WO2022149235A1 - 光送信器 - Google Patents

光送信器 Download PDF

Info

Publication number
WO2022149235A1
WO2022149235A1 PCT/JP2021/000324 JP2021000324W WO2022149235A1 WO 2022149235 A1 WO2022149235 A1 WO 2022149235A1 JP 2021000324 W JP2021000324 W JP 2021000324W WO 2022149235 A1 WO2022149235 A1 WO 2022149235A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
output
optical
wavelength
Prior art date
Application number
PCT/JP2021/000324
Other languages
English (en)
French (fr)
Inventor
慈 金澤
泰彦 中西
隆彦 進藤
明晨 陳
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022573856A priority Critical patent/JPWO2022149235A1/ja
Priority to PCT/JP2021/000324 priority patent/WO2022149235A1/ja
Publication of WO2022149235A1 publication Critical patent/WO2022149235A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present invention relates to an optical transmitter, and more particularly to a multi-wavelength channel optical transmitter in which a wavelength division multiplexing optical transmission method is used.
  • a wavelength division multiplexing optical transmission method has been used to increase the transmission capacity in an optical communication system with the increase in communication traffic.
  • a light source is prepared for each wavelength channel, and output light from a plurality of light sources is combined by an optical combiner and output to an optical fiber.
  • it is required to keep the light intensity of an optical transmission signal constant, and in a wavelength division multiplexing optical transmission method, it is also necessary to keep the light intensity of each wavelength channel constant. Therefore, a part of the optical transmission signal is branched to monitor the light intensity, and the light source is controlled so that the monitored light intensity becomes constant.
  • FIG. 1 shows an example of a conventional multi-wavelength channel optical transmitter that multiplexes four wavelengths.
  • the output light from the light sources 10a-10d for each wavelength channel is input to the optical combiner 20 via the collimator lenses 31a-31d and is combined.
  • the optical combiner 20 In the output of the optical combiner 20, all wavelength channels are multiplexed and coupled to the optical fiber 41 as wavelength division light through the condenser lens 32.
  • FIG 2 shows an example of a light source.
  • the light source 10 has a light source chip 11 including a modulation light source unit 16 and an optical amplification unit 15 mounted on the subcarrier 12, and monitors a part of the output light from the modulation light source unit 16 at the rear end of the light source chip 11.
  • the monitor PD13 is mounted.
  • the monitor PD 13 detects the optical output power of each wavelength channel as a current value, and the control circuit 14 adjusts the amount of current supplied to the light source chip 11 so that the detected current value becomes constant.
  • Such an optical output control (APC) circuit makes it possible to keep the optical output power from each light source chip 11 constant (see, for example, Non-Patent Document 2).
  • the optical combiner 20 includes a glass block 21, and an antireflection film 22 that transmits the output light from the first light source 10a is formed on the end face on the light source side.
  • a reflecting mirror 24 is formed on the end surface of the glass block 21 on the output side, and the output light from the first light source 10a is reflected on the light source side.
  • a wavelength filter 23b-23d that transmits the output light from the second light source 10b-10d and reflects the light reflected by the reflector 24 is formed on the end surface on the light source side.
  • the optical signal of each wavelength channel reciprocates between the reflecting mirror 24 and the wavelength filter 23b, is multiplexed in order, passes through the antireflection film 25 formed on the end face on the output side, and is wavelength-multiplexed light. Is output as.
  • the configuration in which the monitor PD 13 is arranged at the rear end of the light source chip 11 can monitor the optical output power proportional to the output light from the light source chip 11.
  • FIG. 3 shows another example of a conventional multi-wavelength channel optical transmitter.
  • the output light from the light source 50a-50d for each wavelength channel is input to the optical combiner 20 via the collimator lens 31a-31d and the beam splitter 53a-53d, and is combined.
  • all wavelength channels are multiplexed as wavelength division light through the condenser lens 32 and coupled to the optical fiber 41 (see, for example, Non-Patent Document 1).
  • the output light from the light source chip 51 is partially branched by the beam splitter 53a-53d and monitored by the monitor PD54a-54d.
  • the output of the monitor PD54a-d is input to the control circuit of the light source 50, and the amount of current supplied to the light source chip 51 is adjusted so that the detected current value becomes constant.
  • the monitor PD 54 is arranged on the output side of the light source chip 51, the light output from the optical amplification unit of the light source 50 can be accurately monitored, but the passing loss and the branch loss of the beam splitter 53 can be accurately monitored. Only light loss occurs. Further, the output light from the first light source 50a has a problem that the optical path length transmitted through the optical combiner 20 is long as compared with the optical path lengths of other wavelength channels, so that the loss is large.
  • the spread of the output light beam is large, and the emitted beam may reach the outside of the spherical shape which is the effective diameter of the collimator lens 31.
  • the beam that reaches the outside does not become collimated light, which is not only a loss but also a problem that the light is scattered inside the multi-wavelength channel light transmitter and the light reaches an unexpected place.
  • One embodiment of the present invention is an optical transmitter that multiplexes and outputs a plurality of wavelength channels, and has one or more different wavelengths from the first light source and the first light source, each having a different wavelength.
  • a second light source a plurality of collimator lenses coupled to the outputs of the first light source and the second light source, and a second light source facing the output light from the first light source from the first end face.
  • the light is transmitted through the end face of the lens, reflected by a reflecting mirror formed on the second end face, and the output light from the second light source is transmitted through a wavelength filter formed on the first end face, and is transmitted by the reflecting mirror.
  • An optical combiner that reflects and sequentially multiplexes the output light of each wavelength channel by reciprocating between the reflector and the wavelength filter, and between the plurality of collimator lenses and the first end face, respectively.
  • the light output from the light source can be accurately monitored by using the light that does not pass through the antireflection film and has no pass loss or branch loss due to the beam splitter at the output from the light source to the optical combiner. can.
  • FIG. 1 is a diagram showing an example of a conventional multi-wavelength channel optical transmitter.
  • FIG. 2 is a diagram showing an example of a light source of a conventional multi-wavelength channel optical transmitter.
  • FIG. 3 shows another example of a conventional multi-wavelength channel optical transmitter,
  • FIG. 4 is a diagram showing a multi-wavelength channel optical transmitter according to the first embodiment of the present invention.
  • FIG. 5 is a diagram showing the structure of the beam splitter of the multi-wavelength channel optical transmitter of the first embodiment.
  • FIG. 6 is a diagram showing a multi-wavelength channel optical transmitter according to a second embodiment of the present invention.
  • FIG. 7 is a diagram showing a multi-wavelength channel optical transmitter according to a third embodiment of the present invention.
  • FIG. 4 shows an example of a multi-wavelength channel optical transmitter according to the first embodiment of the present invention, each of which multiplexes four different wavelengths.
