WO2022147835A1 - 一种晶体生长控制方法和系统 - Google Patents

一种晶体生长控制方法和系统 Download PDF

Info

Publication number
WO2022147835A1
WO2022147835A1 PCT/CN2021/071114 CN2021071114W WO2022147835A1 WO 2022147835 A1 WO2022147835 A1 WO 2022147835A1 CN 2021071114 W CN2021071114 W CN 2021071114W WO 2022147835 A1 WO2022147835 A1 WO 2022147835A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
parameters
preset
actual
parameter
Prior art date
Application number
PCT/CN2021/071114
Other languages
English (en)
French (fr)
Inventor
王宇
官伟明
梁振兴
Original Assignee
眉山博雅新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 眉山博雅新材料有限公司 filed Critical 眉山博雅新材料有限公司
Priority to PCT/CN2021/071114 priority Critical patent/WO2022147835A1/zh
Priority to CN202180000165.7A priority patent/CN112789371A/zh
Priority to EP21721809.8A priority patent/EP4050131A4/en
Priority to US17/227,256 priority patent/US20220220630A1/en
Publication of WO2022147835A1 publication Critical patent/WO2022147835A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/002Continuous growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/28Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using weight changes of the crystal or the melt, e.g. flotation methods
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • C30B28/10Production of homogeneous polycrystalline material with defined structure from liquids by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/34Silicates
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric

Definitions

  • the present specification relates to the technical field of crystal preparation, and in particular, to a method and system for controlling crystal growth.
  • process conditions and control parameters determine the quality of crystals to a certain extent. Further, the quality of the crystal can also affect the performance of devices processed using the crystal. If it is desired to prepare high-quality crystals, various process conditions and control parameters for crystal growth need to be accurately controlled during crystal preparation. Therefore, it is necessary to provide a crystal growth control method and system to control the crystal growth process accurately and efficiently.
  • the embodiments of this specification provide a crystal growth control method.
  • the method includes: acquiring an actual crystal parameter in a target time slice, wherein the actual crystal parameter includes at least one of an actual crystal mass, an actual crystal diameter, an actual crystal height or an actual crystal shape; and obtaining a reference in the target time slice Crystal parameters, wherein the reference crystal parameters include at least one of reference crystal quality, reference crystal diameter, reference crystal height or reference crystal shape; temperature control parameters are determined based on the actual crystal parameters and the reference crystal parameters; based on The actual crystal parameter and the reference crystal parameter are used to determine a pull-up control parameter; and based on the temperature control parameter and the pull-up control parameter, respectively, the temperature and the pull-up control of the next time slice after the target time slice are adjusted. Pull speed.
  • the acquiring the actual crystal parameters in the target time slice includes: determining the liquid level drop height in the target time slice based on the actual crystal quality, the raw material melt density and the cavity size; The actual crystal height is determined based on the pull-up height and the liquid level drop height within the target time slice; and the actual crystal diameter is determined based on the actual crystal mass and the actual crystal height.
  • the obtaining the reference crystal parameters in the target time slice includes: constructing a crystal growth model based on at least one of preset crystal parameters or preset crystal growth parameters; and determining based on the crystal growth model the reference crystal parameter corresponding to the target time slice.
  • the preset crystal parameters include crystal type, preset crystal density, preset crystal quality, preset seed height, preset seed diameter, preset shoulder height, preset isodiametric height, Preset Equal Diameter, Preset Tail Height, Preset Tail Height, Preset Tail Diameter, Preset Shoulder Angle, Preset Tail Angle, Transition Angle of Seed and Shoulder Front End and Shoulder End Sum etc. At least one of the ratios of the transition angles of the front ends of the diameters.
  • the preset crystal growth parameters include at least one of a preset crystal growth rate or a preset growth coefficient.
  • the constructing the crystal growth model based on the preset crystal parameters includes: constructing the crystal growth model by a three-dimensional modeling method based on the preset crystal parameters.
  • the determining a temperature control parameter based on the actual crystal parameter and the reference crystal parameter comprises: determining a difference between the actual crystal parameter and the reference crystal parameter; growing the temperature based on the difference and the reference crystal parameter parameter to determine the temperature control parameter.
  • the determining the pulling control parameter based on the actual crystal parameter and the reference crystal parameter includes: determining the target time slice based on the actual crystal quality, the raw material melt density and the cavity size and determining the pulling control parameter based on the liquid level falling speed and the reference crystal growth parameter.
  • the method before the acquiring the actual crystal parameters in the target time slice, the method further comprises: heating the cavity to a preset temperature; and detecting that the temperature in the cavity is stable at the preset temperature After a preset time, the seed crystal is automatically lowered.
  • the method further includes: in the process of automatically descending the seed crystal, continuously detecting the weight of the seed crystal; and if the weight of the seed crystal is less than a preset weight threshold, stopping descending the seed crystal and issuing a reminder.
  • the method further includes: acquiring a real-time image during the descending process of the seed crystal; comparing the real-time image with a preset reference image; and determining whether to adjust the heating parameter according to the comparison result.
  • the method further comprises: after the crystal growth is completed, by controlling the temperature control parameter or the pulling control parameter, performing an automatic finish.
  • the method further includes: during the automatic finishing process, continuously detecting the crystal weight; and if the crystal weight is greater than a preset weight threshold, issuing a reminder and controlling the pulling assembly to move in reverse.
  • An embodiment of the present specification provides a crystal growth control system, which is applied to a crystal preparation process.
  • the system includes: at least one memory for storing computer instructions; at least one processor, the at least one processor and the at least one memory communication, when the at least one processor executes the computer instructions, the at least one processor causes the system to execute: acquiring actual crystal parameters within a target time slice, wherein the actual crystal parameters include actual crystal quality, At least one of the actual crystal diameter, the actual crystal height, or the actual crystal shape; obtain the reference crystal parameters in the target time slice, wherein the reference crystal parameters include the reference crystal quality, the reference crystal diameter, the reference crystal height or the reference crystal shape at least one of; determining temperature control parameters based on the actual crystal parameters and the reference crystal parameters; determining a pulling control parameter based on the actual crystal parameters and the reference crystal parameters; based on the temperature control parameters and the reference crystal parameters, respectively The pulling control parameter is used to adjust the temperature and pulling speed of the next time slice after the target time slice.
  • the at least one processor causes the system to perform: determining the target time based on the actual crystal mass, feedstock melt density, and cavity size the liquid level drop height within the slice; the actual crystal height is determined based on the pull-up height and the liquid level drop height within the target time slice; and based on the actual crystal mass and the actual crystal height, the actual crystal height is determined the actual crystal diameter.
  • the at least one processor in order to obtain the reference crystal parameters within the target time slice, causes the system to perform: constructing a crystal growth model based on at least one of preset crystal parameters or preset crystal growth parameters and, based on the crystal growth model, determining the reference crystal parameter corresponding to the target time slice.
  • the preset crystal parameters include crystal type, preset crystal density, preset crystal quality, preset seed height, preset seed diameter, preset shoulder height, preset isodiametric height, Preset Equal Diameter, Preset Tail Height, Preset Tail Height, Preset Tail Diameter, Preset Shoulder Angle, Preset Tail Angle, Transition Angle of Seed and Shoulder Front End and Shoulder End Sum etc. At least one of the ratios of the transition angles of the front ends of the diameters.
  • the preset crystal growth parameters include at least one of a preset crystal growth rate or a preset growth coefficient.
  • the at least one processor causes the system to perform: constructing the crystal growth model by a three-dimensional modeling method based on the preset crystal parameters.
  • the at least one processor causes the system to perform: determining a difference between the actual crystal parameter and the reference crystal parameter Difference; based on the difference and a reference crystal growth parameter, the temperature control parameter is determined.
  • the at least one processor causes the system to perform: based on the actual crystal mass, feedstock melt density, and cavity body size, determining a liquid level falling speed within the target time slice; and determining the pulling control parameter based on the liquid level falling speed and a reference crystal growth parameter.
  • said at least one processor before said acquiring actual crystal parameters within a target time slice, causes said system to perform: heating a chamber to a preset temperature; and detecting that the temperature within said chamber is stable After a preset time at the preset temperature, the seed crystal is automatically lowered.
  • the at least one processor causes the system to: continuously detect the seed weight during automatic seed lowering; and stop lowering the seed if the seed weight is less than a preset weight threshold crystal and issued a reminder.
  • the at least one processor causes the system to perform: acquiring a real-time image during seed drop; comparing the real-time image with a preset reference image; and determining whether to Adjust heating parameters.
  • the at least one processor causes the system to perform automatic closeout by controlling the temperature control parameter or the pull control parameter after crystal growth is complete.
  • the at least one processor causes the system to: continuously detect crystal weight during the auto-finishing process; and issue an alert and control the lift assembly if the crystal weight is greater than a preset weight threshold reverse movement.
  • An embodiment of the present specification provides a crystal growth control system, which is applied to a crystal preparation process.
  • the system includes: an acquisition module for acquiring actual crystal parameters in a target time slice, wherein the actual crystal parameters include actual crystal quality, at least one of an actual crystal diameter, an actual crystal height, or an actual crystal shape; and obtaining a reference crystal parameter within a target time slice, wherein the reference crystal parameter includes a reference crystal quality, a reference crystal diameter, a reference crystal height, or a reference crystal shape at least one of; a determining module for determining a temperature control parameter based on the actual crystal parameter and the reference crystal parameter; and determining a pulling control parameter based on the actual crystal parameter and the reference crystal parameter; and processing The module is configured to adjust the temperature and the pulling speed of the next time slice after the target time slice based on the temperature control parameter and the pulling control parameter, respectively.
  • An embodiment of the present specification provides a computer-readable storage medium, where the storage medium stores computer instructions, and when the computer instructions are executed by a processor, the computer instructions instruct the processor to perform the following operations: acquiring the target time slice the actual crystal parameters, wherein the actual crystal parameters include at least one of the actual crystal quality, the actual crystal diameter, the actual crystal height or the actual crystal shape; obtain the reference crystal parameters in the target time slice, wherein the reference crystal parameters Including at least one of a reference crystal mass, a reference crystal diameter, a reference crystal height or a reference crystal shape; based on the actual crystal parameters and the reference crystal parameters, determining a temperature control parameter; based on the actual crystal parameters and the reference crystal parameter, determine the pulling control parameter; adjust the temperature and pulling speed of the next time slice after the target time slice based on the temperature control parameter and the pulling control parameter, respectively.
