WO2022148100A1 - 四驱电动汽车的扭矩控制方法、装置以及车辆 - Google Patents

四驱电动汽车的扭矩控制方法、装置以及车辆 Download PDF

Info

Publication number
WO2022148100A1
WO2022148100A1 PCT/CN2021/125828 CN2021125828W WO2022148100A1 WO 2022148100 A1 WO2022148100 A1 WO 2022148100A1 CN 2021125828 W CN2021125828 W CN 2021125828W WO 2022148100 A1 WO2022148100 A1 WO 2022148100A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
motor
vehicle
total
control curve
Prior art date
Application number
PCT/CN2021/125828
Other languages
English (en)
French (fr)
Inventor
史伟奇
孙韬
Original Assignee
北京车和家信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京车和家信息技术有限公司 filed Critical 北京车和家信息技术有限公司
Publication of WO2022148100A1 publication Critical patent/WO2022148100A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the technical field of electric vehicles, and in particular, to a torque control method, device and vehicle for a four-wheel drive electric vehicle.
  • torque buffering devices such as torsion springs, torque converters or clutches can absorb and weaken most of the shock problems caused by sudden torque changes.
  • torque buffering devices such as torsion springs, torque converters or clutches can absorb and weaken most of the shock problems caused by sudden torque changes.
  • pure electric vehicles there is no torque buffer device on the transmission path of the power system.
  • the driving force and recovery force will be affected by the gear gap and the torsional stiffness of the drive shaft during the transmission process, resulting in
  • the meshing surfaces of the two meshing gears in the transmission system are constantly switched, and the torsional direction of the transmission shaft is continuously changed.
  • Due to the short torque response time of the motor and the unbuffered torque transmission the meshing of the gears will have meshing shocks, which will affect the drivability of the vehicle.
  • the existing torque zero-crossing strategy limits the torque change rate before and after the motor torque zero-crossing according to the vehicle speed and the actual motor torque for the existence of meshing shock.
  • the torque change rate before and after the zero-crossing of the motor torque is not limited, when the motor torque changes in direction, it will cause jittering and abnormal noise caused by the impact of gear meshing, which will affect the NVH performance of the whole vehicle.
  • the present application proposes a torque control method, device and vehicle for a four-wheel drive electric vehicle, the purpose of which is to synchronously optimize the jitter and abnormal noise generated by the vehicle when the torque crosses zero by separately controlling the torque changes of the front and rear motors of the electric vehicle. And the problem of power lag, improve the driving quality of the vehicle.
  • the present application provides a torque control method for a four-wheel drive electric vehicle, including:
  • a torque assist control curve executed by the second motor is determined, and the second motor executes non-zero-crossing control of torque according to the torque assist control curve ;
  • the output torques of the first motor and the second motor are adjusted respectively according to the preset torque control curve and the torque assist control curve.
  • determining the first motor to perform torque zero-crossing control from the front motor and the rear motor according to the allowable feedback power including:
  • the front motor and the rear motor are prohibited from performing feedback control.
  • the torque assist control curve executed by the second motor is determined, including:
  • the torque assist control curve is calculated according to the total feedback torque curve and the preset torque control curve.
  • the method further includes:
  • the driving torque control curve is determined according to the total driving power and the reverse preset torque control curve, and the output torque of the second electric machine is adjusted according to the driving torque control curve.
  • the driving torque control curve is determined according to the total driving power and the reverse preset torque control curve, including:
  • a drive torque control profile is calculated from the total drive torque profile and the reverse preset torque control profile.
  • the method includes:
  • adjusting the output torques of the first motor and the second motor respectively according to the preset torque control curve and the torque assist control curve includes:
  • the method further includes:
  • the value of the total vehicle torque is determined according to the current speed of the vehicle and the reduction range of the opening degree of the accelerator pedal of the vehicle or the opening degree of the brake pedal.
  • the method further includes:
  • the value of the total vehicle torque is determined according to the current speed of the vehicle and the reduction of the opening of the vehicle brake pedal or the opening of the accelerator pedal.
  • the present application provides a torque control device for a four-wheel drive electric vehicle, the device comprising:
  • a first determining unit configured to determine the total feedback power of the vehicle according to the feedback torque and the current vehicle speed when the total vehicle torque is changed from the driving torque to the feedback torque;
  • a second determining unit configured to respectively determine the allowable feedback power of the front motor and the rear motor according to the real-time states of the front motor and the rear motor of the vehicle;
  • a selection unit configured to determine, according to the allowable feedback power determined by the second determination unit, a first motor that performs torque zero-crossing control, where the first motor implements torque zero-crossing control according to a preset torque control curve;
  • a calculation unit configured to determine, according to the total feedback power and the preset torque control curve of the first motor determined by the selection unit, a torque assist control curve executed by a second motor, the second motor according to the torque assist The control curve performs non-zero-crossing control of torque;
  • An adjustment control unit configured to adjust the output torques of the first motor and the second motor respectively according to the preset torque control curve and the torque assist control curve determined by the calculation unit.
  • the selection unit includes:
  • a first judgment module for judging whether the total feedback power is less than the allowable feedback power of the front motor
  • a first determination module configured to determine that the front motor is the first motor and the rear motor is the second motor when the first determination module determines that the total feedback power is less than the allowable feedback power of the front motor
  • a second judgment module configured to judge whether the total feedback power is less than the allowable feedback power of the rear motor when the first judgment module determines that the total feedback power is not less than the allowable feedback power of the front motor
  • the second determination module is configured to determine that the rear motor is the first motor and the front motor is the second motor when the second determination module determines that the total feedback power is less than the allowable feedback power of the rear motor; otherwise, prohibit the front motor and the rear motor from executing feedback control.
  • the computing unit includes:
  • a first determining module configured to determine the total feedback torque curve according to the current vehicle speed and the total feedback power
  • the first calculation module is configured to calculate the torque assist control curve according to the total feedback torque curve and the preset torque control curve determined by the first determination module.
  • the method further includes:
  • a third determining unit configured to determine the total driving power of the vehicle according to the total vehicle torque and the current vehicle speed when the total vehicle torque is restored from the feedback torque to the driving torque;
  • the adjustment control unit is further configured to adjust the output torque of the first motor according to the reverse preset torque control curve
  • the calculating unit is further configured to determine the driving torque control curve according to the total driving power determined by the third determining unit and the reverse preset torque control curve;
  • the adjustment control unit is further configured to adjust the output torque of the second motor according to the driving torque control curve determined by the calculation unit.
  • the computing unit further includes:
  • a second determining module configured to determine a total driving torque curve of the vehicle according to the current vehicle speed and the total driving power of the vehicle
  • the second calculation module is configured to calculate the drive torque control curve according to the total drive torque curve determined by the second determination module and the reverse preset torque control curve.
  • the device further includes:
  • An acquisition unit configured to acquire a preset torque control curve of the first motor, where the preset torque control curve is predetermined according to the parameters of the first motor.
  • the adjustment control unit is further configured to adjust the output torque of the first motor according to a preset torque control curve; when the adjustment of the first motor is completed, the torque crosses zero and the output torque reaches the preset torque. When setting the value, adjust the output torque of the second motor to zero.
  • the obtaining unit of the device is further configured to, when the total vehicle torque is changed from the driving torque to the feedback torque, according to the current speed of the vehicle and the reduction range of the accelerator pedal opening of the vehicle or the brake pedal A look-up table of openings determines the value of the vehicle's total torque.
  • the obtaining unit of the device is further configured to, when the total vehicle torque is restored from the feedback torque to the driving torque, according to the current speed of the vehicle and the reduction range of the brake pedal opening of the vehicle or the speed of the accelerator pedal A look-up table of openings determines the value of the vehicle's total torque.
  • the present application provides a four-wheel drive electric vehicle, the four-wheel drive electric vehicle includes a front motor and a rear motor, wherein the front motor and the rear motor use the torque control of the four-wheel drive electric vehicle described in the first aspect above. method.
  • the present application further provides a processor for running a program, wherein the torque control method for a four-wheel drive electric vehicle of the first aspect is executed when the program is running.
  • the present application also provides a storage medium for storing a computer program, wherein the computer program controls the device where the storage medium is located to execute the torque of the four-wheel-drive electric vehicle according to the first aspect above when the computer program runs. Control Method.
  • a torque control method, device and vehicle for a four-wheel drive electric vehicle provided by the present application is when the total vehicle torque is changed from the driving torque to the feedback torque, that is, the vehicle is in a working condition that requires kinetic energy recovery.
  • one of the front motor and the rear motor is determined as the first motor for kinetic energy recovery, and the torque zero-crossing control is executed, and the first motor is executed according to the preset torque control curve, so that the The first motor produces minimal jitter and abnormal noise when the torque crosses zero.
