WO2022148069A1 - 压缩机及其组装方法 - Google Patents

压缩机及其组装方法 Download PDF

Info

Publication number
WO2022148069A1
WO2022148069A1 PCT/CN2021/121340 CN2021121340W WO2022148069A1 WO 2022148069 A1 WO2022148069 A1 WO 2022148069A1 CN 2021121340 W CN2021121340 W CN 2021121340W WO 2022148069 A1 WO2022148069 A1 WO 2022148069A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
casing
pump body
area
compressor
Prior art date
Application number
PCT/CN2021/121340
Other languages
English (en)
French (fr)
Inventor
叶世佳
梁圣明
郭永
王小峰
Original Assignee
广东美芝精密制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝精密制造有限公司 filed Critical 广东美芝精密制造有限公司
Publication of WO2022148069A1 publication Critical patent/WO2022148069A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/20Manufacture essentially without removing material
    • F04C2230/23Manufacture essentially without removing material by permanently joining parts together
    • F04C2230/231Manufacture essentially without removing material by permanently joining parts together by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings

Definitions

  • the present application relates to the technical field of compression equipment and refrigeration, and in particular, to a compressor and an assembling method thereof.
  • the compressor generally includes a casing, a pump body and other parts, and the pump body is installed in the casing and connected to the casing by welding.
  • the pump body and casing of the current compressor are usually welded by MAG (Metal Active Gas Arc Welding) welding.
  • MAG Metal Active Gas Arc Welding
  • One of the purposes of the embodiments of the present application is to provide a compressor and an assembling method thereof, so as to solve the problem that the pump body and the casing of the compressor are welded and connected in the prior art, resulting in a large amount of deformation of the pump body.
  • a compressor including a pump body and a casing, the pump body is placed in the casing, the pump body has a welding area, and the casing and the welding area adopt a laser Welding and welding.
  • the gap between the shell and the welding area is less than or equal to 0.5mm.
  • the length of the welding seam welded between the welding zone and the shell is in the range of 10-50 mm.
  • the length of the welding seam is in the range of 20-30 mm.
  • the number of welding seams welded between the welding area and the shell is in the range of 3-6.
  • a plurality of the welding seams are located at the same position in the axial direction of the casing.
  • the included angle between the welding seam welded between the welding area and the casing and the radial direction of the casing ranges from 0° to 30°; or the welding area is welded to the casing.
  • the included angle between the welding seam and the radial direction of the casing is in the range of 80°-100°.
  • the included angle between the welding seam and the radial direction of the casing is 0° or 90°.
  • the width of the welding seam between the welding area and the shell is in the range of 2-5 mm.
  • the width of the welding seam is in the range of 3-4 mm.
  • the material of the welding area is different from the material of the casing.
  • the pump body includes a cylinder, a rotor installed in the cylinder, a crankshaft driving the rotor to rotate, a main bearing covered at one end of the cylinder, and a main bearing covered at the other end of the cylinder Auxiliary bearing; one or more of the peripheral side surface of the cylinder, the peripheral side surface of the main bearing and the peripheral side surface of the auxiliary bearing constitute the welding area.
  • the thickness of the welding zone is greater than or equal to 2 mm.
  • the trajectory of the welding seam formed by welding the welding zone and the shell is in a figure-8 shape, an arc shape, a circular shape, a zigzag shape or a straight line shape.
  • a laser welder is used to align the position of the outer side of the casing corresponding to the welding area on the pump body, and the welding area is connected to the casing by welding.
  • the laser welder includes a single-mode laser and a laser welding head connected to the single-mode laser.
  • the laser welding head is a swing type welding head or a galvanometer type welding head.
  • the compressor of the present application connects the casing and the welding area on the pump body by laser welding, so as to realize the welding of the pump body in the casing; the pump body can be reduced in size.
  • the deformation amount during welding can avoid the leakage of the pump body caused by welding, and there is no need to open welding holes on the shell to ensure the beautiful appearance of the compressor.
  • the beneficial effect of the assembling method of the compressor provided by the embodiment of the present application is that in the assembling method of the compressor of the present application, the casing and the welding area on the pump body are welded and connected from the outside of the casing by a laser welder, so as to realize the welding of the pump body.
  • the body is welded in the casing; the deformation of the pump body during welding can be reduced, the leakage of the pump body caused by welding can be avoided, and there is no need to open welding holes on the casing to ensure the beautiful appearance of the compressor.
  • FIG. 1 is a schematic cross-sectional view of a partial structure of a compressor provided in Embodiment 1 of the application;
  • Fig. 2 is the structural representation of the pump body welded in the casing in the compressor of Fig. 1;
  • FIG. 3 is a schematic structural diagram of a pump body welded in a casing in a compressor provided in Embodiment 2 of the present application;
  • FIG. 4 is a schematic structural diagram of a pump body welded in a casing in a compressor provided in Embodiment 3 of the present application;
  • FIG. 5 is a schematic structural diagram of a pump body welded in a casing in a compressor provided in Embodiment 4 of the application;
  • FIG. 6 is a schematic structural diagram of a pump body welded in a casing in a compressor provided in Embodiment 5 of the present application;
  • FIG. 7 is a schematic structural diagram of the pump body welded in the casing in the compressor provided in the sixth embodiment of the application;
  • FIG. 8 is a schematic structural diagram of a pump body welded in a casing in a compressor provided in Embodiment 7 of the present application;
  • FIG. 9 is a schematic structural diagram of a pump body welded in a casing in a compressor provided in Embodiment 8 of the application;
  • FIG. 10 is a schematic structural diagram of a pump body welded in a casing in a compressor provided in Embodiment 9 of the application;
  • FIG. 11 is a schematic structural diagram of the pump body welded in the casing in the compressor provided in the tenth embodiment of the application;
  • FIG. 12 is a schematic structural diagram of a pump body welded in a casing in a compressor provided in Embodiment 11 of the application;
  • FIG. 13 is a schematic structural diagram of the pump body welded in the casing in the compressor provided in the twelfth embodiment of the application;
  • 15 is a schematic diagram of a traveling swing trajectory of a laser welder during welding according to an embodiment of the application.
  • FIG. 16 is a schematic diagram of a traveling and swinging trajectory of another laser welder during welding according to an embodiment of the present application.
  • the compressor 100 includes a pump body 20 and a casing 11 .
  • the pump body 20 is placed in the casing 11 , and the pump body 20 is protected by the casing 11 .
  • the pump body 20 has a welding area 201 so as to be connected with the casing 11 by welding, so that the casing 11 and the pump body 20 are fixedly connected to support the pump body 20 .
  • the shell 11 and the welding area 201 on the pump body 20 are connected by laser welding, so as to realize the welding and fixing of the pump body 20 and the shell 11; and using laser welding, the deformation is small, and the pump body 20 can be welded with a relatively small deformation.
  • the casing 11 and the welding area 201 on the pump body 20 are welded and connected by laser welding, so as to realize the welding of the pump body 20 in the casing 11;
  • the deformation amount of the pump body 20 during welding can avoid leakage of the pump body 20 caused by welding, and there is no need to open a welding hole on the casing 11 , thereby ensuring a beautiful appearance of the compressor 100 .
  • the gap between the housing 11 and the welding area 201 on the pump body 20 is less than or equal to 0.5 mm, such as the gap between the housing 11 and the welding area 201 on the pump body 20 .
  • the gap can be 0, 0.05mm, 0.1mm, 0.15mm, 0.2mm, 0.25mm, 0.3mm, 0.35mm, 0.4mm, 0.45mm, 0.5mm, etc., so that heat can pass through the shell 11 more easily during laser welding
  • the welding area 201 of the pump body 20 is reached, so that the welding area 201 and the casing 11 are welded, and the deformation of the welding area 201 on the casing 11 and the pump body 20 is reduced.