  • FIG. 1 is a schematic diagram of an exemplary crystal growth control system shown in accordance with some embodiments of the present specification.
  • FIG. 2 is a schematic diagram of an exemplary computing device shown in accordance with some embodiments of the present specification.
  • FIG. 3 is a block diagram of an exemplary crystal growth control system shown in accordance with some embodiments of the present specification.
  • Figure 4 is a flow diagram of an exemplary crystal growth control process shown in accordance with some embodiments of the present specification.
  • Figure 5 is a flow diagram of an exemplary process for determining reference crystal parameters according to some embodiments of the present specification.
  • FIG. 6 is an exemplary interface for determining preset crystal parameters according to some embodiments of the present specification.
  • FIG. 7 is an exemplary interface for determining preset crystal growth parameters according to some embodiments of the present specification.
  • FIG. 8 is a flow diagram of an exemplary process for determining temperature control parameters according to some embodiments of the present specification.
  • FIG. 9 is a flow diagram of an exemplary process for determining pull control parameters according to some embodiments of the present specification.
  • Figure 10 is a graph comparing actual crystal diameters to reference crystal diameters according to some embodiments of the present specification.
  • 11 is a flow diagram of an exemplary process for controlling seed drop according to some embodiments of the present specification.
  • FIG. 12 is a flow diagram of an exemplary automatic closeout process shown in accordance with some embodiments of the present specification.
  • FIG. 13 is a schematic diagram of an exemplary crystal growth control process shown in accordance with some embodiments of the present specification.
  • FIG. 14 is an exemplary operating interface of an exemplary crystal growth control system shown in accordance with some embodiments of the present specification.
  • FIG. 15 is an exemplary operation interface for intermediate frequency power supply control according to some embodiments of the present specification.
  • FIG. 16 is an exemplary operation interface for parameter selection according to some embodiments of the present specification.
  • FIG. 17 is an exemplary operation interface for historical curve query according to some embodiments of the present specification.
  • FIG. 18 is an exemplary operation interface for querying operation records according to some embodiments of the present specification.
  • FIG. 19 is an exemplary operation interface for weighing calibration according to some embodiments of the present specification.
  • system means for distinguishing different components, elements, parts, parts or assemblies at different levels.
  • device means for converting signals into signals.
  • unit means for converting signals into signals.
  • module means for converting signals into signals.
  • FIG. 1 is a schematic diagram of an exemplary crystal growth control system shown in accordance with some embodiments of the present specification.
  • the crystal growth control system 100 may be applied to growth control during the growth of various crystals (eg, scintillation crystals such as yttrium lutetium silicate (LYSO), bismuth germanate (BGO), spinel crystals).
  • the crystal growth control system 100 may include a processing device 101, a control device 102, a handling assembly 103, a feeding weighing assembly 104, a crystal weighing assembly 105, a heating assembly 106, a pulling assembly 107 , a crystal transfer component 108 , a storage device 109 and an interaction component 110 .
  • the processing device 101 may be used to process various data and/or information involved in the crystal growth process.
  • the processing device 101 may obtain actual crystal parameters (eg, actual crystal mass, actual crystal diameter, actual crystal height, actual crystal shape) and reference crystal parameters (eg, reference crystal quality, reference crystal diameter, reference crystal height, reference crystal shape), and generate control instructions (eg, control instructions including temperature control parameters, pulling control parameters and/or crystal rotation control parameters, feeding control instructions, etc.) based on the acquired data.
  • the processing device 101 may also send control instructions to the control device 102, and the control device 102 controls the pulling assembly 107, the heating assembly 106, the crystal turning assembly 108, the conveying assembly 103 and the like based on the control instructions.
  • processing device 101 may comprise an industrial control computer.
  • the processing device 101 may function as a higher-level control monitoring device or a higher-level processing device.
  • the control device 102 may be used to control various operations involved in the crystal growth process (eg, temperature adjustment, pulling speed adjustment, crystal turning speed adjustment, feeding operations, etc.). In some embodiments, the control device 102 may receive control instructions from the processing device 101 and control the crystal growth process based on the control instructions. In some embodiments, the control device 102 may include a Programmable Logic Controller (PLC). In some embodiments, the control device 102 may act as a subordinate real-time control device.
  • PLC Programmable Logic Controller
  • the processing device 101 and/or the control device 102 may include a central processing unit (CPU), an application specific integrated circuit (ASIC), an application specific instruction set processor (ASIP), a graphics processing unit (GPU), a physical operation processing Unit (PPU), Digital Signal Processor (DSP), Field Programmable Gate Array (FPGA), Programmable Logic Device (PLD), Controller, Microcontroller Unit, Reduced Instruction Set Computer (RISC), Microprocessor, etc. or any combination of the above.
  • the processing device 101 and the control device 102 may be integrated into one device.
  • the control device 102 may be part of the processing device 101 .
  • the functions of the processing device 101 and the control device 102 may be shared with each other or performed jointly.
  • the crystal weighing component 105 is used to monitor the actual crystal quality (e.g., seed crystal weight, crystal weight at any time) at any time, and send a weighing signal to the processing device 101.
  • the feed weighing component 104 may be used to weigh the feed involved in the feeding operation and send a weighing signal to the processing device 101 .
  • crystal weigh assembly 105 and feed weigh assembly 104 may be collectively referred to as "weigh assemblies.”
  • the handling assembly 103 can be used to add the weighed raw material into the growth chamber.
  • the handling assembly 103 may include a lift mechanism 1031 , a translation mechanism 1032 , a flip mechanism 1033 and a grip mechanism 1034 .
  • the crystal weighing component 105 can weigh the crystal in real time and feed it back to the processing device 101, and the processing device 101 can receive the weighing signal to determine whether to perform the feeding operation. If it is determined to perform the feeding operation, the processing device 101 may send a control instruction to the control device 102 . After receiving the control instruction, the control device 102 can control the feeding and weighing component 104 to weigh the target amount of raw materials. After the weighing is completed, the control device 102 can control the handling component 103 to add the raw materials into the growth chamber.
  • control device 102 can control the clamping mechanism 1034 to clamp the tray containing the raw material, and control the lifting mechanism 1031 to move up to drive the tray to move up; and then control the translation mechanism 1032 to move horizontally to drive the tray horizontally Move to the top of the growth chamber; and control the turning mechanism 1033 to turn over to pour the raw material into the growth chamber, so as to complete the entire feeding process.
  • the heating assembly 106 is used to heat the crystal growth chamber.
  • the heating assembly 106 may include an intermediate frequency power controller 1061 and an induction coil 1062 .
  • the intermediate frequency power supply controller 1061 can be used as a closed-loop execution unit for temperature control, and can be used to accurately execute the temperature control instructions of the processing device 101 . Specifically, by controlling the current or voltage of the intermediate frequency power supply, the heating power of the induction coil 1062 can be adjusted.
  • the intermediate frequency power controller 1061 can perform signal conversion with the processing device 101 and/or the control device 102 through an RS232-485 converter to transmit the temperature data of the induction coil 1062 .
  • the heating assembly 106 may also be directly controlled by the processing device 101 , or the control device 102 may be integrated in the processing device 101 , and the heating assembly 106 may be controlled by the control device 102 .
  • the pulling component 107 is used to drive the seed crystal or crystal to move up and down. For example, before crystal growth begins, the pulling assembly 107 can control the pulling rod carrying the seed crystal to move downward. For another example, after the crystal growth is completed, the pulling component 107 may perform a finishing operation to pull the crystal upward from the liquid surface of the raw material.
  • the lift assembly 107 may include a lift motor.
  • the crystal rotating assembly 108 is used to drive the seed crystal or crystal to rotate.
  • the crystal rotation assembly 108 may control crystal rotation.
  • the transcrystal assembly 108 may comprise a rotating electrical machine.
  • the storage device 109 may store various data and/or information involved in the crystal growth process.
  • storage device 109 may store parameters during crystal growth (eg, temperature, pull rate, spin rate, crystal weight), control instructions, and the like.
  • storage device 109 may be associated with one or more components in crystal growth control system 100 (eg, processing device 101, control device 102, handling assembly 103, feed weigh assembly 104, crystal weigh assembly 105, heating components 106, etc.) directly connect or communicate.
  • One or more components in crystal growth control system 100 may access data and/or instructions stored in storage device 109 via a network or directly.
  • storage device 109 may be part of processing device 101 and/or control device 102 . Relevant data in the crystal growth control process (eg, temperature control parameters, pull control parameters, reference crystal parameters, etc.) can be recorded in the storage device 109 in real time.
  • storage device 109 may store data and/or instructions for processing device 101 to perform or use to accomplish the example methods described in this specification.
  • storage device 109 may include mass storage, removable storage, volatile read-write memory, read-only memory (ROM), the like, or any combination thereof.
  • Exemplary mass storage may include magnetic disks, optical disks, solid state disks, and the like.
  • Exemplary removable storage may include flash drives, floppy disks, optical disks, memory cards, compact disks, magnetic tapes, and the like.
  • Exemplary volatile read only memory may include random access memory (RAM).
  • Exemplary RAMs may include dynamic RAM (DRAM), double rate synchronous dynamic RAM (DDR SDRAM), static RAM (SRAM), thyristor RAM (T-RAM), zero capacitance RAM (Z-RAM), and the like.
  • Exemplary ROMs may include mask ROM (MROM), programmable ROM (PROM), erasable programmable ROM (PEROM), electronically erasable programmable ROM (EEPROM), compact disk ROM (CD-ROM), and digital Universal disk ROM, etc.
  • storage device 109 may be implemented on a cloud platform.
  • cloud platforms may include private clouds, public clouds, hybrid clouds, community clouds, distributed clouds, internal clouds, multi-tier clouds, etc., or any combination thereof.
  • Interaction component 110 may be used to interact with a user or other components in crystal growth control system 100 .
  • the interaction component 110 may include a display device 110-1 and an interaction device 110-2.
  • the display device 110-1 may include a digital tube display, a two-dimensional display, a three-dimensional display, and the like.
  • the interaction device 110-2 may include an input device. Input devices may include mice, keyboards, voice input devices, and the like.