  • the torque control curve executed by the first motor is calculated for the other motor.
  • the torque assist control curve to be executed so that the second motor assists the control of the first motor to realize the total feedback power output by the vehicle.
  • the torque assist control curve of the second motor will stipulate that the torque control of the second motor will not be zero, so as to ensure that when the vehicle needs to speed up, it can provide a fast power response and stable power output, and realize the four-wheel drive electric vehicle. Synchronous optimization of abnormal noise and power hysteresis improves the driving quality of the vehicle.
  • FIG. 1 shows a flowchart of a torque control method for a four-wheel drive electric vehicle proposed in an embodiment of the present application
  • FIG. 2 shows a flowchart of another torque control method for a four-wheel drive electric vehicle proposed by an embodiment of the present application
  • FIG. 3 shows a schematic structural diagram of a torque control device for a four-wheel drive electric vehicle proposed in an embodiment of the present application
  • FIG. 4 shows a schematic structural diagram of another torque control device for a four-wheel drive electric vehicle proposed in an embodiment of the present application.
  • the embodiment of the present application provides a torque control method for a four-wheel drive electric vehicle, and the specific execution steps are shown in FIG. 1 , including:
  • the change of the total vehicle torque from the driving torque to the feedback torque refers to the deceleration of the vehicle during the constant speed or acceleration process, such as releasing the accelerator pedal or stepping on the brake pedal.
  • the total torque of the vehicle will change from positive to negative, that is, the total torque will change from driving torque to feedback torque, and the kinetic energy of the vehicle can be recovered through the torque zero-crossing control of the motor.
  • the treatment for this working condition is mostly to distribute the total feedback torque to the front and rear motors to perform kinetic energy recovery, but this method will make the control of the front and rear motors in the zero-crossing stage produce jitter and abnormal noise, and when the need arises.
  • both the front and rear motors need to cross zero again, which not only causes jitter and abnormal noise, but also reduces the dynamic response of the vehicle and affects the driving quality of the vehicle.
  • one motor is used for torque zero-crossing
  • the other motor is used for auxiliary control, so as to respond to the subsequent speed increase demand, so as to simultaneously optimize the existence of the four-wheel drive electric vehicle under the torque zero-crossing condition.
  • this step proposes that, under this working condition, the total feedback power of the vehicle is determined based on the total torque of the vehicle and the current vehicle speed.
  • the total torque of the vehicle at this time is the feedback torque, which is strongly related to the current vehicle speed of the vehicle.
  • the motor speed corresponding to different vehicle speeds is different, and the motor speed and torque determine the output power of the motor. Therefore, by collecting the current vehicle speed and the working state of the motor, combined with the total torque of the vehicle, the total feedback power of the vehicle can be determined.
  • the calculation process is generally calculated by the vehicle control unit (Vehicle Control Unit, VCU) based on the preset parameter information combined with the collected real-time data to determine the real-time total feedback power of the vehicle.
  • VCU Vehicle Control Unit
  • the front motor and the rear motor refer to the motors that drive the front and rear wheels of the vehicle, respectively, and the allowable feedback power of the motor refers to the maximum feedback power that the motor can output under the current working condition.
  • the condition mainly refers to the current speed of the motor and the working temperature of the motor.
  • the allowable feedback power in this step can be calculated by the VCU according to the motor operating parameters collected in real time and a preset strategy.
  • one motor is selected from the front motor and the rear motor of the vehicle as the first motor, and the first motor will execute the torque zero-crossing according to the preset torque control curve control.
  • the preset torque control curve is an optimal control curve set according to specific parameters of the first motor.
  • Optimal control for example, sets the torque control curve based on the slope of change of the first motor torque when the torque crosses zero.
  • one motor is selected from the front motor and the rear motor as the motor for performing kinetic energy feedback according to the working state of the motor, so that the first motor can realize the torque zero-crossing control.
  • the first motor is determined, the first motor
  • the torque control curve of the motor is determined, that is, the torque control of the first motor has nothing to do with the previously determined total feedback power, and is controlled according to a preset preset torque control curve. Instead of simply distributing all the feedback torque to this first motor.
  • the first motor When the first motor is determined, another motor will be determined as the second motor, and in this embodiment, the torque control of the second motor needs to be calculated. Since the total torque of the vehicle is determined, the first motor is determined according to the preset Torque control curve control, and its torque is also determined. In order to make the vehicle reach the total torque, the torque control of the second motor will be changed according to the torque change of the first motor. Therefore, according to the total feedback power and the preset torque control of the first motor The curve can determine the torque assist control curve executed by the second motor, that is, the torque output of the second motor needs to be calculated in real time.
  • the torque control of the second motor belongs to non-zero-crossing control, that is, the torque control of the second motor does not change direction. Its function is to assist the output torque of the vehicle to reach the total vehicle torque under the current operating conditions.
  • the torque control method of the four-wheel drive electric vehicle proposed in the embodiment of the present application is to change the total torque of the vehicle from the driving torque to the feedback torque.
  • the two motors are respectively given different torque adjustment functions, and the first motor performs torque zero-crossing adjustment, and makes the first motor perform torque adjustment according to the preset torque control curve.
  • the curve calculates the torque assist control curve to be executed by the second motor, so that the torque of the second motor cooperates with the torque control of the first motor on the basis of non-zero adjustment, so that the total power of the vehicle reaches the total feedback determined based on the total torque. power. Realize the simultaneous optimization of jitter, abnormal noise and dynamic hysteresis in the torque zero-crossing control stage of the vehicle.
  • the total vehicle torque in this step is determined according to the current driving state of the vehicle, and its value is the value of the feedback torque, which is based on the current speed of the vehicle and the reduction in the opening of the accelerator pedal or the brake pedal.
  • the opening degree is determined by looking up the table.
  • the data table in question is a torque map that is preset based on the vehicle's own parameters, which records the vehicle's corresponding vehicle speed, vehicle acceleration, accelerator pedal/brake pedal opening and other parameters under different driving conditions.
  • Demand torque which is the total vehicle torque. Further, according to the total torque of the vehicle and the current vehicle speed, the total feedback power of the vehicle can be further determined.
  • step 102 The content of this step is the same as that of step 102 in the embodiment of FIG. 1 , and the specific content will not be repeated.
  • this step preferentially determines whether the total feedback power is less than the allowable feedback power of the front motor, wherein the allowable feedback power is determined based on the parameters of the front motor and real-time state parameters.
  • the value of the allowable feedback power is much larger than the total feedback power of the vehicle. Only when the kinetic energy feedback function of the front motor fails, the value will be smaller than the total feedback power. Therefore, the purpose of this judgment can be regarded as a fault detection step for the kinetic energy feedback function of the front motor.
  • the total feedback power is less than the allowable feedback power of the front motor
  • the total feedback power is not less than the allowable feedback power of the front motor
  • the rear motor is determined as the first motor and the front motor as the second motor; on the contrary, if the rear motor is also faulty, that is, the total feedback power is not less than the rear motor.
  • the allowable feedback power of the motor means that there is a problem with the kinetic energy feedback function of the front and rear motors at this time, and the vehicle cannot perform kinetic energy feedback. Therefore, the vehicle will prohibit the front motor and the rear motor from performing feedback control, that is, the front and rear motors do not need torque. Zero-crossing control, there is no corresponding jitter abnormal noise problem.
  • the VCU After selecting one of the front motor or the rear motor as the first motor, the VCU will obtain the corresponding preset torque control curve according to the selected first motor. It should be noted here that due to the parameter difference between the front motor and the rear motor of the vehicle, the preset torque control curves corresponding to the front motor and the rear motor are also different, and the preset torque control curve is based on the first motor.
  • the self-parameters are pre-determined, and are generally determined after multiple tests, which can ensure that the first motor has the optimal control effect on jitter and abnormal noise when the torque zero-crossing control is performed according to the preset torque control curve.
  • the total feedback torque curve of the vehicle is determined according to the current vehicle speed under the condition of determining the total feedback power, and the torque assist control curve is calculated according to the total feedback torque curve and the preset torque control curve. That is, the total torque of the vehicle at the same time point is the sum of the torques of the first motor and the second motor, and under the condition that the total torque is determined by the torque of the first motor, the real-time torque of the second motor can be determined, and then the second motor can be determined.
  • the torque assist control curve performed by the motor.
  • step 105 The content of this step is the same as that of step 105 in the embodiment of FIG. 1 , and the specific content will not be repeated.
  • the total torque of the vehicle changes from negative to positive again, that is, from the feedback torque to the driving torque.
  • This working condition is to increase the speed according to the driver's intention when the vehicle starts the kinetic energy feedback function.
