WO2022148120A1 - 一种制备超细粉粒子成形过程中的不良品回收结构 - Google Patents
一种制备超细粉粒子成形过程中的不良品回收结构 Download PDFInfo
- Publication number
- WO2022148120A1 WO2022148120A1 PCT/CN2021/129283 CN2021129283W WO2022148120A1 WO 2022148120 A1 WO2022148120 A1 WO 2022148120A1 CN 2021129283 W CN2021129283 W CN 2021129283W WO 2022148120 A1 WO2022148120 A1 WO 2022148120A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel
- defective product
- cleaning rod
- way
- ultrafine powder
- Prior art date
Links
- 230000002950 deficient Effects 0.000 title claims abstract description 64
- 239000002245 particle Substances 0.000 title claims abstract description 44
- 239000000843 powder Substances 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000004064 recycling Methods 0.000 title abstract description 5
- 238000002360 preparation method Methods 0.000 title abstract description 3
- 238000004140 cleaning Methods 0.000 claims abstract description 32
- 238000011027 product recovery Methods 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 11
- 239000012774 insulation material Substances 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 239000000110 cooling liquid Substances 0.000 claims description 3
- 230000005484 gravity Effects 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000003860 storage Methods 0.000 abstract description 2
- 239000007790 solid phase Substances 0.000 description 7
- 238000010992 reflux Methods 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 240000007643 Phytolacca americana Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
- B07C5/16—Sorting according to weight
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
- B08B9/02—Cleaning pipes or tubes or systems of pipes or tubes
- B08B9/027—Cleaning the internal surfaces; Removal of blockages
- B08B9/04—Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/12—Making metallic powder or suspensions thereof using physical processes starting from gaseous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G53/00—Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
- B65G53/34—Details
- B65G53/52—Adaptations of pipes or tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Definitions
- the utility model relates to the technical field of waste recycling, in particular to a defective product recycling structure in the process of preparing ultrafine powder particles.
- the solid phase When preparing ultrafine powder particles for forming, with the change of temperature, during the particle forming process, the solid phase will be deposited on the inner wall of the pipeline, and the temperature of the deposition place is below the melting point temperature of the ultrafine powder, so the solid phase will accumulate and cause the pipeline to be blocked. . Moreover, in the cooling process after particle formation, the problem of pipeline blockage caused by the accumulation of powder on the inner wall of the pipeline after the particle deposition will also occur, and the pipeline blockage will seriously affect the continuous production of ultrafine powder.
- Chinese patent CN20346992U discloses an internal reflux garbage removal system, but some powders are not suitable for refluxing into the crucible after leaving the evaporator, or, some multi-material alloys or core-shell structures, or compounds that need to undergo chemical reactions after evaporation, It is also not suitable for reflow into the crucible. In addition, some equipment structures cannot meet the reflow temperature requirements, and the accumulated defective products cannot be reflowed into the crucible.
- the utility model designs a defective product recovery structure in the process of preparing ultrafine powder particles, which is used for recycling because the equipment structure cannot meet the reflux temperature requirements, or some powders are not suitable for reflux after leaving the evaporator, or some Some multi-material alloys or core-shell structures, or compounds that need to undergo chemical reactions after evaporation, are not suitable for reflowing into the crucible.
- the utility model adopts the following technical solutions:
- a defective product recovery structure in the process of preparing ultrafine powder particles comprising four-way channels that are cross-connected with each other, and a steam outlet channel, a particle forming channel, a cleaning rod channel and a defective product collection barrel channel connected with the four-way channel,
- the steam outlet channel is arranged opposite to the particle forming channel, and the steam outlet channel and the particle forming channel are arranged obliquely upward along the air outlet direction, the cleaning rod channel is opposite to the defective product collection bucket channel, and the cleaning rod channel and the defective product collection
- the barrel channel is set vertically or diagonally to the horizontal.
- the temperature in the vapor outlet channel is higher than the melting point temperature of the prepared material, so that the prepared material in the vapor outlet channel exists in gaseous and liquid forms, avoiding the problem of solid phase blocking the outlet.
- a cleaning rod is provided in the cleaning rod channel.
- the defective product collection bucket is arranged below the four-way channel, and a flip cover or a pull-out door panel structure is arranged between the defective product collection bucket and the four-way channel to achieve heat insulation.
