양극을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따르면, 양극 활물질 제조 시, 알루미늄을 가소성(1차 소성) 후, 수세 전 소성(2차 소성) 단계에서 투입하여 최외곽 표면에 존재하는 알루미늄의 도핑 정도를 조절함으로써, 제조되는 양극 활물질이 적용된 전지의 고온 수명 특성, 고온 저항 특성 및 고온 가스 발생 특성을 개선할 수 있다.
도 1은 실시예 1 및 비교예 1의 양극 활물질 각각의 양이온 스펙트럼 분석 결과이다.
도 2는 실시예 1 및 비교예 1의 양극 활물질 각각의 음이온 스펙트럼 분석 결과이다.
도 3은 실시예 1, 2 및 비교예 1, 2에서 제조한 이차전지의 고온에서의 방전 용량 관련 데이터를 나타낸 그래프이다.
도 4는 실시예 1, 2 및 비교예 1, 2에서 제조한 이차전지의 고온 수명 특성을 나타낸 그래프이다.
도 5는 실시예 1, 2 및 비교예 1, 2에서 제조한 이차전지의 고온 저항 특성을 나타낸 그래프이다.
도 6은 실시예 1, 2 및 비교예 1, 2에서 제조한 이차전지의 고온 가스 발생 특성을 나타낸 그래프이다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서, "%"는 명시적인 다른 표시가 없는 한 중량%를 의미한다.
본 명세서에서 "상에"라는 용어는 어떤 구성이 다른 구성의 바로 상면에 형성되는 경우뿐만 아니라 이들 구성들 사이에 제3의 구성이 개재되는 경우까지 포함하는 것을 의미한다.
양극 활물질의 제조방법
이하, 본 발명에 따른 양극 활물질의 제조방법에 대해 구체적으로 설명한다.
본 발명에 따른 양극 활물질의 제조방법은 (A) 하기 화학식 1-1 또는 1-2의 조성을 가지는 양극 활물질 전구체와 리튬 함유 원료물질을 혼합한 혼합물을 1차 소성하여 가소성품을 제조하는 단계; (B) 상기 가소성품과 알루미늄 함유 원료물질을 혼합하고 2차 소성한 후, 수세 및 건조하여 하기 화학식 2의 조성을 가지는 리튬 전이금속 산화물을 제조하는 단계; 및 (C) 상기 리튬 전이금속 산화물과 붕소 함유 원료물질을 건식 혼합하고 열처리하여 코팅층을 형성하는 단계;를 포함한다.
[화학식 1-1]
Nia1Cob1Mnc1M1 d1(OH)2
[화학식 1-2]
Nia1Cob1Mnc1M1 d1O·OH
상기 화학식 1-1 및 1-2에서,
M1은 Zr, B, W, Mg Ce, Hf, Ta, La, Ti, Sr, Ba, Ce, Hf, F, P, S 및 La 중에서 선택되는 1종 이상이고,
0.7≤a1≤1.0, 0≤b1≤0.3, 0≤c1≤0.3, 0≤d1≤0.1이며,
[화학식 2]
LixNia2Cob2Mnc2Ald2M1 e2O2
상기 화학식 2에서,
M1은 Zr, B, W, Mg Ce, Hf, Ta, La, Ti, Sr, Ba, Ce, Hf, F, P, S 및 La 중에서 선택되는 1종 이상이고,
0.9≤x≤1.12, 0.7≤a2≤1.0, 0≤b2≤0.3, 0≤c2≤0.3, 0<d2≤0.2, 0≤e2≤0.1이다.
본 발명자들은 양극 활물질 제조 시, 알루미늄을 1차 소성(가소성) 단계가 아닌, 2차 소성(수세 전 소성) 단계에서 투입하여 최외곽 표면에 존재하는 알루미늄의 도핑 정도를 높게 조절함으로써, 제조되는 양극 활물질이 적용된 전지의 고온 수명 특성, 고온 저항 특성 및 고온 가스 발생 특성을 개선할 수 있음을 알아내었다.
이하, 각 단계별로 보다 상세하게 설명한다.
(A) 단계
(A) 단계는 하기 화학식 1-1 또는 1-2의 조성을 가지는 양극 활물질 전구체와 리튬 함유 원료물질을 혼합한 혼합물을 1차 소성하여 가소성품을 제조하는 단계이다.
[화학식 1-1]
Nia1Cob1Mnc1M1 d1(OH)2
[화학식 1-2]
Nia1Cob1Mnc1M1 d1O·OH
상기 화학식 1-1 및 1-2에서,
M1은 Zr, B, W, Mg Ce, Hf, Ta, La, Ti, Sr, Ba, Ce, Hf, F, P, S 및 La 중에서 선택되는 1종 이상이고,
0.7≤a1≤1.0, 0≤b1≤0.3, 0≤c1≤0.3, 0≤d1≤0.1이다.
상기 a1은 전구체 내 금속 원소 중 니켈의 원자 분율을 의미하는 것으로, 0.7≤a1<1, 0.7≤a1≤0.98, 또는 0.7≤a1≤0.95일 수 있다.
상기 b1은 전구체 내 금속 원소 중 코발트의 원자 분율을 의미하는 것으로, 0<b1≤0.3 또는 0.01≤b1≤0.3일 수 있다.
상기 c1은 전구체 내 금속 원소 중 망간의 원자 분율을 의미하는 것으로, 0<c1≤0.3 또는 0.01≤c1≤0.3일 수 있다.
상기 d1은 전구체 내 금속 원소 중 M1의 원자 분율을 의미하는 것으로, 0≤d1≤0.1 또는 0≤d1≤0.05일 수 있다.
상기 리튬 함유 원료물질은 수산화리튬 수화물, 탄산리튬 및 수산화리튬 중에서 선택된 1종 이상을 포함하는 것일 수 있다. 상기 리튬 함유 원료물질은 구체적으로, 수산화리튬 수화물, 더욱 구체적으로, LiOH·H2O일 수 있다. 이 경우, 전구체 내 금속 원소 중 니켈의 원자 분율이 높은 전구체와 리튬 함유 원료물질의 반응성이 개선될 수 있다.
상기 양극 활물질 전구체와 상기 리튬 함유 원료물질은 1:1.0 내지 1:1.10, 구체적으로는 1:1.03 내지 1:1.09 더욱 구체적으로는 1:1.05 내지 1:1.09 몰비로 혼합될 수 있다. 리튬 함유 원료물질이 상기 범위 미만으로 혼합될 경우 제조되는 양극 활물질의 용량이 저하될 우려가 있으며, 리튬 함유 원료물질이 상기 범위를 초과하여 혼합될 경우, 미반응된 다량의 Li이 부산물로 남게 되며, 용량 저하 및 소성 후 양극 활물질 입자의 분리(양극 활물질 합침 현상 유발)가 발생할 수 있다.
상기 1차 소성 온도는 600℃ 내지 775℃일 수 있다. 상기 1차 소성 온도는 구체적으로는 620℃ 내지 760℃일 수 있고, 더욱 구체적으로는 620℃ 내지 700℃일 수 있다. 1차 소성 온도가 상기 범위 내인 경우, 가소성품의 결정 구조를 조절할 수 있고, 결과적으로 2차 소성 시 알루미늄의 확산을 적절히 조절할 수 있다.
상기 1차 소성은 산소 분위기에서 수행하는 것일 수 있다. 이 경우, 구조적으로 안정한 상을 가지는 가소성품이 형성될 수 있다.