  • the total torque of the vehicle becomes the driving torque, and its torque value is determined according to the current speed of the vehicle and the reduction of the opening of the vehicle's brake pedal or the opening of the accelerator pedal.
  • the data table in 201 is similar and can also be the same data table.
  • the control of the torque of the first motor is based on the reverse preset
  • the torque control curve is adjusted.
  • the preset torque control curve of the motor contains the process from positive to negative and from negative to positive, and most of the two processes of the motor are mirror images of each other. Therefore, the reverse preset in this step
  • the torque control curve refers to the adjustment process in which the torque changes from negative to positive, and the curve is also a pre-calibrated curve, which can be directly obtained according to the determined first motor.
  • the total driving torque curve corresponding to the vehicle can be determined according to the current vehicle speed of the vehicle. Furthermore, according to the total driving torque curve and the reverse preset torque control curve to be executed by the first motor, the drive torque control curve to be executed by the second motor can be calculated. Specifically, the torque values in the curve are the same At a time point, the difference between the total driving torque of the vehicle and the output torque of the first motor.
  • the second motor since the second motor is zero-crossing during the previous adjustment process in which the total vehicle torque is the feedback torque, the second motor can quickly respond to the vehicle's Power demand, to solve the problem of power hysteresis of electric four-wheel drive vehicles under such conditions.
  • the torque zero-crossing control performed by the first motor still adopts the optimal preset torque control curve, the vibration and abnormal noise problem generated by the first motor is also optimally controlled, so that under this working condition, the vehicle Synchronization optimization of jitter, abnormal noise and dynamic hysteresis.
  • the torque control of the second motor is performed according to the calculated torque control curve.
  • the output torque of the second motor can not be completely executed according to its torque control curve, and its output torque can be directly adjusted to zero, so as to speed up the vehicle to achieve driving speed of intent.
  • the second motor first performs torque adjustment according to the torque assist control curve.
  • the output torque of the second motor is adjusted to zero, and is no longer adjusted according to the torque assist control curve.
  • the embodiment of the present application provides a torque control device for a four-wheel drive electric vehicle, which is used for synchronizing the torque changes of the front and rear motors of the electric vehicle by controlling respectively. Optimize the jitter and abnormal noise and power hysteresis problems of the vehicle when the torque crosses zero, and improve the driving quality of the whole vehicle.
  • the embodiments of the apparatus correspond to the foregoing method embodiments. For ease of reading, this embodiment will not repeat the details of the foregoing method embodiments one by one, but it should be clear that the apparatus in this embodiment can correspondingly implement the foregoing method embodiments. the entire contents of the example. Specifically as shown in Figure 3, the device includes:
  • a first determining unit 31 configured to determine the total feedback power of the vehicle according to the feedback torque and the current vehicle speed when the total vehicle torque is changed from the driving torque to the feedback torque;
  • the second determination unit 32 is configured to respectively determine the allowable feedback power of the front motor and the rear motor according to the real-time states of the front motor and the rear motor of the vehicle;
  • the selection unit 33 is configured to determine, according to the allowable feedback power determined by the second determination unit 32 and the total feedback power determined by the first determination unit 31, the first motor that performs torque zero-crossing control from the front motor and the rear motor, the The first motor realizes the torque zero-crossing control according to the preset torque control curve;
  • the calculation unit 34 is configured to determine, according to the total feedback power and the preset torque control curve of the first motor determined by the selection unit 33, a torque assist control curve executed by the second motor, the second motor according to the The torque assist control curve performs non-zero-crossing control of torque;
  • the adjustment control unit 35 is configured to adjust the output torques of the first motor and the second motor respectively according to the preset torque control curve and the torque assist control curve determined by the calculation unit 34 .
  • the selection unit 33 includes:
  • the first judgment module 331 is used for judging whether the total feedback power is less than the allowable feedback power of the front motor
  • the first determination module 332 is configured to determine that the front motor is the first motor and the rear motor is the second motor when the first determination module 331 determines that the total feedback power is less than the allowable feedback power of the front motor;
  • the second judgment module 333 is configured to judge whether the total feedback power is less than the allowable feedback power of the rear motor when the first judgment module 331 determines that the total feedback power is not less than the allowable feedback power of the front motor;
  • the second determination module 334 is configured to, when the second determination module 333 determines that the total feedback power is less than the allowable feedback power of the rear motor, determine that the rear motor is the first motor and the front motor is the second motor; otherwise, the front motor and the rear motor are prohibited.
  • the motor performs feedback control.
  • the computing unit 34 includes:
  • a first determination module 341, configured to determine a total feedback torque curve according to the current vehicle speed and the total feedback power
  • the first calculation module 342 is configured to calculate the torque assist control curve according to the total feedback torque curve and the preset torque control curve determined by the first determination module 341 .
  • the method further includes:
  • a third determining unit 36 configured to determine the total driving power of the vehicle according to the driving torque and the current vehicle speed when the total vehicle torque is restored from the feedback torque to the driving torque;
  • the adjustment control unit 35 is further configured to adjust the output torque of the first motor according to the reverse preset torque control curve
  • the calculating unit 34 is further configured to determine the driving torque control curve according to the total driving power determined by the third determining unit 36 and the reverse preset torque control curve;
  • the adjustment control unit 35 is further configured to adjust the output torque of the second motor according to the driving torque control curve determined by the calculation unit 34.
  • the computing unit 34 further includes:
  • the second determination module 343 is configured to determine the total driving torque curve of the vehicle according to the current vehicle speed and the total driving power of the vehicle;
  • the second calculation module 344 is configured to calculate the driving torque control curve according to the total driving torque curve determined by the second determining module 343 and the reverse preset torque control curve.
  • the device further includes:
  • the acquisition unit 37 is configured to acquire the preset torque control curve of the first motor determined by the selection unit 33, the preset torque control curve is predetermined according to the parameters of the first motor, so as to ensure that the first motor is based on
  • the preset torque control curve has the optimal control effect on jitter and abnormal noise when the torque zero-crossing control is performed.
  • the adjustment control unit 35 is further configured to adjust the output torque of the first motor according to the preset torque control curve; when the adjustment of the first motor is completed, the torque crosses zero and the output torque reaches When the preset value is set, the output torque of the second motor is adjusted to zero.
  • the obtaining unit 37 of the device is further configured to, when the total vehicle torque is changed from the driving torque to the feedback torque, according to the current speed of the vehicle and the reduction range of the accelerator pedal opening of the vehicle or the brake pedal
  • the opening look-up table determines the value of the vehicle's total torque.
  • the obtaining unit 37 of the device is further configured to, when the total vehicle torque is restored from the feedback torque to the driving torque, according to the current speed of the vehicle and the reduction range of the brake pedal opening of the vehicle or the accelerator pedal
  • the opening look-up table determines the value of the vehicle's total torque.
  • an embodiment of the present application also proposes a four-wheel drive electric vehicle, wherein the four-wheel drive electric vehicle has at least one front motor and at least one rear motor, and the front motor is used to drive and feedback kinetic energy to the front wheels of the vehicle, corresponding to The rear motor is used to drive and feedback kinetic energy to the rear wheels of the vehicle.
  • the torque control method of the four-wheel drive electric vehicle described in the above Figures 1 and 2 is used to solve the problem of vehicle vibration, abnormal noise and power hysteresis. Synchronous optimization to improve the overall driving quality of the vehicle.
  • an embodiment of the present application further provides a processor for running a program, wherein, when the program is running, the torque control method of the four-wheel drive electric vehicle described in the foregoing FIGS. 1-2 is executed.
  • an embodiment of the present application further provides a storage medium, where the storage medium is used to store a computer program, wherein, when the computer program runs, the device where the storage medium is located is controlled to execute the four steps described in the above-mentioned FIG. 1-2. Torque control method for driving electric vehicles.
  • memory may include non-persistent memory in computer-readable media, in the form of random access memory (RAM) and/or non-volatile memory, such as read only memory (ROM) or flash memory (flash RAM), including at least one memory chip.
  • RAM random access memory
  • ROM read only memory
  • flash RAM flash memory
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-persistent memory in computer readable media, random access memory (RAM) and/or non-volatile memory in the form of, for example, read only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
  • RAM random access memory
  • ROM read only memory
  • flash RAM flash memory
  • Computer-readable media includes both persistent and non-permanent, removable and non-removable media, and storage of information may be implemented by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory computer-readable media, such as modulated data signals and carrier waves.
  • the embodiments of the present application may be provided as a method, a system or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.

