WO2022149415A1 - ロール体の製造方法 - Google Patents

ロール体の製造方法 Download PDF

Info

Publication number
WO2022149415A1
WO2022149415A1 PCT/JP2021/046008 JP2021046008W WO2022149415A1 WO 2022149415 A1 WO2022149415 A1 WO 2022149415A1 JP 2021046008 W JP2021046008 W JP 2021046008W WO 2022149415 A1 WO2022149415 A1 WO 2022149415A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass film
strip
shaped glass
roll body
manufacturing
Prior art date
Application number
PCT/JP2021/046008
Other languages
English (en)
French (fr)
Inventor
弘樹 森
大輔 永田
修二 秋山
征也 藤崎
洋平 桐畑
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2022149415A1 publication Critical patent/WO2022149415A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • B65H18/08Web-winding mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H19/00Changing the web roll
    • B65H19/22Changing the web roll in winding mechanisms or in connection with winding operations
    • B65H19/26Cutting-off the web running to the wound web roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/04Registering, tensioning, smoothing or guiding webs longitudinally
    • B65H23/18Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web
    • B65H23/195Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web in winding mechanisms or in connection with winding operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H26/00Warning or safety devices, e.g. automatic fault detectors, stop-motions, for web-advancing mechanisms
    • B65H26/02Warning or safety devices, e.g. automatic fault detectors, stop-motions, for web-advancing mechanisms responsive to presence of irregularities in running webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/50Piling apparatus of which the discharge point moves in accordance with the height to the pile
    • B65H29/51Piling apparatus of which the discharge point moves in accordance with the height to the pile piling by collecting on the periphery of cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/58Article switches or diverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H35/00Delivering articles from cutting or line-perforating machines; Article or web delivery apparatus incorporating cutting or line-perforating devices, e.g. adhesive tape dispensers
    • B65H35/02Delivering articles from cutting or line-perforating machines; Article or web delivery apparatus incorporating cutting or line-perforating devices, e.g. adhesive tape dispensers from or with longitudinal slitters or perforators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H35/00Delivering articles from cutting or line-perforating machines; Article or web delivery apparatus incorporating cutting or line-perforating devices, e.g. adhesive tape dispensers
    • B65H35/04Delivering articles from cutting or line-perforating machines; Article or web delivery apparatus incorporating cutting or line-perforating devices, e.g. adhesive tape dispensers from or with transverse cutters or perforators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H39/00Associating, collating, or gathering articles or webs
    • B65H39/02Associating,collating or gathering articles from several sources
    • B65H39/06Associating,collating or gathering articles from several sources from delivery streams
    • B65H39/065Associating,collating or gathering articles from several sources from delivery streams by collecting in rotary carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H39/00Associating, collating, or gathering articles or webs
    • B65H39/16Associating two or more webs
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms

Definitions

  • the present disclosure relates to a method for manufacturing a roll body in which a glass film and a strip-shaped protective sheet are overlapped and wound around a winding core.
  • the glass film When storing or transporting a glass film, the glass film may be overlapped with a strip-shaped protective sheet and wound around the core to form a roll for the purpose of facilitating the handling.
  • a strip-shaped protective sheet For example, in Patent Document 1, after repeatedly cutting out a glass film sheet from a strip-shaped glass film, a large number of these glass film sheets are superposed on a strip-shaped protective sheet (referred to as backing in the same document) and wound around a winding core. This discloses an aspect of forming a roll body.
  • the strip-shaped glass film is used for winding. Different processing is required.
  • the production line is designed assuming both cases of winding the strip-shaped glass film and winding the sheet-shaped glass film, it is necessary to install a processing facility that performs all the expected processing in advance. There is also the problem that the production line becomes longer.
  • the technical problem to be solved in view of the above circumstances is that when the glass film sheet repeatedly cut out from the strip-shaped glass film and the strip-shaped protective sheet are overlapped and then wound around the winding core to manufacture a roll body, the roll body is manufactured. This is to prevent the edges of adjacent glass film sheets from coming into contact with each other on the body. In addition, it is to prevent the production line from becoming long.
  • the method for manufacturing the roll body for solving the above problems includes a treatment step of performing manufacturing-related processing while passing a treatment section provided on the transport path of the strip-shaped glass film through the strip-shaped glass film, and a treatment of passing through the treatment section. It is a method including a winding process of superimposing a rear glass film on a strip-shaped protective sheet and winding it around a winding core to produce a roll body, and is carried into a processing section from the upstream side as a manufacturing-related process. By cutting the strip-shaped glass film in the width direction, the strip-shaped glass film is carried into the treated section when the glass film sheet cut out from the strip-shaped glass film is processed and carried out as a glass film from the treated section to the downstream side. It is characterized in that the winding speed at the time of winding the glass film sheet around the winding core is increased as compared with the feeding speed at the time.
  • the winding speed when winding the glass film sheet around the winding core is faster than the feeding speed when the strip-shaped glass film is carried into the processing section.
  • each glass film sheet cut out from the strip-shaped glass film is accelerated with respect to the strip-shaped glass film carried into the processing section and then wound around the winding core. That is, each glass film sheet is wound under a state in which a gap is formed between the glass film sheet and the subsequent glass film sheet. As a result, it is possible to prevent the end portions of the adjacent glass film sheets from coming into contact with each other on the roll body.
  • the manufacturing-related processing to be applied to the strip-shaped glass film in the processing step is switched. You may.
  • the manufacturing-related processing applied to the strip-shaped glass film in the processing step can be switched. That is, in this method, since it is not necessary to install the processing equipment in the production line in advance so that all the expected processing can be performed, it is possible to prevent the roll body production line from becoming a long distance. Further, when switching the manufacturing-related processing applied to the strip-shaped glass film, it is not necessary to change the equipment except for the processing section, so that it is possible to speed up the equipment change.
  • the plurality of forms include the first form and the second form, and the first form inspects the strip-shaped glass film carried in from the upstream side and inspects the strip-shaped glass film after the inspection.
  • the strip-shaped glass film carried in from the upstream side is cut in the width direction, so that the glass film sheet cut out from the strip-shaped glass film is processed and carried out to the downstream side as the treated glass film. It is preferable that the glass is carried out to the downstream side.
  • a roll body in which the strip-shaped glass film and the strip-shaped protective sheet are overlapped and wound around the winding core can be obtained.
  • a roll body formed by superimposing the glass film sheet and the strip-shaped protective sheet and winding them around the winding core can be obtained.
  • a determination means for determining the quality of the glass film sheet and a conveying means for allocating the path of the determined glass film sheet are provided, and when the glass film sheet is a good product, it is provided. It is preferable that the glass film sheet is fed along the transport path by the transport means, and when the glass film sheet is a defective product, the glass film sheet is fed to the disposal area separated from the transport path by the transport means.
  • the processing section takes the second form, it is possible to eliminate defective products and obtain a roll body in which only a good glass film sheet is wound. Further, the defective product can be sent to the disposal area separated from the transport path only by allocating the path of the glass film sheet by the transport means. Therefore, it is possible to efficiently dispose of defective products.
  • the shunting step it is preferable to adjust the position of the winding core according to the difference in length along the transport path between the plurality of forms.
  • the total length of the transport path can be adjusted to a length suitable for each form when the form taken by the processing section is exchanged between a plurality of forms.
  • the strip-shaped glass film is separated from the transport path on the upstream side of the processing section in the transport path and discarded during the execution of the shunting step.
  • the roll body when a glass film sheet repeatedly cut out from a strip-shaped glass film and a strip-shaped protective sheet are laminated and then wound around a winding core to manufacture a roll body, the roll body is manufactured. It is possible to prevent the edges of adjacent glass film sheets from coming into contact with each other. In addition, it is possible to prevent the production line from becoming longer.
  • the processing section S provided on the transport path of the strip-shaped glass film 1 is shown in the first form shown in FIG. 1 and FIG. It can take two forms, the second form shown. Then, by exchanging the first form and the second form by executing the replacement step PX described later, it is possible to switch the manufacturing-related processing applied to the strip-shaped glass film 1 in the processing step PY.
  • a method for manufacturing a roll body (hereinafter referred to as a first form manufacturing method) when the processing section S takes the first form will be described. The details will be described later, but when the processing section S takes the first form, the strip-shaped glass film 1 carried into the treatment section S from the upstream side is inspected, and the strip-shaped glass film 1 after the inspection is treated. It is carried out as a glass film from the processing section S to the downstream side.
  • the forming step P1 for forming the strip-shaped glass film 1 by the overflow downdraw method and the catenary 2 being passed through the strip-shaped glass film 1 are conveyed in the vertical direction (Z direction).
  • the inspection step P5 corresponds to the above-mentioned processing step PY
  • the inspection of the linearity of the edge in the width direction in the strip-shaped glass film 1 corresponds to the above-mentioned manufacturing-related processing.
  • the strip-shaped glass film 1 is mainly molded by using a wedge-shaped molded body 6 and a plurality of rollers 8 capable of sandwiching the strip-shaped glass 7 flowing down from the molded body 6 from both the front and back sides. ..
  • the molded body 6 is formed along a groove 6a for allowing the molten glass 9 to flow in, a pair of side surface portions 6b and 6b for allowing the molten glass 9 overflowing from the groove 6a on both sides to flow down, and each side surface portion 6b. It has a lower end portion 6c for fusing (merging) the molten glass 9 that has flowed down.
  • the molded body 6 continuously produces the strip-shaped glass 7 from the molten glass 9 fused at the lower end portion 6c.
  • the plurality of rollers 8 are arranged in a plurality of upper and lower stages.
  • the plurality of rollers 8 include an edge roller 8a, an annealer roller 8b, and a support roller 8c in order from the upper stage side.
  • Each of the plurality of rollers 8 can sandwich a portion that will later become an unnecessary portion 1a of the strip-shaped glass film 1 on one side and the other side in the width direction of the strip-shaped glass 7.
  • the edge roller 8a has a function of suppressing shrinkage of the strip-shaped glass 7 in the width direction by sandwiching the strip-shaped glass 7 directly under the molded body 6.
  • the annealing roller 8b has a function of guiding the strip-shaped glass 7 that is slowly cooled to a temperature below the strain point in a slow cooling furnace (not shown) downward. In some cases, the annealing roller 8b sandwiches the strip-shaped glass 7, or in some cases, it does not sandwich the strip-shaped glass 7 and only regulates the swing of the strip-shaped glass 7 along the thickness direction.
  • the support roller 8c has a function of supporting the strip-shaped glass 7 whose temperature has dropped to near room temperature in a cooling chamber (not shown) arranged below the slow cooling furnace, and a speed of pulling the strip-shaped glass 7 downward (plate pulling speed). Has the function of determining.
  • the strip-shaped glass 7 that has passed through the plurality of rollers 8 is formed as the strip-shaped glass film 1.
  • the strip-shaped glass film 1 is formed so as to have a thickness sufficient to impart flexibility, and as an example, the strip-shaped glass film 1 is formed so as to have a thickness of 300 ⁇ m or less.
  • the strip-shaped glass film 1 has an effective portion 1b (a portion including a portion to be a product later) existing in the center in the width direction and an unnecessary portion 1a (later divided / removed) existing outside the effective portion 1b in the width direction.
  • the site removed by P3 is included.
  • the strip-shaped glass film 1 is formed by the overflow down-draw method, but as a modification of the present embodiment, the strip-shaped glass film 1 is formed by another down-draw method such as a slot down-draw method or a redraw method. May be molded. Further, as a modification of the present embodiment, the strip-shaped glass film 1 may be formed by the float method. In this case, the direction change step P2 can be omitted.
  • the transport direction of the strip-shaped glass film 1 is changed from the vertical direction to the horizontal direction by using the catenary 2 composed of a plurality of transport rollers 10 arranged in parallel.
  • Each of the plurality of transport rollers 10 transports the strip-shaped glass film 1 from the back surface 1c side along the arc-shaped transport trajectory, so that the surface 1d of the strip-shaped glass film 1 after passing through the transport track is upward. Change the transport direction so that it faces.
  • the strip-shaped glass film 1 after changing the transport direction is transferred to the conveyor 11.
  • the strip-shaped glass film 1 after transfer is laterally conveyed by the conveyor 11, the conveyor 12, and the conveyor 13.
  • the strip-shaped glass film 1 being conveyed in the lateral direction is fed downstream at a feed rate V1.
  • the unnecessary portion 1a is divided / removed from the strip-shaped glass film 1 by using the laser cutting method.
  • a cutting device 14 installed above the conveyor 12 is used to execute the dividing / removing step P3.
  • the unnecessary portion 1a may be separated / removed from the strip-shaped glass film 1 by using a laser fusing method.
  • the cutting device 14 continuously irradiates the laser 14a along the boundary between the effective portion 1b and the unnecessary portion 1a of the strip-shaped glass film 1 passing below the cutting device 14. Further, the cutting device 14 continuously injects the refrigerant 14b (for example, mist-like water) to the portion of the strip-shaped glass film 1 irradiated with the laser 14a.
  • the refrigerant 14b for example, mist-like water
  • the strip-shaped glass film 1 is continuously cut along the longitudinal direction.
  • the strip-shaped glass film 1 (the strip-shaped glass film 1 consisting of only the effective portion 1b) from which the unnecessary portion 1a is divided and removed is transferred from the conveyor 12 to the conveyor 13.
  • the unnecessary portion 1a removed from the strip-shaped glass film 1 is not transferred to the conveyor 13, but is separated downward from the transport path of the strip-shaped glass film 1 and then discarded.
  • the strip-shaped glass film 1 is conveyed downstream while the amount of downward slack of the strip-shaped glass film 1 is adjusted by using the suction conveyor 15 and the detector 16.
  • the suction conveyor 15 and the detector 16 By loosening the strip-shaped glass film 1 in this way, it is possible to prevent the tension acting on the strip-shaped glass film 1 on the downstream side of the loosened portion from propagating to the portion being divided by the dividing / removing step P3.
  • the suction conveyor 15 conveys the strip-shaped glass film 1 (effective portion 1b) in a fixed and held state. “Fixed holding” means that the transport surface of the suction conveyor 15 and the strip-shaped glass film 1 do not move relatively during the transport of the strip-shaped glass film 1 by the suction conveyor 15.
  • the belt provided on the suction conveyor 15 is formed with a large number of suction holes 15a (see FIG. 3) penetrating the belt in the thickness direction.
  • a negative pressure generation mechanism (not shown) is arranged on the inner peripheral side of the belt. When the negative pressure generation mechanism generates a negative pressure in the strip-shaped glass film 1 through the suction holes 15a, the strip-shaped glass film 1 is adsorbed to the transport surface (the surface of the belt) and fixedly held. As a result, the strip-shaped glass film 1 on the suction conveyor 15 is conveyed to the downstream side of the transfer path at the same transfer speed as the feed rate V2 of the suction conveyor 15.
  • the detector 16 detects the mutual distance between the detector 16 and the strip-shaped glass film 1 (effective portion 1b).
  • the mutual distance detected by the detector 16 is transmitted to the suction conveyor 15 as a signal.
  • the suction conveyor 15 that has received the signal adjusts the feed rate V2 so that the mutual distance becomes constant.
  • the length of the mutual distance is determined by the feed rate V2 of the suction conveyor 15 and the feed rate V1 of the conveyor 13.
  • the feed rate V1 of the conveyor 13 is equal to the plate pulling speed of the strip-shaped glass film 1.
  • a plurality of transport rollers 17 for transporting the strip-shaped glass film 1 and a detector 18 arranged below the transport path (processing section S) of the strip-shaped glass film 1 are used.