  • the output light from the light sources 110a-110d for each wavelength channel is input to the optical combiner 120 via the collimator lens 131a-131d and the beam splitter 153a-153d, and is combined.
  • the optical combiner 120 At the output of the optical combiner 120, all wavelength channels are multiplexed and coupled to the optical fiber 141 as wavelength division light through the condenser lens 132.
  • the optical combiner 120 includes a glass block 121, and an antireflection film 122 that transmits the output light from the first light source 110a is formed on the end face on the light source side.
  • a reflecting mirror 124 is formed on the end surface of the glass block 121 on the output side, and the output light from the first light source 110a is reflected on the light source side.
  • a wavelength filter 123b-123d that transmits the output light from the second light source 110b-110d and reflects the light reflected by the reflector 124 is formed on the end surface on the light source side.
  • the optical signal of each wavelength channel reciprocates between the reflector 124 and the wavelength filter 123b-d, is multiplexed in order, passes through the antireflection film 125 formed on the end face on the output side, and is wavelength-multiplexed light. Is output as.
  • the output light from the first light source 110a and the second light source 110b-110d is partially branched by the beam splitter 153a-153d, and the optical power of each output light is monitored by the monitor PD154a-154d.
  • the output of the monitor PD154a-d is input to the control circuit of the light source 150, and a current is supplied to the light source chip 151 so that the detected current value becomes constant, that is, the optical power of each output light becomes constant. Adjust the amount.
  • FIG. 5 shows the structure of the beam splitter of the multi-wavelength channel optical transmitter of Example 1.
  • FIG. 5A is a view seen from a direction perpendicular to the optical axis of the output light from the light source 110 and horizontal to the optical thin film surface 161 of the cube-shaped beam splitter 153.
  • the beam of output light output from the light source 110 is focused by the collimator lens 131.
  • the beam entering the lens spherical surface shown by the solid line in FIG. 5 becomes collimated light, but the beam incident on the area outside the lens spherical surface (shown by the dotted line in FIG. 5) does not become collimated light and is a collimator.
  • FIG. 5B is a view of the optical thin film surface 161 of the beam splitter 153 as viewed from the light source 110 side in the optical axis direction of the output light.
  • the optical thin film surface 161 is coated with an antireflection film only in the region 163 corresponding to the maximum diameter of the collimated parallel light beam peculiar to the lens shape, which contributes to the fiber coupling.
  • the surrounding region 162 other than the region 163 is uncoated or coated with a reflective film.
  • the beam collimated by the lens spherical surface of the collimator lens 131 passes through the region 163 and reaches the optical combiner 120. Therefore, unlike the conventional multi-wavelength channel optical transmitter shown in FIG. 1, there is no passing loss or branching loss due to the beam splitter, and the optical output from the optical amplification unit of the light source 110 can be output to the optical combiner 120. can. Further, the beam incident on the outer area of the lens spherical surface (shown by the dotted line in FIG. 5) is completely reflected by the region 163 of the optical thin film surface 161 and input to the monitor PD 154, so that light that is not coupled to the optical fiber 141 is used. Therefore, the light output from the light source 110 can be accurately monitored.
  • the antireflection film 122 integrated in the optical combiner 120 and the optical thin film surface 161 of the beam splitter 153 have a transmittance of 99%.
  • the beam splitter 53 of the conventional optical transmitter shown in FIG. 3 has a reflectance of 2% and a transmittance of 98%.
  • the glass blocks 121 have a 1% light loss in propagation between the antireflection film 122 and the wavelength filter 123 and the reflector 124.
  • the lens coupling efficiency from the output of the optical combiner 120 to the optical fiber 141 is 63%.
  • the output of the light source chip 111 of each wavelength channel is set to + 4 dBm and coupled to the optical fiber 141.
  • the optical output was measured.
  • the light outputs of the light sources 110ad from each wavelength channel 1 to 4 were +1.25, +1.43, +1.64, +1.87 dBm, respectively.
  • a beam splitter 153 coated with a reflective film in the region 163 and a monitor PD 154 were mounted.
  • the power of the light branched to the monitor PD154 side was -8 dBm. This is the power of the light reflected by the reflective film of the region 163 by the beam incident on the area outside the lens spherical surface of the collimator lens 131.
  • the optical outputs of the wavelength channels 1 to 4 were +1.21, +1.39, +1.60, and +1.82 dBm, respectively.
  • the optical outputs of the light sources 10ad from each wavelength channel 1 to 4 are +1.07, +1.25, +1.47, + 1, respectively. It was .69 dBm. At this time, the power of the light branched to the monitor PD54 side was -11 dBm.
  • Example 1 the loss of output light of each wavelength channel is lower than that of the conventional structure, and the light output reaching the monitor PD side is also large. From this, it was shown that the structure of Example 1 was significant in improving the optical output power coupled to the optical fiber. Further, since the structure of Example 1 has more light power to reach the monitor PD side than the conventional structure, a part of the components to be scattered light is received by the monitor PD, which is also effective in suppressing the scattered light. I was able to confirm that there was.
  • FIG. 6 shows an example of a multi-wavelength channel optical transmitter according to a second embodiment of the present invention, each of which multiplexes four different wavelengths.
  • the output light from the light source 210a-210d for each wavelength channel is input to the optical combiner 220 via the optical block 231a-231d in which the collimator lens and the beam splitter are integrated, and is combined.
  • the optical combiner 220 At the output of the optical combiner 220, all wavelength channels are multiplexed and coupled to the optical fiber 241 as wavelength division light through the condenser lens 232.
  • the optical combiner 220 includes a glass block 221 and has an antireflection film 222 that transmits the output light from the first light source 210a on the end surface on the light source side.
  • a reflecting mirror 224 is formed on the output side end surface of the glass block 221 to reflect the output light from the first light source 210a to the light source side.
  • a wavelength filter 223b-223d that transmits the output light from the second light source 210b-210d and reflects the light reflected by the reflector 224 is formed on the end surface on the light source side.
  • the optical signal of each wavelength channel reciprocates between the reflector 224 and the wavelength filter 223bad, is multiplexed in order, and is transmitted through the antireflection film 225 formed on the end face on the output side to perform wavelength division multiplexing light. Is output as.
  • the optical block 231 is joined to a collimator lens 232 and a beam splitter 233 having an optical thin film surface 234.
  • the optical thin film surface 234 is the same as the optical thin film surface 161 shown in FIG. 5 (b) of Example 1, and an antireflection film is coated on a region equivalent to the maximum diameter of the collimated beam peculiar to the lens shape.
  • the other surrounding areas are uncoated or coated with a reflective film.
  • the output light from the first light source 210a and the second light source 210b-210d is partially split by the beam splitter 233, and the optical power of each output light is monitored by the monitor PD254.