Abstract

一种四驱电动汽车的扭矩控制方法、装置以及车辆。方法包括:在车辆总扭矩由驱动扭矩变为回馈扭矩时,根据车辆总扭矩以及当前车速确定车辆的总回馈功率;根据车辆前电机与后电机的实时状态分别确定前电机与后电机的允许回馈功率;根据允许回馈功率确定以预设扭矩控制曲线执行扭矩过零控制的第一电机;根据总回馈功率以及第一电机的预设扭矩控制曲线,确定第二电机所执行的扭矩辅助控制曲线,扭矩辅助控制曲线用于执行扭矩的非过零控制;根据预设扭矩控制曲线与扭矩辅助控制曲线分别调整第一电机与第二电机的输出扭矩。

Description

四驱电动汽车的扭矩控制方法、装置以及车辆
相关申请的交叉引用
本申请基于申请号为202110019176.1、申请日为2021年1月7日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电动汽车技术领域,尤其涉及一种四驱电动汽车的扭矩控制方法、装置以及车辆。
背景技术
由于油气资源的匮乏和环境污染问题日益突出,电动汽车作为新一代的清洁能源汽车,越来越受到国家的重视。随着电动汽车技术的不断革新以及国家扶持力度的加大,近年来我国的电动汽车比例不断攀升。随着电动汽车的日益普及,其安全性和舒适性也越来越受到人们的关注。
对于匹配内燃机和变速器的传统车辆而言,其具有的扭转弹簧、液力变矩器或离合器等扭矩缓冲装置,能够吸收并弱化大部分扭矩突变带来的冲击问题。而对于纯电动汽车而言,其动力系统传动路径上没有扭矩缓冲装置,考虑到齿轮结构、驱动轴结构,驱动力及回收力在传递过程中将受到齿轮间隙、驱动轴扭转刚度的影响,造成电动汽车行车过程中,扭矩在驱动扭矩和回收扭矩之间切换时,因扭矩方向的快速改变造成传动系统中相啮合的两个齿轮的啮合面不断切换,并伴随着传动轴扭转方向的不断改变,由于电机扭矩响应时间短、扭矩传递无缓冲,齿轮的啮合将发生啮合冲击,影响整车驾驶性。
现有的扭矩过零策略,针对啮合冲击的存在,根据车速、实际电机扭矩大小等限制电机扭矩过零前后的扭矩变化速率,虽然提高了整车NVH性能,但导致Tipin工况(以0%油门滑行能量回收或制动能量回收状态行车时,快速点踩某油门的工况)整车纵向加速响应变慢、整车驾驶性变差。而如果不限制电机扭矩过零前后的扭矩变化速率,电机扭矩在方向改变时将造成齿轮啮合冲击导致的抖动异响,影响整车NVH性能。
发明内容
鉴于上述问题,本申请提出了一种四驱电动汽车的扭矩控制方法、装置以及车辆,其 目的在于通过分别控制电动汽车前后电机的扭矩变化同步优化车辆在扭矩过零情况下产生的抖动异响与动力迟滞问题,提升整车的行驶品质。
为达到上述目的,本申请提供如下技术方案:
第一方面,本申请提供一种四驱电动汽车的扭矩控制方法,包括:
在车辆总扭矩由驱动扭矩变为回馈扭矩时,根据所述车辆总扭矩以及当前车速确定车辆的总回馈功率;
根据车辆前电机与后电机的实时状态分别确定前电机与后电机的允许回馈功率;
根据所述允许回馈功率确定执行扭矩过零控制的第一电机,所述第一电机根据预设扭矩控制曲线实现扭矩过零控制;
根据所述总回馈功率以及所述第一电机的预设扭矩控制曲线,确定第二电机所执行的扭矩辅助控制曲线,所述第二电机根据所述扭矩辅助控制曲线执行扭矩的非过零控制;
根据所述预设扭矩控制曲线与所述扭矩辅助控制曲线分别调整所述第一电机与第二电机的输出扭矩。
在本申请的实施例中,根据所述允许回馈功率从前电机与后电机中确定执行扭矩过零控制的第一电机,包括:
判断所述总回馈功率是否小于所述前电机的允许回馈功率;
若小于前电机,则确定前电机为第一电机,后电机为第二电机;
若不小于前电机,则判断所述总回馈功率是否小于所述后电机的允许回馈功率;
若小于后电机,则确定后电机为第一电机,前电机为第二电机;
若不小于后电机,则禁止前电机与后电机执行回馈控制。
在本申请的实施例中,根据所述总回馈功率以及所述第一电机的预设扭矩控制曲线,确定第二电机所执行的扭矩辅助控制曲线,包括:
根据当前车速以及总回馈功率确定总回馈扭矩曲线;
根据所述总回馈扭矩曲线以及预设扭矩控制曲线计算扭矩辅助控制曲线。
在本申请的实施例中,所述方法还包括:
在车辆总扭矩由回馈扭矩恢复为驱动扭矩时,根据所述车辆总扭矩以及当前车速确定车辆的总驱动功率;
根据反向的预设扭矩控制曲线调整第一电机的输出扭矩;
根据总驱动功率以及反向的预设扭矩控制曲线确定驱动扭矩控制曲线,并根据所述驱动扭矩控制曲线调整第二电机的输出扭矩。
在本申请的实施例中,根据总驱动功率以及反向的预设扭矩控制曲线确定驱动扭矩控制曲线,包括:
根据车辆的当前车速以及总驱动功率确定车辆的总驱动扭矩曲线;
根据所述总驱动扭矩曲线以及反向的预设扭矩控制曲线计算驱动扭矩控制曲线。
在本申请的实施例中,所述方法包括:
获取第一电机的预设扭矩控制曲线,所述预设扭矩控制曲线根据所述第一电机的自身参数预先确定的。
在本申请的实施例中,根据所述预设扭矩控制曲线与扭矩辅助控制曲线分别调整所述第一电机与第二电机的输出扭矩,包括:
根据预设扭矩控制曲线调整第一电机的输出扭矩;
当对所述第一电机的调整完成扭矩过零,且输出扭矩达到预设值时,调整第二电机的输出扭矩为零。
在本申请的实施例中,所述方法还包括:
在车辆总扭矩由驱动扭矩变为回馈扭矩时,根据车辆当前速度以及车辆加速踏板开度的减小幅度或制动踏板的开度查表确定所述车辆总扭矩的值。
在本申请的实施例中,所述方法还包括:
在车辆总扭矩由回馈扭矩恢复为驱动扭矩时,根据车辆当前速度以及车辆制动踏板开度的减小幅度或加速踏板的开度查表确定所述车辆总扭矩的值。
第二方面,本申请提供一种四驱电动汽车的扭矩控制装置,所述装置包括:
第一确定单元,用于在车辆总扭矩由驱动扭矩变为回馈扭矩时,根据所述回馈扭矩以及当前车速确定车辆的总回馈功率;
第二确定单元,用于根据车辆前电机与后电机的实时状态分别确定前电机与后电机的允许回馈功率;
选择单元,用于根据所述第二确定单元确定的允许回馈功率中确定执行扭矩过零控制的第一电机,所述第一电机根据预设扭矩控制曲线实现扭矩过零控制;
计算单元,用于根据所述总回馈功率以及所述选择单元确定的第一电机的预设扭矩控制曲线,确定第二电机所执行的扭矩辅助控制曲线,所述第二电机根据所述扭矩辅助控制曲线执行扭矩的非过零控制;
调节控制单元,用于根据所述预设扭矩控制曲线与所述计算单元确定的扭矩辅助控制曲线分别调整所述第一电机与第二电机的输出扭矩。
在本申请的实施例中,所述选择单元包括:
第一判断模块,用于判断所述总回馈功率是否小于所述前电机的允许回馈功率;
第一确定模块,用于当第一判断模块确定总回馈功率小于前电机的允许回馈功率时,确定前电机为第一电机,后电机为第二电机;
第二判断模块,用于当第一判断模块确定总回馈功率不小于前电机的允许回馈功率时,判断所述总回馈功率是否小于所述后电机的允许回馈功率;
第二确定模块,用于在第二判断模块确定总回馈功率小于后电机的允许回馈功率时,确定后电机为第一电机,前电机为第二电机;反之,则禁止前电机与后电机执行回馈控制。
在本申请的实施例中,所述计算单元包括:
第一确定模块,用于根据当前车速以及总回馈功率确定总回馈扭矩曲线;
第一计算模块,用于根据所述第一确定模块确定的总回馈扭矩曲线以及预设扭矩控制曲线计算扭矩辅助控制曲线。
在本申请的实施例中,所述方法还包括:
第三确定单元,用于在车辆总扭矩由回馈扭矩恢复为驱动扭矩时,根据所述车辆总扭矩以及当前车速确定车辆的总驱动功率;
所述调节控制单元还用于,根据反向的预设扭矩控制曲线调整第一电机的输出扭矩;
所述计算单元还用于,根据第三确定单元确定的总驱动功率以及反向的预设扭矩控制曲线确定驱动扭矩控制曲线;
所述调节控制单元还用于,根据所述计算单元确定的驱动扭矩控制曲线调整第二电机的输出扭矩。
在本申请的实施例中,所述计算单元还包括:
第二确定模块,用于根据车辆的当前车速以及总驱动功率确定车辆的总驱动扭矩曲线;
第二计算模块,用于根据所述第二确定模块确定的总驱动扭矩曲线以及反向的预设扭矩控制曲线计算驱动扭矩控制曲线。
在本申请的实施例中,所述装置还包括:
获取单元,用于获取第一电机的预设扭矩控制曲线,所述预设扭矩控制曲线根据所述第一电机的自身参数预先确定的。
在本申请的实施例中,所述调节控制单元还用于,根据预设扭矩控制曲线调整第一电机的输出扭矩;当对所述第一电机的调整完成扭矩过零,且输出扭矩达到预设值时,调整第二电机的输出扭矩为零。
在本申请的实施例中,所述装置的获取单元还用于,在车辆总扭矩由驱动扭矩变为回馈扭矩时,根据车辆当前速度以及车辆加速踏板开度的减小幅度或制动踏板的开度查表确定所述车辆总扭矩的值。
在本申请的实施例中,所述装置的获取单元还用于,在车辆总扭矩由回馈扭矩恢复为驱动扭矩时,根据车辆当前速度以及车辆制动踏板开度的减小幅度或加速踏板的开度查表确定所述车辆总扭矩的值。
第三方面,本申请提供一种四驱电动车辆,所述四驱电动车辆包括前电机与后电机,其中所述前电机与后电机采用上述第一方面所述的四驱电动汽车的扭矩控制方法。
另一方面,本申请还提供一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述第一方面的四驱电动汽车的扭矩控制方法。
另一方面,本申请还提供一种存储介质,所述存储介质用于存储计算机程序,其中,所述计算机程序运行时控制所述存储介质所在设备执行上述第一方面的四驱电动汽车的扭矩控制方法。