  • the interval between the casing 11 and the welding area 201 on the pump body 20 is less than or equal to 0.2 mm, for example, the gap between the casing 11 and the welding area 201 on the pump body 20 may be 0, 0.02 mm, 0.05mm, 0.07mm, 0.1mm, 0.12mm, 0.15mm, 0.17mm, 0.2mm, etc., which can not only ensure the high installation accuracy of the pump body 20 and the shell 11, but also facilitate laser welding and reduce the deformation during welding .
  • the thickness of the welding area 201 on the pump body 20 is greater than or equal to 2 mm, so as to ensure that the deformation of the pump body 20 is small when the welding area 201 and the casing 11 are welded by laser.
  • the material of the welding area 201 on the pump body 20 is different from the material of the casing 11 , which can reduce the cost and facilitate processing.
  • the material of the welding area 201 on the pump body 20 may be made different from the material of the casing 11 , or the material of the entire pump body 20 may be made different from the material of the casing 11 .
  • the material of the welding area 201 on the pump body 20 can also be the same as the material of the casing 11 , so that the welding area 201 on the pump body 20 can be better welded to the casing 11 .
  • the material of the welding area 201 of the pump body 20 is cast iron, and the material of the casing 11 is low carbon steel, so as to facilitate processing and reduce costs.
  • the pump body 20 can also be made of other materials.
  • the casing 11 can also be made of other materials.
  • the pump body 20 includes a cylinder 21, a rotor 24, a crankshaft 25, a main bearing 22 and an auxiliary bearing 23; the main bearing 22 and the auxiliary bearing 23 are respectively installed at both ends of the cylinder 21, that is, the main bearing 22 is covered on the cylinder At one end of 21, an auxiliary bearing 23 covers the other end of the cylinder 21 to seal the cylinder 21 and prevent leakage.
  • the rotor 24 is installed in the cylinder 21, and the rotor 24 is connected with the crankshaft 25 to drive the rotor 24 to rotate in the cylinder 21 through the crankshaft 25 to compress the gas.
  • the peripheral side 211 of the cylinder 21 constitutes the welding area 201 , so when the pump body 20 and the casing 11 are to be connected by laser welding, the peripheral side 211 of the cylinder 21 is connected to the casing 11 by welding.
  • the length of the welding seam 202 formed by welding the welding area 201 and the casing 11 is in the range of 10-50 mm, for example, the length of the welding seam 202 formed by welding the welding area 201 and the casing 11 can be 10 mm, 15 mm, 20 mm , 25mm, 30mm, 35mm, 40mm, 45mm, 50mm, etc., to ensure that the welding area 201 is firmly welded to the shell 11, reduce the deformation of the pump body 20, and increase the welding speed.
  • the length of the welding seam 202 formed by welding the welding area 201 and the casing 11 is less than 10 mm, it is not easy to weld firmly, and when the welding is required to be stronger, more welding seams 202 need to be welded, which increases the deformation of the pump body 20 .
  • the length of the welding seam 202 formed by welding the welding area 201 and the shell 11 is greater than 50 mm, the welding seam 202 will be too long, and the time for one laser welding will increase, resulting in increased deformation of the welding area 201 .
  • the length of the welding seam 202 formed by welding the welding area 201 and the casing 11 is in the range of 20-30 mm.
  • the length of the welding seam 202 formed by welding the welding area 201 and the casing 11 may be 20 mm, 22 mm, or 25 mm. , 27mm, 30mm, etc., which can ensure that the welding area 201 on the pump body 20 and the casing 11 are welded and fixed well and firmly, and can ensure that the deformation of the pump body 20 is small.
  • the number of welding seams 202 formed by welding the welding area 201 and the casing 11 ranges from 3 to 6, for example, the welding seams 202 formed by welding the welding area 201 and the casing 11 may be 3, 4, 5 or 6 strips are required to ensure that the welding area 201 on the pump body 20 and the casing 11 are welded and fixed well and firmly, and that the deformation of the pump body 20 is small.
  • the number of welds 202 formed by welding between the welding area 201 and the casing 11 is less than 3, it is difficult to weld firmly, and when the welding is required to be stronger, the welds 202 need to be longer, which increases the deformation of the pump body 20 .
  • the number of welding seams 202 formed by welding the welding area 201 and the shell 11 is greater than 6, the number of welding seams 202 will be excessive, the number and time of laser welding will increase, and the deformation of the welding area 201 will increase.
  • the number of welding seams 202 formed by welding the welding area 201 and the casing 11 is three to ensure firm welding, reduce welding times, and reduce deformation of the pump body 20 during welding.
  • the width of the welding seam 202 formed by welding the welding area 201 and the shell 11 is in the range of 2-5 mm.
  • the width of the welding seam 202 formed by welding the welding area 201 and the shell 11 may be 2 mm, 2.2 mm, or 2.5 mm. , 2.7mm, 3mm, 3.2mm, 3.5mm, 3.7mm, 4mm, 4.2mm, 4.5mm, 4.7mm, 5mm, etc., to ensure that the welding area 201 and the shell 11 are firmly welded and connected, and reduce the deformation of the pump body 20, Increase welding speed.
  • the width of the welding seam 202 formed by welding the welding area 201 and the casing 11 is less than 2 mm, it is difficult to weld firmly, or when the welding needs to be more firm, more welding seams 202 need to be welded, which increases the deformation of the pump body 20 .
  • the width of the welding seam 202 formed by welding the welding area 201 and the shell 11 is greater than 5 mm, the welding seam 202 will be too wide, which increases the time of one laser welding and increases the deformation of the welding area 201 .
  • the width of the welding seam 202 is in the range of 3-4 mm.
  • the width of the welding seam 202 formed by welding the welding area 201 and the shell 11 can be 3 mm, 3.2 mm, 3.5 mm, 3.7 mm, 4 mm, etc., which can ensure The welding area 201 on the pump body 20 and the casing 11 are well and firmly welded and fixed, and the deformation of the pump body 20 can be guaranteed to be small.
  • the multiple welding seams 202 formed by welding the welding area 201 and the casing 11 are located at the same axial position of the casing 11, that is, the multiple welding seams 202 formed by welding the welding area 201 and the casing 11 are located in the casing 11 on the same radial surface, which is convenient for design and laser welding, and can ensure a good appearance of the shell 11.
  • the welding seams 202 formed by welding the welding area 201 and the casing 11 can also be located at different axial positions of the casing 11 , as long as the welding area 201 of the pump body 20 and the casing 11 are firmly welded.
  • the welding seam 202 formed by welding the welding area 201 and the casing 11 is a straight segment, so as to facilitate design and manufacture.
  • the included angle between the welding seam 202 formed by welding the welding area 201 and the casing 11 and the radial direction of the casing 11 is 0°, that is, the welding seam 202 is arranged along the radial direction of the casing 11 to facilitate laser welding, The welding time is reduced, and the deformation of the pump body 20 during laser welding is reduced.
  • the included angle between the welding seam 202 formed by welding the welding area 201 and the casing 11 and the radial direction of the casing 11 is 90°, that is, the welding seam 202 is arranged along the axial direction of the casing 11 , In order to facilitate laser welding, reduce welding time and reduce the deformation of the pump body 20 during laser welding.
  • the welding seam 202 formed by welding the welding area 201 and the casing 11 is arranged radially inclined to the casing 11 to ensure that the welding area 201 and the casing 11 are welded and fixed more firmly.
  • the radial included angle between the welding seam 202 formed by welding the welding zone 201 and the shell 11 and the shell 11 ranges from 0° to 30°, for example, the radial included angle between the welding seam 202 and the shell 11 may be 0 °, 10°, 15°, 20°, 25°, 30°, etc., that is, the welding seam 202 is more inclined to extend radially along the casing 11 to ensure that the welding area 201 and the casing 11 are welded and fixed more firmly.
  • the radial included angle between the welding seam 202 formed by welding the welding area 201 and the housing 11 and the housing 11 ranges from 80° to 100°, for example, the radial included angle between the welding seam 202 and the housing 11 may be 80° °, 85°, 90°, 95°, 100°, etc., that is, the welding seam 202 tends to extend axially along the casing 11 to ensure that the welding area 201 and the casing 11 are welded and fixed more firmly.
  • the welding seam 202 formed by welding the welding area 201 and the casing 11 is curved, so as to ensure that the welding area 201 and the casing 11 are welded and fixed more firmly.
  • the peripheral side 221 of the main bearing 22 constitutes the welding area 201 , that is, when the pump body 20 and the casing 11 are welded, the peripheral side 221 of the main bearing 22 is actually welded to the casing 11 .