  • the output of the monitor PD254 is input to the control circuit of the light source 210, and the amount of current supplied to the light source chip 211 is set so that the detected current value becomes constant, that is, the optical power of each output light becomes constant. adjust.
  • the antireflection film 222 and the optical thin film surface 234 of the beam splitter 233 integrated in the optical combiner 220 have a transmittance of 99%.
  • the beam splitter 53 of the conventional optical transmitter shown in FIG. 3 has a reflectance of 2% and a transmittance of 98%.
  • the glass block 221 has a light loss of 1% in propagation between the antireflection film 222 and the wavelength filter 223bad and the reflecting mirror 224.
  • the lens coupling efficiency from the output of the optical combiner 220 to the optical fiber 241 is 63%.
  • the output of the light source chip 211 of each wavelength channel was set to + 5 dBm, and the optical output coupled to the optical fiber 241 was measured.
  • the light outputs of the light sources 210ad from each wavelength channel 1 to 4 were +2.21, +2.39, +2.61, and +2.82 dBm, respectively.
  • the power of the light branched to the monitor PD254 side was ⁇ 7.5 dBm.
  • the power of the light branched to the monitor PD54 side was -13 dBm.
  • Example 2 the loss of output light of each wavelength channel is lower than that of the conventional structure, and the light output reaching the monitor PD side is also large. From this, it was shown that the structure of Example 2 was significant in improving the optical output power coupled to the optical fiber. Further, since the structure of the second embodiment has more light power to reach the monitor PD side than the conventional structure, a part of the components to be scattered light is received by the monitor PD, which is also effective in suppressing the scattered light. I was able to confirm that there was.
  • FIG. 7 shows an example of a multi-wavelength channel optical transmitter according to a third embodiment of the present invention, each of which multiplexes four different wavelengths.
  • the output light from the light source 310a-310d for each wavelength channel is input to the optical combiner 320 via the collimator lens 331a-331d and is combined.
  • the output of the optical combiner 320 is coupled to the optical fiber 341 by multiplexing all wavelength channels as wavelength division light through the condenser lens 332.
  • the optical combiner 320 includes a glass block 321 and has a circular antireflection film 322 formed on the end surface on the light source side to transmit the output light from the first light source 310a and partially branch to the monitor PD354a.
  • the circular antireflection film 322 has the same configuration as the optical thin film surface 161 shown in FIG. 5 (b) of Example 1, and has antireflection in a region equivalent to the maximum diameter of the collimated beam peculiar to the lens shape.
  • the film is coated, and the other surrounding areas are uncoated or coated with a reflective film.
  • the beam collimated by the lens spherical surface of the collimator lens 331 passes through the antireflection film and is incident on the glass block 321.
  • the beam incident on the surrounding region is input to the monitor PD354a as reflected light from the optical combiner 320, and the optical power of the output light of the first light source 310a is monitored.
  • a reflecting mirror 324 is formed on the output side end surface of the glass block 321 to reflect the output light from the first light source 310a to the light source side.
  • the output light from the second light source 310b-310d is partially branched by the beam splitter 353b-353d, and the optical power of each output light is monitored by the monitor PD354b-354d.
  • the optical thin film surface of the beam splitter 353 is the same as the optical thin film surface 161 shown in FIG. 5 (b) of Example 1, and the antireflection film is formed in a region equivalent to the maximum diameter of the collimated beam peculiar to the lens shape. Is coated, and the other surrounding areas are uncoated or coated with a reflective film.
  • a wavelength filter 323b-323d that transmits the output light from the second light source 310b-310d and reflects the light reflected by the reflector 324 is formed on the end face on the light source side.
  • the optical signal of each wavelength channel reciprocates between the reflecting mirror 324 and the wavelength filter 323b, is multiplexed in order, and is transmitted through the antireflection film 325 formed on the end face on the output side to perform wavelength division multiplexing light. Is output as.
  • the output of the monitor PD354a-d is input to the control circuit of the light source 310, and a current is supplied to the light source chip 311 so that the detected current value becomes constant, that is, the optical power of each output light becomes constant. Adjust the amount.
  • the output light from the first light source passes through the beam splitter 53a and the antireflection film 22 of the optical combiner 20 and propagates through the glass block 21.
  • the optical transmitter of the third embodiment only the circular antireflection film 322 of the optical combiner 320 is transmitted and propagates through the glass block 321.
  • the antireflection film is a unidirectional transmissive film and can suppress reflection on the end face of the glass block, but a slight reflection component is generated on the incident surface of the antireflection film. Therefore, according to the optical transmitter of the third embodiment, the optical loss corresponding to this reflection component can be suppressed.
  • the output light from the first light source 310a has a large loss because the optical path length transmitted through the optical combiner 320 is the longest as compared with the optical path lengths of other wavelength channels, but the light corresponds to the above-mentioned reflection component. The loss can be suppressed.
  • the antireflection film on the optical thin film surface of the circular antireflection film 322 of the optical combiner 320 and the beam splitter 353 has a transmittance of 99%.
  • the beam splitter 53 of the conventional optical transmitter shown in FIG. 3 has a reflectance of 2% and a transmittance of 98%.
  • the glass block 321 has a light loss of 1% in propagation between the antireflection film 322 and the wavelength filter 323bad and the reflecting mirror 324.
  • the lens coupling efficiency from the output of the optical combiner 320 to the optical fiber 341 is 63%.
  • the output of the light source chip 311 of each wavelength channel was set to + 4 dBm, and the optical output coupled to the optical fiber 341 was measured.
  • the light output of the wavelength channel 1 of the light source 310 was +1.19 dBm.
  • the power of the light branched to the monitor PD354a side was measured, it was -10.8 dBm.
  • the optical output power of the wavelength channel 1 is +1.07 dBm.
  • the power of the light branched to the monitor PD54 side was -11 dBm.
  • Example 2 the loss of output light of each wavelength channel is lower than that of the conventional structure, and the light output reaching the monitor PD side is also large. From this, it was shown that the structure of Example 2 was significant in improving the optical output power coupled to the optical fiber. Further, since the structure of the second embodiment has more light power to reach the monitor PD side than the conventional structure, a part of the components to be scattered light is received by the monitor PD, which is also effective in suppressing the scattered light. I was able to confirm that there was.
  • Example 3 a multi-wavelength channel optical transmitter that multiplexes four wavelengths, the first light source of the wavelength channel having the longest optical path length transmitted through the optical combiner, and the third second light source of the other wavelength channels.
  • the light source has been described as an example. If the number of the second light sources is one or more, the third embodiment can be applied.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