상기 1차 소성은 2시간 내지 15시간 동안 수행하는 것일 수 있다. 상기 소성은 구체적으로는 3시간 내지 10시간, 더욱 구체적으로는 3시간 내지 8시간 동안 수행하는 것일 수 있다. 1차 소성 시간이 상기 범위 내인 경우, 소성 위치 별로 편차가 없게(균일하게) 소성이 잘 수행될 수 있다.
상기 가소성품에는 표면에 미반응된 잔류 리튬이 존재하는데, 이러한 잔류 리튬의 양은 본 발명에 따른 (B) 단계와 (C) 단계를 거쳐 최소화될 수 있다.
(B) 단계
(B) 단계는 상기 (A) 단계에서 제조한 가소성품과 알루미늄 함유 원료물질을 혼합하고 2차 소성한 후, 수세 및 건조하여 하기 화학식 2의 조성을 가지는 리튬 전이금속 산화물을 제조하는 단계이다.
[화학식 2]
LixNia2Cob2Mnc2Ald2M1 e2O2
상기 화학식 2에서,
M1은 Zr, B, W, Mg Ce, Hf, Ta, La, Ti, Sr, Ba, Ce, Hf, F, P, S 및 La 중에서 선택되는 1종 이상이고,
0.9≤x≤1.12, 0.7≤a2≤1.0, 0≤b2≤0.3, 0≤c2≤0.3, 0<d2≤0.2, 0≤e2≤0.1이다.
상기 a2는 양극 활물질 내 리튬을 제외한 금속 원소 중 니켈의 원자 분율을 의미하는 것으로, 0.7≤a2<1.0, 0.7≤a2≤0.98, 또는 0.7≤a2≤0.95일 수 있다.
상기 b2는 양극 활물질 내 리튬을 제외한 금속 원소 중 코발트의 원자 분율을 의미하는 것으로, 0<b2≤0.3 또는 0.01≤b2≤0.3일 수 있다.
상기 c2는 양극 활물질 내 리튬을 제외한 금속 원소 중 망간의 원자 분율을 의미하는 것으로, 0<c2≤0.3 또는 0.01≤c2≤0.3일 수 있다.
상기 d2는 양극 활물질 내 리튬을 제외한 금속 원소 중 알루미늄의 원자 분율을 의미하는 것으로, 0≤d2≤0.2, 0≤d2≤0.1 또는 0≤d2≤0.05일 수 있다.
상기 e2는 양극 활물질 내 리튬을 제외한 금속 원소 중 M1의 원자 분율을 의미하는 것으로, 0≤e2≤0.1 또는 0≤e2≤0.05일 수 있다.
본 발명은 상기 (B) 단계에서 알루미늄 함유 원료물질을 혼합하고 2차 소성함으로써, 결과적으로 얻어지는 양극 활물질의 표면에 알루미늄이 높은 농도로 존재하는 코팅층이 형성되는 바, 상기 양극 활물질을 포함하는 이차전지의 고온 수명 특성, 고온 저항 특성 및 고온 가스 발생 특성이 개선될 수 있다.
상기 알루미늄 함유 원료물질은 Al(OH)3, Al2O3, AlF3, AlBr3, AlPO4, AlCl3, Al(NO)3, Al(NO3)3·9H2O, Al2(SO4)3·H2O, Al(H2PO4)3, C2H5O4Al, Al(SO)4, NaAlO2, Al2CoO4, LaAlO3, 및 MgAl2O4 중에서 선택되는 1종 이상일 수 있다. 상기 알루미늄 함유 원료 물질은 구체적으로는 Al(OH)3, Al2O3일 수 있고, 더욱 구체적으로는 Al(OH)3일 수 있다. 이 경우, 알루미늄 함유 원료물질의 녹는점이 낮아 알루미늄이 균일하게 확산되어, 리튬 전이금속 산화물 표면 쪽에 풍부하고 균일하게 존재할 수 있다.
상기 알루미늄 함유 원료물질은 상기 가소성품에 대하여 1,000ppm 내지 10,000ppm, 구체적으로는 2,000ppm 내지 8,000ppm, 더욱 구체적으로는 4,000ppm 내지 6,000ppm의 함량으로 첨가될 수 있다. 알루미늄 함유 원료물질의 함량이 상기 범위 내인 경우, 제조되는 양극 활물질을 전지에 적용 시 전지의 용량 저하가 방지될 수 있을 뿐만 아니라, 열 안정성이 개선될 수 있다.
상기 2차 소성 온도는 730℃ 내지 900℃일 수 있다. 상기 2차 소성 온도는 구체적으로는 730℃ 내지 850℃일 수 있고, 더욱 구체적으로는 750℃ 내지 800℃일 수 있다. 2차 소성 온도가 상기 범위 내인 경우, 적절한 결정 크기가 형성되어, 제조되는 양극 활물질을 전지에 적용 시 전지의 수명 특성이 개선될 수 있다.
상기 2차 소성 온도는 상기 1차 소성 온도보다 높고, 상기 2차 소성 온도와 상기 1차 소성 온도의 차이는 10℃ 내지 150℃, 구체적으로는 20℃ 내지 150℃, 더욱 구체적으로는 30℃ 내지 140℃일 수 있다. 상기 2차 소성 온도와 상기 1차 소성 온도의 차이가 상기 범위 내인 경우, 최외곽 표면에 존재하는 알루미늄의 도핑 정도를 조절하는데 유리할 수 있다.
상기 2차 소성은 산소 분위기에서 수행하는 것일 수 있다. 이 경우, 리튬과 니켈 간의 양이온 교환이 억제되어, 제조되는 양극 활물질을 전지에 적용 시 전지의 용량 발현이 개선될 수 있다.
상기 2차 소성은 2시간 내지 15시간 동안 수행하는 것일 수 있다. 상기 소성은 구체적으로는 3시간 내지 10시간, 더욱 구체적으로는 3시간 내지 8시간 동안 수행하는 것일 수 있다. 2차 소성 시간이 상기 범위 내인 경우, 소성 위치 별로 편차가 없게(균일하게) 소성이 잘 수행될 수 있다.
상기 수세는 미반응된 잔류 리튬을 제거하기 위한 공정으로, 2차 소성품과 수세 용액을 혼합하여 세척한 후, 수세 용액으로부터 2차 소성품을 분리하는 공정이다.
상기 수세 용액은 물, 에탄올 등일 수 있으나, 이에 한정되는 것은 아니다.
상기 수세 용액은 상기 2차 소성품 100중량부에 대하여 60중량부 내지 200중량부, 구체적으로는 60중량부 내지 150중량부, 더욱 구체적으로는 80중량부 내지 120중량부의 함량으로 혼합될 수 있다. 수세 용액의 함량이 상기 범위 내인 경우, 2차 소성품의 표면에 존재하는 잔류 리튬을 용이하게 제거할 수 있다. 수세 용액의 함량이 상술한 범위보다 낮은 경우, 2차 소성품의 표면에 존재하는 잔류 리튬의 함량이 높기 때문에, 이를 전지에 적용 시 가스가 발생할 우려가 있고, 반대로 수세 용액의 함량이 상술한 범위보다 높은 경우, 리튬 전이금속 산화물의 표면이 손상되어 이를 전지에 적용 시 수명 저하 및 저항 증가율이 높아질 수 있다.
상기 수세 용액으로부터 상기 2차 소성품을 분리하는 공정은 상기 수세 용액으로부터 분리된 상기 2차 소성품의 함수율이 3% 내지 15%가 되도록 하는 것일 수 있다. 구체적으로는 상기 2차 소성품의 함수율이 5% 내지 12%, 더욱 구체적으로는 5% 내지 10%가 되도록 하는 것일 수 있다.
이때, 상기 함수율은 수세 용액으로부터 분리된 후 건조하기 전의 2차 소성품에 포함된 수분 함량을 의미하는 것으로, 하기 식 1에 따라 계산될 수 있다.