- the outer layer of the four-way channel is a sandwich shell structure, so that cooling liquid can be introduced to cool and protect the equipment.
- the four-way channel and other channels have an integral structure or a spliced structure, and the connection between the spliced structures is a sealed connection.
- the inner layer of the four-way channel is a high temperature resistant material, and the high temperature resistant material can be selected according to the needs of use;
- a high temperature-resistant thermal insulation material is arranged between the inner layer of the four-way channel and the shell.
- the size and shape of the inner layer of the steam outlet channel, the particle forming channel, the cleaning rod channel and the defective product collecting bucket channel connected to the four-way channel can be designed according to the usage requirements.
- the shape of the inner layer may be circular.
- the size of the inner layer can be set such that the cross-sectional area of the particle forming channel is larger than the cross-sectional area of the steam outlet channel, and the cross-sectional area of the garbage cleaning rod channel is smaller than the cross-sectional area of the inlet of the defective product collection bucket channel.
- the structure of the present disclosure enables the defective products that have slipped or pushed into the particle forming channel to be collected at the intersection of the four-way channel, and then automatically fall into the channel of the defective product collection bucket. Poke into the channel of the defective product collection barrel from top to bottom, which is easy to operate, and can maintain the smoothness of each channel for a long time, and the defective product will not slide down to the steam outlet channel, thus effectively preventing pollution or blocking the steam outlet and ensuring production.
- the equipment can continue to operate well for a long time.
- FIG. 1 is a schematic cross-sectional structural diagram of an embodiment of the present invention.
- the diagrams are marked as follows: 1. Defective product collection bucket, 2. Insulation door panel, 3. Defective product collection bucket channel, 4. Steam outlet channel, 5. High temperature resistant pipeline, 6. Insulation material, 7. Particle forming channel, 8 , housing, 9, cleaning rod, 10, cleaning rod channel.
- the defective product recovery structure in the preparation process of ultrafine powder particle forming of the present invention comprises four-way passages that are cross-connected with each other, and steam outlet passages 4, particle forming passages 7, Cleaning rod channel 10 and defective product collection bucket channel 3.
- the steam outlet channel 4 is arranged opposite to the particle forming channel 7, and both the steam outlet channel 4 and the particle forming channel 7 are arranged obliquely upward along the air outlet direction.
- the cleaning rod channel 10 is opposite to the defective product collection barrel channel 3, and the cleaning rod channel 10 Both the channel 3 of the defective product collection barrel and the horizontal line are set vertically or obliquely.
- the temperature in the vapor outlet channel 4 connected with the four-way channel is higher than the melting point temperature of the prepared material, and the material in the vapor outlet channel 4 exists in gaseous and liquid state, and the problem of solid phase blocking the outlet will not occur.
- the ultrafine powder particles are cooled and condensed from the gas phase to a liquid phase, aggregated and grown or reacted, and then solidified into a solid phase.
- the solid phase of defective products is deposited on the inner wall of the particle forming channel 7 , or the solid phase of defective products is deposited by the cooling structure above the particle forming channel 7 .
- a cleaning rod 9 is provided inside the cleaning rod channel 10 connected with the four-way channel. During operation, the cleaning rod 9 can push the defective products in the four-way channel into the defective product collection bucket 1 .
- the defective product collection bucket 1 is arranged below the four-way passage.
- the defective products are stored in the defective product collection bucket 1 by gravity and the pushing of the cleaning rod 9 .
- a flip or pull-out heat-insulating door panel 2 is arranged between the defective product collection bucket 1 and the four-way passage.
- the outer layer of the four-way channel is a shell 8 with a jacket, and cooling liquid is passed into the jacket to cool and protect the equipment.
- the inner layer of the four-way channel is a high temperature resistant pipe 5, and the material of the high temperature resistant pipe 5 can be selected according to the needs of use.
- a high temperature-resistant thermal insulation material 6 is arranged between the inner layer of the four-way channel and the casing 8 .
- the heat insulating door 2 on the defective product collecting bucket 1 is first opened, and the defective products accumulated in the particle forming channel 7 are pushed into the At the intersection of the four-way passage of the good product recovery structure. Under the action of gravity, the defective products naturally fall into the channel 3 of the defective product collection bucket, and the defective product 2 enters the defective product collection bucket 1 for storage after passing through the insulating door panel 2.