  • the detector 18 may be arranged above the transport path.
  • the detector 18 is arranged between the plurality of transport rollers 17 in a plan view.
  • the detector 18 detects the linearity of the edge in the width direction (the linearity of the side formed by the edge in the width direction) of the strip-shaped glass film 1 conveyed by the plurality of transfer rollers 17.
  • the detector 18 first divides the side formed by the edge in the width direction into a plurality of sections and images each section. Next, for each of the plurality of images, an approximate straight line of the edge is calculated from a plurality of different points on the edge. For example, the approximate straight line is calculated by the method of least squares. After that, for each of the plurality of images, the value of the variation of the plurality of points is calculated with reference to the approximate straight line. Finally, the linearity of the edges is evaluated based on the values of the variations corresponding to each of the images. By evaluating the linearity in this way, the quality of the strip-shaped glass film 1 is evaluated.
  • the linearity of the edge in the width direction is inspected as the inspection to be carried out on the strip-shaped glass film 1 carried into the processing section S, but this is not the case.
  • a defect for example, scratches / foreign matter adhesion
  • the presence or absence may be inspected.
  • the winding core 4 and the sheet roll 19 are used to wind the strip-shaped glass film 1 that has passed through the processing section S. More specifically, the strip-shaped glass film 1 that has passed through the roller group 20 including a plurality of drive rollers and reached the winding core 4 is superposed on the strip-shaped protective sheet 3 unwound from the sheet roll 19, and then the winding core 4 is used.
  • the roll body 5 is made by winding around the roll body 5. In this embodiment, the winding speed V3 of the strip-shaped glass film 1 by the winding core 4 and the feeding speed of the strip-shaped glass film 1 by the roller group 20 are the same.
  • the roller group 20 includes a first unit 20a and a second unit 20b arranged alternately along the Y direction (feeding direction).
  • Each of the units 20a and 20b has a plurality of rollers 20c arranged at intervals in the X direction, a cylindrical spacer 20d interposed between the adjacent rollers 20c and 20c, and the rollers 20c and the spacer 20d.
  • the spacer 20d is fitted to the outer peripheral surface of the shaft by gap fitting, or is mounted to the outer peripheral surface of the shaft via a bearing. This makes it possible for the spacer 20d to rotate with respect to the axis.
  • the external dimension (diameter dimension) of the roller 20c is larger than the external dimension (diameter dimension) of the spacer 20d.
  • the ratio of the external dimensions of the roller 20c to the external dimensions of the spacer 20d is preferably 1.1 to 1.5.
  • the roller 20c of the first unit 20a and the roller 20c of the second unit 20b are arranged in a state of being displaced in the X direction. More specifically, in the X direction, the roller 20c of the second unit 20b is located between the adjacent rollers 20c and 20c of the first unit 20a. Similarly, in the X direction, the roller 20c of the first unit 20a is located between the adjacent rollers 20c and 20c of the second unit 20b.
  • the plurality of rollers 20c included in the roller group 20 are arranged in a staggered manner. Due to this staggered arrangement, the rollers 20c and the spacers 20d are alternately arranged with a minute gap g in the Y direction.
  • the distance between the axes of the first unit 20a and the second unit 20b is smaller than the external dimensions of the roller 20c. Further, it is preferable that the axial dimension L1 (dimension along the X direction) of the roller 20c is smaller than the axial dimension L2 of the spacer 20d.
  • the roller group 20 since the widthwise end portion of the strip-shaped glass film 1 having abundant flexibility does not easily enter the gap g between the units 20a and 20b, it is necessary to avoid cracking of the strip-shaped glass film 1. It will be advantageous. It should be noted that this effect is more effectively utilized when the processing section S described later takes the second form. That is, when the processing section S takes the second form, the roller group 20 conveys the glass film sheet 1x instead of the strip-shaped glass film 1, but at this time, in order to avoid cracking of the glass film sheet 1x. Is extremely advantageous.
  • the second form manufacturing method a method for manufacturing the roll body (hereinafter referred to as the second form manufacturing method) when the processing section S takes the second form. The details will be described later, but when the processing section S takes the second form, the strip-shaped glass film 1 carried into the processing section S from the upstream side is continuously cut in the width direction, and the glass film sheet 1x is repeatedly cut out. At the same time, each of the cut out glass film sheets 1x is carried out as a glass film after processing from the processing section S to the downstream side. In the description of the second form manufacturing method, only the differences from the above first form manufacturing method will be described.
  • the difference between the second form manufacturing method and the first form manufacturing method is that (1) instead of the inspection step P5, a cutting step P7 for cutting out the glass film sheet 1x from the strip-shaped glass film 1 is executed. (2) In the winding step P6, the glass film sheet 1x instead of the strip-shaped glass film 1 is overlapped with the strip-shaped protective sheet 3 and wound up.
  • the cutting step P7 corresponds to the above-mentioned processing step PY
  • the cutting along the width direction of the strip-shaped glass film 1 corresponds to the above-mentioned manufacturing-related processing.
  • a conveyor 23 for conveying the glass film sheet 1x cut out from 1 and an image pickup device 24 as a determination means for determining the quality of the glass film sheet 1x are used.
  • a conveyor smaller than the conveyors 11, 12, 13 and the suction conveyor 15 is used as the conveyor 21 and the conveyor 23 a conveyor smaller than the conveyors 11, 12, 13 and the suction conveyor 15 is used.
  • the conveyor 21 feeds the strip-shaped glass film 1 to the downstream side at a feeding speed V4, and transfers the strip-shaped glass film 1 that has passed the downstream end of the conveyor 21 to the conveyor 23.
  • the transport surface of the conveyor 23 has an uphill slope, and the upstream end of the conveyor 23 is located below the downstream end of the conveyor 21. Due to the height difference of the transport surface between the two conveyors 21 and 23, the strip-shaped glass film 1 transferred from the conveyor 21 to the conveyor 23 is curved and deformed so that its surface 1d (upper surface) becomes convex.
  • the starting point forming device 22 forms a cutting starting point 1y on the surface 1d of the strip-shaped glass film 1.
  • the length from the head portion 1e of the strip-shaped glass film 1 to the cutting starting point 1y matches the design dimensions of the glass film sheet 1x.
  • the cutting starting point 1y is formed so as to be used.
  • the cutting starting point 1y is formed only on one side of both ends of the strip-shaped glass film 1 in the width direction.
  • the scratch formed on the surface 1d of the strip-shaped glass film 1 is set as the cutting starting point 1y.
  • cutting starting points 1y may be formed at two locations at both ends of the strip-shaped glass film 1 in the width direction, and the cutting starting points 1y may be formed in the width direction on the surface 1d of the strip-shaped glass film 1.
  • An extending scribe line may be formed, and the scribe line may be used as the cutting starting point 1y.
  • the portion of the strip-shaped glass film 1 where the cutting starting point 1y is formed is curved and deformed when the conveyor 21 is transferred to the conveyor 23, cracks develop in the thickness direction and the width direction of the strip-shaped glass film 1 starting from the cutting starting point 1y.
  • the glass film sheet 1x is cut out from the strip-shaped glass film 1.
  • the front portion 1e of the strip-shaped glass film 1 newly formed by cutting out the glass film sheet 1x and the rearmost portion 1xa of the cut out glass film sheet 1x are separated from each other, and the two 1e and 1xa are brought into contact with each other.
  • the image pickup device 24 transmits the captured image to an image processing device (not shown). Then, based on the processing result by the image processing apparatus, it is determined whether or not the glass film sheet 1x on the conveyor 23 has a defect (defective shape, adhesion of foreign matter, cracking, etc.).
  • the glass film sheet 1x judged to be a non-defective product is continuously fed along the transport path by the conveyor 23 and then transferred to the roller group 20.
  • the feed rate V6 of the roller group 20 is the same as the feed rate V5 of the conveyor 23.
  • the feed rate V6 of the roller group 20 may be set to be higher than the feed rate V5 of the conveyor 23.
  • the glass film sheet 1x determined to be defective after changing the feeding direction of the conveyor 23, the glass film sheet 1x is sent to the disposal area A separated from the transport path.
  • the transport surface is swiveled around the upstream end of the conveyor 23 as shown by the white arrow in FIG. 7, and the transport surface has an upward slope. Change from state to horizontal state. Then, the glass film sheet 1x is fed by the transport surface of the conveyor 23 in the horizontal state, so that the glass film sheet 1x is separated from the transport path.
  • the conveyor 23 functions as a transporting means for allocating the path of the glass film sheet 1x that has passed the determination.
  • the glass film sheet 1x that sequentially passes through the processing section S is continuously wound. More specifically, each glass film sheet 1x that has passed through the roller group 20 and reached the core 4 is superposed on the strip-shaped protective sheet 3 unwound from the sheet roll 19, and then wound around the core 4.
  • the roll body 5 is manufactured. At this time, a gap is formed between the adjacent glass film sheets 1x and 1x in the roll body 5.
  • the winding speed V7 of the glass film sheet 1x by the winding core 4 and the feeding speed V6 of the strip-shaped glass film 1 by the roller group 20 are the same.
  • the "winding speed V7" means the peripheral speed of the roll body 5 when winding the glass film sheet 1x.
  • the take-up speed V7 is preferably 2% to 20% faster than the feed speed V4. Further, the take-up speed V7 is higher than the take-up speed V3 in the first form manufacturing method.
  • the take-up speed V7 may be set to be higher than the feed speed V6.
  • the glass film sheet 1x determined to be a defective product in the cutting step P7 is separated from the transport path. Therefore, when a defective product is generated from each glass film sheet 1x cut out from the strip-shaped glass film 1, the number of glass film sheets 1x contained in the roll body 5 is reduced by the number of defective products. Further, in the present embodiment, even if a defective product occurs, the rotation of the winding core 4 is continued without being stopped. As a result, every time a defective product is generated, an empty space for one glass film sheet 1x is created in the roll body 5.
  • the strip-shaped glass film 1 is prevented from being carried into the processing section S so as not to hinder the smooth shunting from the first form to the second form. Specifically, the strip-shaped glass film 1 is separated from the transport path and discarded on the upstream side of the processing section S on the transport path of the strip-shaped glass film 1. In the present embodiment, the strip-shaped glass film 1 that has reached the conveyor 13 along the transport path is dropped downward and discarded without being transferred to the suction conveyor 15.
  • the strip-shaped glass film 1 is discarded between the conveyor 13 and the suction conveyor 15 on the transport path, but the present invention is not limited to this.
  • the strip-shaped glass film 1 may be discarded at another location on the transport path.
  • the strip-shaped glass film 1 formed by the forming step P1 may be sent downward as it is and discarded without passing the catenary 2 (without executing the direction changing step P2).
  • the first equipment group G1 constituting the first form is removed from the processing section S.
  • the first equipment group G1 includes a plurality of transfer rollers 17 and a detector 18.
  • the second equipment group G2 constituting the second form is installed in the processing section S.
  • the second equipment group G2 includes a conveyor 21, a starting point forming device 22, a conveyor 23, and an image pickup device 24.
  • the composition of the strip-shaped glass film 1 may be changed before and after the shunting step PX in association with the execution of the shunting step PX.
  • the strip-shaped glass film 1 made of non-alkali glass or the like is molded in the molding step P1
  • the second form manufacturing method after the execution of the replacement step PX it is strengthened.
  • a strip-shaped glass film 1 made of a glass for use (a glass that is later made into tempered glass by chemical strengthening, for example, aluminosilicate glass) may be molded in the molding step P1.
  • the processing section S can take a first form and a second form. Then, as long as the form taken by the processing section S is replaced by executing the replacement step PX, the manufacturing-related processing (inspection of the position of the edge in the width direction or along the width direction) performed on the strip-shaped glass film 1 in the processing step PY is performed. (Disconnect) can be switched. That is, since it is not necessary to set the processing section S so that all the manufacturing-related processing assumed in advance can be performed, it is possible to prevent the roll body manufacturing line from becoming a long distance. Further, when switching the manufacturing-related processing applied to the strip-shaped glass film 1, it is not necessary to change the equipment except for the processing section S. As a result, it is possible to speed up equipment changes.
  • the feeding speed and the winding speed of the glass film sheet 1x cut out from the strip-shaped glass film 1 are relative to the feeding speed V4 when the strip-shaped glass film 1 is carried into the processing section S.
  • feed speed V5, feed speed V6, take-up speed V7 is set to high speed, but the speed is not limited to this.
  • the take-up speed V7 may be faster than the feed speed V4, and for example, the feed speed V4, the feed speed V5, and the feed speed V6 may be the same speed. Even in this case, it is possible to prevent the ends of the adjacent glass film sheets 1x from coming into contact with each other on the roll body 5.
  • the processing section S can take two forms, a first form and a second form, but the present invention is not limited to this, and three or more forms in which the processing sections S are different from each other are used. May be taken.
  • the first equipment group G1 and the second equipment group G2 may be unitized in order to efficiently execute the replacement step PX.
  • the strip-shaped glass film 1 may be supplied by unwinding a glass roll. In this case, the molding step P1 and the direction changing step P2 can be omitted.