  • the processing device 101 can perform human-computer interaction with an operator (eg, a crystal preparation engineer) through the display device 110-1 and the interaction device 110-2, and the operator can query the actual crystal parameters through the display device 110-1 , temperature control parameters, pulling control parameters, etc.
  • an operator eg, a crystal preparation engineer
  • FIG. 2 is a schematic diagram of an exemplary computing device 200 shown in accordance with some embodiments of the present specification.
  • processing device 101, control device 102, and/or storage device 109 may be implemented on computing device 200 and configured to implement the functions disclosed in this specification.
  • Computing device 200 may include any of the components used to implement the systems described in this specification.
  • a PLC may be implemented on computing device 200 by its hardware, software programs, firmware, or a combination thereof. Only one computer is depicted in the figure for convenience, but the computational functions described in this specification related to feed control can be implemented in a distributed fashion by a group of similar platforms to spread the processing load of the system.
  • Computing device 200 may include a communication port 205 connected to a network for enabling data communication.
  • Computing device 200 may include a processor 202 (eg, a CPU) that may execute program instructions in the form of one or more processors.
  • Exemplary computer platforms may include an internal bus 201, various forms of program memory and data memory, such as a hard disk 207, read only memory (ROM) 203, or random access memory (RAM) 204, for storing and storing data processed and processed by the computer. / or transfer of various data files.
  • the computing device may also include program instructions for execution by the processor 202 stored in read-only memory 203, random access memory 204, and/or other types of non-transitory storage media. The methods and/or processes of this specification can be implemented in the form of program instructions.
  • Computing device 200 also includes input/output components 206 for supporting input/output between the computer and other components. Computing device 200 may also receive programs and data in this disclosure through network communications.
  • the computing device 200 in this specification may include multiple processors, and the operations and/or methods described in this specification to be implemented by one processor may also be implemented by multiple processors collectively or independently .
  • the processor of the computing device 300 described in this specification performs operation A and operation B
  • operation A and operation B may also be performed by two or more different processors in the computing device 300 jointly or are performed separately (eg, operation A is performed by a first processor and operation B is performed by a second processor, or operations A and B are performed jointly by the first processor and the second processor).
  • FIG. 3 is a block diagram of an exemplary crystal growth control system shown in accordance with some embodiments of the present specification.
  • the crystal growth control system 300 may include an acquisition module 301 , a determination module 302 and a control module 303 .
  • crystal growth control system 300 may be implemented by or integrated in processing device 101 and/or control device 102 .
  • the acquiring module 301 can be used to acquire the actual crystal parameters in the target time slice.
  • the acquisition module 301 may be configured to acquire reference crystal parameters within the target time slice.
  • the determination module 302 may be used to determine temperature control parameters based on actual crystal parameters and reference crystal parameters. In some embodiments, the determination module 302 may be used to determine the pull control parameters based on the actual crystal parameters and the reference crystal parameters. For more details on determining the temperature control parameters and the pulling control parameters, reference may be made to the flowchart 4 and its description, which will not be repeated here.
  • the control module 303 may be configured to adjust the temperature and the pulling speed of the next time slice after the target time slice based on the temperature control parameter and the pulling control parameter, respectively. For more details on adjusting the temperature and pulling speed of the next time slice after the target time slice, reference may be made to Flowchart 4 and its description, which will not be repeated here.
  • system and its modules shown in FIG. 3 may be implemented in various ways.
  • the system and its modules may be implemented in hardware, software, or a combination of software and hardware.
  • the hardware part can be realized by using dedicated logic;
  • the software part can be stored in a memory and executed by a suitable instruction execution system, such as a microprocessor or specially designed hardware.
  • a suitable instruction execution system such as a microprocessor or specially designed hardware.
  • the methods and systems described above may be implemented using computer-executable instructions and/or embodied in processor control code, for example on a carrier medium such as a disk, CD or DVD-ROM, such as a read-only memory (firmware) ) or a data carrier such as an optical or electronic signal carrier.
  • the system and its modules of this specification can be implemented not only by hardware circuits such as very large scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc., or programmable hardware devices such as field programmable gate arrays, programmable logic devices, etc. , can also be implemented by, for example, software executed by various types of processors, and can also be implemented by a combination of the above-mentioned hardware circuits and software (eg, firmware).
  • the above description of the crystal growth control system 300 and its modules is only for convenience of description, and does not limit the description to the scope of the illustrated embodiments. It can be understood that for those skilled in the art, after understanding the principle of the system, various modules may be combined arbitrarily, or a subsystem may be formed to connect with other modules without departing from the principle.
  • the acquisition module 301 , the determination module 302 and the control module 303 disclosed in FIG. 3 may be different modules in a system, or may be one module to implement the functions of the above two modules.
  • each module in the crystal growth control system 300 may share one storage module, and each module may also have its own storage module. Such deformations are all within the protection scope of this specification.
  • FIG. 4 is a flow diagram of an exemplary crystal growth control process shown in accordance with some embodiments of the present specification.
  • the process 400 may be performed by a processing device (eg, processing device 101 ) and/or a control device (eg, control device 102 ).
  • the process 400 may be stored in a storage device (eg, a storage device, a processing device, and/or a storage unit of a control device) in the form of programs or instructions that are executed when the processor 202 or the modules shown in FIG. 3 execute the program or instructions.
  • process 400 may be implemented.
  • process 400 may be accomplished with one or more additional operations not described below, and/or without one or more operations discussed below. Additionally, the order of operations shown in FIG. 4 is not limiting.
  • Step 401 Acquire the actual crystal parameters in the target time slice. In some embodiments, this step 401 may be performed by the acquisition module 301 .
  • the crystal growth process starts from the preparation of seeding (or from the completion of seeding, ie, from when the crystal begins to grow) until the crystal is grown to the target shape.
  • the crystal growth process includes multiple stages (eg, seeding stage, shouldering stage, equal diameter stage, finishing stage) and takes a long time (eg, 10h, 30h, 50h, 60h, 100h).
  • the processing device and/or the control device may divide the crystal growth process into multiple time instants or multiple time slices.
  • the time intervals between the multiple times may be the same or different.
  • the time lengths (which may simply be referred to as "time lengths") of the multiple time slices may be the same or different.
  • the length of the time slice may be 10 seconds, 15 seconds, 30 seconds, 1 minute, 10 minutes, and the like.
  • the processing device and/or the control device may determine the length of time and/or the number of time slices based on parameters related to the crystal to be grown (eg, crystal type, crystal size, growth stage). For example, the time length (eg, 5s, 10s) of the time slice corresponding to the seeding phase or the shouldering phase may be different from the time length (eg, 30s, 1 min) of the time slice corresponding to the equal diameter phase.
  • the processing device and/or the control device may determine the time length and/or number of the plurality of time slices according to the control precision. For example, for a crystal growth process for which the total growth time has been determined, the more time slices (or the shorter the time length of a single time slice), the higher the control precision; otherwise, the lower the control precision. Specifically, for example, assuming that the total growth time is 20 hours, the processing equipment and/or the control equipment can divide the total growth time into 1200 time slices according to the control precision, and the time length of a single time slice is 1 minute; for another example, the processing equipment and/or The control device can also divide the total growth time into 400 time slices, and the time length of a single time slice is 3 minutes.
  • the processing device and/or the control device may comprehensively consider the control precision and the data processing capability of the system to determine the time length and/or number of the multiple time slices. For example, in combination with the foregoing, the greater the number of time slices (or the shorter the time length of a single time slice), the higher the control precision, but the higher the required data processing capability.
  • the processing device and/or the control device may comprehensively determine the time length and/or number of multiple time slices under the premise that the data processing capability is not exceeded.
  • the processing device and/or the control device may select any one of a plurality of time slices as the target time slice. In some embodiments, the processing device and/or the control device may select a time slice corresponding to a specific stage (eg, an isopathic stage, an epilogue stage) as the target time slice. In some embodiments, the processing device and/or the control device may select a corresponding time slice as a target time slice according to actual requirements.
  • a specific stage eg, an isopathic stage, an epilogue stage
  • the processing device and/or the control device may select a corresponding time slice as a target time slice according to actual requirements.
  • the actual crystal parameters include actual crystal mass, actual crystal diameter, actual crystal height, actual crystal shape, etc., or any combination thereof.
  • the actual crystal parameters in the target time slice may represent the actual growth condition of the crystal in the target time slice.
  • the target time slice can be 10:00:00-10:01:00
  • the actual crystal mass in the target time slice can be the added weight of the crystal in the time period 10:00:00-10:01:00
  • the actual crystal diameter in the target time slice may be the average value of the crystal diameters in the time period of 10:00:00-10:01:00
  • the actual crystal height in the target time slice may be 10:00:00-10 : 01:00
  • the height of the crystal in this time period, the actual crystal shape in the target time slice can be the shape of the crystal in the time period of 10:00:00-10:01:00.
  • the processing device and/or the control device may acquire the actual crystal quality at the end time of the target time slice and the actual crystal quality at the start time, and determine the actual crystal quality in the target time slice based on the difference between the two quality.
  • the processing device and/or the control device may determine the actual crystal height within the target time slice based on the pull up height and liquid level drop height within the target time slice. Specifically, the processing device and/or the control device may determine the sum of the pull-up height (which may be denoted as h 1 ) and the liquid level drop height (which may be denoted as h 2 ) in the target time slice as the sum of the height in the target time slice
  • the processing device and/or the control device may determine the liquid level drop height based on the actual crystal mass, feedstock molten state density, and cavity size. Specifically, as an example, if the raw material for crystal growth is not replenished into the cavity within the target time slice, the processing device and/or the control device may determine the liquid level drop height based on the formula (1):
  • h 2 represents the height of liquid level drop
  • m represents the actual crystal quality
  • ⁇ 1 represents the density of the raw material in the molten state
  • S 1 represents the cross-sectional area of the cavity.
  • the cross-section of the cavity may be determined based on the diameter of the circle; if the cross-section of the cavity is rectangular, the cross-sectional area of the cavity may be determined based on the side length of the rectangle .
  • the processing device and/or the control device may determine the liquid level drop height based on equation (2):
  • h 3 represents the height of the liquid level drop
  • m represents the actual crystal mass
  • ⁇ m represents the replenishment amount of the reaction raw materials
  • ⁇ 1 represents the molten density of the raw materials
  • S 1 represents the cross-sectional area of the cavity.