- the cleaning rod 9 For defective products that are not completely dropped or adhered to the four-way channel, operate the cleaning rod 9 to scrape the defective products out of the channel from top to bottom and push them into the channel 3 of the defective product collection bucket. After cleaning is completed, the cleaning rod 9 is retracted into the cleaning rod channel 10 to keep the steam outlet channel 4 and the particle forming channel 7 unobstructed, and the insulating door panel 2 is closed to reduce heat loss.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Cleaning In General (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
一种制备超细粉粒子成形过程中的不良品回收结构,包括相互交叉连通的四通通道,与四通通道连接的蒸气出口通道(4)、粒子成形通道(7)、清洁杆通道(10)和不良品收集桶通道(3),蒸气出口通道(4)与粒子成形通道(7)相对设置,清洁杆通道(10)与不良品收集桶通道(3)相对设置;并且清洁杆通道(10)和不良品收集桶通道(3)与水平线垂直或斜向设置。上述结构设置使得不良品汇集到四通通道的交叉口后,受重力作用自动跌落至不良品收集桶通道(3)内,并经过隔热门(2)后进入不良品收集桶(1)内存储,未完全跌落的部分可使用清洁杆通道(10)中的清洁杆(9)向下捅入不良品收集桶通道(3),操作方便,能长时间保持各通道的通畅度,保证生产设备可以长时间良好地持续运行。
Description
本实用新型涉及废物回收技术领域,具体涉及一种制备超细粉粒子成形过程中的不良品回收结构。
在制备超细粉粒子成形时,随着温度的变化,在粒子成形的过程中,固相会沉积在管道内壁,沉积处的温度在超细粉熔点温度以下,因此固相会堆积导致管道堵塞。而且,在粒子成形后的冷却过程中,也会出现粉体沉积后堆积在管道内壁导致的管道堵塞的问题,管道堵塞会严重影响超细粉的持续生产。中国专利CN20346992U公开了一种内回流除垃圾系统,但是有些粉体离开蒸发器后不适合再回流进坩埚,或者,某些多元材料合金或核壳结构,或蒸发后需要进行化学反应的化合物,也不适合再回流进坩埚。此外,有些设备结构无法满足回流温度要求,堆积的不良品也无法回流进坩埚。
发明内容
针对以上问题,本实用新型设计一种制备超细粉粒子成形过程中的不良品回收结构,用于回收因设备结构无法满足回流温度要求,或有些粉体离开蒸发器后不适合回流,或某些多元材料合金或核壳结构,或蒸发后需要进行化学反应的化合物等不适合再回流进坩埚的不良品。
为实现上述目的,本实用新型采用如下技术方案:
一种制备超细粉粒子成形过程中的不良品回收结构,包括相互交叉连通的四通通道,以及与四通通道连接的蒸气出口通道、粒子成形通道、清洁杆通道和不良品收集桶通道,所述蒸气出口通道与粒子成形通道相对设置,并且蒸气出口通道和粒子成形通道沿出气方向呈斜向上设置,所述清洁杆通道与不良品收集桶通道相对设置,并且清洁杆通道和不良品收集桶通道与水平线垂直或斜向设置。
可选的,所述蒸气出口通道内的温度高于所制备材料的熔点温度,以 使得蒸气出口通道内的所制备材料以气态与液态形式存在,避免出现固相堵塞出口的问题。
可选的,所述清洁杆通道内设置有清洁杆。
可选的,所述不良品收集桶设置在四通通道的下方,不良品收集桶与四通通道之间设置翻盖或抽拉门板结构,以实现隔热。
可选的,所述四通通道的外层为夹层壳体结构,以通入冷却液对设备进行冷却保护。
可选的,所述四通通道与其他通道为一体式结构,或为拼接式结构,且各拼接的结构之间的连接方式为密封连接。
可选的,所述四通通道的内层为耐高温材料,耐高温材料可根据使用需要进行选择;
四通通道的内层与壳体之间设置有耐高温的保温材料。
可选的,与所述四通通道相连接的蒸气出口通道、粒子成形通道、清洁杆通道和不良品收集桶通道的内层的尺寸与形状均可根据使用需求进行设计。
内层的形状可为圆形。
内层的尺寸可设置为粒子成形通道的截面积大于蒸气出口通道的截面积,垃圾清洁杆通道的截面积小于不良品收集桶通道的进口的截面积。
相对于现有技术,本实用新型具有如下有益效果:
本公开的结构可使得自粒子成形通道滑落或推入的不良品汇集到四通通道的交叉口后,自动跌落至不良品收集桶通道内,未完全跌落的部分可使用清洁杆由清洁杆通道自上向下捅入不良品收集桶通道,操作方便的同时,也可以长时间保持各通道的通畅度,而且不良品不会滑落至蒸气出口通道,从而有效防止污染或堵塞蒸气出口,保证生产设备可以长时间良好地持续运行。
图1为本实用新型实施例的剖视结构示意图。
图中标示如下:1、不良品收集桶,2、隔热门板,3、不良品收集桶通道, 4、蒸气出口通道,5、耐高温管道,6、保温材料,7、粒子成形通道,8、壳体,9、清洁杆,10、清洁杆通道。
下面结合附图和实施例详细描述本实用新型。
如图1所示,本实用新型的制备超细粉粒子成形过程中的不良品回收结构,包括相互交叉连通的四通通道,以及与四通通道连接的蒸气出口通道4、粒子成形通道7、清洁杆通道10和不良品收集桶通道3。蒸气出口通道4与粒子成形通道7相对设置,并且蒸气出口通道4和粒子成形通道7均沿出气方向呈斜向上设置,清洁杆通道10与不良品收集桶通道3相对设置,并且清洁杆通道10和不良品收集桶通道3均与水平线垂直或斜向设置。
与四通通道相连接的蒸气出口通道4内的温度高于所制备材料的熔点温度,在蒸气出口通道4内的出现的材料以气态与液态存在,不会发生固相堵塞出口的问题。
与四通通道相连接的粒子成形通道7内发生超细粉粒子由气相冷却凝结为液相、聚集长大或反应、再凝固为固相的变化,粒子成形通道7的内部存在不同的温度区间。在粒子成形通道7的内壁上沉积有不良品固相,或沉积有由粒子成形通道7上方的冷却结构送入的不良品固相。
与四通通道相连接的清洁杆通道10的内部设置有清洁杆9。操作时,清洁杆9可将四通通道内出现的不良品推入不良品收集桶1。
不良品收集桶1设置在四通通道的下方。通过重力与清洁杆9的推动,将不良品收纳在不良品收集桶1内。不良品收集桶1与四通通道之间设置翻盖或抽拉的隔热门板2。
四通通道的外层为带夹套的壳体8,在夹套中通入冷却液以对设备进行冷却保护。四通通道的内层为耐高温管道5,耐高温管道5的材料可根据使用需要进行选择。四通通道的内层与壳体8之间设置耐高温的保温材料6。
本公开的制备超细粉粒子成形过程中的不良品回收结构在使用时,首 先打开不良品收集桶1上的隔热门板2,通过清洁结构将粒子成形通道7内堆积的不良品推入不良品回收结构的四通通道的交叉口处。受重力作用不良品自然跌落进不良品收集桶通道3内,不良品2经过隔热门板2后进入不良品收集桶1内储存。对于未完全跌落或粘附在四通通道上的不良品,操作清洁杆9自上而下将不良品刮离通道并推入不良品收集桶通道3。清理完成后,将清洁杆9收回清洁杆通道10,保持蒸气出口通道4与粒子成形通道7的通畅,并关闭隔热门板2,以减少热量散失。
Claims (9)
- 一种制备超细粉粒子成形过程中的不良品回收结构,其特征在于:包括相互交叉连通的四通通道,以及与四通通道连接的蒸气出口通道、粒子成形通道、清洁杆通道和不良品收集桶通道,所述蒸气出口通道与粒子成形通道相对设置,并且蒸气出口通道和粒子成形通道沿出气方向呈斜向上设置,所述清洁杆通道与不良品收集桶通道相对设置,并且清洁杆通道和不良品收集桶通道与水平线垂直或斜向设置。
- 如权利要求1所述的制备超细粉粒子成形过程中的不良品回收结构,其特征在于:所述蒸气出口通道内的温度高于所制备材料的熔点温度。
- 如权利要求1或2所述的制备超细粉粒子成形过程中的不良品回收结构,其特征在于:所述清洁杆通道内设置有清洁杆。
- 如权利要求1至3中任一项所述的制备超细粉粒子成形过程中的不良品回收结构,其特征在于:所述不良品收集桶设置在四通通道的下方,不良品收集桶与四通通道之间设置翻盖或抽拉门板结构。
- 如权利要求1至4中任一项所述的制备超细粉粒子成形过程中的不良品回收结构,其特征在于:所述四通通道的外层为夹层壳体结构,以通入冷却液对设备进行冷却保护。
- 如权利要求1至5中任一项所述的制备超细粉粒子成形过程中的不良品回收结构,其特征在于:所述四通通道与其他通道为一体式结构,或为拼接式结构,且各拼接的结构之间的连接方式为密封连接。
- 如权利要求1至6中任一项所述的制备超细粉粒子成形过程中的不良品回收结构,其特征在于:所述四通通道的内层为耐高温材料,四通通道的内层与壳体之间设置有耐高温的保温材料。
- 如权利要求1至7中任一项所述的制备超细粉粒子成形过程中的不良品回收结构,其特征在于:与所述四通通道相连接的蒸气出口通道、粒子成形通道、清洁杆通道和不良品收集桶通道的内层的形状为圆形。
- 如权利要求1至8中任一项所述的制备超细粉粒子成形过程中的不良品回收结构,其特征在于:所述蒸气出口通道的截面积与所述粒子成形通道的截面积的比为1:(1-5),垃圾清洁杆通道的截面积与不良品收集桶 通道的进口的截面积为1:(1-5)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202120045827.X | 2021-01-08 | ||
CN202120045827.XU CN214184130U (zh) | 2021-01-08 | 2021-01-08 | 一种制备超细粉粒子成形过程中的不良品回收结构 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022148120A1 true WO2022148120A1 (zh) | 2022-07-14 |