借由上述技术方案,本申请提供的一种四驱电动汽车的扭矩控制方法、装置以及车辆,是在车辆总扭矩由驱动扭矩变为回馈扭矩时,即车辆处于需要进行动能回收的工况下,通过计算车辆的总回馈功率确定前电机与后电机中的一台作为动能回收的第一电机,执行扭矩过零的控制,并且,由该第一电机根据预设扭矩控制曲线执行,以使得该第一电机在扭矩过零时产生最小的抖动异响,同时,为了维持总回馈功率,让车辆处于最佳行驶状态,将根第一电机所执行的扭矩控制曲线为另一台电机计算其所要执行的扭矩辅助控制曲线,从而让第二电机辅助第一电机的控制,实现车辆输出的总回馈功率。而本申请中,第二电机的扭矩辅助控制曲线将规定第二电机的扭矩控制不过零,以确保在车辆需要提速时,提供快速的动力响应以及动力的平稳输出,实现四驱电动汽车针对抖动异响与动力迟滞的同步优化,提升整车的行驶品质。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。 而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了本申请实施例提出的一种四驱电动汽车的扭矩控制方法的流程图;
图2示出了本申请实施例提出的另一种四驱电动汽车的扭矩控制方法的流程图;
图3示出了本申请实施例提出的一种四驱电动汽车的扭矩控制装置的结构示意图;
图4示出了本申请实施例提出的另一种四驱电动汽车的扭矩控制装置的结构示意图。
具体实施方式
下面将参照附图更详细地描述本申请的示例性实施例。虽然附图中显示了本申请的示例性实施例,然而应当理解,可以以各种形式实现本申请而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本申请,并且能够将本申请的范围完整的传达给本领域的技术人员。
本申请实施例提供了一种四驱电动汽车的扭矩控制方法,其具体执行步骤如图1所示,包括:
101、在车辆总扭矩由驱动扭矩变为回馈扭矩时,根据车辆总扭矩以及当前车速确定车辆的总回馈功率。
其中,车辆总扭矩由驱动扭矩变为回馈扭矩是指车辆在匀速或加速行驶过程中,存在减速的工况,比如松加速踏板或踩制动踏板等操作。在此种工况下,车辆的总扭矩将由正直变化为负值,即总扭矩由驱动扭矩变为回馈扭矩,能够通过电机的扭矩过零控制实现车辆动能的回收。现有技术中,针对该工况的处理多是将总的回馈扭矩分配到前后电机中执行动能回收,但这样的方式将使得前后电机在过零阶段的控制出现抖动异响,且在在需要提速时,即车辆总扭矩再由回馈扭矩变为驱动扭矩时,前后电机都需要再次过零,不仅存在抖动异响,同时,还降低了车辆的动力响应,影响整车行驶品质。
本实施例在该工况下,采用的是一台电机进行扭矩过零,另一台电机进行辅助控制,以响应后续的提速需求,从而同步优化四驱电动汽车在扭矩过零工况下存在的抖动异响以及动力迟滞问题。
为此,本步骤提出,在该工况下,基于车辆总扭矩以及当前车速确定车辆的总回馈功率。此时的车辆总扭矩为回馈扭矩,其与车辆的当前车速强相关,不同车速所对应的电机转速不同,而电机转速与扭矩确定了电机的输出功率。因此,通过采集当前车速,以及电机的工作状态,结合车辆总扭矩即可确定该车辆的总回馈功率。该计算过程一般由车辆的整车控制单元(Vehicle Control Unit,VCU)基于预设的参数信息结合所采集的实时数据进行计算,确 定车辆实时的总回馈功率。
102、根据车辆前电机与后电机的实时状态分别确定前电机与后电机的允许回馈功率。
本步骤中,前电机与后电机分别是指驱动车辆前轮与后轮的电机,而电机的允许回馈功率是指电机在当前工况下所能够输出的最大回馈功率,其中,电机的当前工况主要是参考电机当前的转速以及电机的工作温度。
在实际应用中,本步骤中的允许回馈功率可以由VCU根据实时采集的电机工作参数结合预设策略计算得到。
103、根据允许回馈功率确定执行扭矩过零控制的第一电机。
本步骤是根据所确定的允许回馈功率以及车辆的总回馈功率,从车辆的前电机与后电机中选择一台电机为第一电机,该第一电机将根据预设扭矩控制曲线执行扭矩过零控制。其中,该预设扭矩控制曲线是根据第一电机的具体参数而设置的一条最优控制曲线,第一电机根据该预设扭矩控制曲线执行扭矩过零控制时,可以将抖动异响的问题得到最优控制,比如,基于该第一电机扭矩过零时的变化斜率设置设扭矩控制曲线。
可见,本步骤是从前电机与后电机中根据电机的工作状态而选择一台作为执行动能回馈的电机,使得该第一电机实现扭矩过零控制,同时,在确定第一电机时,该第一电机的扭矩控制曲线是确定,即该第一电机的扭矩控制与之前所确定的总回馈功率无关,其是按照预先设置的预设扭矩控制曲线控制的。而不是将所有的回馈扭矩简单地分配到该第一电机上。
104、根据总回馈功率以及第一电机的预设扭矩控制曲线,确定第二电机所执行的扭矩辅助控制曲线。
当确定第一电机时,另一电机将确定为第二电机,而在本实施例中,第二电机的扭矩控制是需要计算得到的,由于车辆的总扭矩确定,第一电机是根据预设扭矩控制曲线控制,其扭矩也是确定,为了使得车辆达到该总扭矩,第二电机的扭矩控制将根据第一电机的扭矩变化而改变,因此,根据总回馈功率以及第一电机的预设扭矩控制曲线可以确定出第二电机所执行的扭矩辅助控制曲线,即第二电机的扭矩输出是需要实时计算得到的。
需要说明的是,在本实施例中,第二电机的扭矩控制属于非过零控制,即第二电机对扭矩的控制不变向。其作用是辅助车辆的输出扭矩在当前工况下达到车辆总扭矩。
105、根据预设扭矩控制曲线与扭矩辅助控制曲线分别调整第一电机与第二电机的输出扭矩。
需要说明的是,在实际行驶过程中,由于车辆的总扭矩是实时变化,因此,在本申请实施例中,由于第一电机的预设扭矩控制曲线是固定的,第二电机的扭矩辅助控制曲线是需要 实时计算确定的。
基于上述图1的实现方式可以看出,本申请实施例所提出的四驱电动汽车的扭矩控制方法,是在车辆总扭矩由驱动扭矩变为回馈扭矩的工况下,通过前、后电机的工作状态而分别为两个电机赋予不同扭矩的调节功能,另第一电机执行扭矩过零调节,并使第一电机按照预设扭矩控制曲线进行扭矩调节,同时,根据第一电机的设扭矩控制曲线为第二电机计算其所要执行的扭矩辅助控制曲线,让第二电机的扭矩在不过零调节的基础上配合第一电机的扭矩控制,实现车辆的总功率达到基于总扭矩所确定的总回馈功率。实现车辆在扭矩过零控制阶段对抖动异响与动力迟滞问题的同步优化。
进一步的,在上述图1实施例的基础上,本申请的实施例将详细说明针对车辆前、后电机的功能分配以及在车辆总扭矩再次由负转正时电机对动力需求的快速响应过程,其具体步骤如图2所示,包括:
201、在车辆总扭矩由驱动扭矩变为回馈扭矩时,根据车辆总扭矩以及当前车速确定车辆的总回馈功率。
本步骤与图1实施例所述的步骤101相同,具体内容不再赘述。需要说明的是,本步骤中的车辆总扭矩是根据车辆的当前行驶状态而确定的,其值为回馈扭矩的值,是根据车辆当前速度以及车辆加速踏板开度的减小幅度或制动踏板的开度查表确定的。其中,所查的数据表是基于车辆自身参数而预先设置的扭矩映射表,记录了车辆在不同行驶状态下,根据车速,车辆加速度,加速踏板/制动踏板的开度等参数而对应的车辆需求扭矩,即车辆总扭矩。进而根据该车辆总扭矩以及当前车速,可以进一步确定车辆的总回馈功率。
202、根据车辆前电机与后电机的实时状态分别确定前电机与后电机的允许回馈功率。
此步骤内容与图1实施例所述的步骤102相同,具体内容不再赘述。
203、根据允许回馈功率确定执行扭矩过零控制的第一电机。
基于车辆驾驶的舒适性考虑,应优先考虑使用前电机作为第一电机执行动能回馈的操作。但在实际应用中,还应考虑动能是否能够有效回馈,为此,本申请实施例中,通过采集车辆前电机与后电机的实时状态,来判断前、后电机是否能够有效执行动能回馈操作,进而确定选择哪一个电机为第一电机。
具体的,为了兼顾驾驶的舒适性,本步骤优先判断总回馈功率是否小于所述前电机的允许回馈功率,其中,该允许回馈功率是基于前电机的自身参数以及实时状态参数而确定的。一般情况下,在前电机正常状态下,允许回馈功率的值是远大于车辆总回馈功率的,只有在前电机的动能回馈功能出现故障时,该值会小于总回馈功率。因此,该判断的目的可以视为 对前电机动能回馈功能的故障检测步骤,若无问题,即总回馈功率小于前电机的允许回馈功率,则确定前电机为第一电机,后电机为第二电机;反之,若前电机有问题,即总回馈功率不小于前电机的允许回馈功率,则继续判断总回馈功率是否小于后电机的允许回馈功率,即判断后电机的动能回馈功能有误故障,若后电机无故障,即总回馈功率小于后电机的允许回馈功率,则确定后电机为第一电机,前电机为第二电机;反之,若后电机也存在故障,即总回馈功率不小于后电机的允许回馈功率,则说明此时前、后电机的动能回馈功能都有问题,车辆无法执行动能回馈,为此,车辆将禁止前电机与后电机执行回馈控制,即前后电机均无需进行扭矩过零控制,也就不存在对应的抖动异响问题了。
进一步的,在从前电机或后电机中选中一个作为第一电机后,VCU将根据所选中的第一电机获取对应的预设扭矩控制曲线。这里需要说明的是,由于车辆的前电机与后电机存在参数差异,因此,前电机与后电机所对应的预设扭矩控制曲线也是不同的,而该预设扭矩控制曲线是根据第一电机的自身参数预先确定的,一般是经过多次的测试而确定的,可以确保第一电机根据预设扭矩控制曲线执行扭矩过零控制时具有对抖动异响的最优控制效果。
