WO2022269810A1 - 多チャネル光モジュール - Google Patents

多チャネル光モジュール Download PDF

Info

Publication number
WO2022269810A1
WO2022269810A1 PCT/JP2021/023814 JP2021023814W WO2022269810A1 WO 2022269810 A1 WO2022269810 A1 WO 2022269810A1 JP 2021023814 W JP2021023814 W JP 2021023814W WO 2022269810 A1 WO2022269810 A1 WO 2022269810A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
optical module
beam splitter
optical
coupled
Prior art date
Application number
PCT/JP2021/023814
Other languages
English (en)
French (fr)
Inventor
慈 金澤
隆彦 進藤
明晨 陳
泰彦 中西
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023529324A priority Critical patent/JPWO2022269810A1/ja
Priority to PCT/JP2021/023814 priority patent/WO2022269810A1/ja
Publication of WO2022269810A1 publication Critical patent/WO2022269810A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/03WDM arrangements
    • H04J14/0305WDM arrangements in end terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control

Definitions

  • the present invention relates to a multi-channel optical module, and more particularly to a multi-channel optical module that serves as an optical transmitter in an optical communication system using a wavelength division multiplexing optical transmission system.
  • wavelength division multiplexing optical transmission systems have been used to increase transmission capacity in optical communication systems.
  • a light source is prepared for each wavelength channel, and the output lights from the plurality of light sources are multiplexed by an optical multiplexer and output to an optical fiber.
  • it is required to keep the light intensity of an optical transmission signal constant, and in a wavelength division multiplexing optical transmission system, it is also necessary to keep the light intensity of each wavelength channel constant. Therefore, part of the optical transmission signal is branched to monitor the light intensity, and the light source is controlled so that the monitored light intensity is constant.
  • FIG. 1 shows an example of a conventional multi-channel optical module, an optical transmitter that multiplexes four wavelengths.
  • Output lights from the light source chips 11a to 11d mounted on the light source for each wavelength channel are input to the optical multiplexer 20 via the collimator lenses 31a to 31d, and multiplexed.
  • the output of the optical multiplexer 20 passes through the condensing lens 32 as wavelength-multiplexed light, in which all wavelength channels are multiplexed and coupled to the optical fiber 41 .
  • Fig. 2 shows an example of a light source of a conventional multi-channel optical module.
  • a light source chip 11 including a modulated light source section 16 and an optical amplifier section 15 is mounted on a subcarrier 12, and a monitor for monitoring part of the output light from the modulated light source section 16 is provided at the rear end of the light source chip 11.
  • PD13 is installed.
  • the monitor PD 13 detects the optical output power of each wavelength channel as a current value, and the control circuit 14 adjusts the amount of current supplied to the light source chip 11 so that the detected current value becomes constant.
  • Such an optical output control (APC) circuit makes it possible to keep the optical output power from each light source chip 11 always constant (see Non-Patent Documents 2 and 3, for example).
  • the configuration in which the monitor PD 13 is arranged at the rear end of the light source chip 11 can monitor the optical output power proportional to the output light from the light source chip 11 .
  • FIG. 3 shows another example of a conventional multi-channel optical module.
  • FIG. 3(a) shows the structure of the multiplexer viewed from the plane of the substrate
  • FIG. 3(b) shows the structure of the multiplexer viewed from the side of the substrate.
  • Output lights from the light source chips 11a to 11d mounted on the light source for each wavelength channel are input to the optical combiner 20 via the collimator lenses 31a to 31d and the beam splitter 51, and combined.
  • the output of the optical multiplexer 20 passes through the condenser lens 32 as wavelength-multiplexed light, in which all wavelength channels are multiplexed and coupled to the optical fiber 41 (see Non-Patent Document 1, for example).
  • a part of the output light from the light source chips 11a-11d is split by the beam splitter 51 and monitored by the monitor PDs 53a-53d.
  • the outputs of the monitor PDs 53a-53d are input to the control circuit 14 of the light source, and the amount of current supplied to the light source chip 11 is adjusted so that the detected current value becomes constant.