Abstract

帯状ガラスフィルム1の搬送経路上に設けた処理区間Sを帯状ガラスフィルム1に通過させつつ製造関連処理を施す処理工程PYと、処理区間Sを通過した処理後ガラスフィルム(ガラスフィルムシート1x)を帯状保護シート3と重ね合わせて巻芯4の周りに巻き取ることでロール体5を作製する巻取工程P6と、を備えたロール体の製造方法において、製造関連処理として、帯状ガラスフィルム1からガラスフィルムシート1xを切り出す処理を行うにあたり、処理区間Sに帯状ガラスフィルム1を搬入する際の送り速度V5と比べ、巻芯4の周りにガラスフィルムシート1xを巻き取る際の巻取速度V7を速くした。

Description

ロール体の製造方法
 本開示は、ガラスフィルムと帯状保護シートとを重ね合わせて巻芯の周りに巻き取ってなるロール体を製造するための方法に関する。
 近年、急速に普及しているスマートフォンやタブレット型PC等のモバイル端末は、薄型・軽量であることが求められる。そのため、端末の構成部品であるガラス基板に対しては、薄板化への要請が高まっているのが現状である。このような要請に応えるべく、フィルム状にまで薄板化(例えば、厚みが300μm以下)されたガラス基板として、ガラスフィルムが製造されるに至っている。
 ガラスフィルムの保管や輸送を行う場合には、その取り扱いを容易にすることを目的として、ガラスフィルムを帯状保護シートと重ね合わせて巻芯の周りに巻き取ることでロール体とする場合がある。例えば、特許文献1には、帯状ガラスフィルムから繰り返しガラスフィルムシートを切り出した後、これら多数のガラスフィルムシートを帯状保護シート(同文献ではバッキングと呼称)と重ね合わせて巻芯の周りに巻き取ることでロール体とする態様が開示されている。
特表2019-501099号公報
 ところで、特許文献1に開示された態様の下では、ロール体にて隣り合うガラスフィルムシートの端部同士の間に隙間が存在しない。このため、ロール体を輸送する際の振動等によって端部同士が接触して傷付いてしまい、結果としてガラスフィルムシートの品質が悪化するという問題が発生していた。
 また、帯状ガラスフィルムを帯状のまま巻き取る場合と、帯状ガラスフィルムから切り出したシート状のガラスフィルムを巻き取る場合とでは、巻き取りの対象が相違することから、巻き取りにあたり帯状ガラスフィルムに対して異なった処理が要求される。しかしながら、帯状のまま巻き取る場合とシート状のガラスフィルムを巻き取る場合とで、両方の場合を想定して製造ラインを設計すると、想定される全ての処理を行う処理設備を予め設置する必要があり、製造ラインが長距離化するという問題も発生する。
 上述の事情に鑑みて解決すべき技術的課題は、帯状ガラスフィルムから繰り返し切り出されるガラスフィルムシートと帯状保護シートとを重ね合わせたのち巻芯の周りに巻き取ってロール体を製造するに際し、ロール体にて隣り合うガラスフィルムシートの端部同士の接触を防止することである。加えて、製造ラインが長距離化するのを防止することである。
 上記の課題を解決するためのロール体の製造方法は、帯状ガラスフィルムの搬送経路上に設けた処理区間を帯状ガラスフィルムに通過させながら製造関連処理を施す処理工程と、処理区間を通過した処理後ガラスフィルムを帯状保護シートと重ね合わせて巻芯の周りに巻き取ることでロール体を作製する巻取工程と、を備えた方法であって、製造関連処理として、上流側から処理区間に搬入した帯状ガラスフィルムを幅方向に切断することで、帯状ガラスフィルムから切り出したガラスフィルムシートを処理後ガラスフィルムとして処理区間から下流側に搬出する処理を行うにあたり、処理区間に帯状ガラスフィルムを搬入する際の送り速度と比較して、巻芯の周りにガラスフィルムシートを巻き取る際の巻取速度を速くすることを特徴とする。
 本方法では、処理区間に帯状ガラスフィルムを搬入する際の送り速度と比較して、巻芯の周りにガラスフィルムシートを巻き取る際の巻取速度を速くしている。これにより、帯状ガラスフィルムから切り出された各ガラスフィルムシートは、処理区間に搬入される帯状ガラスフィルムに対して加速された後で巻芯の周りに巻き取られることになる。つまり、各ガラスフィルムシートは、後続のガラスフィルムシートとの間に隙間が形成された状態の下で巻き取られることになる。その結果、ロール体にて隣り合うガラスフィルムシートの端部同士の接触を防止することが可能となる。
 上記の方法において、処理区間が相互に異なる複数の形態を取り得るようにし、複数の形態間で入れ換えを行う入換工程を実行することで、処理工程で帯状ガラスフィルムに施す製造関連処理を切り換えてもよい。
 この場合、処理区間が相互に異なる複数の形態を取り得る。そして、入換工程の実行により処理区間が取る形態を入れ換えさえすれば、処理工程で帯状ガラスフィルムに施す製造関連処理を切り換えることができる。つまり、本方法においては、想定される全ての処理を行えるように処理設備を予め製造ラインに設置する必要がないため、ロール体の製造ラインが長距離化するのを防止することができる。また、帯状ガラスフィルムに施す製造関連処理を切り換えるにあたり、処理区間を除いて設備を変更する必要がないため、設備変更の迅速化も図ることが可能となる。
 上記の方法において、複数の形態には、第一形態と第二形態とが含まれ、第一形態が、上流側から搬入した帯状ガラスフィルムに検査を実施すると共に、検査後の帯状ガラスフィルムを処理後ガラスフィルムとして下流側に搬出する形態であり、第二形態が、上流側から搬入した帯状ガラスフィルムを幅方向に切断することで、帯状ガラスフィルムから切り出したガラスフィルムシートを処理後ガラスフィルムとして下流側に搬出する形態であることが好ましい。
 このようにすれば、処理区間が第一形態を取ることで、帯状ガラスフィルムと帯状保護シートとを重ね合わせて巻芯の周りに巻き取ってなるロール体が得られる。また、処理区間が第二形態を取ることで、ガラスフィルムシートと帯状保護シートとを重ね合わせて巻芯の周りに巻き取ってなるロール体が得られる。
 上記の方法において、第二形態に、ガラスフィルムシートにおける品質の良否を判定する判定手段と、判定を経たガラスフィルムシートの進路を振り分ける搬送手段とを設け、ガラスフィルムシートが良品である場合には、搬送手段によりガラスフィルムシートを搬送経路に沿って送り、ガラスフィルムシートが不良品である場合には、搬送手段によりガラスフィルムシートを搬送経路から離脱した廃棄エリアに送ることが好ましい。
 このようにすれば、処理区間が第二形態を取った場合に、不良品を排除して良品であるガラスフィルムシートのみを巻き取ったロール体を得ることが可能となる。さらに、搬送手段によってガラスフィルムシートの進路を振り分けるだけで、不良品を搬送経路から離脱した廃棄エリアに送ることができる。このため、不良品の処分を効率的に行うことが可能となる。
 上記の方法において、入換工程では、複数の形態間における搬送経路に沿った長さの相違に合わせて、巻芯の位置を調節することが好ましい。
 このようにすれば、巻芯の位置を調節することで、処理区間が取る形態を複数の形態間で入れ換えるに際し、搬送経路の全長を各形態に適した長さに調節できる。
 上記の方法において、入換工程の実行中に、搬送経路における処理区間よりも上流側で帯状ガラスフィルムを搬送経路から離脱させて廃棄することが好ましい。
 このようにすれば、入換工程の実行中に、上流側から処理区間に帯状ガラスフィルムが搬入されてくることを回避できる。そのため、帯状ガラスフィルムに邪魔をされることなく処理区間の形態を入れ換えることが可能となり、設備変更の迅速化を図る上で更に有利となる。
 本開示に係るロール体の製造方法によれば、帯状ガラスフィルムから繰り返し切り出されるガラスフィルムシートと帯状保護シートとを重ね合わせたのち巻芯の周りに巻き取ってロール体を製造するに際し、ロール体にて隣り合うガラスフィルムシートの端部同士の接触を防止することが可能となる。また、製造ラインが長距離化するのを防止することができる。
処理区間が第一形態を取った場合のロール体の製造方法を示す側面図である。 処理区間が第二形態を取った場合のロール体の製造方法を示す側面図である。 処理区間が第一形態を取った場合のロール体の製造方法を示す平面図である。 ローラー群を示す平面図である。 処理区間が第二形態を取った場合のロール体の製造方法を示す側面図である。 処理区間が第二形態を取った場合のロール体の製造方法を示す側面図である。 処理区間が第二形態を取った場合のロール体の製造方法を示す側面図である。 ロール体の製造方法における入換工程を示す側面図である。
 以下、実施形態に係るロール体の製造方法について、添付の図面を参照しながら説明する。なお、実施形態の説明で参照する各図面に表示したX方向、Y方向、及びZ方向は互いに直交する方向である。