  • the peripheral side surface 231 of the auxiliary bearing 23 constitutes the welding area 201 , that is, when the pump body 20 is welded with the housing 11 , the peripheral side surface 231 of the auxiliary bearing 23 is actually welded to the housing 11 . .
  • the peripheral side 221 of the main bearing 22 and the peripheral side 231 of the auxiliary bearing 23 are both adjacent to the housing 11 , so that both the peripheral side 221 of the main bearing 22 and the peripheral side 231 of the auxiliary bearing 23 can be
  • the welding area 201 is formed.
  • the peripheral side surface 221 of the main bearing 22 and the peripheral side surface 231 of the auxiliary bearing 23 can be connected to the casing 11 by welding.
  • the peripheral side surface 221 of the main bearing 22 and the peripheral side surface 231 of the auxiliary bearing 23 are both adjacent to the housing 11 , so that both the peripheral side surface 221 of the main bearing 22 and the peripheral side surface 231 of the auxiliary bearing 23 can be
  • the welding area 201 is formed.
  • the peripheral side surface 221 of the main bearing 22 can be connected to the casing 11 by welding.
  • the peripheral side surface 221 of the main bearing 22 and the peripheral side surface 231 of the auxiliary bearing 23 are both adjacent to the housing 11 , so that the peripheral side surface 221 of the main bearing 22 and the peripheral side surface 231 of the auxiliary bearing 23 can both be
  • the welding area 201 is formed.
  • the peripheral side surface 231 of the auxiliary bearing 23 can be connected to the casing 11 by welding.
  • the peripheral side 221 of the main bearing 22 and the peripheral side 211 of the cylinder 21 are both adjacent to the housing 11 , so that both the peripheral side 221 of the main bearing 22 and the peripheral side 211 of the cylinder 21 can be welded
  • the peripheral side surface 221 of the main bearing 22 and the peripheral side surface 211 of the cylinder 21 can be connected to the casing 11 by welding.
  • the pump body 20 and the casing 11 are welded, only the peripheral side surface 221 of the main bearing 22 or the peripheral side surface 211 of the cylinder 21 can be connected to the casing 11 by welding.
  • the peripheral side 231 of the auxiliary bearing 23 and the peripheral side 211 of the cylinder 21 are both adjacent to the housing 11 , so that both the peripheral side 231 of the auxiliary bearing 23 and the peripheral side 211 of the cylinder 21 can be welded
  • the peripheral side surface 231 of the auxiliary bearing 23 and the peripheral side surface 211 of the cylinder 21 can be connected to the casing 11 by welding.
  • the pump body 20 and the housing 11 are welded, only the peripheral side surface 231 of the auxiliary bearing 23 or the peripheral side surface 211 of the cylinder 21 can be connected to the housing 11 by welding.
  • the peripheral side 211 of the cylinder 21 , the peripheral side 221 of the main bearing 22 and the peripheral side 231 of the auxiliary bearing 23 are all adjacent to the housing 11 , so that the peripheral side 211 of the cylinder 21 , the main bearing 22
  • the peripheral side surface 221 of the cylinder 21 and the peripheral side surface 231 of the auxiliary bearing 23 can both constitute the welding area 201.
  • the peripheral side surface 211 of the cylinder 21, the peripheral side surface 221 of the main bearing 22 and the auxiliary bearing 23 can be welded together.
  • the peripheral side surfaces 231 of the two parts are connected to the casing 11 by welding.
  • any one or any two of the peripheral side surface 211 of the cylinder 21 , the peripheral side surface 221 of the main bearing 22 and the peripheral side surface 231 of the auxiliary bearing 23 can be welded to the housing 11 . connected.
  • the compressor 100 further includes a liquid accumulator, and the liquid accumulator is connected to the pump body 20 through a pipe.
  • the accumulator is arranged so that the refrigerant in the accumulator can flow into the cylinder 21 of the pump body 20 for compression.
  • the trajectory of the welding seam 202 formed by welding the welding area 201 and the shell 11 is circular, so that the traveling and swinging trajectory of the laser welder during welding is circular, which is convenient for control, and It is ensured that the pump body 20 and the casing 11 are well welded and connected.
  • the trajectory of the welding seam 202 formed by welding the welding area 201 and the shell 11 is a figure-8 shape, so that the traveling and swinging trajectory of the laser welder during welding is a figure-8 shape, which is convenient for control and ensures that the pump The body 20 is connected to the housing 11 by good welding.
  • the track of the welding seam 202 formed by welding the welding area 201 and the casing 11 is arc-shaped.
  • the track of the welding seam 202 formed by welding the welding area 201 and the casing 11 is in other shapes, such as a sawtooth shape, a straight shape, and the like.
  • the embodiment of the present application further discloses an assembly method of the compressor 100 .
  • the assembling method of the compressor 100 can be used to assemble the compressor 100 described in any of the above embodiments. Please refer to FIG. 2 together, the assembling method of the compressor 100 includes the following steps:
  • S3 Use a laser welder to align the position of the outer side of the casing 11 corresponding to the welding area 201 on the pump body 20, and connect the welding area 201 to the casing 11 by welding.
  • step S1 the pump body 20 is assembled, so that the pump body 20 is installed in the housing 11 , the assembly effect is improved, and the pump body 20 is also conveniently installed in the housing 11 .
  • the laser welder at the outer side of the casing 11 corresponding to the position of the welding area 201 on the pump body 20.
  • the heat of the laser will penetrate the casing 11 and reach the welding area 201 to weld the welding area 201 and the casing 11.
  • this method does not need to provide welding holes on the casing 11 and the pump body 20, nor does it need to increase the welding wire, so that the pump body 20 and the casing 11 can be firmly welded and connected.
  • the beneficial effect of the assembling method of the compressor 100 provided by the present application is that compared with the prior art, the casing 11 is welded to the welding area 201 on the pump body 20 from the outside of the casing 11 through a laser welder, so as to realize the The pump body 20 is welded in the casing 11; the deformation of the pump body 20 during welding can be reduced, the leakage of the pump body 20 caused by welding can be avoided, and there is no need to open welding holes on the casing 11, so as to ensure the beautiful appearance of the compressor 100 .
  • the laser welder includes a single-mode laser and a laser welding head, and the laser welding head is connected to the single-mode laser to direct the energy generated by the single-mode laser to the welding region 201 for precise welding.
  • the laser welder can also adopt a structure composed of a multi-mode laser and a laser welding head.
  • the laser welding head is an oscillating welding head, so as to flexibly control the pointing position of the laser beam and improve the welding accuracy.
  • the laser welding head can also be a galvanometer type welding head for control and to improve the installation accuracy.
  • the traveling and swinging trajectory of the laser welder during welding is an annular shape, so as to facilitate control and ensure good welding connection between the pump body 20 and the casing 11; and make the welding area 201 and the casing
  • the track of the welding seam 202 formed by welding the body 11 is annular.
  • the traveling and swinging trajectory of the laser welder during welding is a figure-8 shape, so as to ensure that the pump body 20 and the casing 11 are well welded and connected, and the welding area 201 and the casing 11 are welded to form a
  • the trajectory of the weld seam 202 is a figure-eight shape.
  • the traveling and swinging trajectory of the laser welder during welding can also be arc-shaped, and the trajectory of the welding seam 202 formed by welding the welding zone 201 and the casing 11 corresponds to an arc-shaped trajectory.
  • the traveling and oscillating trajectory of the laser welder during welding can also be in other shapes, such as zigzag, correspondingly, the trajectory of the welding seam 202 formed by welding the welding area 201 and the shell 11 is zigzag and linear, corresponding to the welding area 201 and the shell 11.
  • the locus of the welding seam 202 formed by welding the shell 11 is linear or the like.
  • the compressor 100 and the assembling method of the compressor 100 in the embodiment of the present application use laser welding to connect the casing 11 and the welding area 201 of the pump body 20 by welding, which can reduce the welding deformation of the pump body 20 and prevent the pump body 20 from being deformed by welding. , resulting in leakage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种压缩机(100),包括泵体(20)和壳体(11),泵体(20)置于壳体(11)中,泵体(20)上具有焊接区(201),壳体(11)与焊接区(201)采用激光焊焊接相连。压缩机的组装方法包括如下步骤:组装泵体(20);将组装后的泵体(20)置于壳体(11)中;使用激光焊接器对准壳体(11)外侧对应于泵体(20)上焊接区(201)的位置,将焊接区(201)与壳体(11)焊接相连。激光焊接可以减小泵体(20)焊接时的变形量,避免因焊接导致泵体(20)的泄漏,并且无需在壳体(11)上开设焊接孔。