光源からの光出力を正確にモニタする。複数の波長チャネルを多重化して出力する光送信器であって、第1の光源(110a)と、第1の光源(110a)と波長が異なり、各々が異なる波長の1つ以上の第2の光源(110b、110c、110d)と、第1の光源(110a)および第2の光源(110b、110c、110d)の各々の出力に結合された複数のコリメータレンズ(131a、131b、131c、131d)と、第1の光源(110a)からの出力光を第1の端面から対向する第2の端面に透過させ、前記第2の端面に形成された反射鏡(124)により反射させ、第2の光源(110b、110c、110d)からの出力光を前記第1の端面に形成された波長フィルタ(123b、123c、123d)を透過させ、反射鏡(124)により反射させ、各波長チャネルの出力光を反射鏡(124)と波長フィルタ(123b、123c、123d)との間を往復させて順に多重化する光合波器(120)と、複数のコリメータレンズ(131a、131b、131c、131d)と、前記第1の端面との間にそれぞれ挿入された複数のビームスプリッタ(153a、153b、153c、153d)であって、コリメータレンズ(131a、131b、131c、131d)によりコリメートされた平行光ビームの最大直径に相当する領域に反射防止膜が形成されたビームスプリッタ(153a、153b、153c、153d)を備えた。

Description

光送信器
 本発明は、光送信器に関し、より詳細には、波長多重光伝送方式が用いられる多波長チャネル光送信器に関する。
 従来、通信トラヒックの増大に伴って、光通信システムにおける伝送容量を増大するために波長多重光伝送方式が用いられている。波長多重光伝送を行うためには、波長チャネルごとに光源を用意し、複数の光源からの出力光を、光合波器により合波して、光ファイバに出力する。光通信システムにおいては、光送信信号の光強度を一定に保つことが要求され、波長多重光伝送方式では、個々の波長チャネルの光強度を一定に保つことも必要である。そこで、光送信信号の一部を分岐して光強度をモニタし、モニタする光強度が一定になるように光源を制御することが行われている。
 図1に、従来の多波長チャネル光送信器であって、4波長を多重する多波長チャネル光送信器の一例を示す。波長チャネルごとの光源10a-10dからの出力光は、コリメータレンズ31a-31dを介して光合波器20に入力され、合波される。光合波器20の出力は、集光レンズ32を介して波長多重光として、全ての波長チャネルが多重化され、光ファイバ41に結合される。
 図2に光源の一例を示す。光源10は、サブキャリア12上に変調光源部16と光増幅部15とを含む光源チップ11が搭載され、光源チップ11の後端に、変調光源部16からの出力光の一部をモニタするモニタPD13が搭載されている。モニタPD13により各波長チャネルの光出力パワーを電流値として検出し、制御回路14は、検出した電流値が一定になるように光源チップ11への電流供給量を調整する。このような光出力コントロール(APC)回路によって、各光源チップ11からの光出力パワーを常に一定にすることが可能となる(例えば、非特許文献2参照)。
 光合波器20は、ガラスブロック21を含み、光源側の端面に、第1の光源10aからの出力光を透過する反射防止膜22が形成されている。ガラスブロック21の出力側の端面には、反射鏡24が形成され、第1の光源10aからの出力光を光源側に反射する。光源側の端面には、第2の光源10b-10dからの出力光を透過し、反射鏡24で反射された光を反射する波長フィルタ23b-23dが形成されている。各波長チャネルの光信号は、反射鏡24と波長フィルタ23b-dとの間を往復して、順に多重化され、出力側の端面に形成された反射防止膜25を透過して、波長多重光として出力される。
 このように、光源チップ11の後端にモニタPD13を配置する構成は、光源チップ11からの出力光に比例した光出力パワーをモニタすることができる。しかしながら、波長多重光となって出力されたときの波長チャネルごとの光出力パワーを、正確にモニタすることはできない。
 図3に、従来の多波長チャネル光送信器の他の例を示す。波長チャネルごとの光源50a-50dからの出力光は、コリメータレンズ31a-31dとビームスプリッタ53a-53dとを介して光合波器20に入力され、合波される。光合波器20の出力は、集光レンズ32を介して波長多重光として、全ての波長チャネルが多重化され、光ファイバ41に結合される(例えば、非特許文献1参照)。
 光源チップ51からの出力光は、ビームスプリッタ53a-53dにより一部が分岐されてモニタPD54a-54dによりモニタされる。モニタPD54a-dの出力は、光源50の制御回路に入力され、検出した電流値が一定になるように光源チップ51への電流供給量を調整する。
 このように、光源チップ51の出力側にモニタPD54を配置する構成は、光源50の光増幅部からの光出力を正確にモニタすることができるが、ビームスプリッタ53の通過損失分、分岐損失分だけ光の損失が発生する。また、第1の光源50aからの出力光は、光合波器20を透過する光路長が、他の波長チャネルの光路長と比較して長いため、損失が大きいという課題があった。
 また、特許文献1に記載された光モジュールのように、反射鏡に代えて波長フィルタを適用することにより、各波長チャネルの光出力パワーをモニタする方法が知られている。しかしながら、波長チャネルごとに個別の波長フィルタを用意することは、光合波器の部品数の増加、製造工程の増加などのコスト増加の課題があった。
 さらに、従来の光源チップ11は、出力光のビームの広がりが大きく、出射されたビームは、コリメータレンズ31の有効径である球面形状の外側にも到達する場合がある。外側に到達したビームはコリメート光とはならず、損失になるだけでなく、多波長チャネル光送信器の内部で散乱して、予期しない箇所へ光が到達するという課題もあった。
特開2017-98505号公報
K. Tsuzuki et.al., "Full C-Band Tunable DFB Laser Array Copackaged With InP Mach-Zehnder Modulator for DWDM Optical Communication Systems," Journal of selected topics in quantum electronics, vol. 15, no. 3, pp. 521-527, 2009 L. B. Aronson et. al., "Transmitter Optical Subassembly for XFP Applications," ECTC2005, DOI: 10.1109ECTC.2005.1441402
 本発明の一実施態様は、複数の波長チャネルを多重化して出力する光送信器であって、第1の光源と、前記第1の光源と波長が異なり、各々が異なる波長の1つ以上の第2の光源と、前記第1の光源および前記第2の光源の各々の出力に結合された複数のコリメータレンズと、前記第1の光源からの出力光を第1の端面から対向する第2の端面に透過させ、前記第2の端面に形成された反射鏡により反射させ、前記第2の光源からの出力光を前記第1の端面に形成された波長フィルタを透過させ、前記反射鏡により反射させ、各波長チャネルの出力光を前記反射鏡と前記波長フィルタとの間を往復させて順に多重化する光合波器と、前記複数のコリメータレンズと、前記第1の端面との間にそれぞれ挿入された複数のビームスプリッタであって、前記コリメータレンズによりコリメートされた平行光ビームの最大直径に相当する領域に反射防止膜が形成されたビームスプリッタと、前記複数のビームスプリッタの各々から分岐された光パワーをモニタする複数のモニタPDとを備えた。