[식 1]
함수율(%) = {[(건조 전 2차 소성품의 질량)-(건조 후 2차 소성품의 질량)]/(건조 전 2차 소성품의 질량)}×100
이때, 상기 건조는 수세 용액으로부터 분리된 2차 소성품을 130℃에서 300분 동안 건조시키는 것일 수 있다.
상기 함수율이 상기 범위 내인 경우, 표면 상태, 즉, 표면 물성이 제어되어, 리튬 전이금속 산화물이 표면에 균일한 조성 및 균일한 두께를 가지는 코팅층을 용이하게 코팅할 수 있다.
상기 분리는 1㎛ 내지 50㎛의 평균 기공을 가지는 감압 필터를 이용하여 수행할 수 있다. 이 경우, 단시간에 상기 수세 용액으로부터 상기 2차 소성품을 분리할 수 있다.
상기 건조는 수세 공정을 거쳐 수분을 포함하는 리튬 전이금속 산화물에서 수분을 제거하기 위한 것으로, 진공 펌프를 사용하여 수분을 제거한 후, 60℃ 내지 150℃에서 수행하는 것일 수 있다. 구체적으로, 상기 건조는 60℃ 내지 150℃ 온도 조건 하에서 3시간 이상 건조하는 것일 수 있다.
(C) 단계
(C) 단계는 상기 (B) 단계에서 제조한 리튬 전이금속 산화물과 붕소 함유 원료물질을 건식 혼합하고 열처리하여 코팅층을 형성하는 단계이다.
(C) 단계를 통하여 상기 리튬 전이금속 산화물의 표면 상에 붕소를 포함하는 코팅층이 형성된다. 구체적으로, 상기 리튬 전이금속 산화물의 표면 상에 Li-Al-B-O 고용체를 포함하는 코팅층이 형성된다. 즉, 상기 리튬 전이금속 산화물과 붕소 함유 원료물질을 건식 혼합하고 열처리하는 경우, Li-B-O 고용체뿐만 아니라, Li-Al-B-O 고용체를 포함하는 코팅층이 형성된다. 이 경우, 코팅층이 강화되어 양극 활물질과 전해액 간의 부반응이 더욱 효과적으로 억제될 수 있다. 추가적으로, 상기 코팅층에는 알루미늄이 풍부한 Ni-Co-Mn-Al 고용체, 알루미늄이 풍부한 Ni-Co-Mn-Al-B 고용체가 더 포함될 수 있다. 한편, 상기 코팅층의 두께는 4nm 내지 10nm일 수 있다. 상기 코팅층의 두꼐가 상기 범위 내인 경우, 표면 부반응을 억제하여 전지에 적용 시 전지의 수명 특성이 개선될 수 있고, 가스 발생이 억제될 수 있다.
그리고, 상기 리튬 전이금속 산화물의 최외곽 표면에 알루미늄이 풍부하게 존재하므로, 코팅층에도 알루미늄이 풍부하게 존재하게 되며, 결과적으로 제조되는 양극 활물질을 분석하였을 때, 비행 시간형 2차 이온 질량 분석 스펙트럼에서 27.0질량 초과 27.5질량 이하에서 검출되는 피크의 강도와 Al+의 피크의 강도의 비는 1:0.5 내지 1:1.5이 될 수 있다.
상기 붕소 함유 원료물질은 H3BO3, B2H4O4, B2O3, LiBO2, Li2B4O7 및 AlBO3 중에서 선택되는 1종 이상일 수 있다. 상기 붕소 함유 원료물질은 구체적으로는 H3BO3, B2O3일 수 있고, 더욱 구체적으로는 H3BO3일 수 있다. 이 경우, 붕소 함유 원료물질의 녹는점이 낮아, 균일한 코팅층이 형성될 수 있다.
상기 붕소 함유 원료물질은 상기 리튬 전이금속 산화물 100중량부에 대하여, 0.1중량부 내지 1.5중량부, 구체적으로는 0.2중량부 내지 1.0중량부, 더욱 구체적으로는 0.4중량부 내지 0.8중량부의 함량으로 혼합될 수 있다. 붕소 함유 원료물질의 함량이 상기 범위 내인 경우, 코팅층이 균일하게 형성될 뿐만 아니라, 적절한 두께의 코팅층이 형성되어, 제조되는 양극 활물질을 전지에 적용 시 전지의 수명 특성을 개선할 수 있다.
상기 리튬 전이금속 산화물과 붕소 함유 원료물질을 건식 혼합하는 경우, 습식 혼합하는 경우에 비하여 불순물을 최소화시킬 수 있다는 점에서 유리한 측면이 있다.
상기 열처리 온도는 250℃ 내지 400℃일 수 있다. 상기 열처리 온도는 구체적으로는 250℃ 내지 350℃일 수 있고, 더욱 구체적으로는 260℃ 내지 330℃일 수 있다. 열처리 온도가 상기 범위 내인 경우, 리튬 전이금속 산화물 상에 코팅층이 균일하게 형성되어, 전지에 적용 시 전지의 수명 특성이 개선될 수 있다. 한편, 상기 열처리 온도가 상기 범위의 하한치 보다 낮은 경우, 붕소 함유 원료물질의 반응성이 낮아 붕소 함유 원료물질이 리튬 전이금속 산화물의 표면에 잔류하여 오히려 저항으로 작용할 수 있고, 상기 범위의 상한치 보다 높은 경우, 리튬 전이금속 산화물 표면에 존재하는 리튬과 붕소 함유 원료물질이 과반응하여, 코팅층 내에 리튬이 다량 존재할 수 있다.
양극 활물질
또한, 본 발명에 따른 양극 활물질은 하기 화학식 2로 표시되는 리튬 전이금속 산화물; 및 상기 리튬 전이금속 산화물의 표면 상에 형성된 붕소를 포함하는 코팅층;을 포함하고, 상기 코팅층은 Li-Al-B-O 고용체를 포함하며, 상기 양극 활물질의 비행 시간형 2차 이온 질량 분석 스펙트럼에서 27.0질량 초과 27.5질량 이하에서 검출되는 피크의 강도와 Al+의 피크의 강도의 비는 1:0.5 내지 1:1.5인 것이다.
[화학식 2]
LixNia2Cob2Mnc2Ald2M1 e2O2
상기 화학식 2에서,
M1은 Zr, B, W, Mg Ce, Hf, Ta, La, Ti, Sr, Ba, Ce, Hf, F, P, S 및 La 중에서 선택되는 1종 이상이고,
0.9≤x≤1.12, 0.7≤a2≤1.0, 0≤b2≤0.3, 0≤c2≤0.3, 0<d2≤0.2, 0≤e2≤0.1이다.
상기 a2는 양극 활물질 내 리튬을 제외한 금속 원소 중 니켈의 원자 분율을 의미하는 것으로, 0.7≤a2<1.0, 0.7≤a2≤0.98, 또는 0.7≤a2≤0.95일 수 있다.
상기 b2는 양극 활물질 내 리튬을 제외한 금속 원소 중 코발트의 원자 분율을 의미하는 것으로, 0<b2≤0.3 또는 0.01≤b2≤0.3일 수 있다.
상기 c2는 양극 활물질 내 리튬을 제외한 금속 원소 중 망간의 원자 분율을 의미하는 것으로, 0<c2≤0.3 또는 0.01≤c2≤0.3일 수 있다.
상기 d2는 양극 활물질 내 리튬을 제외한 금속 원소 중 알루미늄의 원자 분율을 의미하는 것으로, 0≤d2≤0.2, 0≤d2≤0.1 또는 0≤d2≤0.05일 수 있다.
상기 e2는 양극 활물질 내 리튬을 제외한 금속 원소 중 M1의 원자 분율을 의미하는 것으로, 0≤e2≤0.1 또는 0≤e2≤0.05일 수 있다.