204、根据总回馈功率以及第一电机的预设扭矩控制曲线,确定第二电机所执行的扭矩辅助控制曲线。
本步骤是在确定总回馈功率的条件下,根据车辆的当前车速确定车辆的总回馈扭矩曲线,在根据总回馈扭矩曲线以及预设扭矩控制曲线计算扭矩辅助控制曲线。即在同一时间点上车辆的总扭矩为第一电机与第二电机的扭矩之和,而在总扭矩于第一电机扭矩确定的条件下,可以确定第二电机的实时扭矩,进而确定第二电机所执行的扭矩辅助控制曲线。
205、根据预设扭矩控制曲线与扭矩辅助控制曲线分别调整第一电机与第二电机的输出扭矩。
此步骤内容与图1实施例所述的步骤105相同,具体内容不再赘述。
206、在车辆总扭矩由回馈扭矩恢复为驱动扭矩时,根据车辆总扭矩以及当前车速确定车辆的总驱动功率。
本步骤是在上述步骤执行后,车辆的总扭矩再次由负变正,即由回馈扭矩恢复为驱动扭矩,该工况是在车辆启动动能回馈功能的状态下,根据驾驶员的意图需要进行提速的工况,此时,车辆的总扭矩变为驱动扭矩,其扭矩值是根据车辆当前速度以及车辆制动踏板开度的减小幅度或加速踏板的开度查表确定的,该表与步骤201中的数据表类似,也可以是同一张数据表。
207、根据反向的预设扭矩控制曲线调整第一电机的输出扭矩。
在车辆总扭矩变为驱动扭矩的工况下,由于在之前回馈扭矩的工况下已经确定了第一电机与第二电机,此时,对第一电机扭矩的控制是根据反向的预设扭矩控制曲线进行调整。一般的,电机的预设扭矩控制曲线中都含有由正至负以及由负至正的过程,且大部分电机的这两个过程是互为镜像的,因此,本步骤中反向的预设扭矩控制曲线是指扭矩由负变为正的调整过程,该曲线也是预先标定好的曲线,可以根据所确定的第一电机直接获取。
208、根据总驱动功率以及反向的预设扭矩控制曲线确定驱动扭矩控制曲线,并根据该驱动扭矩控制曲线调整第二电机的输出扭矩。
在车辆总驱动功率已知的条件下,可以根据车辆的当前车速确定车辆所对应的总驱动扭矩曲线。进而,根据该总驱动扭矩曲线,以及第一电机所要执行的反向的预设扭矩控制曲线,可以计算出第二电机所要执行的驱动扭矩控制曲线,具体的,该曲线中的扭矩值为同一时间点上,车辆总驱动扭矩与第一电机输出扭矩的差值。
需要说明的是,由于第二电机在之前车辆总扭矩为回馈扭矩的调节过程中为过零,因此,在车辆进入驱动扭矩的工况下,第二电机可以无需过零调节,快速响应车辆的动力需求,解决电动四驱车辆在此种工况下动力迟滞的问题。同时,由于第一电机所执行的扭矩过零控制依然采用的是最优化的预设扭矩控制曲线,使得其产生的抖动异响问题也得到了最优控制,实现了此种工况下,车辆抖动异响与动力迟滞的同步优化。
进一步的,在上述图2所示实施例中,第二电机的扭矩控制是根据计算得到的扭矩控制曲线执行的。而在实际应用过程中,也可以在第一电机完成过零控制后,将第二电机的输出扭矩不完全按照其扭矩控制曲线执行,可以直接将其输出扭矩调整为零,以加快车辆达到驾驶意图的速度。具体的,在根据预设扭矩控制曲线调整第一电机的输出扭矩时,第二电机先按照扭矩辅助控制曲线进行扭矩调节,当对第一电机的调整完成扭矩过零,且第一电机的输出扭矩达到预设值时,调整第二电机的输出扭矩为零,不再根据扭矩辅助控制曲线调节。
进一步的,作为对上述图1-2所示方法实施例的实现,本申请实施例提供了一种四驱电动汽车的扭矩控制装置,该装置用于通过分别控制电动汽车前后电机的扭矩变化同步优化车辆在扭矩过零情况下产生的抖动异响与动力迟滞问题,提升整车的行驶品质。该装置的实施例与前述方法实施例对应,为便于阅读,本实施例不再对前述方法实施例中的细节内容进行逐一赘述,但应当明确,本实施例中的装置能够对应实现前述方法实施例中的全部内容。具体如图3所示,该装置包括:
第一确定单元31,用于在车辆总扭矩由驱动扭矩变为回馈扭矩时,根据所述回馈扭矩以及当前车速确定车辆的总回馈功率;
第二确定单元32,用于根据车辆前电机与后电机的实时状态分别确定前电机与后电机的允许回馈功率;
选择单元33,用于根据所述第二确定单元32确定的允许回馈功率以及第一确定单元31确定的总回馈功率,从前电机与后电机中确定执行扭矩过零控制的第一电机,所述第一电机根据预设扭矩控制曲线实现扭矩过零控制;
计算单元34,用于根据所述总回馈功率以及所述选择单元33确定的第一电机的预设扭矩控制曲线,确定第二电机所执行的扭矩辅助控制曲线,所述第二电机根据所述扭矩辅助控制曲线执行扭矩的非过零控制;
调节控制单元35,用于根据所述预设扭矩控制曲线与所述计算单元34确定的扭矩辅助控制曲线分别调整所述第一电机与第二电机的输出扭矩。
在本申请的实施例中,所述选择单元33包括:
第一判断模块331,用于判断所述总回馈功率是否小于所述前电机的允许回馈功率;
第一确定模块332,用于当第一判断模块331确定总回馈功率小于前电机的允许回馈功率时,确定前电机为第一电机,后电机为第二电机;
第二判断模块333,用于当第一判断模块331确定总回馈功率不小于前电机的允许回馈功率时,判断所述总回馈功率是否小于所述后电机的允许回馈功率;
第二确定模块334,用于在第二判断模块333确定总回馈功率小于后电机的允许回馈功率时,确定后电机为第一电机,前电机为第二电机;反之,则禁止前电机与后电机执行回馈控制。
在本申请的实施例中,所述计算单元34包括:
第一确定模块341,用于根据当前车速以及总回馈功率确定总回馈扭矩曲线;
第一计算模块342,用于根据所述第一确定模块341确定的总回馈扭矩曲线以及预设扭矩控制曲线计算扭矩辅助控制曲线。
在本申请的实施例中,所述方法还包括:
第三确定单元36,用于在车辆总扭矩由回馈扭矩恢复为驱动扭矩时,根据所述驱动扭矩以及当前车速确定车辆的总驱动功率;
所述调节控制单元35还用于,根据反向的预设扭矩控制曲线调整第一电机的输出扭矩;
所述计算单元34还用于,根据第三确定单元36确定的总驱动功率以及反向的预设扭矩控制曲线确定驱动扭矩控制曲线;
所述调节控制单元35还用于,根据所述计算单元34确定的驱动扭矩控制曲线调整第二 电机的输出扭矩。
在本申请的实施例中,所述计算单元34还包括:
第二确定模块343,用于根据车辆的当前车速以及总驱动功率确定车辆的总驱动扭矩曲线;
第二计算模块344,用于根据所述第二确定模块343确定的总驱动扭矩曲线以及反向的预设扭矩控制曲线计算驱动扭矩控制曲线。
在本申请的实施例中,所述装置还包括:
获取单元37,用于获取所述选择单元33确定的第一电机的预设扭矩控制曲线,所述预设扭矩控制曲线根据所述第一电机的自身参数预先确定的,以确保第一电机根据预设扭矩控制曲线执行扭矩过零控制时具有对抖动异响的最优控制效果。
在本申请的实施例中,所述调节控制单元35还用于,根据预设扭矩控制曲线调整第一电机的输出扭矩;当对所述第一电机的调整完成扭矩过零,且输出扭矩达到预设值时,调整第二电机的输出扭矩为零。
在本申请的实施例中,所述装置的获取单元37还用于,在车辆总扭矩由驱动扭矩变为回馈扭矩时,根据车辆当前速度以及车辆加速踏板开度的减小幅度或制动踏板的开度查表确定所述车辆总扭矩的值。
在本申请的实施例中,所述装置的获取单元37还用于,在车辆总扭矩由回馈扭矩恢复为驱动扭矩时,根据车辆当前速度以及车辆制动踏板开度的减小幅度或加速踏板的开度查表确定所述车辆总扭矩的值。
进一步的,本申请实施例还提出一种四驱电动车辆,其中,该四驱电动车辆中具有至少一个前电机与至少一个后电机,前电机用于对车辆前轮进行驱动与动能回馈,对应的后电机用于对车辆后轮进行驱动与动能回馈。该四驱电动车辆的前电机与后电机在需要扭矩过零控制的工况下,采用上述图1、2所述的四驱电动汽车的扭矩控制方法,实现对车辆抖动异响以及动力迟滞问题的同步优化,提升车辆的整体行驶品质。
进一步的,本申请实施例还提供一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述图1-2中所述的四驱电动汽车的扭矩控制方法。
进一步的,本申请实施例还提供一种存储介质,所述存储介质用于存储计算机程序,其中,所述计算机程序运行时控制所述存储介质所在设备执行上述图1-2中所述的四驱电动汽车的扭矩控制方法。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可 以参见其他实施例的相关描述。
可以理解的是,上述方法、装置以及车辆中的相关特征可以相互参考。另外,上述实施例中的“第一”、“第二”等是用于区分各实施例,而并不代表各实施例的优劣。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在此提供的算法和显示不与任何特定计算机、虚拟系统或者其它设备固有相关。各种通用系统也可以与基于在此的示教一起使用。根据上面的描述,构造这类系统所要求的结构是显而易见的。此外,本申请也不针对任何特定编程语言。应当明白,可以利用各种编程语言实现在此描述的本申请的内容,并且上面对特定语言所做的描述是为了披露本申请的最佳实施方式。
此外,存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编 程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (13)