 この構成によれば、光源から光合波器への出力においてビームスプリッタによる通過損失、分岐損失がなく、反射防止膜を透過しない光を利用して、光源からの光出力を正確にモニタすることができる。
図1は、従来の多波長チャネル光送信器の一例を示す図、 図2は、従来の多波長チャネル光送信器の光源の一例を示す図、 図3は、従来の多波長チャネル光送信器の他の例を示す図、 図4は、本発明の実施例1にかかる多波長チャネル光送信器を示す図、 図5は、実施例1の多波長チャネル光送信器のビームスプリッタの構造を示す図、 図6は、本発明の実施例2にかかる多波長チャネル光送信器を示す図、 図7は、本発明の実施例3にかかる多波長チャネル光送信器を示す図である。
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。
 図4に、本発明の実施例1にかかる多波長チャネル光送信器であって、各々が異なる4つ波長を多重する多波長チャネル光送信器の一例を示す。波長チャネルごとの光源110a-110dからの出力光は、コリメータレンズ131a-131dとビームスプリッタ153a-153dとを介して光合波器120に入力され、合波される。光合波器120の出力は、集光レンズ132を介して波長多重光として、全ての波長チャネルが多重化され、光ファイバ141に結合される。
 光合波器120は、ガラスブロック121を含み、光源側の端面に、第1の光源110aからの出力光を透過する反射防止膜122が形成されている。ガラスブロック121の出力側の端面には、反射鏡124が形成され、第1の光源110aからの出力光を光源側に反射する。光源側の端面には、第2の光源110b-110dからの出力光を透過し、反射鏡124で反射された光を反射する波長フィルタ123b-123dが形成されている。各波長チャネルの光信号は、反射鏡124と波長フィルタ123b-dとの間を往復して、順に多重化され、出力側の端面に形成された反射防止膜125を透過して、波長多重光として出力される。
 第1の光源110aおよび第2の光源110b-110dからの出力光は、ビームスプリッタ153a-153dにより一部が分岐されてモニタPD154a-154dにより、各々の出力光の光パワーがモニタされる。モニタPD154a-dの出力は、光源150の制御回路に入力され、検出した電流値が一定になるように、すなわち各々の出力光の光パワーが一定になるように、光源チップ151への電流供給量を調整する。
 図5に、実施例1の多波長チャネル光送信器のビームスプリッタの構造を示す。図5(a)は、光源110からの出力光の光軸に垂直で、キューブ型のビームスプリッタ153の光学薄膜面161に水平な方向から見た図である。光源110から出力された出力光のビームは、コリメータレンズ131によって集光される。このとき、レンズ球面に入るビーム(図5の実線で示す)はコリメート光となるが、レンズ球面の外側のエリアに入射したビーム(図5点線で示す)は、コリメート光にはならず、コリメータレンズ131から出力されても集光されずに広がっていく。外側に入射したビームは、一部はビームスプリッタ153に入射するが、集光されずに透過し、さらに一部は分岐されてモニタPD154に入力される。外側に入射したビームの残りの一部は、多波長チャネル光送信器の内部で散乱してしまう。従って、外側に入射したビームは、光ファイバ141に結合しない光となる。
 図5(b)は、ビームスプリッタ153の光学薄膜面161を、光源110側から、出力光の光軸方向に見た図である。光学薄膜面161には、ファイバ結合に寄与する、レンズ形状に固有のコリメートされた平行光ビームの最大直径に相当する領域163のみ、反射防止膜がコーティングされている。領域163以外の周囲の領域162は、コーティングなしか、または反射膜がコーティングされている。
 このような構成により、コリメータレンズ131のレンズ球面でコリメートされたビーム(図5の実線で示す)は、領域163を透過して、光合波器120に達する。従って、図1に示した従来の多波長チャネル光送信器のように、ビームスプリッタによる通過損失、分岐損失がなく、光源110の光増幅部からの光出力を光合波器120に出力することができる。また、レンズ球面の外側のエリアに入射したビーム(図5点線で示す)は、光学薄膜面161の領域163で全て反射され、モニタPD154に入力されるので、光ファイバ141に結合しない光を利用して、光源110からの光出力を正確にモニタすることができる。
 光合波器120内に集積された反射防止膜122、ビームスプリッタ153の光学薄膜面161の反射防止膜は、透過率99%である。図3に示した従来の光送信器のビームスプリッタ53は、反射率2%、透過率98%である。また、ガラスブロック121は、反射防止膜122および波長フィルタ123と、反射鏡124との間の伝播において1%の光損失がある。光合波器120の出力から光ファイバ141へのレンズ結合効率は63%である。
 実施例1の多波長チャネル光送信器を、ビームスプリッタ153とモニタPD154とを除いて組み立てた後、各波長チャネルの光源チップ111の出力が+4dBmになるように設定し、光ファイバ141に結合される光出力を測定した。光源110a-dの各波長チャネル1から4までの光出力は、それぞれ、+1.25,+1.43,+1.64,+1.87dBmであった。
 次に、領域163に反射膜がコーティングされたビームスプリッタ153とモニタPD154とを搭載した。モニタPD154側に分岐された光のパワーは-8dBmであった。これは、コリメータレンズ131のレンズ球面の外側のエリアに入射したビームが、領域163の反射膜によって反射された光のパワーである。このとき、各波長チャネル1から4までの光出力は、それぞれ、+1.21,+1.39,+1.60,+1.82dBmであった。
 比較として、図3に示した従来の多波長チャネル光送信器において、光源10a-dの各波長チャネル1から4までの光出力は、それぞれ、+1.07,+1.25,+1.47,+1.69dBmであった。このとき、モニタPD54側に分岐された光のパワーは、-11dBmであった。
 以上の結果から、従来の構造よりも各波長チャネルの出力光の損失が低く、かつモニタPD側に到達する光出力も大きい結果がえられた。このことから、実施例1の構造は、光ファイバへ結合する光出力パワーの改善に有意であることが示された。また、従来の構造より実施例1の構造の方がモニタPD側へ到達する光パワーが多いことから、散乱光となる成分の一部がモニタPDで受光され、散乱光の抑制にも効果があると確認できた。
 図6に、本発明の実施例2にかかる多波長チャネル光送信器であって、各々が異なる4つ波長を多重する多波長チャネル光送信器の一例を示す。波長チャネルごとの光源210a-210dからの出力光は、コリメータレンズとビームスプリッタとが集積された光学ブロック231a-231dを介して光合波器220に入力され、合波される。光合波器220の出力は、集光レンズ232を介して波長多重光として、全ての波長チャネルが多重化され、光ファイバ241に結合される。
 光合波器220は、ガラスブロック221を含み、光源側の端面に、第1の光源210aからの出力光を透過する反射防止膜222が形成されている。ガラスブロック221の出力側の端面には、反射鏡224が形成され、第1の光源210aからの出力光を光源側に反射する。光源側の端面には、第2の光源210b-210dからの出力光を透過し、反射鏡224で反射された光を反射する波長フィルタ223b-223dが形成されている。各波長チャネルの光信号は、反射鏡224と波長フィルタ223b-dとの間を往復して、順に多重化され、出力側の端面に形成された反射防止膜225を透過して、波長多重光として出力される。