  • the configuration in which the monitor PD 53 is arranged on the output side of the light source chip 11 can accurately monitor the output from the light amplification section 15 of the light source, but the light loss is caused by the passage loss of the beam splitter 51. Occur.
  • the spread of the output beam from the light source chip 11 is large, and as indicated by the thin line in FIG. , and stray light components that do not contribute to the collimated light are output.
  • the stray light component exceeding the effective diameter of the collimator lens 31 is coupled with the monitor PD 13 of the adjacent channel, causing crosstalk.
  • An object of the present invention is to provide a multi-channel optical module that suppresses crosstalk between adjacent channels when monitoring optical output power.
  • one embodiment of the present invention provides a multi-channel optical module for multiplexing and outputting a plurality of wavelength channels, comprising a plurality of light sources each having a different wavelength; a plurality of collimator lenses coupled to the output of each of the light sources, a beam splitter coupled to the output of each of the plurality of collimator lenses, and a plurality of monitor PDs for monitoring optical power split from the beam splitters; and a shield plate installed between the plurality of collimator lenses.
  • FIG. 1 is a diagram showing an example of a conventional multi-channel optical module
  • FIG. 2 is a diagram showing an example of a light source of a conventional multi-channel optical module
  • FIG. 3 is a diagram showing another example of a conventional multi-channel optical module
  • FIG. 4 is a diagram showing a multi-channel optical module according to a first embodiment of the present invention
  • FIG. 5 is a diagram showing a multi-channel optical module according to Example 2 of the present invention.
  • FIG. 4 shows an example of a multi-channel optical module according to the first embodiment of the present invention, which is an optical transmitter that multiplexes four different wavelengths.
  • FIG. 4(a) shows the structure of the multiplexer viewed from the plane of the substrate
  • FIG. 4(b) shows the structure of the multiplexer viewed from the side of the substrate.
  • Output lights from the light source chips 111a to 111d mounted on the light source for each wavelength channel are input to the optical multiplexer 120 via the collimator lenses 131a to 131d and the beam splitter 151, and multiplexed.
  • the output of the optical multiplexer 120 passes through the condensing lens 132 as wavelength-multiplexed light, in which all wavelength channels are multiplexed and coupled to the optical fiber 141 .
  • a part of the output light from the light source chips 111a-111d is split by the beam splitter 151, and the optical power of each output light is monitored by the monitor PDs 153a-153d.
  • the outputs of the monitor PDs 153a-153d are input to the control circuit of the light source, and the amount of current supplied to the light source chip 111 is adjusted so that the detected current value becomes constant, that is, the optical power of each output light becomes constant. to adjust.
  • the beam splitter 151 can be, for example, a cube type in which the slopes of two rectangular prisms are combined with an optical thin film interposed therebetween.
  • Embodiment 1 has an integrated structure capable of branching four channels collectively.
  • shielding plates 161a-161c are installed between the collimator lenses 131a-131d of each wavelength channel.
  • the shielding plate 161 is made of a ceramic substrate and is higher than the collimator lens 131 and the beam splitter 151 as shown in FIG. 4(b).
  • a reflective film or a light shielding film may be formed on the side surface of the shielding plate 161 .
  • the shielding plate 161 may be made of another material as long as it blocks light.
  • the output light from the light source chip 111a is transmitted through the collimator lens 131a to become collimated light, and is input to the optical multiplexer 120 via the beam splitter 151, as indicated by the thin line in FIG. 4(a).
  • the dashed line stray light components exceeding the effective diameter of the collimator lens 131a are reflected or blocked by the shield plate 161a and do not reach adjacent channels. Therefore, since this stray light component is not coupled to the monitor PD 153b of the adjacent channel, it is possible to suppress crosstalk between adjacent channels when monitoring the optical output power.
  • the output of the light source chip 111 for each wavelength channel was set to be +4 dBm, and when only a single wavelength channel was operated, the monitor PD 153 was The detected current value was measured.
  • the current values for each wavelength channel 1 to 4 were 104, 101, 101 and 100 ⁇ A, respectively.