 図1及び図2に示すように、本実施形態に係るロール体の製造方法では、帯状ガラスフィルム1の搬送経路上に設けた処理区間Sが、図1に示す第一形態と、図2に示す第二形態との二つの形態を取り得る。そして、後述する入換工程PXの実行により、第一形態と第二形態とを入れ換えることで、処理工程PYで帯状ガラスフィルム1に施す製造関連処理を切り換えることが可能である。
<処理区間が第一形態を取った場合>
 まず、処理区間Sが第一形態を取った場合におけるロール体の製造方法(以下、第一形態製法と表記)について説明する。詳細は後述するが、処理区間Sが第一形態を取った場合には、上流側から処理区間Sに搬入した帯状ガラスフィルム1に検査を実施すると共に、検査後の帯状ガラスフィルム1を処理後ガラスフィルムとして処理区間Sから下流側に搬出する。
 図1に示すように、第一形態製法は、オーバーフローダウンドロー法により帯状ガラスフィルム1を成形する成形工程P1と、帯状ガラスフィルム1にカテナリ2を通過させ、その搬送方向を縦方向(Z方向)から横方向(Y方向)に転換させる方向転換工程P2と、帯状ガラスフィルム1から幅方向(X方向)の両端にそれぞれ存する不要部1aを分断・除去する分断・除去工程P3と、不要部1aが除去された帯状ガラスフィルム1を弛ませた状態で搬送する弛み搬送工程P4と、帯状ガラスフィルム1に処理区間Sを通過させながら、その幅方向端縁の直線度を検査する検査工程P5と、帯状ガラスフィルム1と帯状保護シート3とを重ね合わせて巻芯4の周りに巻き取ることでロール体5を作製する巻取工程P6とを備えている。
 ここで、第一形態製法では、検査工程P5が上記の処理工程PYに相当すると共に、帯状ガラスフィルム1における幅方向端縁の直線度の検査が上記の製造関連処理に相当する。
[成形工程]
 成形工程P1では、主として、楔状をなす成形体6と、成形体6から流下する帯状ガラス7を表裏両側から挟持することが可能な複数のローラー8とを用いて、帯状ガラスフィルム1を成形する。
 成形体6は、溶融ガラス9を流入させるための溝6aと、溝6aから両側方に溢れ出た溶融ガラス9をそれぞれ流下させるための一対の側面部6b,6bと、各側面部6bに沿って流下した溶融ガラス9を融合(合流)させるための下端部6cとを有する。成形体6は、下端部6cで融合させた溶融ガラス9から連続的に帯状ガラス7を生成する。
 複数のローラー8は上下複数段に配置されている。複数のローラー8の中には、上段側から順番に、エッジローラー8a、アニーラローラー8b、及び支持ローラー8cが含まれている。複数のローラー8の各々は、帯状ガラス7の幅方向における一方側と他方側とで、後に帯状ガラスフィルム1の不要部1aとなる部位を挟持することが可能である。
 エッジローラー8aは、成形体6の直下で帯状ガラス7を挟持することで、帯状ガラス7の幅方向における収縮を抑制する機能を有する。アニーラローラー8bは、徐冷炉(図示省略)内で歪点以下の温度まで徐冷される帯状ガラス7を下方に案内する機能を有する。なお、アニーラローラー8bは、帯状ガラス7を挟持している場合もあれば、挟持することなく帯状ガラス7の厚み方向に沿った揺動を規制しているだけの場合もある。支持ローラー8cは、徐冷炉の下方に配置された冷却室(図示省略)内で室温付近まで温度が低下した帯状ガラス7を支持する機能、及び、帯状ガラス7を下方に引っ張る速度(板引き速度)を決定する機能を有する。
 上記の複数のローラー8を通過した帯状ガラス7が、帯状ガラスフィルム1として成形される。ここで、帯状ガラスフィルム1は、可撓性を付与できる程度の厚みとなるように成形し、一例として厚みが300μm以下となるように成形する。なお、帯状ガラスフィルム1には、幅方向中央に存する有効部1b(後に製品となる部分を含んだ部位)と、有効部1bに対して幅方向外側に存する不要部1a(後に分断・除去工程P3により除去される部位)とが含まれている。
 なお、本実施形態では、オーバーフローダウンドロー法により帯状ガラスフィルム1を成形しているが、本実施形態の変形例として、スロットダウンドロー法やリドロー法等の他のダウンドロー法により帯状ガラスフィルム1を成形してもよい。また、本実施形態の変形例として、フロート法により帯状ガラスフィルム1を成形してもよい。この場合、方向転換工程P2は省略することが可能である。
[方向転換工程]
 方向転換工程P2では、並列に並べられた複数の搬送ローラー10でなるカテナリ2を用いて、帯状ガラスフィルム1の搬送方向を縦方向から横方向に転換させる。複数の搬送ローラー10の各々は、帯状ガラスフィルム1を裏面1c側から支持しつつ、円弧状の搬送軌道に沿って搬送することで、搬送軌道を通過後の帯状ガラスフィルム1の表面1dが上方を向くように搬送方向を転換させる。搬送方向を転換させた後の帯状ガラスフィルム1は、コンベア11に移乗させる。移乗後の帯状ガラスフィルム1は、コンベア11、コンベア12、及びコンベア13により横方向に搬送する。なお、横方向に搬送中の帯状ガラスフィルム1は、送り速度V1で下流側に送る。
[分断・除去工程]
 分断・除去工程P3では、レーザー割断法を利用して帯状ガラスフィルム1から不要部1aを分断・除去する。分断・除去工程P3の実行には、コンベア12の上方に設置された切断器14を用いる。なお、本実施形態の変形例として、レーザー溶断法を利用して帯状ガラスフィルム1から不要部1aを分断・除去するようにしてもよい。
 切断器14は、当該切断器14の下方を通過する帯状ガラスフィルム1の有効部1bと不要部1aとの境界に沿ってレーザー14aを連続的に照射する。また、切断器14は、帯状ガラスフィルム1におけるレーザー14aが照射された部位に対して冷媒14b(例えば、ミスト状の水)を連続的に噴射する。
 これにより、レーザー14aにより加熱された部位と、冷媒14bにより冷却された部位との間の温度差を利用して、帯状ガラスフィルム1に熱応力を発生させる。そして、熱応力により有効部1bと不要部1aとの境界に沿って割断部(有効部1bと不要部1aとが分離された部位)を連続的に形成していく。このようにして、帯状ガラスフィルム1を長手方向に沿って連続的に切断していく。
 不要部1aが分断・除去された帯状ガラスフィルム1(有効部1bのみでなる帯状ガラスフィルム1)は、コンベア12からコンベア13に移乗させる。これに対して、帯状ガラスフィルム1から除去された不要部1aは、コンベア13に移乗させずに、帯状ガラスフィルム1の搬送経路から下方に離脱させた後で廃棄する。
[弛み搬送工程]
 弛み搬送工程P4では、吸着コンベア15と検出器16とを用いて、帯状ガラスフィルム1の下方への弛み量を調節した状態の下、帯状ガラスフィルム1を下流側に搬送する。このように帯状ガラスフィルム1を弛ませることで、弛んだ部位よりも下流側で帯状ガラスフィルム1に作用する張力が、分断・除去工程P3により分断中の部位まで伝播することを回避する。
 吸着コンベア15は、帯状ガラスフィルム1(有効部1b)を固定保持した状態で搬送する。「固定保持」とは、吸着コンベア15による帯状ガラスフィルム1の搬送中に、吸着コンベア15の搬送面と帯状ガラスフィルム1とが相対的に移動しないことを意味する。
 吸着コンベア15に備わったベルトには、当該ベルトを厚み方向に貫通する多数の吸着用孔15a(図3を参照)が形成されている。ベルトの内周側には負圧発生機構(図示省略)が配置されている。負圧発生機構が、吸着用孔15aを介して帯状ガラスフィルム1に負圧を発生させると、搬送面(ベルトの表面)に対して帯状ガラスフィルム1が吸着されて固定保持される。これにより、吸着コンベア15上の帯状ガラスフィルム1を、吸着コンベア15の送り速度V2と同一の搬送速度の下、搬送経路の下流側に搬送する。
 検出器16は、当該検出器16と帯状ガラスフィルム1(有効部1b)との相互間距離を検出する。検出器16が検出した相互間距離は、信号として吸着コンベア15に送信される。信号を受信した吸着コンベア15は、相互間距離が一定になるように送り速度V2を調節する。
 相互間距離の長短は、吸着コンベア15の送り速度V2と、コンベア13の送り速度V1とにより決定される。本実施形態において、コンベア13の送り速度V1は、帯状ガラスフィルム1の板引き速度に等しい。コンベア13の送り速度V1を基準として、吸着コンベア15の送り速度V2を速くしたり、遅くしたりすることで、帯状ガラスフィルム1の下方への弛み量が調節され、相互間距離が一定になるように調節される。
[検査工程]
 検査工程P5の実行には、帯状ガラスフィルム1を搬送する複数の搬送ローラー17と、帯状ガラスフィルム1の搬送経路(処理区間S)の下方に配置された検出器18とを用いる。なお、本実施形態の変形例として、検出器18は搬送経路の上方に配置してもよい。