Description

压缩机及其组装方法
本申请要求于2021年01月08日在中国专利局提交的、申请号为202110026315.3、发明名称为“压缩机及其组装方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及压缩设备及制冷技术领域,具体涉及一种压缩机及其组装方法。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。压缩机一般包括壳体、泵体等部分,泵体安装在壳体中,并与壳体焊接相连。当前压缩机的泵体与壳体通常采用MAG(Metal Active Gas Arc Welding,熔化极活性气体保护电弧焊)焊进行的焊接。然而MAG焊接后,泵体变形量大,而导致泵体泄漏。
技术问题
本申请实施例的目的之一在于:提供一种压缩机及其组装方法,以解决现有技术中存在的压缩机的泵体与壳体焊接连接,会导致泵体变形量大的问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种压缩机,包括泵体和壳体,所述泵体置于所述壳体中,所述泵体上具有焊接区,所述壳体与所述焊接区采用激光焊焊接相连。
在一个可选实施例中,所述壳体与所述焊接区之间的间隙小于或等于0.5mm。
在一个可选实施例中,所述焊接区与所述壳体焊接的焊缝的长度范围为10-50mm。
在一个可选实施例中,所述焊缝的长度范围为20-30mm。
在一个可选实施例中,所述焊接区与所述壳体焊接的焊缝的数量范围为3-6条。
在一个可选实施例中,多条所述焊缝处于所述壳体轴向的同一位置。
在一个可选实施例中,所述焊接区与所述壳体焊接的焊缝与所述壳体径向的夹角范围为0°-30°;或者所述焊接区与所述壳体焊接的焊缝与所述壳体径向的夹角范围为80°-100°。
在一个可选实施例中,所述焊缝与所述壳体径向的夹角为0°或90°。
在一个可选实施例中,所述焊接区与所述壳体焊接的焊缝宽度范围为2-5mm。
在一个可选实施例中,所述焊缝宽度范围为3-4mm。
在一个可选实施例中,所述焊接区的材质与所述壳体的材质不同。
在一个可选实施例中,所述泵体包括气缸、安装于所述气缸中的转子、带动所述转子转动的曲轴、盖于所述气缸一端的主轴承和盖于所述气缸另一端的辅轴承;所述气缸的周侧面、所述主轴承的周侧面和所述辅轴承的周侧面中的一个或几个构成所述焊接区。
在一个可选实施例中,所述焊接区的厚度大于或等于2mm。
在一个可选实施例中,所述焊接区与所述壳体焊接形成的焊缝的轨迹呈8字形、弧形、圆环形、锯齿状或直线状。
第二方面,提供了一种如上任一实施例所述的压缩机的组装方法,包括如下步骤:
组装泵体;
将组装后的所述泵体置于壳体中;
使用激光焊接器对准所述壳体外侧对应于所述泵体上焊接区的位置,将所述焊接区与所述壳体焊接相连。
在一个可选实施例中,所述激光焊接器包括单模激光器和与所述单模激光器相连的激光焊接头。
在一个可选实施例中,所述激光焊接头为摆动式焊接头或振镜式焊接头。
有益效果
本申请实施例提供的压缩机的有益效果在于:本申请压缩机,通过激光焊接将壳体与泵体上的焊接区焊接相连,以实现将泵体焊接在壳体中;可以减小泵体焊接时的变形量,避免因焊接导致泵体的泄漏,并且无需在壳体上开设焊接孔,保证压缩机的外观美的。
本申请实施例提供的压缩机的组装方法的有益效果在于:本申请压缩机的组装方法,通过激光焊接器从壳体外侧是将壳体与泵体上的焊接区焊接相连,以实现将泵体焊接在壳体中;可以减小泵体焊接时的变形量,避免因焊接导致泵体的泄漏,并且无需在壳体上开设焊接孔,保证压缩机的外观美的。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例一提供的压缩机的部分结构的剖视示意图;
图2为图1的压缩机中泵体焊接于壳体中的结构示意图;
图3为本申请实施例二提供的压缩机中泵体焊接于壳体中的结构示意图;
图4为本申请实施例三提供的压缩机中泵体焊接于壳体中的结构示意图;
图5为本申请实施例四提供的压缩机中泵体焊接于壳体中的结构示意图;
图6为本申请实施例五提供的压缩机中泵体焊接于壳体中的结构示意图;
图7为本申请实施例六提供的压缩机中泵体焊接于壳体中的结构示意图;
图8为本申请实施例七提供的压缩机中泵体焊接于壳体中的结构示意图;
图9为本申请实施例八提供的压缩机中泵体焊接于壳体中的结构示意图;
图10为本申请实施例九提供的压缩机中泵体焊接于壳体中的结构示意图;
图11为本申请实施例十提供的压缩机中泵体焊接于壳体中的结构示意图;
图12为本申请实施例十一提供的压缩机中泵体焊接于壳体中的结构示意图;
图13为本申请实施例十二提供的压缩机中泵体焊接于壳体中的结构示意图;
图14为本申请实施例提供的压缩机的组装方法的流程图;
图15为本申请实施例提供的一种激光焊接器焊接时的行进摆动轨迹示意图;
图16为本申请实施例提供的另一种激光焊接器焊接时的行进摆动轨迹示意图。
其中,图中各附图主要标记:
100-压缩机;
11-壳体;
20-泵体;201-焊接区;202-焊缝;21-气缸;22-主轴承;23-辅轴承;24-转子;25-曲轴。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。
在本申请的描述中,需要理解的是,术语“中心”、“长度”、“宽度”、“厚度”、“上”、“下”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请说明书中描述的参考“一个实施例”、“一些实施例”或“实施例”意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。此外,在一个或多个实施例中,可以以任何合适的方式组合特定的特征、结构或特性。
请参阅图1及图2,现对本申请提供的压缩机100进行说明。所述压缩机100,包括泵体20和壳体11,泵体20置于壳体11中,通过壳体11来保护泵体20。泵体20上具有焊接区201,以便与壳体11配合焊接相连,进而使壳体11与泵体20固定相连,以支撑住泵体20。壳体11与泵体20上的焊接区201采用激光焊焊接相连,以实现将泵体20与壳体11焊接固定;而使用激光焊接,变形小,进而也可以保证泵体20焊接时具有较小的变形量,避免泵体20因焊接变形,而导致泵体20泄漏;另外,将泵体20与壳体11采用激光焊接固定,无需在壳体11上开设焊接孔,也无需在泵体20上开设焊接孔,即便于壳体11与泵体20的加工制作,也可以减少壳体11与泵体20的变形,并且可以保证压缩机100良好的外观。
本申请提供的压缩机100,与现有技术相比,通过激光焊接将壳体11与泵体20上的焊接区201焊接相连,以实现将泵体20焊接在壳体11中;可以减小泵体20焊接时的变形量,避免因焊接导致泵体20的泄漏,并且无需在壳体11上开设焊接孔,保证压缩机100的外观美的。