상기 양극 활물질은 상술한 제조 방법에 의해 제조되어, 표면에 알루미늄이 많이 존재하여 강화된 코팅층을 가져, 상기 양극 활물질을 포함하는 이차전지의 고온 수명 특성, 고온 저항 특성 및 고온 가스 발생 특성을 개선시킬 수 있다. 상기 코팅층은 알루미늄이 풍부한 Ni-Co-Mn-Al 고용체, 알루미늄이 풍부한 Ni-Co-Mn-Al-B 고용체를 더 포함할 수 있다. 한편, 상기 코팅층의 두께는 4nm 내지 10nm일 수 있다. 상기 코팅층의 두꼐가 상기 범위 내인 경우, 전해액과 부반응을 억제하여 전지에 적용 시 전지의 고온 수명 특성 및 고온 저항 특성이 개선될 수 있고, 가스 발생이 억제될 수 있다.
상기 양극 활물질의 비행 시간형 2차 이온 질량 분석 스펙트럼에서 27.0질량 초과 27.5질량 이하에서 검출되는 피크의 강도와 Al+의 피크의 강도의 비는 1:0.5 내지 1:1.5, 구체적으로는 1:0.6 내지 1:1.3, 더욱 구체적으로는 1:0.7 내지 1:1.2이다. 상기 27질량 초과 27.5질량 이하에서 검출되는 피크는 C2H3 +의 피크로 베이스 피크이다. 이 경우, 본 발명에 따른 양극 활물질이 적용된 전지의 용량 특성뿐만 아니라, 사이클 특성이 개선될 수 있다. 특히, 전지의 고온 수명 특성이 개선되고, 고온에서의 저항 증가율 및 가스 발생율이 억제될 수 있다.
상기 양극 활물질의 비행 시간형 2차 이온 질량 분석 스펙트럼에서 182질량 내지 184질량에서 검출되는 피크의 강도와 172질량 내지 174질량에서 검출되는 피크의 강도의 비는 1:0.3 내지 1:2, 구체적으로는 1:0.4 내지 1:1.5, 더욱 구체적으로는 1:0.5 내지 1:1.2일 수 있다. 이 경우, 양극 활물질의 표면에서 일어날 수 있는 부반응이 억제되어 상기 양극 활물질을 포함하는 이차전지의 충방전 중 가스 발생이 억제될 수 있고, 상기 이차전지의 저항 증가율이 개선될 수 있다.
상기 양극 활물질의 비행 시간형 2차 이온 질량 분석 스펙트럼에서 182질량 내지 184질량에서 검출되는 피크의 강도와 197질량 내지 199질량에서 검출되는 피크의 강도의 비는 1:0.3 내지 1:1.5, 구체적으로는 1:0.3 내지 1:1.2, 더욱 구체적으로는 1:0.3 내지 1:0.8일 수 있다. 이 경우, 양극 활물질의 표면에서 일어날 수 있는 부반응이 억제되어 상기 양극 활물질을 포함하는 이차전지의 충방전 중 가스 발생이 억제될 수 있고, 상기 이차전지의 저항 증가율이 개선될 수 있다.
양극
또한, 본 발명은 상기 양극 활물질을 포함하는 리튬 이차전지용 양극을 제공한다. 구체적으로, 상기 이차전지용 양극은, 양극 집전체, 상기 양극 집전체 상에 형성된 양극 활물질층을 포함하며, 상기 양극 활물질층은 본 발명에 따른 양극 활물질을 포함하는 것이다.
이때, 상기 양극 활물질은 상술한 바와 동일하므로, 구체적인 설명을 생략하고, 이하 나머지 구성에 대해서만 구체적으로 설명한다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 상기 양극 활물질과 함께, 도전재 및 필요에 따라 선택적으로 바인더를 포함할 수 있다.
이때 상기 양극 활물질은 양극 활물질층 총 중량에 대하여 80중량% 내지 99중량%, 보다 구체적으로는 85중량% 내지 98.5중량%의 함량으로 포함될 수 있다. 상기한 함량범위로 포함될 때 우수한 용량 특성을 나타낼 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량에 대하여 0.1중량% 내지 15 중량%로 포함될 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 0.1중량% 내지 15중량%로 포함될 수 있다.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 양극 활물질층 형성용 조성물을 양극집전체 상에 도포한 후, 건조 및 압연함으로써 제조할 수 있다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포 시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또한, 다른 방법으로, 상기 양극은 상기 양극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
리튬 이차전지
또한, 본 발명은 상기 양극을 포함하는 전기화학소자를 제조할 수 있다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로, 양극, 상기 양극과 대향하여 위치하는 음극, 및 상기 양극과 음극 사이에 개재되는 분리막 및 전해질을 포함하고, 상기 양극은 앞서 설명한 바와 동일하므로, 구체적인 설명을 생략하고, 이하 나머지 구성에 대해서만 구체적으로 설명한다.
또한, 상기 리튬 이차전지는 상기 양극, 음극, 분리막의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 < β < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기 음극활물질은 음극 활물질층의 전체 중량을 기준으로 80중량% 내지 99중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질층의 전체 중량을 기준으로 0.1중량% 내지 10중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질층의 전체 중량을 기준으로 10중량% 이하, 구체적으로는 5중량% 이하로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
예를 들면, 상기 음극 활물질층은 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 활물질층 형성용 조성물을 도포하고 건조함으로써 제조되거나, 또는 상기 음극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수 있다.