 光学ブロック231は、コリメータレンズ232と光学薄膜面234を有するビームスプリッタ233とが接合されている。光学薄膜面234は、実施例1の図5(b)に示した光学薄膜面161と同じであり、レンズ形状に固有のコリメートされたビームの最大直径と同等の領域に反射防止膜がコーティングされ、それ以外の周囲の領域は、コーティングなしか、または反射膜がコーティングされている。
 第1の光源210aおよび第2の光源210b-210dからの出力光は、ビームスプリッタ233により一部が分岐されてモニタPD254により、各々の出力光の光パワーがモニタされる。モニタPD254の出力は、光源210の制御回路に入力され、検出した電流値が一定になるように、すなわち各々の出力光の光パワーが一定になるように、光源チップ211への電流供給量を調整する。
 光合波器220内に集積された反射防止膜222、ビームスプリッタ233の光学薄膜面234の反射防止膜は、透過率99%である。図3に示した従来の光送信器のビームスプリッタ53は、反射率2%、透過率98%である。また、ガラスブロック221は、反射防止膜222および波長フィルタ223b-dと、反射鏡224との間の伝播において1%の光損失がある。光合波器220の出力から光ファイバ241へのレンズ結合効率は63%である。
 多波長チャネル光送信器として組み立てた後、各波長チャネルの光源チップ211の出力が+5dBmになるように設定し、光ファイバ241に結合される光出力を測定した。実施例2では、光源210a-dの各波長チャネル1から4までの光出力は、それぞれ、+2.21,+2.39,+2.61,+2.82dBmであった。また、モニタPD254側に分岐された光のパワーは-7.5dBmであった。図3に示した従来の光送信器において、モニタPD54側に分岐された光のパワーは、-13dBmであった。
 以上の結果から、従来の構造よりも各波長チャネルの出力光の損失が低く、かつモニタPD側に到達する光出力も大きい結果がえられた。このことから、実施例2の構造は、光ファイバへ結合する光出力パワーの改善に有意であることが示された。また、従来の構造より実施例2の構造の方がモニタPD側へ到達する光パワーが多いことから、散乱光となる成分の一部がモニタPDで受光され、散乱光の抑制にも効果があると確認できた。
 図7は、本発明の実施例3にかかる多波長チャネル光送信器であって、各々が異なる4つ波長を多重する多波長チャネル光送信器の一例を示す。波長チャネルごとの光源310a-310dからの出力光は、コリメータレンズ331a-331dを介して光合波器320に入力され、合波される。光合波器320の出力は、集光レンズ332を介して波長多重光として、全ての波長チャネルが多重化され、光ファイバ341に結合される。
 光合波器320は、ガラスブロック321を含み、光源側の端面に、第1の光源310aからの出力光を透過し、一部をモニタPD354aに分岐する円形反射防止膜322が形成されている。円形反射防止膜322は、実施例1の図5(b)に示した光学薄膜面161と同様の構成を有し、レンズ形状に固有のコリメートされたビームの最大直径と同等の領域に反射防止膜がコーティングされ、それ以外の周囲の領域は、コーティングなしか、または反射膜がコーティングされている。第1の光源310aからの出力光のうち、コリメータレンズ331のレンズ球面でコリメートされたビームは、反射防止膜を透過して、ガラスブロック321に入射する。周囲の領域に入射したビームは、光合波器320からの反射光としてモニタPD354aに入力し、第1の光源310aの出力光の光パワーをモニタする。ガラスブロック321の出力側の端面には、反射鏡324が形成され、第1の光源310aからの出力光を光源側に反射する。
 第2の光源310b-310dからの出力光は、ビームスプリッタ353b-353dにより一部が分岐されてモニタPD354b-354dにより、各々の出力光の光パワーがモニタされる。ビームスプリッタ353の光学薄膜面は、実施例1の図5(b)に示した光学薄膜面161と同じであり、レンズ形状に固有のコリメートされたビームの最大直径と同等の領域に反射防止膜がコーティングされ、それ以外の周囲の領域は、コーティングなしか、または反射膜がコーティングされている。光源側の端面には、第2の光源310b-310dからの出力光を透過し、反射鏡324で反射された光を反射する波長フィルタ323b-323dが形成されている。各波長チャネルの光信号は、反射鏡324と波長フィルタ323b-dとの間を往復して、順に多重化され、出力側の端面に形成された反射防止膜325を透過して、波長多重光として出力される。
 モニタPD354a-dの出力は、光源310の制御回路に入力され、検出した電流値が一定になるように、すなわち各々の出力光の光パワーが一定になるように、光源チップ311への電流供給量を調整する。
 第1の光源からの出力光は、図3に示した従来の光送信器では、ビームスプリッタ53aと光合波器20の反射防止膜22を透過してガラスブロック21を伝播する。一方、実施例3の光送信器では、光合波器320の円形反射防止膜322のみを透過してガラスブロック321を伝播する。反射防止膜は、一方向性の透過膜であり、ガラスブロック端面での反射を抑制することができるが、反射防止膜の入射面においては、わずかながら反射する成分が発生する。従って、実施例3の光送信器によれば、この反射成分に相当する光損失を抑制することができる。第1の光源310aからの出力光は、光合波器320を透過する光路長が、他の波長チャネルの光路長と比較して最も長いため、損失が大きいが、上記の反射成分に相当する光損失を抑制することができる。
 光合波器320の円形反射防止膜322、ビームスプリッタ353の光学薄膜面の反射防止膜は、透過率99%である。図3に示した従来の光送信器のビームスプリッタ53は、反射率2%、透過率98%である。また、ガラスブロック321は、反射防止膜322および波長フィルタ323b-dと、反射鏡324との間の伝播において1%の光損失がある。光合波器320の出力から光ファイバ341へのレンズ結合効率は63%である。
 多波長チャネル光送信器として組み立てた後、各波長チャネルの光源チップ311の出力が+4dBmになるように設定し、光ファイバ341に結合される光出力を測定した。光源310の波長チャネル1の光出力は、+1.19dBmであった。また、モニタPD354a側に分岐された光のパワーを測定したところ、-10.8dBmであった。図3に示した従来の光送信器において、光源チップ50aの出力を+4dBmとしたとき、波長チャネル1の光出力パワーは、+1.07dBmであった。また、モニタPD54側に分岐された光のパワーは、-11dBmであった。
 以上の結果から、従来の構造よりも各波長チャネルの出力光の損失が低く、かつモニタPD側に到達する光出力も大きい結果がえられた。このことから、実施例2の構造は、光ファイバへ結合する光出力パワーの改善に有意であることが示された。また、従来の構造より実施例2の構造の方がモニタPD側へ到達する光パワーが多いことから、散乱光となる成分の一部がモニタPDで受光され、散乱光の抑制にも効果があると確認できた。
 実施例3では、4波長を多重する多波長チャネル光送信器であって、光合波器を透過する光路長が最も長い波長チャネルの第1の光源と、他の波長チャネルの3つの第2の光源とを例に説明した。第2の光源の数は1つ以上であれば、実施例3を適用することができる。