在一个实施例中,请参阅图1和图2,壳体11与泵体20上焊接区201之间的间隙小于或等于0.5mm,如壳体11与泵体20上焊接区201之间的间隙可以是0、0.05mm、0.1mm、0.15mm、0.2mm、0.25mm、0.3mm、0.35mm、0.4mm、0.45mm、0.5mm等,这样在激光焊接时,热量更容易穿过壳体11到达泵体20的焊接区201,以便将焊接区201与壳体11焊接,减小壳体11与泵体20上焊接区201的变形。
在一个实施例中,壳体11与泵体20上焊接区201之间的间隔小于或等于0.2mm,如壳体11与泵体20上焊接区201之间的间隙可以是0、0.02mm、0.05mm、0.07mm、0.1mm、0.12mm、0.15mm、0.17mm、0.2mm等,既可以保证泵体20与壳体11较高的安装精度,并且也便于激光焊接,减小焊接时的变形。
在一个实施例中,泵体20上焊接区201的厚度大于或等于2mm,以便在焊接区201与壳体11采用激光焊接时,保证泵体20形变较小。
在一个实施例中,泵体20上焊接区201的材质与壳体11的材质不同,这样可以降低成本,便于加工制作。当然,可以仅将泵体20上焊接区201的材质制作与壳体11的材质不同,也可以将整个泵体20的材质均制作与壳体11的材质不同。当然,泵体20上焊接区201的材质也可以与壳体11的材质相同,以便将泵体20上焊接区201更好的与壳体11焊接相连。
在一个实施例中,泵体20的焊接区201的材质为铸铁,壳体11的材质为低碳钢,以便加工,且降低成本。当然,泵体20也可以采用其它材质制作。壳体11也可以采用其它材质制作。
在一个实施例中,泵体20包括气缸21、转子24、曲轴25、主轴承22和辅轴承23;主轴承22和辅轴承23分别安装在气缸21的两端,即主轴承22盖于气缸21一端,辅轴承23盖于气缸21另一端,以将气缸21密封,防止泄漏。转子24安装于气缸21中,转子24与曲轴25相连,以通过曲轴25带动转子24在气缸21中转动,以压缩气体。本实施例中,气缸21的周侧面211构成焊接区201,这样要将泵体20与壳体11激光焊接相连时,将气缸21的周侧面211与壳体11焊接相连。
泵体20上的焊接区201与壳体11激光焊接时,会形成焊接的痕迹,该痕迹即为焊接时形成的焊缝202。
在一个实施例中,焊接区201与壳体11焊接形成的焊缝202的长度范围为10-50mm,如焊接区201与壳体11焊接形成的焊缝202的长度可以为10mm、15mm、20mm、25mm、30mm、35mm、40mm、45mm、50mm等,以保证焊接区201与壳体11牢固焊接相连,并减小泵体20变形,提升焊接速度。当焊接区201与壳体11焊接形成的焊缝202的长度小于10mm时,不易牢固焊接,且或需要焊接更为牢固时,则需要焊接更多的焊缝202,而增加泵体20变形。当焊接区201与壳体11焊接形成的焊缝202的长度大于50mm,会导致焊缝202过长,增加一次激光焊接的时间,导致焊接区201变形增大。
在一个实施例中,焊接区201与壳体11焊接形成的焊缝202的长度范围为20-30mm,如焊接区201与壳体11焊接形成的焊缝202的长度可以为20mm、22mm、25mm、27mm、30mm等,这样可以保证泵体20上焊接区201与壳体11良好与牢固地焊接固定,并且可以保证泵体20的形变较小。
在一个实施例中,焊接区201与壳体11焊接形成的焊缝202的数量范围为3-6条,如焊接区201与壳体11焊接形成的焊缝202可以是3条、4条、5条或6条,以保证泵体20上焊接区201与壳体11良好与牢固地焊接固定,并且可以保证泵体20的形变较小。当焊接区201与壳体11焊接形成的焊缝202的数量小于3条时,不易牢固焊接,且或需要焊接更为牢固时,则需要焊缝202更长,而增加泵体20变形。当焊接区201与壳体11焊接形成的焊缝202的数量大于6,会导致焊缝202数量过多,增加激光焊接的次数与时间,导致焊接区201变形增大。
在一个实施例中,焊接区201与壳体11焊接形成的焊缝202的数量为3条,以保证焊接牢固,且减少焊接的次数,降低泵体20焊接时的变形。
在一个实施例中,焊接区201与壳体11焊接形成的焊缝202宽度范围为2-5mm,如焊接区201与壳体11焊接形成的焊缝202宽度可以为2mm、2.2mm、2.5mm、2.7mm、3mm、3.2mm、3.5mm、3.7mm、4mm、4.2mm、4.5mm、4.7mm、5mm等,以保证焊接区201与壳体11牢固焊接相连,并减小泵体20变形,提升焊接速度。当焊接区201与壳体11焊接形成的焊缝202的宽度小于2mm时,不易牢固焊接,且或需要焊接更为牢固时,则需要焊接更多的焊缝202,而增加泵体20变形。当焊接区201与壳体11焊接形成的焊缝202的宽度大于5mm,会导致焊缝202过宽,增加一次激光焊接的时间,导致焊接区201变形增大。
在一个实施例中,焊缝202宽度范围为3-4mm,如焊接区201与壳体11焊接形成的焊缝202宽度可以为3mm、3.2mm、3.5mm、3.7mm、4mm等,这样可以保证泵体20上焊接区201与壳体11良好与牢固地焊接固定,并且可以保证泵体20的形变较小。
在一个实施例中,焊接区201与壳体11焊接形成的多条焊缝202处于壳体11轴向的同一位置,即焊接区201与壳体11焊接形成的多条焊缝202位于壳体11的同一个径向面上,以便于设计与激光焊接,并且可以保证壳体11良好的外观。当然,焊接区201与壳体11焊接形成的多条焊缝202也可以位于壳体11轴向的不同位置,只要将泵体20的焊接区201与壳体11牢固焊接上即可。
在一个实施例中,焊接区201与壳体11焊接形成的焊缝202呈直线段,以方便设计与制作。
在一个实施例中,焊接区201与壳体11焊接形成的焊缝202与壳体11径向的夹角为0°,即焊缝202沿壳体11的径向设置,以方便激光焊接,减少焊接时间,减小激光焊接时泵体20的形变。
在一个实施例中,请参阅图3,焊接区201与壳体11焊接形成的焊缝202与壳体11径向的夹角为90°,即焊缝202沿壳体11的轴向设置,以方便激光焊接,减少焊接时间,减小激光焊接时泵体20的形变。
在一个实施例中,请参阅图4,焊接区201与壳体11焊接形成的焊缝202与壳体11径向倾斜设置,以保证焊接区201与壳体11更为牢固地焊接固定。
在一个实施例中,焊接区201与壳体11焊接形成的焊缝202与壳体11径向夹角范围为0°-30°,如焊缝202与壳体11径向夹角可以为0°、10°、15°、20°、25°、30°等,即焊缝202更倾向于沿壳体11径向延伸,以保证焊接区201与壳体11更为牢固地焊接固定。