한편, 상기 리튬 이차전지에 있어서, 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또한, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1중량% 내지 5중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 수명 특성을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1
양극 활물질 전구체인 Ni0.88Co0.05Mn0.07(OH)2와 LiOHH2O를 Li:전이금속(Ni+Co+Mn)의 몰비가 1.07:1이 되도록 혼합하고, 640℃에서 5시간 동안 1차 소성하여, 가소성품(Ni0.88Co0.05Mn0.07O2를 포함)을 제조하였다.
상기 가소성품과 Al(OH)3을 Ni:Co:Mn:Al의 몰비가 0.86:0.05:0.07:0.02가 되도록 혼합하고, 775℃에서 6시간 동안 2차 소성하여, 소성품(LiNi0.86Co0.05Mn0.07Al0.02O2를 포함)을 제조하였다. 상기 소성품과 물을 1:1.2의 중량비로 혼합하여 5분 동안 수세하고, 감압 필터 처리하여 함수율이 5% 내지 10%가 되도록 한 후, 130℃에서 건조하여, LiNi0.86Co0.05Mn0.07Al0.02O2의 조성을 가지는 리튬 전이금속 산화물을 제조하였다.
이어서, 상기 리튬 전이금속 산화물과 H3BO3를 100:0.57의 중량비로 혼합하고, 300℃에서 4시간 동안 열처리하여, 표면에 Li-Al-B-O 고용체, Li-B-O 고용체 및 B-O 고용체를 포함하는 코팅층이 형성된 양극 활물질을 제조하였다.
실시예 2
실시예 1에서 1차 소성 온도를 720℃로 조절한 것을 제외하고, 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
비교예 1
양극 활물질 전구체인 Ni0.88Co0.05Mn0.07(OH)2, LiOHH2O 및 Al(OH)3를 Li: Ni:Co:Mn:Al의 몰비가 1.05:0.86:0.05:0.07:0.02가 되도록 혼합하고, 640℃에서 5시간 동안 1차 소성한 후, 775℃에서 6시간 동안 2차 소성하여, 소성품(LiNi0.86Co0.05Mn0.07Al0.02O2를 포함)을 제조하였다.
상기 소성품과 물을 1:1.2의 중량비로 혼합하여 5분 동안 수세하고, 수세품을 상기 수세품 중 수분 함량이 5% 내지 10%가 되도록 감압 필터 처리한 후, 130℃에서 건조하여, LiNi0.86Co0.05Mn0.07Al0.02O2의 조성을 가지는 리튬 전이금속 산화물을 제조하였다.
이어서, 상기 리튬 전이금속 산화물과 H3BO3를 100:0.57의 중량비로 혼합하고 300℃에서 4시간 동안 열처리하여, 표면에 Li-B-O 및 B-O 고용체를 포함하는 코팅층이 형성된 양극 활물질을 제조하였다.
비교예 2
리튬 전이금속 산화물 LiNi0.88Co0.05Mn0.07O2와 H3BO3 및 Al(OH)3를 100:0.2:0.3의 중량비로 혼합하고 700℃에서 4시간 동안 열처리하여, 표면에 Li-Al-B-O 고용체를 포함하는 코팅층이 형성된 양극 활물질을 제조하였다.
실험예 1: 코팅층의 형성 확인
실시예 1 및 비교예 1에서 제조한 양극 활물질 표면의 양이온 스펙트럼 및 음이온 스펙트럼을 비행 시간형 2차 이온 질량 분석기(TOF-SIMS5, ION-TOF GmbH社)를 이용하여 측정하였고, 그 결과를 도 1 및 도 2에 나타내었다.
먼저, 도 1의 (a) 및 (b)는 각각 실시예 1 및 비교예 1의 양이온 스펙트럼 분석 결과이다.
상기 실시예 1 및 비교예 1에서 제조한 양극 활물질 최외곽 표면의 양이온 분석 결과, 실시예 1의 경우에는 26.9질량 내지 27.0질량 영역에서 Al+의 피크가 강하게 관측되는 반면, 비교예 2의 경우에는 상기 영역에서 Al+의 피크가 약하게 관측되는 것을 확인할 수 있다. 이는 실시예 1의 경우에는 양극 활물질 표면에 코팅층을 형성시키기 전에 알루미늄이 양극 활물질의 표면에 많이 존재하도록 제조방법을 조절하였기 때문이다.
구체적으로, 실시예 1의 양이온 스펙트럼에서 27.0질량 초과 27.1질량 이하에서 검출되는 피크(C2H3 + 피크)의 강도와 Al+의 피크의 강도의 비는 1:0.9인 것을 확인할 수 있다. 이에 비해, 비교예 1의 양이온 스펙트럼에서 27.0질량 초과 27.1질량 이하에서 검출되는 피크(C2H3 + 피크)의 강도와 Al+의 피크의 강도의 비는 1:0.2인 것을 확인할 수 있다.
또한, 도 2의 (a) 및 (b)는 각각 실시예 1 및 비교예 1의 음이온 스펙트럼 분석 결과이다.
상기 실시예 1 및 비교예 1에서 제조한 양극 활물질 최외곽 표면의 음이온 분석 결과, 실시예 1의 경우에는 172질량 내지 174질량 영역에서 알루미늄과 관련된 피크가 강하게 관측되고, 197질량 내지 198질량 영역에서 알루미늄과 관련된 피크가 강하게 관측되는 반면, 비교예 1의 경우에는 상기 영역에서 피크가 약하게 관측되는 것을 확인할 수 있다.
구체적으로, 실시예 1의 음이온 스펙트럼에서 182질량 내지 184질량에서 검출되는 피크의 강도와 172질량 내지 174질량에서 검출되는 피크의 강도의 비는 1:1.1인 것을 확인할 수 있고, 182질량 내지 184질량에서 검출되는 피크의 강도와 197질량 내지 199질량에서 검출되는 피크의 강도의 비는 1:0.5인 것을 확인할 수 있다. 이에 비해, 비교예 1의 음이온 스펙트럼에서 182질량 내지 184질량에서 검출되는 피크의 강도와 172질량 내지 174질량에서 검출되는 피크의 강도의 비는 1:0.4인 것을 확인할 수 있고, 182질량 내지 184질량에서 검출되는 피크의 강도와 197질량 내지 199질량에서 검출되는 피크의 강도의 비는 1:0.2인 것을 확인할 수 있다.
실험예 2: 리튬 이차전지의 용량 및 저항 특성 평가
실시예 1, 2 및 비교예 1, 2에서 각각 제조한 양극 활물질을 이용하여 리튬 이차전지를 각각 제조하였고, 이의 용량 및 저항 특성을 확인하였다. 이때, 각각의 리튬 이차전지는 상기 실시예 1, 2 및 비교예 1, 2에서 각각 제조한 양극 활물질을 사용한 것을 제외하고는 하기와 같은 방법을 이용하여 제조하였다.