  • the current values detected by the monitor PD 153 when the four channels were operated simultaneously were measured to obtain 105, 102, 101 and 101 ⁇ A, respectively.
  • the current values when four channels are simultaneously operated are 10, 10, 11, and 11 ⁇ A higher than when a single wavelength channel is operated, and the influence of crosstalk is reduced. I know you are receiving it.
  • the changes in the current value when a single wavelength channel is operated and when four channels are operated simultaneously are as small as 1, 1, 0, and 1 ⁇ A, and the cross between adjacent channels is small. It can be seen that the talk is suppressed.
  • FIG. 5 shows an example of a multi-channel optical module according to the second embodiment of the present invention, which is an optical transmitter that multiplexes four different wavelengths.
  • FIG. 5(a) shows the structure of the multiplexer viewed from the plane of the substrate
  • FIG. 5(b) shows the structure of the multiplexer viewed from the side of the substrate.
  • Output lights from the light source chips 111a to 111d mounted on the light source for each wavelength channel are input to the optical multiplexer 120 via the collimator lenses 231a to 231d and the beam splitter 251, and multiplexed.
  • the output of the optical multiplexer 120 passes through the condensing lens 132 as wavelength-multiplexed light, in which all wavelength channels are multiplexed and coupled to the optical fiber 141 .
  • a part of the output light from the light source chips 111a-111d is split by the beam splitter 251, and the optical power of each output light is monitored by the monitor PDs 253a-253d.
  • the outputs of the monitor PDs 253a-253d are input to the control circuit of the light source, and the amount of current supplied to the light source chip 111 is adjusted so that the detected current value becomes constant, that is, the optical power of each output light becomes constant. to adjust.
  • the beam splitter 251 can be, for example, a cube type in which the slopes of two rectangular prisms are combined with an optical thin film interposed therebetween.
  • the difference from the beam splitter 151 of the first embodiment is that the beam splitter 251 is integrated with shielding plates 252a-252c.
  • a shielding plate 252 is installed between the monitor PDs 253a-253d of each wavelength channel and between the optical paths of the light sources 111a-111d coupled through the collimator lenses 231a-231d so as to divide the optical thin film.
  • the beam splitter 251 may be divided for each wavelength channel and joined via a metal film that serves as the shielding plate 252 .
  • a groove may be formed in the beam splitter 251 and a shielding plate 252 made of a ceramic substrate may be inserted. At this time, a reflective film or a light shielding film may be formed on the side surface of the shielding plate 252 .
  • shielding plates 232a and 232b are installed on the side surfaces of the lens holders of the collimator lenses 231a to 231d of the wavelength channels.
  • Each shield plate 232 is made of a metal film.
  • the shielding plate 232 may be made of another material as long as it blocks light, and for example, a ceramic substrate may be bonded.
  • the shielding plates 232 and 252 are provided on both the lens holder and the beam splitter 251 in the second embodiment, only one of them may be provided.
  • stray light components exceeding the effective diameter of the collimator lens 231a are reflected or blocked by the shielding plates 232a and 232b, and are suppressed from leaking to adjacent channels.
  • it cannot be reflected or blocked by the shield plate 252a and coupled into the adjacent channel monitor PD 253b. Therefore, crosstalk between adjacent channels can be suppressed when monitoring the optical output power.
  • the output of the light source chip 111 for each wavelength channel is set to +5 dBm, and when only a single wavelength channel is operated, the monitor PD 253 is The detected current value was measured.
  • the current values for each wavelength channel 1 to 4 were 124, 121, 121 and 121 ⁇ A, respectively.
  • the current values detected by the monitor PD 253 when four channels were operated simultaneously were measured, and 125, 122, 121 and 121 ⁇ A were obtained, respectively.
  • the current values when four channels are simultaneously operated are 11, 10, 11, and 11 ⁇ A higher than when a single wavelength channel is operated, and the influence of crosstalk is reduced. I know you are receiving it.
  • the change in the current value when a single wavelength channel is operated and when four channels are operated simultaneously is as small as 1, 1, 0, 0 ⁇ A, and the cross between adjacent channels is small. It can be seen that the talk is suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