  • the processing device and/or the control device may determine the actual crystal diameter based on the actual crystal mass and the actual crystal height. Specifically, the processing device and/or the control device may determine the actual crystal diameter based on equation (3):
  • d is the actual crystal diameter
  • m is the actual crystal mass
  • ⁇ s is the crystal density
  • h is the actual crystal height.
  • the processing device and/or the control device may obtain the actual crystal shape within the target time slice from an image acquisition device (eg, a 3D camera).
  • the processing device and/or the control device may construct a crystal growth model based on parameters such as actual crystal mass, actual crystal diameter, actual crystal height, crystal density, etc., and determine the actual crystal shape based on the crystal growth model.
  • an image acquisition device eg, a 3D camera
  • the processing device and/or the control device may construct a crystal growth model based on parameters such as actual crystal mass, actual crystal diameter, actual crystal height, crystal density, etc., and determine the actual crystal shape based on the crystal growth model.
  • Step 402 Obtain reference crystal parameters in the target time slice. In some embodiments, this step 402 may be performed by the acquisition module 301 .
  • the reference crystal parameters may include a reference crystal mass, a reference crystal diameter, a reference crystal height, a reference crystal shape, etc., or any combination thereof.
  • the reference crystal parameters in the target time slice can represent the theoretical growth of the crystal in the target time slice during the crystal growth process.
  • the target time slice can be 10:00:00-10:01:00
  • the reference crystal quality in the target time slice can be 10:00:00-10:01:00
  • the crystal should theoretically increase during this time period
  • the weight of the reference crystal in the target time slice can be the average value of the theoretical crystal diameter in the time period of 10:00:00-10:01:00
  • the reference crystal height in the target time slice can be 10:00 :00-10:01:00
  • the theoretical height of the crystal should increase in this time period
  • the reference crystal shape in the target time slice can be the theoretical shape of the crystal in the time period of 10:00:00-10:01:00 contour.
  • the processing device and/or the control device may construct (eg, by a three-dimensional modeling method) a crystal growth model based on preset crystal parameters and/or preset crystal growth parameters, and determine targets based on the crystal growth model Reference crystal parameters within the time slice.
  • the processing device and/or the control device may further determine reference crystal growth parameters (eg, reference crystal growth rate, reference growth coefficient) corresponding to the target time slice based on the crystal growth model.
  • reference crystal parameters and “reference crystal growth parameters” may also be collectively referred to as "reference crystal parameters”. That is, the reference crystal parameters may include a reference crystal mass, a reference crystal diameter, a reference crystal height, a reference crystal shape, a reference crystal growth rate, a reference growth coefficient, etc., or any combination thereof.
  • the crystal growth model can characterize the theoretical growth of the crystal throughout the growth process.
  • the preset crystal parameters may include crystal type, preset crystal density, preset crystal quality, preset seed height, preset seed diameter, preset shoulder height, preset isodiametric height, preset Set equal diameter, preset tail height, preset tail height, preset tail diameter, preset shoulder angle, preset tail angle, transition angle between seed crystal and shoulder front, shoulder end and equal diameter The transition angle of the front end, the ratio of the transition angle between the seed crystal and the front end of the shoulder, and the transition angle between the end of the shoulder and the front end of equal diameter, etc., or any combination thereof.
  • the preset crystal growth parameters may include preset crystal growth rates (eg, preset crystal growth rates corresponding to different crystal growth stages), preset growth coefficients (eg, preset crystal growth rates corresponding to different crystal growth stages) growth coefficient), etc. or any combination thereof.
  • preset crystal growth rates eg, preset crystal growth rates corresponding to different crystal growth stages
  • preset growth coefficients eg, preset crystal growth rates corresponding to different crystal growth stages
  • Step 403 Determine temperature control parameters based on the actual crystal parameters and the reference crystal parameters. In some embodiments, this step 403 may be performed by the determination module 302 .
  • temperature control parameters may be used to control the temperature of the furnace in the crystal growth apparatus.
  • the temperature control parameters may include the heating parameter variation (eg, the power variation of the intermediate frequency power supply, the current variation, the power variation of the induction coil, the current variation) for controlling the heating components (eg, the intermediate frequency power supply, the induction coil). quantity) parameters.
  • the temperature control parameters may further include a change amount (eg, circulating water) of a heat exchange parameter for controlling a heat exchange component in the crystal growth device (eg, a circulating water heat exchange component on a furnace body of the crystal growth device). The parameters of the flow change amount and the flow rate change amount).
  • the processing device and/or the control device may determine the temperature control parameter based on the difference between the actual crystal parameter and the reference crystal parameter and the reference crystal growth parameter (eg, the reference growth coefficient). For more details on determining the temperature control parameters, reference may be made to FIG. 8 and its description, which will not be repeated here.
  • Step 404 Determine the pulling control parameters based on the actual crystal parameters and the reference crystal parameters. In some embodiments, this step 404 may be performed by the determination module 302 .
  • the pulling control parameters can be used to control the pulling process of a pulling component (eg, a pulling motor) in a crystal growth apparatus.
  • the pulling control parameter may include a parameter for controlling the amount of change in the pulling parameter of the pulling assembly (eg, the amount of change in the rotational speed of the pulling motor, the amount of change in power).
  • the processing device and/or the control device may be based on the difference between the actual crystal parameter and the reference crystal parameter (eg, the difference between the actual crystal mass and the reference crystal mass, the difference between the actual crystal diameter and the reference crystal diameter) , to determine or adjust the lift control parameters. For example, the processing device and/or the control device may increase the pull control parameter if the difference between the actual crystal mass and the reference crystal mass is greater than a preset threshold.
  • the processing device and/or the control device may determine the pull-up control parameters based on the liquid level drop rate and a reference crystal growth parameter (eg, a reference growth rate).
  • a reference crystal growth parameter eg, a reference growth rate
  • the processing equipment and/or the control equipment can obtain the actual crystal quality, raw material melt density, cavity size, and the feeding amount (if any) in the target time slice, The liquid level falling height in the target time slice is determined, and the liquid level falling speed in the target time slice is further determined; then the pulling control parameter can be determined based on the liquid level falling speed and the reference crystal growth parameter.
  • a reference crystal growth parameter e.g, a reference growth rate
  • Step 405 Adjust the temperature and the pulling speed of the next time slice after the target time slice based on the temperature control parameter and the pulling control parameter, respectively. In some embodiments, this step 405 may be performed by the control module 303 .
  • the processing device and/or the control device may adjust the temperature of the next target time slice (eg, the temperature of the furnace in the crystal growth apparatus) based on the difference between the actual and theoretical conditions of the crystal in the current target time slice ) and the pulling speed (for example, the pulling speed of the pulling motor) to adjust the crystal growth of the next target time slice.
  • the next target time slice eg, the temperature of the furnace in the crystal growth apparatus
  • the pulling speed for example, the pulling speed of the pulling motor
  • the processing device and/or the control device may adjust the temperature of the next time slice after the target time slice based on the heating parameters and temperature control parameters of the heating components within the target time slice.
  • the heating parameter of the heating element in the target time slice may be an average heating parameter of the heating element in the target time slice (for example, the average power and average current of the induction coil) or the heating parameter value at the end time of the target time slice (For example, the power value of the induction coil, the current value).
  • the processing device and/or the control device may adjust the pulling speed of the next time slice after the target time slice based on the pulling speed and the pulling control parameters of the pulling assembly within the target time slice.
  • the pulling speed within the target time slice may be the average pulling speed within the target time slice or the pulling speed at the end time of the target time slice.
  • the target time slice is 10:00:00 ⁇ 10:01:00
  • the temperature of the furnace in the crystal growth device in the target time slice is 2000°C
  • the pulling speed is 10cm/h, respectively corresponding to the induction coil.
  • the power is 2200kW (or the current is 10A)
  • the speed of the pulling motor is 1000r/min (or the power is 3kW)
  • the temperature control parameter determined in step 403 is the power change value of the induction coil +1kW (or the current change value + 0.1A)
  • the pulling control parameter determined by step 404 is that the speed change value of the pulling motor is -3r/min (or the power is -0.1kW); correspondingly, in the next time slice 10:01:00 ⁇ 10:00: 02:00, the control module 303 can adjust the power of the induction coil in the crystal growth device to 2201kW (or adjust the current of the induction coil to 10.1A), and adjust the speed of the pulling motor to 997r/min (or adjust the pulling The power of the motor is adjusted to 2.9kW).
  • the processing device and/or the control device may execute steps 401 to 405 in a cycle for multiple times in order to control the entire crystal growth process and complete the automatic crystal growth control.
  • the processing device and/or the control device may also be based on the difference between the actual crystal parameter and the reference crystal parameter (eg, the difference between the actual crystal mass and the reference crystal mass, the difference between the actual crystal diameter and the reference crystal diameter) ) to determine or adjust the crystal transfer control parameters.
  • the crystal-transforming control parameters may include parameters for controlling the variation of crystal-transforming parameters of the crystal-transforming component (eg, the variation of the rotational speed of the crystal-transformation motor, the variation of power). For example, if the difference between the actual crystal quality and the reference crystal quality is greater than a preset threshold, the processing device and/or the control device may increase the crystal transformation control parameter.
  • the temperature control parameters and the pulling control parameters of the next time slice are determined based on the actual crystal parameters and the reference crystal parameters of the previous time slice, and the temperature control parameters and the pulling control parameters are determined based on the temperature control parameters respectively.
  • Parameters and Pull Control Parameters adjust the temperature and pull speed of the time slice. Since the time slice can be divided according to the crystal-related parameters to be grown and/or the control precision requirements, the entire crystal growth process can be efficiently and accurately controlled according to steps 401-405.
  • the reference crystal parameters can be determined based on the theoretical crystal growth model, the parameters of the actual crystal obtained by the final growth can be made closer to the theoretical crystal parameters.
  • process 400 may include a storing step in which processing device and/or control device may store information and/or data (eg, temperature control parameters, pull control parameters) involved in process 400 in a storage device (eg, , storage device 109).
  • information and/or data eg, temperature control parameters, pull control parameters
  • the reference crystal parameter and/or the reference crystal growth parameter may be a system default value, a user-set value, etc., and not necessarily determined by a crystal growth model.