구체적으로, 상기 실시예 1, 2 및 비교예 1, 2에서 각각 제조한 양극 활물질, 카본블랙 도전재, 및 폴리비닐리덴플루오라이드 바인더를 97.5:1.15:1.35의 중량비로 혼합하고, 이를 NMP 용매 중에서 혼합하여 양극 형성용 조성물을 제조하였다. 상기 양극 형성용 조성물을 두께가 12㎛인 Al 집전체에 도포한 후, 건조하고, 롤 프레스를 실시하여 양극을 제조하였다. 상기에서 제조한 양극과 음극으로서 리튬 메탈을 다공성 폴리에틸렌 분리막과 함께 적층하고, 이를 전지 케이스에 넣고 에틸렌카보네이트(EC):디메틸카보네이트(DMD):에틸메틸카보네이트(EMC)를 3:4:3의 비율로 혼합한 혼합 용매에 1M의 LiPF6 및 기타 첨가제를 용해시킨 전해액을 주입하여, 상기 실시예 1, 2 및 비교예 1, 2에 따른 리튬 이차전지를 제조하였다.
상기에 따라 제조된 리튬 이차전지 각각에 대하여, 25℃에서 0.1C 정전류로 4.25V까지 CC/CV 모드 충전을 실시한 후(CV 0.05C), 3V가 될 때까지 CC 모드 방전을 실시하여, 상온(25℃)에서의 초기 충전 용량(단위: mAh/g)을 측정하였고, 이를 하기 표 1에 나타내었다.
초기 충전 용량 at 25℃
(mAh/g)
실시예 1 213.1
실시예 2 213.5
비교예 1 213.0
비교예 2 202.8
표 1을 참조하면, 실시예 1 및 2의 양극 활물질을 포함하는 전지의 경우, 상온에서의 초기 충전 용량이 우수한 것을 확인할 수 있다. 참고적으로, 비교예 2와 같이, 붕소 함유 원료물질과 알루미늄 함유 원료물질을 리튬 전이금속 산화물과 혼합한 후, 700℃로 열처리하여 코팅층을 형성할 경우, 알루미늄과 붕소의 확산 정도가 조절되지 않으며, 고온에서 일부 붕소나 알루미늄이 양극 활물질 내부로 도핑 등의 반응이 일어나 용량이 저하되는 문제가 있다는 것을 알 수 있다.
상기에 따라 제조된 리튬 이차전지 각각에 대하여, 45℃에서 0.33C 정전류로 4.25V까지 CC/CV 모드 충전을 실시한 후(CV 0.05C), 3V가 될 때까지 CC 모드 방전을 실시하였다. 상기 충전 및 방전 거동을 1 사이클로 하여, 이러한 사이클을 30회 반복 실시한 후, 상기에 따라 제조된 리튬 이차전지 각각의 고온(45℃)에서의 초기 방전 용량(단위: mAh/g), 용량 유지율(단위: %) 및 저항 증가율(단위: %)을 측정하였고, 이를 하기 표 2, 도 3 내지 도 5에 나타내었다.
도 3은 실시예 1, 2 및 비교예 1, 2에서 제조한 이차전지의 고온에서의 방전 용량 관련 데이터를 나타낸 그래프이다.
도 4는 실시예 1, 2 및 비교예 1, 2에서 제조한 이차전지의 고온 수명 특성을 나타낸 그래프이다. 구체적으로, 도 4는 고온에서의 용량 유지율 관련 데이터를 나타낸 도면이다.
도 5는 실시예 1, 2 및 비교예 1, 2에서 제조한 이차전지의 고온 저항 특성을 나타낸 그래프이다. 구체적으로, 도 5는 고온에서의 저항 증가율 관련 데이터를 나타낸 도면이다.
초기 충전 용량 at 45℃
(mAh/g)
용량 유지율 at 45℃
(%)
저항 증가율 at 45℃
(%)
실시예 1 217.9 98.2 122.1
실시예 2 218.2 98.3 122.9
비교예 1 217.9 97.3 136.1
비교예 2 208.3 98.1 125.6
상기 표 2, 도 3 내지 도 5에 나타난 바와 같이, 실시예 1, 2에서 제조한 이차전지의 경우, 비교예 1, 2에서 제조한 이차전지에 비해 고온 용량 특성, 수명 특성 및 저항 특성 모두 월등히 우수한 것을 확인할 수 있다.
실험예 3: 가스 발생량 평가
실시예 1, 2 및 비교예 1, 2에서 각각 제조한 양극 활물질을 이용하여 리튬 이차전지를 각각 제조하였고, 이의 용량 및 저항 특성을 확인하였다. 이때, 각각의 리튬 이차전지는 상기 실시예 1, 2 및 비교예 1, 2에서 각각 제조한 양극 활물질을 사용한 것을 제외하고는 하기와 같은 방법을 이용하여 제조하였다.
구체적으로, 상기 실시예 1, 2 및 비교예 1, 2에서 각각 제조한 양극 활물질, 카본블랙 도전재, 및 폴리비닐리덴플루오라이드 바인더를 97.5:1.15:1.35의 중량비로 혼합하고, 이를 NMP 용매 중에서 혼합하여 양극 형성용 조성물을 제조하였다. 상기 양극 형성용 조성물을 두께가 12㎛인 Al 집전체에 도포한 후, 건조하고, 롤 프레스를 실시하여 양극을 제조하였다.
다음으로, 음극 활물질(천연 흑연), 도전재(카본 블랙) 및 바인더(SBR+CMC)를 95:1.5:3.5의 중량비로 물에 혼합하여 음극 슬러리를 제조하였다. 상기 음극 슬러리를 구리 집전체 상에 도포하고, 건조한 후 압연하여 음극을 제조하였다.
상기 양극과 음극 사이에 분리막을 개재하여 전극 조립체를 제조한 다음, 전지 케이스 내부에 위치시킨 후, 전해액을 주입하여 전극 크기 3cm×4cm인 모노 셀을 각각 3개씩 제조하였다. 이때, 전해액으로는, 에틸렌카보네이트:에틸메틸카보네이트:디에틸카보네이트를 3:3:4의 부피비로 혼합한 유기 용매에 1M의 LiPF6를 용해시킨 전해액을 사용하였다.
상기 3개의 모노 셀들을 45℃에서 0.33C 정전류로 4.25V까지 CC/CV 모드 충전을 실시한 후(CV 0.05C), 양극을 분리하였다. 분리된 양극들을 셀 파우치에 넣고, 전해액을 추가 주액한 후 실링하여 샘플을 준비하였다. 상기 샘플을 60℃에서 4주간 보관하면서 셀 부피 변화율(단위: %)을 측정하였고, 이를 하기 표 3 및 도 6에 나타내었다.
셀 부피 변화율(%)
1주 2주 3주 4주
실시예 1 4.15 6.47 8.08 9.82
실시예 2 4.70 6.92 8.54 9.59
비교예 1 12.32 16.02 19.67 22.60
비교예 2 6.80 9.33 11.73 13.07
표 3을 참조하면, 실시예 1 및 2의 양극 활물질을 포함하는 전지의 경우, 비교예 1 및 2의 양극 활물질을 포함하는 전지에 비해, 고온에서 저장 시 셀 부피 변화율이 현저히 작은 것으로부터 가스 발생량이 현저히 적은 것을 확인할 수 있다.
결론적으로, 본 발명은 양극 활물질 제조 시, 알루미늄을 가소성(1차 소성) 후, 수세 전 소성(2차 소성) 단계에서 투입하여 최외곽 표면에 존재하는 알루미늄의 도핑 정도를 조절함으로써, 제조되는 양극 활물질이 적용된 전지의 용량 특성뿐만 아니라, 사이클 특성, 특히, 고온 수명 특성을 개선시킬 수 있다는 것을 알 수 있다. 그리고, 상기 양극 활물질이 적용된 전지의 고온에서의 저항 증가 및 고온에서의 가스 발생을 억제시킬 수 있다는 것을 알 수 있다.