出力パワーをモニタする際の隣接チャネル間のクロストークを抑制する。複数の波長チャネルを多重化して出力する多チャネル光モジュールであって、各々が異なる波長の複数の光源と、前記複数の光源の各々の出力に結合された複数のコリメータレンズと、前記複数のコリメータレンズの各々の出力に結合されたビームスプリッタと、前記ビームスプリッタから分岐された光パワーをモニタする複数のモニタPDと、前記複数のコリメータレンズの間に設置された遮蔽板とを備えた。

Description

多チャネル光モジュール
 本発明は、多チャネル光モジュールに関し、より詳細には、波長多重光伝送方式が用いられる光通信システムにおいて光送信器となる多チャネル光モジュールに関する。
 従来、通信トラヒックの増大に伴って、光通信システムにおける伝送容量を増大するために波長多重光伝送方式が用いられている。波長多重光伝送を行うためには、波長チャネルごとに光源を用意し、複数の光源からの出力光を、光合波器により合波して、光ファイバに出力する。光通信システムにおいては、光送信信号の光強度を一定に保つことが要求され、波長多重光伝送方式では、個々の波長チャネルの光強度を一定に保つことも必要である。そこで、光送信信号の一部を分岐して光強度をモニタし、モニタする光強度が一定になるように光源を制御することが行われている。
 図1に、従来の多チャネル光モジュールであって、4波長を多重する光送信器の一例を示す。波長チャネルごとの光源に搭載された光源チップ11a-11dからの出力光は、コリメータレンズ31a-31dを介して光合波器20に入力され、合波される。光合波器20の出力は、集光レンズ32を介して波長多重光として、全ての波長チャネルが多重化され、光ファイバ41に結合される。
 図2に、従来の多チャネル光モジュールの光源の一例を示す。光源は、サブキャリア12上に変調光源部16と光増幅部15とを含む光源チップ11が搭載され、光源チップ11の後端に、変調光源部16からの出力光の一部をモニタするモニタPD13が搭載されている。モニタPD13により各波長チャネルの光出力パワーを電流値として検出し、制御回路14は、検出した電流値が一定になるように光源チップ11への電流供給量を調整する。このような光出力コントロール(APC)回路によって、各光源チップ11からの光出力パワーを常に一定にすることが可能となる(例えば、非特許文献2,3参照)。
 このように、光源チップ11の後端にモニタPD13を配置する構成は、光源チップ11からの出力光に比例した光出力パワーをモニタすることができる。しかしながら、波長多重光となって出力されたときの波長チャネルごとの光出力パワーを、正確にモニタすることはできない。
 図3に、従来の多チャネル光モジュールの他の例を示す。図3(a)は合波器の基板平面から見た構成を示し、図3(b)は合波器の基板側面から見た構成を示す。波長チャネルごとの光源に搭載された光源チップ11a-11dからの出力光は、コリメータレンズ31a-31dとビームスプリッタ51とを介して光合波器20に入力され、合波される。光合波器20の出力は、集光レンズ32を介して波長多重光として、全ての波長チャネルが多重化され、光ファイバ41に結合される(例えば、非特許文献1参照)。
 光源チップ11a-11dからの出力光は、ビームスプリッタ51により一部が分岐されてモニタPD53a-53dによりモニタされる。モニタPD53a-53dの出力は、光源の制御回路14に入力され、検出した電流値が一定になるように光源チップ11への電流供給量を調整する。このように、光源チップ11の出力側にモニタPD53を配置する構成は、光源の光増幅部15からの出力を正確にモニタすることができるが、ビームスプリッタ51の通過損失分だけ光の損失が発生する。
 加えて、光源チップ11からの出力ビームの広がりが大きく、図3(a)に細線で示したように、コリメート光となって合波器に入力される光成分と、破線で示したように、コリメート光に寄与しない迷光成分とが出力される。このように、コリメータレンズ31の有効径を越える迷光成分が、隣接チャネルのモニタPD13に結合してしまい、クロストークを発生させるという課題があった。
K. Tsuzuki et.al., "Full C-Band Tunable DFB Laser Array Copackaged With InP Mach-Zehnder Modulator for DWDM Optical Communication Systems," Journal of selected topics in quantum electronics, vol. 15, no. 3, pp. 521-527, 2009 L. B. Anronson et. al., "Transmitter Optical Subassembly for XFP Applications," ECTC2005, DOI: 10.1109ECTC.2005.1441402 Tadashi Murao et al, "Integrated Spatial Optical System for Compact 28-Gb/s×4-lane Transmitter Optical Subassemblies", IEEE PHOTONICS TECHNOLOGY LETTERS, P. 2275 VOL. 26, NO. 22, NOVEMBER 15, 2014