Claims (4)

  1.  複数の波長チャネルを多重化して出力する光送信器であって、
     第1の光源と、
     前記第1の光源と波長が異なり、各々が異なる波長の1つ以上の第2の光源と、
     前記第1の光源および前記第2の光源の各々の出力に結合された複数のコリメータレンズと、
     前記第1の光源からの出力光を第1の端面から対向する第2の端面に透過させ、前記第2の端面に形成された反射鏡により反射させ、前記第2の光源からの出力光を前記第1の端面に形成された波長フィルタを透過させ、前記反射鏡により反射させ、各波長チャネルの出力光を前記反射鏡と前記波長フィルタとの間を往復させて順に多重化する光合波器と、
     前記複数のコリメータレンズと、前記第1の端面との間にそれぞれ挿入された複数のビームスプリッタであって、前記コリメータレンズによりコリメートされた平行光ビームの最大直径に相当する領域に反射防止膜が形成されたビームスプリッタと、
     前記複数のビームスプリッタの各々から分岐された光パワーをモニタする複数のモニタPDと
     を備えたことを特徴とする光送信器。
  2.  前記ビームスプリッタは、前記平行光ビームの最大直径に相当する前記領域以外の周囲の領域に、反射膜が形成されていることを特徴とする請求項1に記載の光送信器。
  3.  前記コリメータレンズと前記ビームスプリッタとが集積されていることを特徴とする請求項1または2に記載の光送信器。
  4.  複数の波長チャネルを多重化して出力する光送信器であって、
     第1の光源と、
     前記第1の光源と波長が異なり、各々が異なる波長の1つ以上の第2の光源と、
     前記第1の光源および前記第2の光源の各々の出力に結合された複数のコリメータレンズと、
     前記第1の光源からの出力光を第1の端面から対向する第2の端面に透過させ、前記第2の端面に形成された反射鏡により反射させ、前記第2の光源からの出力光を前記第1の端面に形成された波長フィルタを透過させ、前記反射鏡により反射させ、各波長チャネルの出力光を前記反射鏡と前記波長フィルタとの間を往復させて順に多重化する光合波器と、
     前記第1の光源からの出力光の一部を前記光合波器からの反射光として光パワーをモニタする第1のモニタPDと、
     前記第2の光源の各々の出力に結合された1つ以上のコリメータレンズと、前記第1の端面との間にそれぞれ挿入された1つ以上のビームスプリッタであって、前記コリメータレンズによりコリメートされた平行光ビームの最大直径に相当する領域に反射防止膜が形成されたビームスプリッタと、
     前記1つ以上のビームスプリッタの各々から分岐された光パワーをモニタする1つ以上の第2のモニタPDとを備え、
     前記光合波器は、前記第1の端面に形成され、前記第1の光源からの出力光のうち、前記コリメータレンズによりコリメートされたビームを透過し、前記第1の光源からの出力光の一部を、前記第1のモニタPDに分岐する円形反射防止膜を含むことを特徴とする光送信器。
PCT/JP2021/000324 2021-01-07 2021-01-07 光送信器 WO2022149235A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022573856A JPWO2022149235A1 (ja) 2021-01-07 2021-01-07
PCT/JP2021/000324 WO2022149235A1 (ja) 2021-01-07 2021-01-07 光送信器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/000324 WO2022149235A1 (ja) 2021-01-07 2021-01-07 光送信器