 図3に示すように、検出器18は、平面視で複数の搬送ローラー17の相互間に配置されている。検出器18は、複数の搬送ローラー17により搬送される帯状ガラスフィルム1を対象として、その幅方向端縁の直線度(幅方向端縁がなす辺の直線度)を検出する。
 具体的には、検出器18により、まず、幅方向端縁がなす辺を複数の区間に分けて各区間をそれぞれ撮像する。次に、複数の画像の各々について、辺上の相互に異なる複数の点から辺の近似直線を割り出す。例えば、最小二乗法により近似直線の割り出しを行う。その後、複数の画像の各々について、近似直線を基準として複数の点のバラつきの値を割り出す。最後に、複数の画像のそれぞれに対応する複数のバラつきの値に基づいて、辺の直線度を評価する。このように直線度を評価することで、帯状ガラスフィルム1の品質が評価される。
 なお、本実施形態では、処理区間Sに搬入した帯状ガラスフィルム1に実施する検査として、幅方向端縁の直線度を検査しているが、この限りではない。本実施形態の変形例として、幅方向端縁の直線度の検査に加え、又は、幅方向端縁の直線度の検査に代え、帯状ガラスフィルム1における欠陥(例えば、傷・異物の付着)の有無の検査を実施してもよい。
[巻取工程]
 図1に示すように、巻取工程P6では、巻芯4とシートロール19とを用いて、処理区間Sを通過した帯状ガラスフィルム1を巻き取る。詳述すると、複数の駆動ローラーを含んだローラー群20を通過して巻芯4まで到達した帯状ガラスフィルム1を、シートロール19から巻き解いた帯状保護シート3と重ね合わせた後、巻芯4の周りに巻き取ってロール体5を作製する。なお、本実施形態では、巻芯4による帯状ガラスフィルム1の巻取速度V3と、ローラー群20による帯状ガラスフィルム1の送り速度とは同一としている。
 ここで、ローラー群20について詳述する。図4に示すように、ローラー群20は、Y方向(送り方向)に沿って交互に並べられた第一ユニット20aと第二ユニット20bとを含んでいる。両ユニット20a,20bの各々は、X方向に間隔を空けて並べられた複数のローラー20cと、隣り合う両ローラー20c,20cの相互間に介在した円筒状のスペーサ20dと、ローラー20c及びスペーサ20dを取り付けるための軸(図示省略)とを有する。
 ローラー20cは軸に固定されている一方、スペーサ20dは軸の外周面に隙間嵌めで嵌合されるか、或いは、軸の外周面に軸受を介して装着される。これにより、スペーサ20dは軸に対して回転することが可能となっている。ローラー20cの外形寸法(直径寸法)はスペーサ20dの外形寸法(直径寸法)よりも大きくなっている。なお、ローラー20cの外形寸法とスペーサ20dの外形寸法との比は、1.1~1.5が好ましい。
 第一ユニット20aのローラー20cと第二ユニット20bのローラー20cとは、X方向において位置がずれた状態で配置されている。詳述すると、X方向において、第一ユニット20aの隣り合う両ローラー20c,20cの相互間に第二ユニット20bのローラー20cが位置している。同様にして、X方向において、第二ユニット20bの隣り合う両ローラー20c,20cの相互間に第一ユニット20aのローラー20cが位置している。これにより、ローラー群20においては、当該ローラー群20に含まれる複数のローラー20cが千鳥状に配置される。この千鳥状の配置により、Y方向においては、ローラー20cとスペーサ20dとが微小な隙間gを挟んで交互に並んだ状態となっている。
 ここで、第一ユニット20aと第二ユニット20bとの軸間距離は、ローラー20cの外形寸法よりも小さいことが好ましい。また、ローラー20cの軸方向寸法L1(X方向に沿った寸法)は、スペーサ20dの軸方向寸法L2よりも小さいことが好ましい。
 ローラー群20によれば、可撓性に富んだ帯状ガラスフィルム1の幅方向端部が両ユニット20a,20bの間の隙間gに入り込み難くなるため、帯状ガラスフィルム1の割れを回避する上で有利となる。なお、本効果は、後述の処理区間Sが第二形態を取った場合に、より有効に活用される。すなわち、処理区間Sが第二形態を取った場合には、ローラー群20が、帯状ガラスフィルム1に代えてガラスフィルムシート1xを搬送するが、この際にガラスフィルムシート1xの割れを回避する上で極めて有利となる。
<処理区間が第二形態を取った場合>
 次に、処理区間Sが第二形態を取った場合におけるロール体の製造方法(以下、第二形態製法と表記)について説明する。詳細は後述するが、処理区間Sが第二形態を取った場合には、上流側から処理区間Sに搬入した帯状ガラスフィルム1を連続して幅方向に切断し、ガラスフィルムシート1xを繰り返し切り出すと共に、切り出した各ガラスフィルムシート1xを処理後ガラスフィルムとして処理区間Sから下流側に搬出する。なお、第二形態製法の説明では、上記の第一形態製法との相違点についてのみ説明する。
 図2に示すように、第二形態製法が第一形態製法と相違している点は、(1)検査工程P5に代えて、帯状ガラスフィルム1からガラスフィルムシート1xを切り出す切断工程P7を実行する点と、(2)巻取工程P6において、帯状ガラスフィルム1ではなくガラスフィルムシート1xを帯状保護シート3と重ね合わせて巻き取っている点との二点である。
 ここで、第二形態製法では、切断工程P7が上記の処理工程PYに相当すると共に、帯状ガラスフィルム1の幅方向に沿った切断が上記の製造関連処理に相当する。
[切断工程]
 切断工程P7の実行には、吸着コンベア15から搬出された帯状ガラスフィルム1を移乗させるコンベア21と、コンベア21上の帯状ガラスフィルム1に切断起点1yを形成する起点形成装置22と、帯状ガラスフィルム1から切り出したガラスフィルムシート1xを搬送するコンベア23と、ガラスフィルムシート1xの品質の良否を判定する判定手段としての撮像装置24とを用いる。ここで、コンベア21およびコンベア23としては、コンベア11,12,13および吸着コンベア15よりも小型のコンベアを使用している。
 図5に示すように、コンベア21は、帯状ガラスフィルム1を送り速度V4で下流側に送ると共に、当該コンベア21の下流端を通過した帯状ガラスフィルム1をコンベア23に移乗させる。コンベア23の搬送面は上り勾配となっており、コンベア23の上流端はコンベア21の下流端よりも下方に位置している。両コンベア21,23の相互間における搬送面の高低差により、コンベア21からコンベア23に移乗する帯状ガラスフィルム1は、その表面1d(上面)が凸となるように湾曲変形する。
 起点形成装置22は、帯状ガラスフィルム1の表面1dに切断起点1yを形成する。このとき、起点形成装置22は、帯状ガラスフィルム1の先頭部1eから切断起点1yまでの長さ(帯状ガラスフィルム1の長手方向に沿った長さ)が、ガラスフィルムシート1xの設計寸法と合致するように切断起点1yを形成する。切断起点1yは、帯状ガラスフィルム1の幅方向両端部のうち、一方側端部に対してのみ形成する。本実施形態では、帯状ガラスフィルム1の表面1dに形成した傷を切断起点1yとしている。勿論この限りではなく、本実施形態の変形例として、帯状ガラスフィルム1の幅方向両端部の2か所に切断起点1yを形成してもよく、帯状ガラスフィルム1の表面1d上で幅方向に延びるスクライブ線を形成し、当該スクライブ線を切断起点1yとしてもよい。
 コンベア21からコンベア23への移乗にあたり、帯状ガラスフィルム1における切断起点1yが形成された部位が湾曲変形すると、切断起点1yを起点として帯状ガラスフィルム1の厚み方向および幅方向にクラックが進展する。これにより、図6に示すように、帯状ガラスフィルム1からガラスフィルムシート1xが切り出される。ここで、コンベア23によるガラスフィルムシート1xの送り速度V5は、コンベア21による帯状ガラスフィルム1の送り速度V4(=送り速度V2)よりも高速としている。これにより、ガラスフィルムシート1xの切り出しに伴って新たに形成された帯状ガラスフィルム1の先頭部1eと、切り出されたガラスフィルムシート1xの最後部1xaとを離反させ、両者1e,1xaの接触を回避する。
 撮像装置24は、撮像した画像を画像処理装置(図示省略)に送信する。そして、画像処理装置による処理結果に基づき、コンベア23上のガラスフィルムシート1xについて、欠陥(形状不良・異物の付着・割れ等)の有無を判定する。
 良品と判定したガラスフィルムシート1xについては、コンベア23により引き続き搬送経路に沿って送った後、ローラー群20に移乗させる。なお、ローラー群20の送り速度V6は、コンベア23の送り速度V5と同一としている。勿論この限りではなく、本実施形態の変形例として、ローラー群20の送り速度V6を、コンベア23の送り速度V5よりも高速にしてもよい。