在一个实施例中,焊接区201与壳体11焊接形成的焊缝202与壳体11径向夹角范围为80°-100°,如焊缝202与壳体11径向夹角可以为80°、85°、90°、95°、100°等,即焊缝202更倾向于沿壳体11轴向延伸,以保证焊接区201与壳体11更为牢固地焊接固定。
在一个实施例中,请参阅图5,焊接区201与壳体11焊接形成的焊缝202呈曲线状,以保证焊接区201与壳体11更为牢固地焊接固定。
在一个实施例中,请参阅图6,主轴承22的周侧面221构成焊接区201,即在泵体20与壳体11焊接时,实际将主轴承22的周侧面221与壳体11焊接相连。
在一个实施例中,请参阅图7,辅轴承23的周侧面231构成焊接区201,即在泵体20与壳体11焊接时,实际将辅轴承23的周侧面231与壳体11焊接相连。
在一个实施例中,请参阅图8,主轴承22的周侧面221和辅轴承23的周侧面231均邻近壳体11,使得主轴承22的周侧面221和辅轴承23的周侧面231均可以构成焊接区201,在泵体20与壳体11焊接时,可以将主轴承22的周侧面221和辅轴承23的周侧面231均与壳体11焊接相连。
在一个实施例中,请参阅图9,主轴承22的周侧面221和辅轴承23的周侧面231均邻近壳体11,使得主轴承22的周侧面221和辅轴承23的周侧面231均可以构成焊接区201,在泵体20与壳体11焊接时,可以将主轴承22的周侧面221与壳体11焊接相连。
在一个实施例中,请参阅图10,主轴承22的周侧面221和辅轴承23的周侧面231均邻近壳体11,使得主轴承22的周侧面221和辅轴承23的周侧面231均可以构成焊接区201,在泵体20与壳体11焊接时,可以将辅轴承23的周侧面231与壳体11焊接相连。
在一个实施例中,请参阅图11,主轴承22的周侧面221和气缸21的周侧面211均邻近壳体11,使得主轴承22的周侧面221和气缸21的周侧面211均可以构成焊接区201,在泵体20与壳体11焊接时,可以将主轴承22的周侧面221和气缸21的周侧面211均与壳体11焊接相连。当然,在泵体20与壳体11焊接时,可以仅将主轴承22的周侧面221或气缸21的周侧面211与壳体11焊接相连。
在一个实施例中,请参阅图12,辅轴承23的周侧面231和气缸21的周侧面211均邻近壳体11,使得辅轴承23的周侧面231和气缸21的周侧面211均可以构成焊接区201,在泵体20与壳体11焊接时,可以将辅轴承23的周侧面231和气缸21的周侧面211均与壳体11焊接相连。当然,在泵体20与壳体11焊接时,可以仅将辅轴承23的周侧面231或气缸21的周侧面211与壳体11焊接相连。
在一个实施例中,请参阅图13,气缸21的周侧面211、主轴承22的周侧面221和辅轴承23的周侧面231均邻近壳体11,使得气缸21的周侧面211、主轴承22的周侧面221和辅轴承23的周侧面231均可以构成焊接区201,在泵体20与壳体11焊接时,可以将气缸21的周侧面211、主轴承22的周侧面221和辅轴承23的周侧面231均与壳体11焊接相连。当然,在泵体20与壳体11焊接时,可以将气缸21的周侧面211、主轴承22的周侧面221和辅轴承23的周侧面231中的任意一个或任意两个与壳体11焊接相连。
在一个实施例中,压缩机100还包括储液器,储液器通过管件与泵体20相连。设置储液器,以便储液器内的冷媒能够流入泵体20的气缸21内进行压缩。
在一个实施例中,请参阅图15,焊接区201与壳体11焊接形成的焊缝202的轨迹呈圆环形,以便激光焊接器焊接时的行进摆动轨迹为圆环形,方便控制,并保证泵体20与壳体11良好的焊接相连。
在一个实施例中,请参阅图16,焊接区201与壳体11焊接形成的焊缝202的轨迹呈8字形,以便激光焊接器焊接时的行进摆动轨迹为8字形,方便控制,并保证泵体20与壳体11良好的焊接相连。当然,焊接区201与壳体11焊接形成的焊缝202的轨迹呈弧形。当然,焊接区201与壳体11焊接形成的焊缝202的轨迹呈其它形状,如锯齿状、直线状等等。
请参阅图14,本申请实施例还公开了一种压缩机100的组装方法。该压缩机100的组装方法可以用来组装如上任一实施例所述的压缩机100。请一并参阅图2,该压缩机100的组装方法包括如下步骤:
S1:组装泵体20;
S2:将组装后的泵体20置于壳体11中;
S3:使用激光焊接器对准壳体11外侧对应于泵体20上焊接区201的位置,将焊接区201与壳体11焊接相连。
在S1步骤中,将泵体20组装,以便将泵体20安装在壳体11,提升组装效果,也便于将泵体20安装在壳体11中。将激光焊接器对准壳体11外侧对应于泵体20上焊接区201的位置,在焊接时,激光的热量会穿透壳体11到达焊接区201,以将焊接区201与壳体11焊接相连,并且该方式无需在壳体11、泵体20上设置焊接孔,也无需增加焊丝,就可以保证泵体20与壳体11牢固焊接相连。
本申请提供的压缩机100的组装方法有益效果在于:与现有技术相比,通过激光焊接器从壳体11外侧是将壳体11与泵体20上的焊接区201焊接相连,以实现将泵体20焊接在壳体11中;可以减小泵体20焊接时的变形量,避免因焊接导致泵体20的泄漏,并且无需在壳体11上开设焊接孔,保证压缩机100的外观美的。
在一个实施例中,激光焊接器包括单模激光器和激光焊接头,激光焊接头与单模激光器相连,以引导单模激光器产生的能量指向焊接区201域,以便精准焊接。而使用单模激光器,焊接的光斑直径更小,对泵体20的影响更小,进而减小或避免泵体20变形。当然,激光焊接器也可以采用多模激光器和激光焊接头构成的结构。
在一个实施例中,激光焊接头为摆动式焊接头,以便灵活控制激光束的指向位置,提高焊接精度。当然,激光焊接头也可以为振镜式焊接头,以便控制,提升安装精度。
在一个实施例中,请参阅图15,激光焊接器焊接时的行进摆动轨迹为圆环形,以方便控制,并保证泵体20与壳体11良好的焊接相连;并使焊接区201与壳体11焊接形成的焊缝202的轨迹呈圆环形。
在一个实施例中,请参阅图16,激光焊接器焊接时的行进摆动轨迹为8字形,以保证泵体20与壳体11良好的焊接相连,并使焊接区201与壳体11焊接形成的焊缝202的轨迹呈8字形。当然,激光焊接器焊接时的行进摆动轨迹还可以为弧形,对应使焊接区201与壳体11焊接形成的焊缝202的轨迹呈弧形。当然,激光焊接器焊接时的行进摆动轨迹还可以为其它形状,如锯齿状,对应使焊接区201与壳体11焊接形成的焊缝202的轨迹呈锯齿状、直线状对应使焊接区201与壳体11焊接形成的焊缝202的轨迹呈直线状等等。
本申请实施例压缩机100及压缩机100的组装方法,采用激光焊接将壳体11与泵体20的焊接区201焊接相连,可以减小泵体20的焊接变形,避免泵体20因焊接变形,而导致泄漏。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (17)