  • Figure 5 is a flow diagram of an exemplary process for determining reference crystal parameters according to some embodiments of the present specification.
  • the process 500 may be performed by a processing device (eg, processing device 101 ) and/or a control device (eg, control device 102 ).
  • the process 500 may be stored in a storage device (eg, a storage device, a processing device, and/or a storage unit of a control device) in the form of programs or instructions that are executed when the processor 202 or the modules shown in FIG. 3 execute the program or instructions.
  • process 500 may be implemented.
  • process 500 may be accomplished with one or more additional operations not described below, and/or without one or more operations discussed below. Additionally, the order of operations shown in FIG. 5 is not limiting.
  • Step 501 Build a crystal growth model based on at least one of preset crystal parameters or preset crystal growth parameters. In some embodiments, this step 501 may be performed by the determination module 302 .
  • the crystal growth model can characterize the theoretical growth of the crystal throughout the growth process. In some embodiments, a crystal growth model can be used to determine reference crystal parameters over time.
  • the preset crystal parameters may include crystal type, preset crystal density, preset crystal quality, preset seed height, preset seed diameter, preset shoulder height, preset isodiametric height, preset Set equal diameter, preset tail height, preset tail height, preset tail diameter, preset shoulder angle, preset tail angle, transition angle between seed crystal and shoulder front, shoulder end and equal diameter The transition angle of the front end, the ratio of the transition angle between the seed crystal and the front end of the shoulder, and the transition angle between the end of the shoulder and the front end of equal diameter, etc., or any combination thereof.
  • the preset crystal growth parameters may include preset crystal growth rates (eg, preset crystal growth rates corresponding to different crystal growth stages), preset growth coefficients (eg, preset crystal growth rates corresponding to different crystal growth stages) growth coefficient), etc. or any combination thereof.
  • preset crystal growth rates eg, preset crystal growth rates corresponding to different crystal growth stages
  • preset growth coefficients eg, preset crystal growth rates corresponding to different crystal growth stages
  • FIG. 6 , FIG. 7 and related content please refer to FIG. 6 , FIG. 7 and related content, which will not be repeated here.
  • the preset crystal parameters and/or the preset crystal growth parameters may be automatically set by the system (eg, determined based on empirical values, big data statistics, machine learning, etc.), manually set by the user, or semi-automatic (ie, automatically set) settings combined with manual settings).
  • the processing device and/or the control device may automatically determine various other preset crystal parameters and/or preset crystal growth parameters corresponding to the crystal type according to the crystal type.
  • the processing device and/or the control device may automatically determine various other preset crystal parameters and/or preset crystal growth parameters corresponding to the crystal type according to parameters such as crystal type and crystal size.
  • the processing device and/or the control device may construct a crystal growth model through a three-dimensional modeling method based on preset crystal parameters and/or preset crystal growth parameters.
  • An exemplary three-dimensional modeling algorithm may be to construct a geometric model from preset crystal parameters and/or preset crystal growth parameters.
  • the processing device and/or the control device may also take into account internal stresses, internal defects, internal composition distribution, continuity of various crystal growth stages that may be involved in the crystal growth process (avoiding Parameter mutation) and other parameters, so that the constructed crystal growth model can accurately reflect the entire crystal growth process.
  • the crystal growth model is constructed based on the preset crystal parameters and/or the preset crystal growth parameters, so that the crystal growth model can not only reflect the shape data of the crystal, but also the control data of each growth stage. Accordingly, the crystal growth process can be accurately and effectively controlled based on the crystal growth model.
  • Step 502 based on the crystal growth model, determine the reference crystal parameters and/or the reference crystal growth system parameters corresponding to the target time slice. In some embodiments, this step 502 may be performed by the determination module 302 .
  • the crystal growth model can characterize the theoretical growth of the crystal throughout the growth process.
  • the processing device and/or the control device may determine the reference crystal parameters corresponding to the target time slice based on the crystal growth model (which may reflect the theoretical growth condition of the crystal in the target time slice).
  • the processing device and/or the control device may input the target time slice into the crystal growth model, and determine the reference crystal parameter and/or the reference crystal growth parameter corresponding to the target time slice based on the output of the crystal growth model.
  • a crystal growth model can be constructed based on preset crystal parameters and/or preset crystal growth parameters, which can characterize the theoretical growth of the crystal during the entire growth process.
  • the reference crystal parameters and/or the reference crystal growth parameters corresponding to any moment or any time slice in the growth process can be determined. Further, the subsequent growth process can be accurately and effectively controlled based on the determined reference crystal parameters and/or reference crystal growth parameters.
  • the processing device and/or the control device may store the crystal growth model in a storage device (eg, storage device 109).
  • FIG. 6 is an exemplary interface for determining preset crystal parameters according to some embodiments of the present specification.
  • FIG. 7 is an exemplary interface for determining preset crystal growth parameters according to some embodiments of the present specification.
  • the user may manually enter preset crystal parameters (eg, “geometric parameters” as shown in the figure) through interface 600 .
  • the preset crystal parameters may include crystal type (eg, crystal number), preset crystal density (eg, solid density, liquid density), preset crystal quality, preset seed height, preset seed Diameter, Preset Shoulder Height, Preset Equal Height (e.g.
  • the interface 600 may further display calculation results determined based on the preset crystal parameters, for example, theoretical mass, theoretical pulling height, theoretical liquid level drop height, theoretical crystal length, etc. .
  • interface 600 may also display the crucible diameter. The user can also enter the crucible diameter manually.
  • the processing device and/or the control device may construct a preliminary crystal growth model based on the preset crystal parameters.
  • the processing device and/or the control device may display, through the interface 600, a preview of the outline corresponding to the preliminary crystal growth model. Through the outline drawing preview, the user can change the corresponding parameters intuitively.
  • the calculation results eg, theoretical mass, theoretical pull-up height, theoretical liquid level drop height, theoretical crystal length, etc.
  • the user can check whether the current crystal growth model meets the target design requirements.
  • the user can input preset crystal growth parameters (eg, “control parameters” shown in the figure) through the interface 700 .
  • preset crystal growth parameters eg, “control parameters” shown in the figure
  • the column “height” on the left side of the figure is the preset crystal parameter input by the user through the interface 600 .
  • the user can further adjust the preset crystal parameters. Referring to FIG. 7
  • the preset crystal growth parameters may include preset crystal growth rates (eg, preset crystal growth rates corresponding to different crystal growth stages), preset growth coefficients (eg, proportional items corresponding to different crystal growth stages, integral term), preset crystallization speeds (eg, preset crystallization speeds corresponding to different crystal growth stages), etc., or any combination thereof.
  • preset crystal growth rates eg, preset crystal growth rates corresponding to different crystal growth stages
  • preset growth coefficients eg, proportional items corresponding to different crystal growth stages, integral term
  • preset crystallization speeds eg, preset crystallization speeds corresponding to different crystal growth stages
  • the processing device and/or the control device may construct a final crystal growth model based on the preliminary crystal growth model. As described elsewhere in this specification, the processing device and/or the control device may control the entire crystal growth process based on the crystal growth model.
  • process 800 is a flow diagram of an exemplary process for determining temperature control parameters according to some embodiments of the present specification.
  • the process 800 may be performed by a processing device (eg, processing device 101 ) and/or a control device (eg, control device 102 ).
  • process 800 may be stored in a storage device (eg, a storage device, a processing device, and/or a storage unit of a control device) in the form of programs or instructions that are executed when the processor 202 or the modules shown in FIG. 3 execute the program or instructions.
  • process 800 may be implemented.
  • process 800 may be accomplished with one or more additional operations not described below, and/or without one or more operations discussed below. Additionally, the order of operations shown in FIG. 8 is not limiting.
  • Step 801 Determine the difference between the actual crystal parameter and the reference crystal parameter. In some embodiments, this step 801 may be performed by the determination module 302 .
  • the actual crystal parameters may include actual crystal diameter, actual crystal height, actual crystal shape, etc., or any combination thereof.
  • the reference crystal parameters may include a reference crystal diameter, a reference crystal height, a reference crystal shape, etc., or any combination thereof.
  • the difference between the actual crystal parameter and the reference crystal parameter may include a difference between the actual crystal quality and the reference crystal quality.
  • the difference between the actual crystal mass and the reference crystal mass may be the absolute value of the difference (ie
  • the difference between the actual crystal parameter and the reference crystal parameter may include the difference between the actual crystal diameter and the reference crystal diameter.
  • the difference between the actual crystal diameter and the reference crystal diameter may be the absolute value of the difference (ie
  • the difference between the actual crystal parameter and the reference crystal parameter may include the difference between the actual crystal height and the reference crystal height, the difference between the actual crystal shape and the reference crystal shape, and the like. This manual does not limit this.
  • the difference between the actual crystal parameter and the reference crystal parameter can be represented by means of numerical values, formulas, vectors, matrices, text, images, and the like.
  • the processing device and/or the control device may display differences between actual crystal parameters and reference crystal parameters via an interface (eg, interface 1000). For example, as shown in FIG. 10 , the processing device and/or the control device may display the difference between the actual crystal diameter and the reference crystal diameter in a graph through the interface 1000 .
  • Step 802 Determine temperature control parameters based on the difference and preset reference crystal growth parameters. In some embodiments, this step 802 may be performed by the determination module 302 .
  • the processing device and/or the control device may determine the reference crystal growth parameters corresponding to the target time slice.
  • the processing device and/or the control device may determine the reference crystal growth parameters corresponding to the target time slice based on the crystal growth model.
  • the reference crystal parameters may include parametric growth coefficients, reference growth rates, etc., or any combination thereof.
  • the reference growth coefficient may include a proportional term, an integral term, and the like.
  • the processing device and/or the control device may take into account factors such as the continuity of the various crystal growth stages when constructing the crystal growth model, as described elsewhere in this specification.
  • the reference crystal growth parameters determined based on the crystal growth model also meet the requirement of continuity, that is, the reference crystal growth parameters at different times or between different time slices are continuous or gradual. For example, if the proportional term of the equal diameter 1 stage is 2, the proportional term of the equal diameter 2 stage is 5, and the duration of the equal diameter 1 stage is 1 h, the rate of change of the proportional term of the equal diameter 1 stage can be 0.05/min (that is, by 2 continuously fade to 5).