 一方、不良品と判定したガラスフィルムシート1xについては、図7に示すように、コンベア23の送り方向を変更した上で、ガラスフィルムシート1xを搬送経路から離脱した廃棄エリアAに送る。具体的には、ガラスフィルムシート1xが不良品と判定されると、図7に白抜き矢印で示すように、コンベア23の上流端を中心として搬送面を旋回させ、当該搬送面を上り勾配の状態から水平な状態に変化させる。そして、水平な状態となったコンベア23の搬送面によりガラスフィルムシート1xを送ることで、ガラスフィルムシート1xを搬送経路から離脱させる。このとおり、コンベア23は、判定を経たガラスフィルムシート1xの進路を振り分ける搬送手段として機能している。
[巻取工程]
 図2に示すように、巻取工程P6では、処理区間Sを順々に通過してくるガラスフィルムシート1xを連続的に巻き取っていく。詳述すると、ローラー群20を通過して巻芯4まで到達した各ガラスフィルムシート1xを、シートロール19から巻き解いた帯状保護シート3と重ね合わせた後、巻芯4の周りに巻き取ってロール体5を作製する。このとき、ロール体5にて隣り合うガラスフィルムシート1x,1xの相互間には隙間が形成された状態となる。本実施形態では、巻芯4によるガラスフィルムシート1xの巻取速度V7と、ローラー群20による帯状ガラスフィルム1の送り速度V6とは同一としている。ここで、「巻取速度V7」とは、ガラスフィルムシート1xを巻き取る際のロール体5の周速度を意味する。そして、巻取速度V7(=送り速度V5,V6)を上記の送り速度V4よりも高速としている。すなわち、処理区間Sに帯状ガラスフィルム1を搬入する際の送り速度V4と比較して、巻芯4の周りにガラスフィルムシート1xを巻き取る際の巻取速度V7を速くしている。巻取速度V7は、送り速度V4よりも2%~20%高速であることが好ましい。さらに、巻取速度V7は、第一形態製法における巻取速度V3よりも高速としている。なお、本実施形態の変形例として、巻取速度V7を送り速度V6よりも高速としてもよい。
 ここで、上述のとおり、切断工程P7にて不良品と判定したガラスフィルムシート1xについては、搬送経路から離脱させている。従って、帯状ガラスフィルム1から切り出した各ガラスフィルムシート1xの中から不良品が発生した場合には、不良品の枚数の分だけ、ロール体5に含まれるガラスフィルムシート1xの枚数が減少する。そして、本実施形態では、不良品が発生した場合でも、巻芯4の回転を停止させずに継続させている。これにより、不良品が一枚発生する度に、ロール体5においてガラスフィルムシート1xの一枚分の空きスペースが生じる。
[入換工程]
 以下、入換工程PXの実行により、第一形態製法にて処理区間Sが取る第一形態と、第二形態製法にて処理区間Sが取る第二形態との間で、形態の入れ換えを行う態様について説明する。なお、本実施形態では、処理区間Sが取る形態を第一形態から第二形態に入れ換える場合を例に挙げて説明する。
 図8に示す入換工程PXでは、まず、第一形態から第二形態への円滑な入れ換えを阻害しないように、処理区間Sに帯状ガラスフィルム1が搬入されることを防止する。具体的には、帯状ガラスフィルム1の搬送経路上における処理区間Sよりも上流側において、帯状ガラスフィルム1を搬送経路から離脱させて廃棄する。本実施形態では、搬送経路に沿ってコンベア13まで到達した帯状ガラスフィルム1を吸着コンベア15に移乗させることなく、下方に落下させて廃棄している。
 上述のとおり、処理区間Sへの帯状ガラスフィルム1の搬入を防止することで、これに伴って第一形態製法によるロール体5の製造を停止させる。
 ここで、本実施形態では、搬送経路上におけるコンベア13と吸着コンベア15との間で帯状ガラスフィルム1を廃棄しているが、これに限定されるものではない。搬送経路上における他の箇所で帯状ガラスフィルム1を廃棄してもよい。例えば、成形工程P1により成形した帯状ガラスフィルム1にカテナリ2を通過させずに(方向転換工程P2を実行せずに)、そのまま下方に送って廃棄してもよい。
 処理区間Sへの帯状ガラスフィルム1の搬入を防止する処置が完了すると、次に、第一形態を構成する第一設備群G1を処理区間Sから取り除く。第一設備群G1は、複数の搬送ローラー17および検出器18を含む。その後、第二形態を構成する第二設備群G2を処理区間Sに設置する。第二設備群G2は、コンベア21、起点形成装置22、コンベア23、及び、撮像装置24を含む。
 このとき、第一設備群G1と第二設備群G2との間における搬送経路に沿った長さの相違に合わせて、図8に白抜き矢印で示すように、処理区間Sよりも下流側に配置された設備の位置を調節する。すなわち、ローラー群20および巻芯4の位置を調節する。ここで、本実施形態では、第一設備群G1よりも第二設備群G2の方が長いため、ローラー群20および巻芯4は、吸着コンベア15から遠ざかるように位置を調節する。以上により入換工程PXが完了する。
 入換工程PXが完了すると、コンベア13から落下させて廃棄していた帯状ガラスフィルム1を再び吸着コンベア15に移乗させるようにし、これに伴って第二形態製法によるロール体5の製造を開始する。
 ここで、入換工程PXの実行に付随させて、入換工程PXの前後で帯状ガラスフィルム1の組成を変更しても構わない。一例として、入換工程PXの実行前の第一形態製法では、無アルカリガラス等でなる帯状ガラスフィルム1を成形工程P1で成形し、入換工程PXの実行後の第二形態製法では、強化用ガラス(後に化学強化により強化ガラスとされるガラスであり、例えばアルミノシリケートガラス)でなる帯状ガラスフィルム1を成形工程P1で成形してもよい。
 以下、上記のロール体の製造方法による主たる作用・効果について説明する。
 上記のロール体の製造方法では、第二形態製法において、処理区間Sに帯状ガラスフィルム1を搬入する際の送り速度V4と比較して、巻芯4の周りにガラスフィルムシート1xを巻き取る際の巻取速度V7を速くしている。これにより、帯状ガラスフィルム1から切り出された各ガラスフィルムシート1xは、処理区間Sに搬入される帯状ガラスフィルム1に対して加速された後で巻芯4の周りに巻き取られることになる。つまり、各ガラスフィルムシート1xは、後続のガラスフィルムシート1xとの間に隙間が形成された状態の下で巻き取られることになる。その結果、ロール体5にて隣り合うガラスフィルムシート1xの端部同士の接触を防止することが可能となる。
 また、上記のロール体の製造方法では、処理区間Sが第一形態と第二形態とを取り得る。そして、入換工程PXの実行により処理区間Sが取る形態を入れ換えさえすれば、処理工程PYで帯状ガラスフィルム1に施す製造関連処理(幅方向端縁の位置の検査、又は、幅方向に沿った切断)を切り換えることができる。つまり、予め想定される全ての製造関連処理を行えるように処理区間Sを設定する必要がないため、ロール体の製造ラインが長距離化するのを防止することが可能となる。また、帯状ガラスフィルム1に施す製造関連処理を切り換えるにあたり、処理区間Sを除いて設備を変更する必要もない。その結果、設備変更の迅速化も図ることが可能となる。
 ここで、上記の実施形態に係るロール体の製造方法には、以下のような変形例を適用することも可能である。上記の実施形態では、第二形態製法において、処理区間Sに帯状ガラスフィルム1を搬入する際の送り速度V4に対して、帯状ガラスフィルム1から切り出したガラスフィルムシート1xの送り速度や巻取速度(送り速度V5,送り速度V6,巻取速度V7)を高速にしているが、これに限定されるものではない。送り速度V4に対して巻取速度V7が高速でありさえすればよく、例えば、送り速度V4、送り速度V5、送り速度V6の三者が同一速度であってもよい。このようにした場合でも、ロール体5にて隣り合うガラスフィルムシート1xの端部同士の接触を防止することが可能である。
 また、上記の実施形態では、処理区間Sが第一形態と第二形態との二つの形態を取り得るようになっているが、この限りではなく、処理区間Sが相互に異なる三以上の形態を取り得るようにしてもよい。また、上記の実施形態において、入換工程PXを効率的に実行するべく、第一設備群G1および第二設備群G2をそれぞれユニット化してもよい。さらに、上記の実施形態とは異なり、帯状ガラスフィルム1は、ガラスロールを巻き解くことで供給されるものであってもよい。この場合、成形工程P1および方向転換工程P2は省略することが可能である。
 1     帯状ガラスフィルム
 1x    ガラスフィルムシート
 3     帯状保護シート
 4     巻芯
 5     ロール体
 23    コンベア
 24    撮像装置
 A     廃棄エリア
 P5    検査工程
 P6    巻取工程
 P7    切断工程
 PX    入換工程
 PY    処理工程
 S     処理区間
 V4    送り速度
 V7    巻取速度