  1. 一种压缩机,包括泵体和壳体,所述泵体置于所述壳体中,其特征在于:所述泵体上具有焊接区,所述壳体与所述焊接区采用激光焊焊接相连。
  2. 如权利要求1所述的压缩机,其特征在于:所述壳体与所述焊接区之间的间隙小于或等于0.5mm。
  3. 如权利要求1所述的压缩机,其特征在于:所述焊接区与所述壳体焊接形成的焊缝的长度范围为10-50mm。
  4. 如权利要求3所述的压缩机,其特征在于:所述焊缝的长度范围为20-30mm。
  5. 如权利要求1-4任一项所述的压缩机,其特征在于:所述焊接区与所述壳体焊接形成的焊缝的数量范围为3-6条。
  6. 如权利要求5所述的压缩机,其特征在于:多条所述焊缝处于所述壳体轴向的同一位置。
  7. 如权利要求1-4任一项所述的压缩机,其特征在于:所述焊接区与所述壳体焊接形成的焊缝与所述壳体径向的夹角范围为0°-30°;或者所述焊接区与所述壳体焊接形成的焊缝与所述壳体径向的夹角范围为80°-100°。
  8. 如权利要求7所述的压缩机,其特征在于:所述焊缝与所述壳体径向的夹角为0°或90°。
  9. 如权利要求1-4任一项所述的压缩机,其特征在于:所述焊接区与所述壳体焊接形成的焊缝宽度范围为2-5mm。
  10. 如权利要求9所述的压缩机,其特征在于:所述焊缝宽度范围为3-4mm。
  11. 如权利要求1-4任一项所述的压缩机,其特征在于:所述焊接区的材质与所述壳体的材质不同。
  12. 如权利要求1-4任一项所述的压缩机,其特征在于:所述泵体包括气缸、安装于所述气缸中的转子、带动所述转子转动的曲轴、盖于所述气缸一端的主轴承和盖于所述气缸另一端的辅轴承;所述气缸的周侧面、所述主轴承的周侧面和所述辅轴承的周侧面中的一个或几个构成所述焊接区。
  13. 如权利要求1-4任一项所述的压缩机,其特征在于:所述焊接区的厚度大于或等于2mm。
  14. 如权利要求1-4任一项所述的压缩机,其特征在于:所述焊接区与所述壳体焊接形成的焊缝的轨迹呈8字形、弧形、圆环形、锯齿状或直线状。
  15. 一种如权利要求1-14任一项所述的压缩机的组装方法,其特征在于:包括如下步骤:
    组装泵体;
    将组装后的所述泵体置于壳体中;
    使用激光焊接器对准所述壳体外侧对应于所述泵体上焊接区的位置,将所述焊接区与所述壳体焊接相连。
  16. 如权利要求15所述的压缩机的组装方法,其特征在于:所述激光焊接器包括单模激光器和与所述单模激光器相连的激光焊接头。
  17. 如权利要求16所述的压缩机的组装方法,其特征在于:所述激光焊接头为摆动式焊接头或振镜式焊接头。
PCT/CN2021/121340 2021-01-08 2021-09-28 压缩机及其组装方法 WO2022148069A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110026315.3 2021-01-08
CN202110026315.3A CN112855539A (zh) 2021-01-08 2021-01-08 压缩机及其组装方法