 本発明の目的は、光出力パワーをモニタする際の隣接チャネル間のクロストークを抑制した多チャネル光モジュールを提供することにある。
 本発明は、このような目的を達成するために、一実施態様は、複数の波長チャネルを多重化して出力する多チャネル光モジュールであって、各々が異なる波長の複数の光源と、前記複数の光源の各々の出力に結合された複数のコリメータレンズと、前記複数のコリメータレンズの各々の出力に結合されたビームスプリッタと、前記ビームスプリッタから分岐された光パワーをモニタする複数のモニタPDと、前記複数のコリメータレンズの間に設置された遮蔽板とを備えたことを特徴とする。
図1は、従来の多チャネル光モジュールの一例を示す図、 図2は、従来の多チャネル光モジュールの光源の一例を示す図、 図3は、従来の多チャネル光モジュールの他の例を示す図、 図4は、本発明の実施例1にかかる多チャネル光モジュールを示す図、 図5は、本発明の実施例2にかかる多チャネル光モジュールを示す図である。
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。本実施形態では、4つ波長を多重化して出力する多チャネル光モジュールについて説明するが、多重化する波長の数は限られない。
 図4に、本発明の実施例1にかかる多チャネル光モジュールであって、各々が異なる4つ波長を多重する光送信器の一例を示す。図4(a)は合波器の基板平面から見た構成を示し、図4(b)は合波器の基板側面から見た構成を示す。波長チャネルごとの光源に搭載された光源チップ111a-111dからの出力光は、コリメータレンズ131a-131dとビームスプリッタ151とを介して光合波器120に入力され、合波される。光合波器120の出力は、集光レンズ132を介して波長多重光として、全ての波長チャネルが多重化され、光ファイバ141に結合される。
 光源チップ111a-111dからの出力光は、ビームスプリッタ151により一部が分岐されて、モニタPD153a-153dにより、各々の出力光の光パワーがモニタされる。モニタPD153a-153dの出力は、光源の制御回路に入力され、検出した電流値が一定になるように、すなわち各々の出力光の光パワーが一定になるように、光源チップ111への電流供給量を調整する。
 ビームスプリッタ151は、例えば、2つの直角プリズムの斜面が光学薄膜を挟んで結合されたキューブ型とすることができる。実施例1では、4チャネルを一括して分岐できる一体型の構造を有している。
 また、各波長チャネルのコリメータレンズ131a-131dの間には、遮蔽板161a-161cが設置されている。遮蔽板161は、セラミック基板からなり、図4(b)に示すように、コリメータレンズ131およびビームスプリッタ151の高さよりも高い。遮蔽板161の側面には、反射膜を形成しておいてもよいし、遮光膜を形成しておいてもよい。また、遮蔽板161は、光を遮るものであれば、他の材料を用いてもよい。
 例えば、光源チップ111aからの出力光は、図4(a)に細線で示したように、コリメータレンズ131aを透過してコリメート光となり、ビームスプリッタ151を介して光合波器120に入力される。一方、破線で示したように、コリメータレンズ131aの有効径を越える迷光成分は、遮蔽板161aにより反射し、または遮られて隣接チャネルに達することがない。従って、この迷光成分は、隣接チャネルのモニタPD153bに結合することはないので、光出力パワーをモニタする際の隣接チャネル間のクロストークを抑制することができる。
 実施例1の多チャネル光モジュールを光送信器として組み立てた後、各波長チャネルの光源チップ111の出力が+4dBmになるように設定し、単一の波長チャネルのみを動作させた時のモニタPD153が検出した電流値を測定した。各波長チャネル1から4までの電流値は、それぞれ、104,101,101,100μAであった。次に、4チャネルを同時に動作させた時のモニタPD153が検出した電流値を測定し、それぞれ105,102,101,101μAを得た。