  • temperature control parameters may be used to control the temperature of a furnace in a crystal growth apparatus.
  • the temperature control parameters may include the heating parameter variation (eg, the power variation of the intermediate frequency power supply, the current variation, the power variation of the induction coil, the current variation) for controlling the heating components (eg, the intermediate frequency power supply, the induction coil). quantity) parameters.
  • the heating parameter variation eg, the power variation of the intermediate frequency power supply, the current variation, the power variation of the induction coil, the current variation
  • the heating components eg, the intermediate frequency power supply, the induction coil. quantity
  • the determination module 302 may determine the temperature control parameters by formula (4):
  • W represents the temperature control parameter
  • ⁇ e represents the difference between the actual crystal quality and the reference crystal quality (or the difference between the actual crystal diameter and the reference crystal diameter)
  • P represents the proportional term
  • I represents the integral term
  • dt represents the duration of the target time slice.
  • the reference crystal growth parameters may be system defaults, user-set values, etc., and do not have to be determined by the crystal growth model. It will be appreciated that the reference crystal growth parameters determined by any means also satisfy the continuity requirement.
  • process 900 is a flow diagram of an exemplary process for determining pull control parameters according to some embodiments of the present specification.
  • the process 900 may be performed by a processing device (eg, processing device 101 ) and/or a control device (eg, control device 102 ).
  • process 900 may be stored in a storage device (eg, a storage device, a processing device, and/or a storage unit of a control device) in the form of programs or instructions that are executed when the processor 202 or the modules shown in FIG. 3 execute the program or instructions.
  • process 900 may be implemented.
  • process 900 may be accomplished with one or more additional operations not described below, and/or without one or more operations discussed below. Additionally, the order of operations shown in FIG. 9 is not limiting.
  • Step 901 based on the actual crystal quality, the raw material melt density and the cavity size, determine the liquid level falling speed in the target time slice. Specifically, this step may be performed by the determination module 302 .
  • the processing equipment and/or the control equipment may determine the liquid level drop height within the target time slice based on the actual crystal mass, feedstock melt density, and cavity size. In some embodiments, in conjunction with equation (2) above, the processing device and/or the control device may determine the liquid level in the target time slice based on the actual crystal mass, the melt density of the feedstock, the cavity size, and the feed amount in the target time slice drop height.
  • Step 902 Determine the pulling control parameters based on the liquid level falling speed and the reference crystal growth parameters. Specifically, this step may be performed by the determination module 302 .
  • the processing device and/or the control device may determine the reference crystal growth parameters corresponding to the target time slice.
  • the processing device and/or the control device may determine the reference crystal growth parameters corresponding to the target time slice based on the crystal growth model.
  • the reference crystal parameters may include parametric growth coefficients, reference growth rates, etc., or any combination thereof.
  • the pulling control parameters can be used to control the pulling process of a pulling component (eg, a pulling motor) in a crystal growth apparatus.
  • the pulling control parameter may include a parameter for controlling the amount of change in the pulling parameter of the pulling assembly (eg, the amount of change in the rotational speed of the pulling motor, the amount of change in power).
  • the determination module 302 may determine the pull control parameters based on formula (5):
  • ⁇ P represents the pulling control parameter
  • a represents the conversion coefficient between the rotation speed (or power) of the pulling motor and the pulling speed
  • v r represents the reference growth speed
  • v l represents the liquid level descending speed
  • P c represents the target time slice corresponding to The pull motor speed (or power).
  • the processing device and/or the control device may be based on the difference between the actual crystal parameter and the reference crystal parameter (eg, the difference between the actual crystal mass and the reference crystal mass, the difference between the actual crystal diameter and the reference crystal diameter) , to determine or adjust the lift control parameters. For example, the processing device and/or the control device may increase the pull control parameter if the difference between the actual crystal mass and the reference crystal mass is greater than a preset threshold.
  • the process 1100 may be performed by a processing device (eg, processing device 101 ) and/or a control device (eg, control device 102 ).
  • the process 1100 may be stored in a storage device (eg, a storage device, a processing device, and/or a storage unit of a control device) in the form of programs or instructions that are executed when the processor 202 or the modules shown in FIG. 3 execute the programs or instructions.
  • process 1100 may be implemented.
  • process 1100 may be accomplished with one or more additional operations not described below, and/or without one or more operations discussed below. Additionally, the order of operations shown in FIG. 11 is not limiting.
  • Step 1101 heating the cavity to a preset temperature.
  • this step 1101 may be performed by the control module 303 .
  • the preset temperature may be the melting temperature of the feedstock, the temperature at which crystal growth begins, or any temperature value between the melting temperature of the feedstock and the temperature at which crystal growth begins.
  • the preset temperature may be a system default value, or may be set by the user in combination with actual needs.
  • different crystal types may correspond to different preset temperatures.
  • different crystal growth parameters eg, crystal shape, crystal height, crystal diameter
  • different cavities eg, cavities of different shapes, sizes, and thermal conductivities
  • the processing device and/or the control device may heat the cavity via a heating assembly (eg, heating assembly 106).
  • a temperature sensor may be provided in the cavity, and when the temperature sensor senses that the temperature in the cavity reaches a preset temperature, the processing device and/or the control device may issue a prompt (for example, a prompt such as a voice or a beep) through a prompting device ).
  • Step 1102 After detecting that the temperature in the cavity is stable at a preset temperature for a preset time, the seed crystal is automatically lowered. In some embodiments, this step 1102 may be performed by the control module 303 .
  • the preset time may be a system default value, or may be adjusted according to different situations.
  • the preset time may be 5 minutes, 10 minutes, 20 minutes, 30 minutes, 40 minutes, 1 hour, 1.5 hours, and the like.
  • different crystal types may correspond to different preset times.
  • different crystal growth parameters eg, crystal shape, crystal height, crystal diameter
  • different cavities eg, cavities of different shapes, different sizes, different thermal conductivities
  • the preset time only needs to ensure that the raw materials can be completely melted, and can be set according to actual needs, which is not limited in this manual.
  • the processing device and/or the control device may control the movement of the pulling motor to slowly lower the seed crystal.
  • the speed of descending the seed crystal may be the default value of the system, or may be adjusted according to different situations.
  • step 1103 during the process of automatically lowering the seed crystal, the weight of the seed crystal is continuously detected.
  • this step 1103 may be performed by the control module 303 .
  • the processing equipment and/or control equipment can monitor the seed crystal weight in real time via a weighing assembly (eg, crystal weighing assembly 105 ) during the seed crystal descent.
  • a weighing assembly eg, crystal weighing assembly 105
  • Step 1104 if the weight of the seed crystal is less than the preset weight threshold, stop descending the seed crystal and issue a reminder. In some embodiments, this step 1104 may be performed by the control module 303 .
  • the processing equipment and/or control equipment may then continue to slowly lower the seed crystals in the molten feedstock, gradually reducing the weight of the seed crystals in the process.
  • the processing device and/or the control device may continuously monitor the seed crystal weight, and when the monitored seed crystal weight is less than a preset weight threshold (or the seed crystal weight abruptly decreases (for example, the weight difference between the current moment and the previous moment) is greater than the preset weight difference threshold), it indicates that the seed crystal may hit the cavity wall at this time, and the processing device and/or the control device can issue a reminder. For example, the processing device and/or the control device may alert by voice or beep.
  • the preset weight threshold may be the minimum weight of the seed crystal after contacting the liquid surface of the raw material and melting.
  • the preset weight difference threshold may be the maximum weight that the seed crystal can reduce between adjacent times.
  • the preset weight threshold and/or the preset weight difference threshold may be a system default value, or may be adjusted according to different situations.
  • the preset weight threshold may be 0.8 times or 0.7 times the weight of the seed crystal.
  • the preset weight difference threshold may be 1 gram, 2 grams, or the like.
  • the processing device and/or the control device may also acquire a real-time image (eg, an image of the seed crystal captured by an infrared high-definition camera) in the cavity; The images are compared; according to the comparison results, it is determined whether to adjust the heating parameters (eg, parameters of the heating assembly 106 ).
  • the preset reference images may be images at various time points in the theoretical normal melting process of the seed crystal.
  • the real-time image shows that the seed crystal and the raw material liquid form a meniscus, or the weight of the seed crystal fluctuates within a preset range (for example, a sudden increase or a sudden decrease of 1-2 g)
  • a preset range for example, a sudden increase or a sudden decrease of 1-2 g
  • the processing device and/or the control device may divide the preset reference image and the real-time image into a plurality of regions corresponding to each other, and for each region, the processing device and/or the control device may associate the real-time image information with corresponding
  • the preset reference image information is compared (eg, to determine the similarity). When the comparison results of two or more regions meet the requirements, it is considered that the temperature in the cavity is appropriate, and there is no need to adjust the heating parameters.
  • the processing equipment and/or the control equipment may pre-set the length of the seed crystal to be melted after contacting the feedstock liquid.
  • the management device and/or the control device can compare the temperature in the cavity again. If the temperature in the cavity is suitable at this time, Then the cavity enters a constant temperature state, and the seed crystal inoculation is completed.
  • the preset range of seed crystal weight fluctuation can be set according to actual needs, for example, 0.5g, 3g, 5g, and the like.
  • the real-time image of the seed crystal can be acquired by any image acquisition device.
  • the process 1200 may be performed by a processing device (eg, processing device 101 ) and/or a control device (eg, control device 102 ).
  • the process 1200 may be stored in a storage device (eg, a storage device, a processing device, and/or a storage unit of a control device) in the form of programs or instructions that are executed when the processor 202 or the modules shown in FIG. 3 execute the program or instructions.
  • process 1200 may be implemented.
  • process 1200 may be accomplished with one or more additional operations not described below, and/or without one or more operations discussed below. Additionally, the order of operations shown in FIG. 12 is not limiting.
  • Step 1201 after the crystal growth is completed, by controlling the temperature control parameter or the pulling control parameter, perform automatic finishing.
  • this step 1201 may be performed by the control module 303 .
  • the processing device and/or the control device may control a temperature control parameter (eg, control the power or current of the induction coil) or a pull control parameter (eg, control the power of the pull assembly) in performing the automatic closeout process. power), the control crystal automatically ends.