Claims (12)

  1. (A) 하기 화학식 1-1 또는 1-2의 조성을 가지는 양극 활물질 전구체와 리튬 함유 원료물질을 혼합한 혼합물을 1차 소성하여 가소성품을 제조하는 단계;
    (B) 상기 가소성품과 알루미늄 함유 원료물질을 혼합하고 2차 소성한 후, 수세 및 건조하여 하기 화학식 2의 조성을 가지는 리튬 전이금속 산화물을 제조하는 단계; 및
    (C) 상기 리튬 전이금속 산화물과 붕소 함유 원료물질을 건식 혼합하고 열처리하여 코팅층을 형성하는 단계;를 포함하는 양극 활물질의 제조방법:
    [화학식 1-1]
    Nia1Cob1Mnc1M1 d1(OH)2
    [화학식 1-2]
    Nia1Cob1Mnc1M1 d1O·OH
    상기 화학식 1-1 및 1-2에서,
    M1은 Zr, B, W, Mg Ce, Hf, Ta, La, Ti, Sr, Ba, Ce, Hf, F, P, S 및 La 중에서 선택되는 1종 이상이고,
    0.7≤a1≤1.0, 0≤b1≤0.3, 0≤c1≤0.3, 0≤d1≤0.1이며,
    [화학식 2]
    LixNia2Cob2Mnc2Ald2M1 e2O2
    상기 화학식 2에서,
    M1은 Zr, B, W, Mg Ce, Hf, Ta, La, Ti, Sr, Ba, Ce, Hf, F, P, S 및 La 중에서 선택되는 1종 이상이고,
    0.9≤x≤1.12, 0.7≤a2≤1.0, 0≤b2≤0.3, 0≤c2≤0.3, 0<d2≤0.2, 0≤e2≤0.1이다.
  2. 청구항 1에 있어서,
    상기 1차 소성 온도는 600℃ 내지 775℃인 양극 활물질의 제조 방법.
  3. 청구항 1에 있어서,
    상기 2차 소성 온도는 730℃ 내지 900℃인 양극 활물질의 제조 방법.
  4. 청구항 1에 있어서,
    상기 알루미늄 함유 원료물질은 Al(OH)3, Al2O3, AlF3, AlBr3, AlPO4, AlCl3, Al(NO)3, Al(NO3)3·9H2O, Al2(SO4)3·H2O, Al(H2PO4)3, C2H5O4Al, Al(SO)4, NaAlO2, Al2CoO4, LaAlO3, 및 MgAl2O4 중에서 선택되는 1종 이상인 양극 활물질의 제조 방법.
  5. 청구항 1에 있어서,
    상기 2차 소성 온도는 상기 1차 소성 온도보다 높고, 상기 2차 소성 온도와 1차 소성 온도의 차이는 10℃ 내지 150℃인 양극 활물질의 제조 방법.
  6. 청구항 1에 있어서,
    상기 열처리 온도는 250℃ 내지 400℃인 양극 활물질의 제조 방법.
  7. 청구항 1에 있어서,
    상기 붕소 함유 원료물질은 H3BO3, B2H4O4, B2O3, LiBO2, Li2B4O7 및 AlBO3 중에서 선택되는 1종 이상인 양극 활물질의 제조 방법.
  8. 하기 화학식 2로 표시되는 리튬 전이금속 산화물; 및 상기 리튬 전이금속 산화물의 표면 상에 형성된 붕소를 포함하는 코팅층;을 포함하고,
    상기 코팅층은 Li-Al-B-O 고용체를 포함하며,
    비행 시간형 2차 이온 질량 분석 스펙트럼에서 27.0질량 초과 27.5질량 이하에서 검출되는 피크의 강도와 Al+의 피크의 강도의 비가 1:0.5 내지 1:1.5인 양극 활물질:
    [화학식 2]
    LixNia2Cob2Mnc2Ald2M1 e2O2
    상기 화학식 2에서,
    M1은 Zr, B, W, Mg Ce, Hf, Ta, La, Ti, Sr, Ba, Ce, Hf, F, P, S 및 La 중에서 선택되는 1종 이상이고,
    0.9≤x≤1.12, 0.7≤a2≤1.0, 0≤b2≤0.3, 0≤c2≤0.3, 0<d2≤0.2, 0≤e2≤0.1이다.
  9. 청구항 8에 있어서,
    상기 양극 활물질의 비행 시간형 2차 이온 질량 분석 스펙트럼에서 182질량 내지 184질량에서 검출되는 피크의 강도와 172질량 내지 174질량에서 검출되는 피크의 강도의 비는 1:0.3 내지 1:2인 양극 활물질.
  10. 청구항 8에 있어서,
    상기 양극 활물질의 비행 시간형 2차 이온 질량 분석 스펙트럼에서 182질량 내지 184질량에서 검출되는 피크의 강도와 197질량 내지 199질량에서 검출되는 피크의 강도의 비는 1:0.3 내지 1:1.5인 양극 활물질.
  11. 청구항 8에 따른 양극 활물질을 포함하는 리튬 이차전지용 양극.
  12. 청구항 11에 따른 리튬 이차전지용 양극을 포함하는 리튬 이차전지.
PCT/KR2022/000462 2021-01-11 2022-01-11 양극 활물질의 제조방법 및 양극 활물질 WO2022149951A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22736928.7A EP4243117A4 (en) 2021-01-11 2022-01-11 METHOD FOR PREPARING CATHODE ACTIVE MATERIAL AND CATHODE ACTIVE MATERIAL
US18/265,579 US20240038983A1 (en) 2021-01-11 2022-01-11 Method of Preparing Positive Electrode Active Material and Positive Electrode Active Material
JP2023533758A JP2023552355A (ja) 2021-01-11 2022-01-11 正極活物質の製造方法および正極活物質
CN202280007710.XA CN116529907A (zh) 2021-01-11 2022-01-11 制备正极活性材料的方法和正极活性材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210003193A KR20220101316A (ko) 2021-01-11 2021-01-11 양극 활물질의 제조방법 및 양극 활물질
KR10-2021-0003193 2021-01-11