Publications (1)

Publication Number Publication Date
WO2022148069A1 true WO2022148069A1 (zh) 2022-07-14

Family

ID=76001872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121340 WO2022148069A1 (zh) 2021-01-08 2021-09-28 压缩机及其组装方法

Country Status (2)

Country Link
CN (1) CN112855539A (zh)
WO (1) WO2022148069A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112855539A (zh) * 2021-01-08 2021-05-28 广东美芝精密制造有限公司 压缩机及其组装方法
CN114017329A (zh) * 2021-11-01 2022-02-08 广东美芝制冷设备有限公司 压缩机、制冷设备及装配方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167198A (ja) * 1985-01-18 1986-07-28 Agency Of Ind Science & Technol 回転式圧縮機
CN201723449U (zh) * 2010-07-06 2011-01-26 广东美芝制冷设备有限公司 压缩机内空间分隔的密封焊接结构
JP2015075047A (ja) * 2013-10-10 2015-04-20 パナソニックIpマネジメント株式会社 圧縮機
CN107552957A (zh) * 2017-10-17 2018-01-09 广州市艾派克智能激光科技有限公司 一种圆柱形压缩机壳体与泵体穿透焊接系统及方法
CN207229389U (zh) * 2017-09-06 2018-04-13 上海海立电器有限公司 压缩机
CN109458334A (zh) * 2017-09-06 2019-03-12 上海海立电器有限公司 压缩机及其制造方法
CN112855539A (zh) * 2021-01-08 2021-05-28 广东美芝精密制造有限公司 压缩机及其组装方法
CN214787998U (zh) * 2021-01-08 2021-11-19 广东美芝精密制造有限公司 压缩机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167198A (ja) * 1985-01-18 1986-07-28 Agency Of Ind Science & Technol 回転式圧縮機
CN201723449U (zh) * 2010-07-06 2011-01-26 广东美芝制冷设备有限公司 压缩机内空间分隔的密封焊接结构
JP2015075047A (ja) * 2013-10-10 2015-04-20 パナソニックIpマネジメント株式会社 圧縮機
CN207229389U (zh) * 2017-09-06 2018-04-13 上海海立电器有限公司 压缩机
CN109458334A (zh) * 2017-09-06 2019-03-12 上海海立电器有限公司 压缩机及其制造方法
CN107552957A (zh) * 2017-10-17 2018-01-09 广州市艾派克智能激光科技有限公司 一种圆柱形压缩机壳体与泵体穿透焊接系统及方法
CN112855539A (zh) * 2021-01-08 2021-05-28 广东美芝精密制造有限公司 压缩机及其组装方法
CN214787998U (zh) * 2021-01-08 2021-11-19 广东美芝精密制造有限公司 压缩机

Also Published As

Publication number Publication date
CN112855539A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2022148069A1 (zh) 压缩机及其组装方法
US6164934A (en) Sealed type compressor
JP2004346957A (ja) 板ブラシシール装置
WO2011078035A1 (ja) タービンハウジング
CN108838612A (zh) 一种大直径薄壁壳体焊接凸台用防变形装置
JP2021528255A (ja) モータハウジングの冷却水路の密封溶接方法
US20230083100A1 (en) Pipeline Connection Structure, Compressor Assembly, and Air Conditioner
CN214787998U (zh) 压缩机
JP2020532683A (ja) 圧縮機及びその製造方法
CN103521904B (zh) 一种电阻焊接方法
JP6497365B2 (ja) 圧力容器、圧力容器を備えた圧縮機及び圧力容器の製造方法
US6995955B2 (en) Pivot assembly for hard disk drive use
JP2010100337A (ja) 真空二重構造体およびその製造方法
CN217080792U (zh) 下端盖、压缩机壳体、压缩机和温控设备
JPH10317910A (ja) ガスタービンの圧縮機静翼環
CN212657920U (zh) 一种压缩机储液器
CN105134602A (zh) 压缩机组件
CN214626542U (zh) 压缩机
JP4790499B2 (ja) 真空構造体
CN105736373A (zh) 旋转式压缩机的泵体组件及旋转式压缩机
JP2011132817A (ja) 密閉型圧縮機、溶接方法
CN213743979U (zh) 一种用于涡旋式制冷压缩机的分体式定子套
CN220689431U (zh) 一种组装式不锈钢储液消音器
JP2002364755A (ja) ブラシシール装置
JP4858565B2 (ja) 圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.11.2023)