  • a temperature control parameter eg, control the power or current of the induction coil
  • a pull control parameter eg, control the power of the pull assembly
  • the processing device and/or the control device may control the pulling motor to pull the crystal up to a preset height according to a preset pulling speed, so that the bottom of the crystal is at a certain height from the liquid level of the raw material (for example, 5cm, 10cm, 20cm, 30cm); when the crystal is pulled to a preset height, the processing device and/or the control device can control the current or power of the intermediate frequency power supply to gradually decrease, so that the temperature in the cavity gradually decreases.
  • the preset pulling speed or preset height may be a system default value, or may be adjusted according to different situations. For example, during the pulling process, as the crystals gradually leave the feed solution, structural stress may occur internally due to the sudden temperature drop.
  • the processing device and/or the control device may adjust the preset pulling speed in combination with the internal structural stress, so as to ensure that the crystal will not crack due to the internal structural stress.
  • the pulling speed may be 1-10 mm/h.
  • step 1202 during the automatic finishing process, the crystal weight is continuously detected. In some embodiments, this step 1202 may be performed by the control module 303 .
  • the processing device and/or the control device may monitor the crystal weight in real time via a weighing assembly (eg, crystal weighing assembly 105 ) during the pulling process.
  • a weighing assembly eg, crystal weighing assembly 105
  • Step 1203 if the weight of the crystal is greater than the preset weight threshold, a reminder is issued and the pulling assembly is controlled to move in reverse. In some embodiments, this step 1203 may be performed by the control module 303 .
  • the processing device and/or the control device may continuously monitor the crystal weight, and when the monitored crystal weight is greater than a preset weight threshold (or a sudden increase in crystal weight (eg, the weight difference between the current moment and the previous moment) is greater than When the weight difference threshold is preset), it indicates that the crystal may be bonded to the cavity wall at this time, and the processing equipment and/or the control device can issue a reminder and control the reverse movement of the pulling component, thereby reducing the tensile force at the bonding point between the crystal and the cavity. , reducing the chance of crystal cracking.
  • a preset weight threshold or a sudden increase in crystal weight (eg, the weight difference between the current moment and the previous moment) is greater than
  • the processing equipment and/or the control device can issue a reminder and control the reverse movement of the pulling component, thereby reducing the tensile force at the bonding point between the crystal and the cavity. , reducing the chance of crystal cracking.
  • the preset weight threshold may be greater than the weight of the crystals after they are completely separated from the feed solution.
  • the preset weight difference threshold may be the maximum weight that the crystal can increase between adjacent times.
  • the preset weight threshold and/or the preset weight difference threshold may be system default values, or may be adjusted according to different situations. For example, assuming that the weight of the crystal after it is completely separated from the raw material liquid is 20kg, the preset weight threshold can be set to 21kg, 22kg, etc.
  • the processing device and/or the control device may control the pulling assembly (eg, the pulling motor) to move in reverse until the crystal weight is less than a preset weight threshold, at which point the crystal is pulled upward again, and when the crystal weight is again.
  • the pulling component is controlled to move in the opposite direction, and repeated for many times until the crystal weight is continuously less than the preset weight threshold, indicating that the crystal is pulled off the cavity wall.
  • FIG. 13 is a schematic diagram of an exemplary crystal growth control process shown in accordance with some embodiments of the present specification.
  • the processing device and/or the control device may control crystal growth in an automated manner (eg, enable automated control).
  • step 1301 may be executed to initialize various parameters. Initialization can delete historical data irrelevant to this crystal preparation. After completing the initialization, the crystal growth control system 100 performs the following steps:
  • the processing apparatus 101 establishes a crystal growth model.
  • the processing device 101 may also determine reference crystal parameters and/or reference crystal growth parameters based on the crystal growth model. For more details about the crystal growth model, please refer to Figures 5-7 and related contents, which will not be repeated here.
  • the processing device 101 determines the actual crystal parameters. Specifically, the processing device 101 can obtain the actual crystal mass in real time through the crystal weighing component 105, and can also calculate the actual crystal height, actual crystal diameter, etc. in each time slice in real time.
  • Step 13024 the processing device 101 determines the pulling control parameters.
  • the processing device 101 determines the pulling control parameters. For more content about the pulling control parameters, please refer to FIG. 4 , FIG. 9 and related content, which will not be repeated here.
  • Step 13025 the processing device 101 determines the crystal transformation control parameters. Specifically, the processing device 101 may determine the crystal transfer control parameters corresponding to a specific time slice according to the reference crystal parameters and/or reference crystal growth parameters corresponding to the specific time slice, and then adjust the crystal transfer for the next time slice based on the crystal transfer control parameters speed.
  • Step 13026 the processing device 101 determines temperature control parameters.
  • step 13027 the processing apparatus 101 determines reference crystal growth parameters (eg, reference growth coefficients).
  • step 13026 may be incorporated into step 13022, ie, processing device 101 may determine a reference crystal growth coefficient based on a crystal growth model.
  • the processing device 101 may also determine the reference crystal growth coefficients alone, ie, without having to be determined by a crystal growth model. For more content about the reference crystal growth parameters, please refer to FIGS. 4-7 and related content, which will not be repeated here.
  • Step 13021 the pulling assembly 107 feeds back the current speed to the processing device 101 .
  • the processing device 101 can read the pulling height of the crystal through a grating ruler or calculate the pulling height according to the rotation speed of the pulling motor, and then calculate the pulling speed.
  • Step 13028 the crystal weighing component 105 feeds back the weighing signal to the processing device 101.
  • the processing device 101 may determine the actual crystal mass based on the weighing signal.
  • step 13027 may be incorporated into step 13023, ie, the processing device 101 determines the actual crystal parameters based on the weighing signal.
  • Step 13029 the heating component 106 feeds back the current temperature signal to the processing device 101 .
  • Processing device 101 may determine a temperature value based on the temperature signal.
  • the processing device 101 may determine control parameters for crystal growth (eg, pulling control parameters, crystal transformation control parameters, and temperature control parameters) according to the relevant data in the above-mentioned steps 13021 to 13029. Further, the processing device 101 may transmit various control parameters to the control device 102, and the control device 102 controls the subsequent processes. Specifically, the control device 102 may control the pulling process of the pulling assembly 107 based on the pulling control parameters. The control device 102 may control the heating process of the heating assembly 106 based on the temperature control parameters. The control device 102 may control the crystal transformation process of the crystal transformation assembly 108 based on the crystal transformation control parameters.
  • control parameters for crystal growth eg, pulling control parameters, crystal transformation control parameters, and temperature control parameters
  • FIG. 14 is an exemplary operating interface of an exemplary crystal growth control system shown in accordance with some embodiments of the present specification.
  • the operation interface 1400 is divided into 5 major functional areas: (1) the crystal growth information display area (located on the left side of the operation interface 1400 ), which is used to observe the real-time data of the crystal growth process, such as growth stage, crystal weight , intermediate frequency power supply information, etc.; (2) the function module switching button area (located at the top of the operation interface 1400), used to switch between various sub-function modules (for example, real-time curve, intermediate frequency power supply setting, record query, etc.); (3) ) sub-function module display area (located in the middle of the operation interface 1400), used to display the contents of each sub-function module; (4) alarm area (located in the middle part of the lower part of the operation interface 1400), used to display the alarm content of the current system, and Prompt the operator to perform corresponding processing for the alarm; (5) the communication status display area (located on the lower right side of the operation interface 1400) is used to display the communication status of the device or module in real time, for example, the communication connection of the
  • the operator interface may also include other functional areas, such as the crystal real-time shape area.
  • FIG. 15 is an exemplary operation interface for intermediate frequency power supply control according to some embodiments of the present specification.
  • the processing device and/or the control device may adjust the temperature for any time slice based on the temperature control parameter.
  • the processing device and/or the control device may adjust the parameters of the heating components (eg, intermediate frequency power supply, induction coils) through automatic control based on the temperature control parameters.
  • the operation interface 1500 can display the specific control conditions of the intermediate frequency power supply, such as target power, time, power ratio, and the like.
  • automatic control may be used for mid to late stages of crystal growth (eg, shouldering stage, isodiametric stage, finishing stage, etc.).
  • the parameters of the intermediate frequency power supply can also be controlled by manual control.
  • Manual control can be used for early stages of crystal growth (eg, seed drop process, cavity warm-up process, etc.).
  • the switching of the intermediate frequency power supply can be performed through the buttons of “start intermediate frequency power supply” and “close intermediate frequency power supply”.
  • the operation interface 1500 can also display specific information of the intermediate frequency power supply, for example, the running state, the set power, the output power, and the like.
  • FIG. 16 is an exemplary operation interface for parameter selection according to some embodiments of the present specification.
  • the crystal growth control system 100 has a parameter selection function.
  • the user can query the parameters that have been run through the operation interface 1600, for example, the actual crystal growth parameters (for example, the temperature of crystal growth, the Pulling speed, crystal turning speed, etc.), reference crystal parameters (eg, reference crystal quality, reference crystal diameter, reference crystal height), reference crystal growth parameters (eg, reference growth coefficient, reference pulling speed). Further, the user can also select parameters through the operation interface 1600 .
  • the actual crystal growth parameters for example, the temperature of crystal growth, the Pulling speed, crystal turning speed, etc.
  • reference crystal parameters eg, reference crystal quality, reference crystal diameter, reference crystal height
  • reference crystal growth parameters eg, reference growth coefficient, reference pulling speed
  • FIG. 17 is an exemplary operation interface for historical curve query according to some embodiments of the present specification.
  • the crystal growth control system 100 has a history curve query function.
  • the operation interface 1700 can display a historical curve, the horizontal axis represents time, and the vertical axis represents historical target data.
  • historical target data may be crystal growth data (eg, actual crystal height, actual crystal diameter, growth rate, growth stage, actual crystal quality, etc.), control parameters (eg, crystal turning speed, pulling speed, temperature, etc.) etc.
  • crystal growth data eg, actual crystal height, actual crystal diameter, growth rate, growth stage, actual crystal quality, etc.
  • control parameters eg, crystal turning speed, pulling speed, temperature, etc.
  • the user can input the query time period (ie, “select the start time” and “select the end time”) on the operation interface 1700, and input the historical target data of the query (ie, “select the data to be queried”), Click the "Query” button to query the historical target data in this time period.