Family
ID=77634435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/129283 WO2022148120A1 (zh) | 2021-01-08 | 2021-11-08 | 一种制备超细粉粒子成形过程中的不良品回收结构 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN214184130U (zh) |
TW (1) | TWM626068U (zh) |
WO (1) | WO2022148120A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN214184130U (zh) * | 2021-01-08 | 2021-09-14 | 江苏博迁新材料股份有限公司 | 一种制备超细粉粒子成形过程中的不良品回收结构 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4233119A (en) * | 1979-01-23 | 1980-11-11 | Louis A. Grant, Inc. | Ascension pipe and elbow cleaning apparatus |
JP2001090934A (ja) * | 1999-09-22 | 2001-04-03 | Takuma Co Ltd | 熱分解ガスダクトの清掃装置 |
CN102015133A (zh) * | 2008-04-25 | 2011-04-13 | 安辛可再生能源有限公司 | 热转化过程中沉积物以及副反应的减轻 |
CN102837002A (zh) * | 2011-06-24 | 2012-12-26 | 昭荣化学工业株式会社 | 金属粉末制造用等离子体装置及金属粉末的制造方法 |
CN103128302A (zh) * | 2011-12-01 | 2013-06-05 | 昭荣化学工业株式会社 | 金属粉末制造用等离子装置 |
TW201402191A (zh) * | 2012-07-02 | 2014-01-16 | Hemlock Semiconductor Corp | 進行平衡反應並選擇性分離該平衡反應之反應性物種的方法 |
US20140318577A1 (en) * | 2013-04-25 | 2014-10-30 | Uop Llc | Apparatuses and methods for removing deposits in thermal conversion processes |
WO2015010171A1 (ru) * | 2013-07-02 | 2015-01-29 | Енерджи Трейд 2004 Оод. | Метод получения топлива путём пиролиза вышедших из употребления шин и/или пластмасс и устройства для очистки, реализующие способ |
CN106623957A (zh) * | 2016-11-30 | 2017-05-10 | 江永斌 | 连续量产超细纳米级金属粒子的纳米粒子生长器 |
CN214184130U (zh) * | 2021-01-08 | 2021-09-14 | 江苏博迁新材料股份有限公司 | 一种制备超细粉粒子成形过程中的不良品回收结构 |
-
2021
- 2021-01-08 CN CN202120045827.XU patent/CN214184130U/zh active Active
- 2021-11-08 WO PCT/CN2021/129283 patent/WO2022148120A1/zh active Application Filing
- 2021-12-23 TW TW110215336U patent/TWM626068U/zh unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4233119A (en) * | 1979-01-23 | 1980-11-11 | Louis A. Grant, Inc. | Ascension pipe and elbow cleaning apparatus |
JP2001090934A (ja) * | 1999-09-22 | 2001-04-03 | Takuma Co Ltd | 熱分解ガスダクトの清掃装置 |
CN102015133A (zh) * | 2008-04-25 | 2011-04-13 | 安辛可再生能源有限公司 | 热转化过程中沉积物以及副反应的减轻 |