 比較のために、図2に示した従来の光送信器においても同様の測定を行った。各波長チャネルの光源チップ11の出力が+4dBmになるように設定し、単一の波長チャネルのみを動作させた時のモニタPD53の電流値は、それぞれ、105,103,101,99μAであった。次に、4チャネルを同時に動作させた時のモニタPD53が検出した電流値を測定し、それぞれ115,113,112,110μAを得た。
 従来例においては、単一の波長チャネルを動作させた時よりも4チャネルを同時に動作させた時の電流値の方が、それぞれ10,10,11,11μA増加しており、クロストークの影響を受けていることが分かる。一方、実施例1によれば、単一の波長チャネルを動作させた時と4チャネルを同時に動作させた時の電流値に変化は、1,1,0,1μAと小さく、隣接チャネル間のクロストークが抑制されていることが分かる。
 図5に、本発明の実施例2にかかる多チャネル光モジュールであって、各々が異なる4つ波長を多重する光送信器の一例を示す。図5(a)は合波器の基板平面から見た構成を示し、図5(b)は合波器の基板側面から見た構成を示す。波長チャネルごとの光源に搭載された光源チップ111a-111dからの出力光は、コリメータレンズ231a-231dとビームスプリッタ251とを介して光合波器120に入力され、合波される。光合波器120の出力は、集光レンズ132を介して波長多重光として、全ての波長チャネルが多重化され、光ファイバ141に結合される。
 光源チップ111a-111dからの出力光は、ビームスプリッタ251により一部が分岐されて、モニタPD253a-253dにより、各々の出力光の光パワーがモニタされる。モニタPD253a-253dの出力は、光源の制御回路に入力され、検出した電流値が一定になるように、すなわち各々の出力光の光パワーが一定になるように、光源チップ111への電流供給量を調整する。
 ビームスプリッタ251は、例えば、2つの直角プリズムの斜面が光学薄膜を挟んで結合されたキューブ型とすることができる。実施例1のビームスプリッタ151との相違は、ビームスプリッタ251に遮蔽板252a-252cが集積されている点にある。遮蔽板252は、各波長チャネルのモニタPD253a-253dの間であって、コリメータレンズ231a-231dを介して結合される光源111a-111dの光路の間に、光学薄膜を分断するように設置される。例えば、ビームスプリッタ251を波長チャネルごとに分割し、遮蔽板252となる金属膜を介して接合してもよい。また、ビームスプリッタ251に溝を形成し、セラミック基板からなる遮蔽板252を挿入するようにしてもよい。このとき、遮蔽板252の側面には、反射膜または遮光膜を形成しておいてもよい。
 加えて、波長チャネルのコリメータレンズ231a-231dのレンズホルダの側面には、遮蔽板232a,232bが設置されている。遮蔽板232の各々は、金属膜からなる。遮蔽板232は、光を遮るものであれば、他の材料を用いてもよく、例えば、セラミック基板を接合してもよい。実施例2では、レンズホルダとビームスプリッタ251の双方に遮蔽板232,252を設けたが、いずれか一方のみでもよい。
 実施例1と同様に、コリメータレンズ231aの有効径を越える迷光成分は、遮蔽板232a,232bにより反射し、または遮られて隣接チャネルへの漏れを抑制される。加えて、遮蔽板252aにより反射し、または遮られて隣接チャネルのモニタPD253bに結合することはない。従って、光出力パワーをモニタする際の隣接チャネル間のクロストークを抑制することができる。
 実施例2の多チャネル光モジュールを光送信器として組み立てた後、各波長チャネルの光源チップ111の出力が+5dBmになるように設定し、単一の波長チャネルのみを動作させた時のモニタPD253が検出した電流値を測定した。各波長チャネル1から4までの電流値は、それぞれ、124,121,121,121μAであった。次に、4チャネルを同時に動作させた時のモニタPD253が検出した電流値を測定し、それぞれ125,122,121,121μAを得た。
 比較のために、図2に示した従来の光送信器においても同様の測定を行った。各波長チャネルの光源チップ11の出力が+5dBmになるように設定し、単一の波長チャネルのみを動作させた時のモニタPD53の電流値は、それぞれ、125,123,121,119μAであった。次に、4チャネルを同時に動作させた時のモニタPD53が検出した電流値を測定し、それぞれ136,133,132,130μAを得た。
 従来例においては、単一の波長チャネルを動作させた時よりも4チャネルを同時に動作させた時の電流値の方が、それぞれ11,10,11,11μA増加しており、クロストークの影響を受けていることが分かる。一方、実施例2によれば、単一の波長チャネルを動作させた時と4チャネルを同時に動作させた時の電流値に変化は、1,1,0,0μAと小さく、隣接チャネル間のクロストークが抑制されていることが分かる。