  1. 一种四驱电动汽车的扭矩控制方法,其特征在于,所述方法包括:
    在车辆总扭矩由驱动扭矩变为回馈扭矩时,根据所述车辆总扭矩以及当前车速确定车辆的总回馈功率;
    根据车辆前电机与后电机的实时状态分别确定前电机与后电机的允许回馈功率;
    根据所述允许回馈功率确定执行扭矩过零控制的第一电机,所述第一电机根据预设扭矩控制曲线实现扭矩过零控制;
    根据所述总回馈功率以及所述第一电机的预设扭矩控制曲线,确定第二电机所执行的扭矩辅助控制曲线,所述第二电机根据所述扭矩辅助控制曲线执行扭矩的非过零控制;
    根据所述预设扭矩控制曲线与所述扭矩辅助控制曲线分别调整所述第一电机与第二电机的输出扭矩。
  2. 根据权利要求1所述的方法,其特征在于,根据所述允许回馈功率从前电机与后电机中确定执行扭矩过零控制的第一电机,包括:
    判断所述总回馈功率是否小于所述前电机的允许回馈功率;
    若小于前电机,则确定前电机为第一电机,后电机为第二电机;
    若不小于前电机,则判断所述总回馈功率是否小于所述后电机的允许回馈功率;
    若小于后电机,则确定后电机为第一电机,前电机为第二电机;
    若不小于后电机,则禁止前电机与后电机执行回馈控制。
  3. 根据权利要求1所述的方法,其特征在于,根据所述总回馈功率以及所述第一电机的预设扭矩控制曲线,确定第二电机所执行的扭矩辅助控制曲线,包括:
    根据当前车速以及总回馈功率确定总回馈扭矩曲线;
    根据所述总回馈扭矩曲线以及预设扭矩控制曲线计算扭矩辅助控制曲线。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    在车辆总扭矩由回馈扭矩恢复为驱动扭矩时,根据所述车辆总扭矩以及当前车速确定车辆的总驱动功率;
    根据反向的预设扭矩控制曲线调整第一电机的输出扭矩;
    根据总驱动功率以及反向的预设扭矩控制曲线确定驱动扭矩控制曲线,并根据所述驱动扭矩控制曲线调整第二电机的输出扭矩。
  5. 根据权利要求4所述的方法,其特征在于,根据总驱动功率以及反向的预设扭矩控 制曲线确定驱动扭矩控制曲线,包括:
    根据车辆的当前车速以及总驱动功率确定车辆的总驱动扭矩曲线;
    根据所述总驱动扭矩曲线以及反向的预设扭矩控制曲线计算驱动扭矩控制曲线。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法包括:
    获取第一电机的预设扭矩控制曲线,所述预设扭矩控制曲线根据所述第一电机的自身参数预先确定的。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,根据所述预设扭矩控制曲线与所述扭矩辅助控制曲线分别调整所述第一电机与第二电机的输出扭矩,包括:
    根据预设扭矩控制曲线调整第一电机的输出扭矩;
    当对所述第一电机的调整完成扭矩过零,且输出扭矩达到预设值时,调整第二电机的输出扭矩为零。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在车辆总扭矩由驱动扭矩变为回馈扭矩时,根据车辆当前速度以及车辆加速踏板开度的减小幅度或制动踏板的开度查表确定所述车辆总扭矩的值。
  9. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    在车辆总扭矩由回馈扭矩恢复为驱动扭矩时,根据车辆当前速度以及车辆制动踏板开度的减小幅度或加速踏板的开度查表确定所述车辆总扭矩的值。
  10. 一种四驱电动汽车的扭矩控制装置,其特征在于,所述装置包括:
    第一确定单元,用于在车辆总扭矩由驱动扭矩变为回馈扭矩时,根据所述车辆总扭矩以及当前车速确定车辆的总回馈功率;
    第二确定单元,用于根据车辆前电机与后电机的实时状态分别确定前电机与后电机的允许回馈功率;
    选择单元,用于根据所述第二确定单元确定的允许回馈功率确定执行扭矩过零控制的第一电机,所述第一电机根据预设扭矩控制曲线实现扭矩过零控制;
    计算单元,用于根据所述总回馈功率以及所述选择单元确定的第一电机的预设扭矩控制曲线,确定第二电机所执行的扭矩辅助控制曲线,所述第二电机根据所述扭矩辅助控制曲线执行扭矩的非过零控制;
    调节控制单元,用于根据所述预设扭矩控制曲线与所述计算单元确定的扭矩辅助控制曲线分别调整所述第一电机与第二电机的输出扭矩。
  11. 一种四驱电动车辆,所述四驱电动车辆包括前电机与后电机,其中所述前电机与后 电机采用权利要求1至9中任一项所述的四驱电动汽车的扭矩控制方法。
  12. 一种处理器,其特征在于,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至9中任一项所述的四驱电动汽车的扭矩控制方法。
  13. 一种存储介质,其特征在于,所述存储介质用于存储计算机程序,其中,所述计算机程序运行时控制所述存储介质所在设备执行权利要求1至9中任一项所述的四驱电动汽车的扭矩控制方法。
PCT/CN2021/125828 2021-01-07 2021-10-22 四驱电动汽车的扭矩控制方法、装置以及车辆 WO2022148100A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110019176.1 2021-01-07
CN202110019176.1A CN112622642A (zh) 2021-01-07 2021-01-07 四驱电动汽车的扭矩控制方法、装置以及车辆