CN102837002A (zh) * | 2011-06-24 | 2012-12-26 | 昭荣化学工业株式会社 | 金属粉末制造用等离子体装置及金属粉末的制造方法 |
CN103128302A (zh) * | 2011-12-01 | 2013-06-05 | 昭荣化学工业株式会社 | 金属粉末制造用等离子装置 |
TW201402191A (zh) * | 2012-07-02 | 2014-01-16 | Hemlock Semiconductor Corp | 進行平衡反應並選擇性分離該平衡反應之反應性物種的方法 |
US20140318577A1 (en) * | 2013-04-25 | 2014-10-30 | Uop Llc | Apparatuses and methods for removing deposits in thermal conversion processes |
WO2015010171A1 (ru) * | 2013-07-02 | 2015-01-29 | Енерджи Трейд 2004 Оод. | Метод получения топлива путём пиролиза вышедших из употребления шин и/или пластмасс и устройства для очистки, реализующие способ |
CN106623957A (zh) * | 2016-11-30 | 2017-05-10 | 江永斌 | 连续量产超细纳米级金属粒子的纳米粒子生长器 |
CN214184130U (zh) * | 2021-01-08 | 2021-09-14 | 江苏博迁新材料股份有限公司 | 一种制备超细粉粒子成形过程中的不良品回收结构 |
Also Published As
Publication number | Publication date |
---|---|
TWM626068U (zh) | 2022-04-21 |
CN214184130U (zh) | 2021-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022148120A1 (zh) | 一种制备超细粉粒子成形过程中的不良品回收结构 | |
CN104722764B (zh) | 循环冷却的金属粉体蒸发制取装置 | |
CN100457339C (zh) | 纳米金属粉体连续生产设备 | |
CN101157989A (zh) | 一种感应加热连续炼镁系统及其连续炼镁工艺 | |
CN101927352A (zh) | 超高温等离子体连续生产纳米粉体新技术及其制备工艺 | |
CN106735279A (zh) | 循环冷却连续量产高纯纳米级金属粒子的装置 | |
CN106623957A (zh) | 连续量产超细纳米级金属粒子的纳米粒子生长器 | |
CN207602725U (zh) | 一种锂离子电池裂解系统 | |
CN202316145U (zh) | 一种风冷式旋风除尘器 | |
CN107755707A (zh) | 一种金属粉末的生产方法及生产设备 | |
WO2023065581A1 (zh) | 一种物理气相法制备超细粉体材料用的金属蒸气成核装置 | |
CN109300555A (zh) | 一种六氟化铀到四氟化铀的干法转化装置 | |
CN112345307B (zh) | 一种液态重金属回路取样装置及其使用方法 | |
CN205648167U (zh) | 靶系统和具有靶系统的用于产生中子和/或中微子的系统 | |
CN211767518U (zh) | 液冷容器密封装置 | |
CN104006669B (zh) | 电石显热收集系统 | |
CN203227818U (zh) | 具有冷却器的钽粉镁还原降氧装置 | |
CN208648770U (zh) | 一种用于六氟化钨气体的冷冻捕集器 | |
CN112517864A (zh) | 镁合金大尺寸板坯dc铸造双流浇注方法与装置 | |
CN215864689U (zh) | 一种环保冶金专用设备降温装置 | |
CN110655085A (zh) | 固态纯净物卧式电加热设备单侧侧面收集方法 | |
CN206751748U (zh) | 辐射式废热锅炉 | |
CN110655084A (zh) | 卧式电加热设备固态纯净物侧面收集装置 | |
CN216680197U (zh) | 一种金属粉末冷却装置及金属粉末制备设备 | |
CN109628668A (zh) | 钢渣裂解及余热回收系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21917161 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21917161 Country of ref document: EP Kind code of ref document: A1 |