Claims (6)

  1.  複数の波長チャネルを多重化して出力する多チャネル光モジュールであって、
     各々が異なる波長の複数の光源と、
     前記複数の光源の各々の出力に結合された複数のコリメータレンズと、
     前記複数のコリメータレンズの各々の出力に結合されたビームスプリッタと、
     前記ビームスプリッタから分岐された光パワーをモニタする複数のモニタPDと、
     前記複数のコリメータレンズの間に設置された遮蔽板と
     を備えたことを特徴とする多チャネル光モジュール。
  2.  前記遮蔽板は、前記ビームスプリッタの高さよりも高いことを特徴とする請求項1に記載の多チャネル光モジュール。
  3.  前記遮蔽板の側面には、反射膜または遮光膜が形成されていることを特徴とする請求項1または2に記載の多チャネル光モジュール。
  4.  複数の波長チャネルを多重化して出力する多チャネル光モジュールであって、
     各々が異なる波長の複数の光源と、
     前記複数の光源の各々の出力に結合された複数のコリメータレンズと、
     前記複数のコリメータレンズの各々の出力に結合されたビームスプリッタと、
     前記ビームスプリッタから分岐された光パワーをモニタする複数のモニタPDと、
     前記ビームスプリッタに集積された遮蔽板であって、各コリメータレンズを介して結合される光源の光路の間に設置された遮蔽板と
     を備えたことを特徴とする多チャネル光モジュール。
  5.  複数の波長チャネルを多重化して出力する多チャネル光モジュールであって、
     各々が異なる波長の複数の光源と、
     前記複数の光源の各々の出力に結合された複数のコリメータレンズであって、レンズホルダの側面に遮蔽板が設置されたコリメータレンズと、
     前記複数のコリメータレンズの各々の出力に結合されたビームスプリッタと、
     前記ビームスプリッタから分岐された光パワーをモニタする複数のモニタPDと
     を備えたことを特徴とする多チャネル光モジュール。
  6.  前記遮蔽板は、金属膜であることを特徴とする請求項4または5に記載の多チャネル光モジュール。
PCT/JP2021/023814 2021-06-23 2021-06-23 多チャネル光モジュール WO2022269810A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023529324A JPWO2022269810A1 (ja) 2021-06-23 2021-06-23
PCT/JP2021/023814 WO2022269810A1 (ja) 2021-06-23 2021-06-23 多チャネル光モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023814 WO2022269810A1 (ja) 2021-06-23 2021-06-23 多チャネル光モジュール

Publications (1)

Publication Number Publication Date
WO2022269810A1 true WO2022269810A1 (ja) 2022-12-29

Family

ID=84545352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023814 WO2022269810A1 (ja) 2021-06-23 2021-06-23 多チャネル光モジュール

Country Status (2)

Country Link
JP (1) JPWO2022269810A1 (ja)
WO (1) WO2022269810A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181645A (ja) * 2015-03-25 2016-10-13 日本オクラロ株式会社 光送信モジュール
WO2019160001A1 (ja) * 2018-02-14 2019-08-22 古河電気工業株式会社 光モジュール

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181645A (ja) * 2015-03-25 2016-10-13 日本オクラロ株式会社 光送信モジュール
WO2019160001A1 (ja) * 2018-02-14 2019-08-22 古河電気工業株式会社 光モジュール

Also Published As

Publication number Publication date
JPWO2022269810A1 (ja) 2022-12-29

Similar Documents

Publication Publication Date Title
US10284301B2 (en) Multi-channel transceiver with laser array and photonic integrated circuit
US10333646B2 (en) Multi-channel optical multiplexers and demultiplexers, optical transmitter, receiver and transceiver comprising the same, and methods of making and using the same
US5696859A (en) Optical-filter array, optical transmitter and optical transmission system
JP3745097B2 (ja) 波長のモニタリング及び波長制御のための光デバイス
US7203212B2 (en) System and method for wavelength error measurement
US20040208428A1 (en) Wavelength-multiplexed narrow-bandwidth optical transmitter and wavelength-multiplexed vestigial-side-band optical transmitter
WO2011005597A2 (en) Optical receiver integrated on a substrate
US11177900B2 (en) Integrated WDM optical transceiver
US9768586B2 (en) Compact WDM optical modules
US6496619B2 (en) Method for gain equalization, and device and system for use in carrying out the method
US20140254973A1 (en) Optical module
EP3912234B1 (en) Combined laser architecture using wavelength multiplexed seed source
WO2022269810A1 (ja) 多チャネル光モジュール
WO2022269805A1 (ja) 多チャネル光モジュール
US20050111773A1 (en) Integrated lithium niobate based optical transmitter
US10761263B1 (en) Multi-channel, densely-spaced wavelength division multiplexing transceiver
US20240031034A1 (en) Optical Transmitter
US20240106544A1 (en) Optical Transmitter and Method of Calculating an Optical Power
US7254338B2 (en) Multi-wavelength light source
WO2022149235A1 (ja) 光送信器
JP2022053241A (ja) 光モジュール
JP2004072690A (ja) 光通信システム
JPS64833B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947095

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529324

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18570827

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21947095

Country of ref document: EP

Kind code of ref document: A1