Publications (1)

Publication Number Publication Date
WO2022149235A1 true WO2022149235A1 (ja) 2022-07-14

Family

ID=82358094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000324 WO2022149235A1 (ja) 2021-01-07 2021-01-07 光送信器

Country Status (2)

Country Link
JP (1) JPWO2022149235A1 (ja)
WO (1) WO2022149235A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002185074A (ja) * 2000-12-13 2002-06-28 Nec Corp 波長可変光送信器、その出力制御方法並及び光通信システム
US6535542B1 (en) * 2000-07-20 2003-03-18 Avanex Corporation Multi-wavelength laser light source
US20030107746A1 (en) * 2001-12-11 2003-06-12 Altitun Ab Robust wavelength locker for control of laser wavelength
JP2014150224A (ja) * 2013-02-04 2014-08-21 Sumitomo Electric Ind Ltd 光送信モジュール
US20170026116A1 (en) * 2015-07-25 2017-01-26 University of Zagreb, Faculty of Electrical Engineering and Computing Tunable transceivers for colorless spectrum-sliced WDM passive optical networks
JP2017098505A (ja) * 2015-11-27 2017-06-01 富士通オプティカルコンポーネンツ株式会社 光モジュール
US20170230116A1 (en) * 2014-08-15 2017-08-10 Hewlett Packard Enterprise Development Lp Optical mode matching
JP2019050242A (ja) * 2017-09-07 2019-03-28 三菱電機株式会社 光モジュールの製造方法および製造装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6535542B1 (en) * 2000-07-20 2003-03-18 Avanex Corporation Multi-wavelength laser light source
JP2002185074A (ja) * 2000-12-13 2002-06-28 Nec Corp 波長可変光送信器、その出力制御方法並及び光通信システム
US20030107746A1 (en) * 2001-12-11 2003-06-12 Altitun Ab Robust wavelength locker for control of laser wavelength
JP2014150224A (ja) * 2013-02-04 2014-08-21 Sumitomo Electric Ind Ltd 光送信モジュール
US20170230116A1 (en) * 2014-08-15 2017-08-10 Hewlett Packard Enterprise Development Lp Optical mode matching
US20170026116A1 (en) * 2015-07-25 2017-01-26 University of Zagreb, Faculty of Electrical Engineering and Computing Tunable transceivers for colorless spectrum-sliced WDM passive optical networks
JP2017098505A (ja) * 2015-11-27 2017-06-01 富士通オプティカルコンポーネンツ株式会社 光モジュール
JP2019050242A (ja) * 2017-09-07 2019-03-28 三菱電機株式会社 光モジュールの製造方法および製造装置

Also Published As

Publication number Publication date
JPWO2022149235A1 (ja) 2022-07-14

Similar Documents

Publication Publication Date Title
US6208679B1 (en) High-power multi-wavelength external cavity laser
CN110095879B (zh) 多通道光发射器件及其制造和使用方法
US6327292B1 (en) External cavity laser source using spectral beam combining in two dimensions
US6192062B1 (en) Beam combining of diode laser array elements for high brightness and power
CA2330474A1 (en) Bidirectional module for multichannel use
US10746933B2 (en) Fiber coupled laser source pump with wavelength division multiplexer, isolator, tap filter, and photodetector
JP2002141608A (ja) 半導体レーザモジュールとそれを用いたラマン増幅器
JPH10215017A (ja) 光源装置、光増幅器及び光通信システム
US20190187391A1 (en) Optical module having two lens system and monitor photodiode between two lenses
US20020037131A1 (en) Method for gain equalization, and device and system for use in carrying out the method
JP2004072069A (ja) 可変多波長半導体レーザーの共振空洞システム
WO2022149235A1 (ja) 光送信器
WO2022130512A1 (ja) 光送信器
JP2004335532A (ja) 半導体レーザモジュール、光学部品ブロックおよび光共振器フィルタ。
US9935425B2 (en) Fiber coupled laser source pump with wavelength division multiplexer
WO2022033062A1 (zh) 一种用于调节波长的器件
US20240106544A1 (en) Optical Transmitter and Method of Calculating an Optical Power
US20030039277A1 (en) Semiconductor laser apparatus and semiconductor laser module
JP2004093971A (ja) 半導体レーザ装置、半導体レーザモジュール及び光送信器
US6714699B1 (en) Multi-wavelength non-laser light source
WO2022269810A1 (ja) 多チャネル光モジュール
JP4344446B2 (ja) 光モジュール
WO2022269805A1 (ja) 多チャネル光モジュール
JP4336117B2 (ja) レーザ装置およびレーザモジュール
US6535542B1 (en) Multi-wavelength laser light source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573856

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917462

Country of ref document: EP

Kind code of ref document: A1