Publications (1)

Publication Number Publication Date
WO2022149951A1 true WO2022149951A1 (ko) 2022-07-14

Family

ID=82357406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/000462 WO2022149951A1 (ko) 2021-01-11 2022-01-11 양극 활물질의 제조방법 및 양극 활물질

Country Status (6)

Country Link
US (1) US20240038983A1 (ko)
EP (1) EP4243117A4 (ko)
JP (1) JP2023552355A (ko)
KR (1) KR20220101316A (ko)
CN (1) CN116529907A (ko)
WO (1) WO2022149951A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115312783A (zh) * 2022-10-11 2022-11-08 湖南美特新材料科技有限公司 一种锂离子电池正极材料的包覆方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120138344A (ko) * 2011-06-15 2012-12-26 주식회사 엘지화학 양극 활물질 및 그것을 포함하는 리튬 이차전지
KR20190007801A (ko) * 2017-07-13 2019-01-23 주식회사 엘지화학 양극 활물질의 제조방법
KR20190060705A (ko) * 2017-11-24 2019-06-03 주식회사 엘지화학 양극 활물질의 제조방법
JP2019102344A (ja) * 2017-12-06 2019-06-24 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池及びリチウムイオン二次電池用正極活物質の製造方法
KR20200036424A (ko) * 2018-09-28 2020-04-07 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20200070647A (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 고-니켈 양극 활물질, 그 제조 방법, 이를 포함하는 양극 및 리튬이차전지
KR20210003193A (ko) 2018-05-02 2021-01-11 탈레스 Dis 프랑스 Sa 사전 발생된 보호 프로파일들을 개인화하기 위한 방법 및 대응하는 시스템

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170077496A1 (en) * 2015-09-11 2017-03-16 Fu Jen Catholic University Metal gradient-doped cathode material for lithium batteries and its production method
CN111384372B (zh) * 2018-12-29 2021-03-23 宁德时代新能源科技股份有限公司 一种高压实密度正极材料及电化学储能装置
CN112151775B (zh) * 2019-06-28 2021-11-23 宁德时代新能源科技股份有限公司 一种低产气高容量的三元正极材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120138344A (ko) * 2011-06-15 2012-12-26 주식회사 엘지화학 양극 활물질 및 그것을 포함하는 리튬 이차전지
KR20190007801A (ko) * 2017-07-13 2019-01-23 주식회사 엘지화학 양극 활물질의 제조방법
KR20190060705A (ko) * 2017-11-24 2019-06-03 주식회사 엘지화학 양극 활물질의 제조방법
JP2019102344A (ja) * 2017-12-06 2019-06-24 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池及びリチウムイオン二次電池用正極活物質の製造方法
KR20210003193A (ko) 2018-05-02 2021-01-11 탈레스 Dis 프랑스 Sa 사전 발생된 보호 프로파일들을 개인화하기 위한 방법 및 대응하는 시스템
KR20200036424A (ko) * 2018-09-28 2020-04-07 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20200070647A (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 고-니켈 양극 활물질, 그 제조 방법, 이를 포함하는 양극 및 리튬이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4243117A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115312783A (zh) * 2022-10-11 2022-11-08 湖南美特新材料科技有限公司 一种锂离子电池正极材料的包覆方法
CN115312783B (zh) * 2022-10-11 2023-01-24 湖南美特新材料科技有限公司 一种锂离子电池正极材料的包覆方法

Also Published As

Publication number Publication date
JP2023552355A (ja) 2023-12-15
KR20220101316A (ko) 2022-07-19
EP4243117A1 (en) 2023-09-13
CN116529907A (zh) 2023-08-01
EP4243117A4 (en) 2024-05-22
US20240038983A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2020116858A1 (ko) 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극
WO2021015511A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질
WO2021049918A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2019117531A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021107684A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 방법에 의해 제조된 리튬 이차전지용 양극 활물질
WO2022092906A1 (ko) 양극 활물질 및 이의 제조방법
WO2022039576A1 (ko) 양극 활물질의 제조방법
WO2021101281A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질
WO2021235818A1 (ko) 이차전지의 제조방법
WO2021154035A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2020180160A1 (ko) 리튬 이차전지
WO2021112606A1 (ko) 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법
WO2022203434A1 (ko) 양극 활물질의 제조방법
WO2022119313A1 (ko) 양극 활물질 전구체, 이의 제조방법 및 양극 활물질
WO2022031116A1 (ko) 양극 활물질 전구체 및 그 제조 방법
WO2021251786A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021256794A1 (ko) 양극 활물질의 제조방법
WO2021141463A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2022149951A1 (ko) 양극 활물질의 제조방법 및 양극 활물질
WO2022139521A1 (ko) 양극 활물질의 제조방법
WO2022119156A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2019078672A2 (ko) 이차전지용 양극활물질 제조방법 및 이를 이용하는 이차전지
WO2022182162A1 (ko) 양극 활물질, 이를 포함하는 양극 및 이차 전지
WO2021029650A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736928

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280007710.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023533758

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18265579

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022736928

Country of ref document: EP

Effective date: 20230606

NENP Non-entry into the national phase

Ref country code: DE