Claims (6)

  1.  帯状ガラスフィルムの搬送経路上に設けた処理区間を前記帯状ガラスフィルムに通過させながら製造関連処理を施す処理工程と、
     前記処理区間を通過した処理後ガラスフィルムを帯状保護シートと重ね合わせて巻芯の周りに巻き取ることでロール体を作製する巻取工程と、
    を備えたロール体の製造方法であって、
     前記製造関連処理として、上流側から前記処理区間に搬入した前記帯状ガラスフィルムを幅方向に切断することで、前記帯状ガラスフィルムから切り出したガラスフィルムシートを前記処理後ガラスフィルムとして前記処理区間から下流側に搬出する処理を行うにあたり、
     前記処理区間に前記帯状ガラスフィルムを搬入する際の送り速度と比較して、前記巻芯の周りに前記ガラスフィルムシートを巻き取る際の巻取速度を速くすることを特徴とするロール体の製造方法。
  2.  前記処理区間が相互に異なる複数の形態を取り得るようにし、
     前記複数の形態間で入れ換えを行う入換工程を実行することで、前記処理工程で前記帯状ガラスフィルムに施す前記製造関連処理を切り換えることを特徴とする請求項1に記載のロール体の製造方法。
  3.  前記複数の形態には、第一形態と第二形態とが含まれ、
     前記第一形態が、上流側から搬入した前記帯状ガラスフィルムに検査を実施すると共に、検査後の前記帯状ガラスフィルムを前記処理後ガラスフィルムとして下流側に搬出する形態であり、
     前記第二形態が、上流側から搬入した前記帯状ガラスフィルムを幅方向に切断することで、前記帯状ガラスフィルムから切り出したガラスフィルムシートを前記処理後ガラスフィルムとして下流側に搬出する形態であることを特徴とする請求項2に記載のロール体の製造方法。
  4.  前記第二形態に、前記ガラスフィルムシートにおける品質の良否を判定する判定手段と、判定を経た前記ガラスフィルムシートの進路を振り分ける搬送手段とを設け、
     前記ガラスフィルムシートが良品である場合には、前記搬送手段により前記ガラスフィルムシートを前記搬送経路に沿って送り、
     前記ガラスフィルムシートが不良品である場合には、前記搬送手段により前記ガラスフィルムシートを前記搬送経路から離脱した廃棄エリアに送ることを特徴とする請求項3に記載のロール体の製造方法。
  5.  前記入換工程では、前記複数の形態間における前記搬送経路に沿った長さの相違に合わせて、前記巻芯の位置を調節することを特徴とする請求項2~4のいずれかに記載のロール体の製造方法。
  6.  前記入換工程の実行中に、前記搬送経路における前記処理区間よりも上流側で前記帯状ガラスフィルムを前記搬送経路から離脱させて廃棄することを特徴とする請求項2~5のいずれかに記載のロール体の製造方法。
PCT/JP2021/046008 2021-01-08 2021-12-14 ロール体の製造方法 WO2022149415A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-001974 2021-01-08
JP2021001974A JP2022107188A (ja) 2021-01-08 2021-01-08 ロール体の製造方法

Publications (1)

Publication Number Publication Date
WO2022149415A1 true WO2022149415A1 (ja) 2022-07-14

Family

ID=82357259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046008 WO2022149415A1 (ja) 2021-01-08 2021-12-14 ロール体の製造方法

Country Status (3)

Country Link
JP (1) JP2022107188A (ja)
TW (1) TW202239721A (ja)
WO (1) WO2022149415A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752089A (ja) * 1993-08-13 1995-02-28 Matsushita Electric Works Ltd シートの自動切断装置
JP2016074555A (ja) * 2014-10-06 2016-05-12 日本電気硝子株式会社 ガラス物品の製造装置及びガラス物品の製造方法
JP2017214263A (ja) * 2016-06-02 2017-12-07 日本電気硝子株式会社 ガラスフィルムの製造方法
JP2020040745A (ja) * 2018-09-07 2020-03-19 日本電気硝子株式会社 ガラスフィルムの製造方法
WO2020071353A1 (ja) * 2018-10-04 2020-04-09 Agc株式会社 板ガラスの製造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752089A (ja) * 1993-08-13 1995-02-28 Matsushita Electric Works Ltd シートの自動切断装置
JP2016074555A (ja) * 2014-10-06 2016-05-12 日本電気硝子株式会社 ガラス物品の製造装置及びガラス物品の製造方法
JP2017214263A (ja) * 2016-06-02 2017-12-07 日本電気硝子株式会社 ガラスフィルムの製造方法
JP2020040745A (ja) * 2018-09-07 2020-03-19 日本電気硝子株式会社 ガラスフィルムの製造方法
WO2020071353A1 (ja) * 2018-10-04 2020-04-09 Agc株式会社 板ガラスの製造装置

Also Published As

Publication number Publication date
JP2022107188A (ja) 2022-07-21
TW202239721A (zh) 2022-10-16

Similar Documents

Publication Publication Date Title
TWI752024B (zh) 玻璃薄膜的製造方法
CN108883964B (zh) 玻璃膜的制造方法
US11192743B2 (en) Glass roll production method
WO2020049987A1 (ja) ガラスフィルムの製造方法
JP2019218203A (ja) ガラスロールの製造方法
TW201509843A (zh) 薄板玻璃的搬運方法、搬運裝置與切斷方法以及玻璃物品的製造方法
CN113929291A (zh) 用于纵向切割极薄玻璃的装置及方法
JP6796282B2 (ja) ガラスフィルムの製造方法
CN102947694B (zh) 缺陷产生源的识别方法
CN109311721B (zh) 带状玻璃膜的制造方法以及制造装置
WO2022114021A1 (ja) ガラスフィルムの製造方法
US11964894B2 (en) Glass roll, glass roll manufacturing method, and quality evaluation method
TWI735753B (zh) 玻璃薄膜之製造方法
WO2022149415A1 (ja) ロール体の製造方法
JP7415265B2 (ja) ガラスロールの製造方法
WO2022113885A1 (ja) ガラスロールの製造方法
WO2022044798A1 (ja) ガラス物品の製造方法
WO2021149519A1 (ja) ガラスフィルムの製造方法
WO2022070814A1 (ja) ガラスロールの製造方法
JP7342663B2 (ja) 帯状ガラスフィルムの製造方法
WO2023100695A1 (ja) ガラス物品の製造方法
WO2023234053A1 (ja) ガラスフィルムの製造方法、及びガラスフィルムの製造装置
TW202120417A (zh) 玻璃卷的製造方法
TW202138320A (zh) 玻璃膜的製造方法、玻璃卷的製造方法、及玻璃膜的製造裝置
JP2018150155A (ja) ガラスロールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917636

Country of ref document: EP

Kind code of ref document: A1