Publications (1)

Publication Number Publication Date
WO2022148100A1 true WO2022148100A1 (zh) 2022-07-14

Family

ID=75291123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125828 WO2022148100A1 (zh) 2021-01-07 2021-10-22 四驱电动汽车的扭矩控制方法、装置以及车辆

Country Status (2)

Country Link
CN (1) CN112622642A (zh)
WO (1) WO2022148100A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116118525A (zh) * 2023-04-03 2023-05-16 成都赛力斯科技有限公司 电机扭矩过零控制方法、装置、电子设备及新能源汽车

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112622642A (zh) * 2021-01-07 2021-04-09 北京车和家信息技术有限公司 四驱电动汽车的扭矩控制方法、装置以及车辆
CN113022538B (zh) * 2021-04-02 2022-10-11 中国第一汽车股份有限公司 一种电机扭矩过零的参数处理方法、系统及车辆
CN113715798B (zh) * 2021-07-14 2023-09-26 东风汽车集团股份有限公司 一种isg电机补偿控制方法及装置
CN113415281B (zh) * 2021-07-23 2022-01-04 上海洛轲智能科技有限公司 车辆的控制方法、装置、设备及介质
CN113954656B (zh) * 2021-10-27 2023-08-22 重庆金康赛力斯新能源汽车设计院有限公司 一种控制方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164903A (en) * 1990-09-07 1992-11-17 General Motors Corporation Electronic control of tractive force proportioning for a class of four wheel drive vehicles
CN110303899A (zh) * 2019-06-20 2019-10-08 中国第一汽车股份有限公司 一种电动四驱汽车驱动扭矩控制方法
CN111645536A (zh) * 2020-06-05 2020-09-11 中国第一汽车股份有限公司 一种电动四驱汽车驱动扭矩控制方法
CN112622642A (zh) * 2021-01-07 2021-04-09 北京车和家信息技术有限公司 四驱电动汽车的扭矩控制方法、装置以及车辆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104417557B (zh) * 2013-09-09 2017-07-04 比亚迪股份有限公司 一种车辆的滑行回馈控制系统及其控制方法
GB2544763B (en) * 2015-11-25 2019-03-27 Jaguar Land Rover Ltd Controller for a motor vehicle and method
CN108583293B (zh) * 2018-06-05 2021-07-06 重庆长安汽车股份有限公司 新能源汽车的制动回馈扭矩分配方法及其四驱控制系统
CN109866625B (zh) * 2019-03-12 2020-11-17 北汽福田汽车股份有限公司 车辆、消除车辆抖动的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164903A (en) * 1990-09-07 1992-11-17 General Motors Corporation Electronic control of tractive force proportioning for a class of four wheel drive vehicles
CN110303899A (zh) * 2019-06-20 2019-10-08 中国第一汽车股份有限公司 一种电动四驱汽车驱动扭矩控制方法
CN111645536A (zh) * 2020-06-05 2020-09-11 中国第一汽车股份有限公司 一种电动四驱汽车驱动扭矩控制方法
CN112622642A (zh) * 2021-01-07 2021-04-09 北京车和家信息技术有限公司 四驱电动汽车的扭矩控制方法、装置以及车辆

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116118525A (zh) * 2023-04-03 2023-05-16 成都赛力斯科技有限公司 电机扭矩过零控制方法、装置、电子设备及新能源汽车
CN116118525B (zh) * 2023-04-03 2023-06-23 成都赛力斯科技有限公司 电机扭矩过零控制方法、装置、电子设备及新能源汽车

Also Published As

Publication number Publication date
CN112622642A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2022148100A1 (zh) 四驱电动汽车的扭矩控制方法、装置以及车辆
CN111376738B (zh) 车速控制方法和系统
CN111231697B (zh) 一种驾驶需求扭矩的控制方法、装置和车辆
JP4127142B2 (ja) ハイブリッド車輌の制御装置
CN110014851A (zh) 一种前后双电机四驱车辆轴间扭矩分配方法
GB2544764A (en) Controller for a motor vehicle and method
CN108749647A (zh) 一种扭矩分配方法、装置及电动汽车
JP2005096574A (ja) ハイブリッド車輌の制御装置
CN108263246A (zh) 车辆的扭矩滤波控制方法、系统及车辆
JP2011207463A (ja) 車両制御装置
JPWO2013118255A1 (ja) ハイブリッド車の変速制御装置および変速制御方法
JP2012061945A (ja) 車両制御装置
JP6162657B2 (ja) 車両用走行制御装置
KR102343953B1 (ko) 하이브리드 자동차 및 그를 위한 변속 제어 방법
CN108730047B (zh) 一种发动机目标扭矩图谱的生成方法及装置
CN110254239B (zh) 一种电动汽车再生制动瞬态响应过程中的力矩分配方法
US11305646B2 (en) Automobile chassis integration control method and system
JP4760756B2 (ja) 車両用回生制動装置
Hui et al. Torque control strategy for a parallel hydraulic hybrid vehicle
EP4033126A1 (en) Gear control method and system for two-speed reduction gearbox
CN113119750B (zh) 一种车辆能耗的控制方法、装置、及电动车辆
US20210245746A1 (en) Vehicle control device
EP4108503B1 (en) Motor torque filtering control method and system, and hybrid vehicle
CN113263918A (zh) 能量回收控制方法及装置
JP2012210832A (ja) 車両の駆動力制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/11/2023)