  • the display area of the operation interface 1700 can display the historical curve of the historical target data in the time period, and the user can visually check the data trend, and then judge the crystal growth status. Further, the user can query multiple historical target data in the same time period at the same time. For example, the user can input the actual crystal diameter, actual crystal height and pulling speed on the operation interface 1700 at the same time, and the display area will simultaneously display the above three parameters. Historical curves are easy for users to view.
  • FIG. 18 is an exemplary operation interface for querying operation records according to some embodiments of the present specification.
  • the crystal growth control system 100 has an operational log query function. As shown in FIG. 18 , the user can input a query time period (ie, “select start time” and “select end time”) on the operation interface 1800 to query the operation records within the time period, which are displayed on the operation interface 1800 in the form.
  • a query time period ie, “select start time” and “select end time”
  • FIG. 19 is an exemplary operation interface for weighing calibration according to some embodiments of the present specification.
  • the crystal growth control system 100 has a weighing calibration function.
  • the weighing components eg, the feeding weighing component 104, the crystal weighing component 105
  • the operations of calibrating the zero point and calibrating the weight can be performed on the weighing assembly
  • the calibration zero point can be used to zero the weighing assembly
  • the calibration weight can adjust the accuracy of the weighing assembly.
  • the user can click the "Calibrate Zero” button on the operation interface 1900, input the rated range and calibration range, and click the "Calibrate Weight” button to calibrate the weighing component (ie, "Start crystal growth calibration mode").
  • the device 101 may send the calibration range to the weighing assembly, which is calibrated according to the acquired value of the weighing assembly (eg, the weight of a standard weight).
  • the weighing assembly may be calibrated by a plurality of standard weights of different weights.
  • the calibration zero point, the rated range, the calibration range and the deformation data of the weighing component input during the calibration process may be stored in the weighing component correspondingly.
  • the control in the crystal growth process can be more accurate and improved.
  • the quality of the prepared crystals can be more accurate and improved.
  • All or part of the software may sometimes communicate over a network, such as the Internet or other communication network.
  • a network such as the Internet or other communication network.
  • Such communications enable the loading of software from one computer device or processor to another.
  • a hardware platform loaded from a management server or host computer of a radiation therapy system to a computer environment, or other computer environment implementing the system, or a system of similar functionality related to providing the information needed to determine the target structure parameters of the wheelchair. Therefore, another medium capable of transmitting software elements can also be used as a physical connection between local devices, such as light waves, radio waves, electromagnetic waves, etc., through cables, optical cables or air.
  • the physical medium used for the carrier wave such as a cable, wireless connection, or fiber optic cable, etc., can also be considered to be the medium that carries the software.
  • tangible "storage” media other terms referring to computer or machine "readable media” refer to media that participate in the execution of any instructions by a processor.
  • the computer program coding required for the operation of the various parts of this manual may be written in any one or more programming languages, including object-oriented programming languages such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB.NET, Python etc., conventional procedural programming languages such as C language, VisualBasic, Fortran2003, Perl, COBOL2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages, etc.
  • the program code may run entirely on the user's computer, or as a stand-alone software package on the user's computer, or partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any form of network, such as a local area network (LAN) or wide area network (WAN), or to an external computer (eg, through the Internet), or in a cloud computing environment, or as a Service usage such as Software as a Service (SaaS).
  • LAN local area network
  • WAN wide area network
  • SaaS Software as a Service

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本说明书实施例公开了一种晶体生长控制方法,包括:获取目标时间片内的实际晶体参数;获取目标时间片内的参考晶体参数;基于实际晶体参数和参考晶体参数,确定温度控制参数;基于实际晶体参数和参考晶体参数,确定提拉控制参数;分别基于温度控制参数和提拉控制参数,调节目标时间片之后的下一个时间片的温度和提拉速度。

Description

一种晶体生长控制方法和系统 技术领域
本说明书涉及晶体制备技术领域,特别涉及一种晶体生长控制方法和系统。
背景技术
在晶体制备过程中,工艺条件和控制参数在一定程度上决定了晶体的品质。进一步地,晶体的品质也会影响使用该晶体加工的器件的性能。如果期望制备品质高的晶体,则需要在晶体制备过程中准确地控制晶体生长的各种工艺条件和控制参数。因此,有必要提供一种晶体生长控制方法和系统,以实现准确高效地控制晶体生长过程。
发明内容
本说明书实施例提供一种晶体生长控制方法。所述方法包括:获取目标时间片内的实际晶体参数,其中,所述实际晶体参数包括实际晶体质量、实际晶体直径、实际晶体高度或实际晶体外形中的至少一个;获取目标时间片内的参考晶体参数,其中,所述参考晶体参数包括参考晶体质量、参考晶体直径、参考晶体高度或参考晶体外形中的至少一个;基于所述实际晶体参数和所述参考晶体参数,确定温度控制参数;基于所述实际晶体参数和所述参考晶体参数,确定提拉控制参数;以及分别基于所述温度控制参数和所述提拉控制参数,调节所述目标时间片之后的下一个时间片的温度和提拉速度。
在一些实施例中,所述获取目标时间片内的实际晶体参数包括:基于所述实际晶体质量、原料熔融态密度以及腔体尺寸,确定所述目标时间片内的液面下降高度;基于所述目标时间片内的提拉高度和所述液面下降高度,确定所述实际晶体高度;以及基于所述实际晶体质量和所述实际晶体高度,确定所述实际晶体直径。
在一些实施例中,所述获取目标时间片内的参考晶体参数包括:基于预设晶体参数或预设晶体生长参数中的至少一种,构建晶体生长模型;以及基于所述晶体生长模型,确定所述目标时间片对应的所述参考晶体参数。
在一些实施例中,所述预设晶体参数包括晶体类型、预设晶体密度、预设晶体质量、预设籽晶高度、预设籽晶直径、预设肩部高度、预设等径高度、预设等径直径、预设尾部高度、预设晶尾高度、预设晶尾直径、预设肩部角度、预设尾部角度、籽晶和肩部前端的过渡夹角与肩部末端和等径前端的过渡夹角的比值中的至少一种。
在一些实施例中,所述预设晶体生长参数包括预设晶体生长速度或预设生长系数中的至少一种。
在一些实施例中,所述基于预设晶体参数,构建晶体生长模型包括:基于所述预设晶体参数,通过三维建模方法构建所述晶体生长模型。
在一些实施例中,所述基于所述实际晶体参数和所述参考晶体参数,确定温度控制参数包括:确定所述实际晶体参数和所述参考晶体参数的差异;基于所述差异和参考晶体生长参数,确定所述温度控制参数。
在一些实施例中,所述基于所述实际晶体参数和所述参考晶体参数,确定提拉控制参数包括:基于所述实际晶体质量、原料熔融密度以及腔体尺寸,确定所述目标时间片内的液面下降速度;以及基于所述液面下降速度和参考晶体生长参数,确定所述提拉控制参数。
在一些实施例中,在所述获取目标时间片内的实际晶体参数之前,所述方法还包括:加热腔体至预设温度;以及检测到所述腔体内的温度稳定在所述预设温度预设时间后,自动下降籽晶。
在一些实施例中,所述方法还包括:在自动下降籽晶过程中,持续检测所述籽晶重量;以及若所述籽晶重量小于预设重量阈值,停止下降籽晶并发出提醒。
在一些实施例中,所述方法还包括:获取籽晶下降过程中的实时图像;将所述实时图像和预设参考图像进行比对;以及根据比对结果,确定是否调整加热参数。
在一些实施例中,所述方法还包括:在晶体生长完成后,通过控制所述温度控制参数或所述提拉控制参数,执行自动收尾。
在一些实施例中,所述方法还包括:在所述自动收尾过程中,持续检测晶体重量;以及若所述晶体重量大于预设重量阈值,发出提醒并控制提拉组件反向运动。
本说明书实施例提供一种晶体生长控制系统,应用于晶体制备过程,所述系统包括:至少一个存储器,用于存储计算机指令;至少一个处理器,所述至少一个处理器与所述至少一个存储器通讯,当所述至少一个处理器执行所述计算机指令时,所述至少一个处理器使所述系统执行:获取目标时间片内的实际晶体参数,其中,所述实际晶体参数包括实际晶体质量、实际晶体直径、实际晶体高度或实际晶体外形中的至少一个;获取目标时间片内的参考晶体参数,其中,所述参考晶体参数包括参考晶体质量、参考晶体直径、参考晶体高度或参考晶体外形中的至少一个;基于所述实际晶体参数和所述参考晶体参数,确定温度控制参数;基于所述实际晶体参数和所述参考晶体参数,确定提拉控制参数;分别基于所述温度控制参数和所述提拉控制参数,调节所述目标时间片之后的下一个时间片的温度和提拉速度。
在一些实施例中,为获取目标时间片内的实际晶体参数,所述至少一个处理器使所述系统执行:基于所述实际晶体质量、原料熔融态密度以及腔体尺寸,确定所述目标时间片内的液面下降高度;基于所述目标时间片内的提拉高度和所述液面下降高度,确定所述实际晶体高度;以及基于所述实际晶体质量和所述实际晶体高度,确定所述实际晶体直径。
在一些实施例中,为获取目标时间片内的参考晶体参数,所述至少一个处理器使所述系统执行:基于预设晶体参数或预设晶体生长参数中的至少一种,构建晶体生长模型;以及基于所述晶体生长模型,确定所述目标时间片对应的所述参考晶体参数。
在一些实施例中,所述预设晶体参数包括晶体类型、预设晶体密度、预设晶体质量、预设籽晶高度、预设籽晶直径、预设肩部高度、预设等径高度、预设等径直径、预设尾部高度、预设晶尾高度、预设晶尾直径、预设肩部角度、预设尾部角度、籽晶和肩部前端的过渡夹角与肩部末端和等径前端的过渡夹角的比值中的至少一种。
在一些实施例中,所述预设晶体生长参数包括预设晶体生长速度或预设生长系数中的至少一种。
在一些实施例中,为基于预设晶体参数,构建晶体生长模型,所述至少一个处理器使所述系统执行:基于所述预设晶体参数,通过三维建模方法构建所述晶体生长模型。
在一些实施例中,为基于所述实际晶体参数和所述参考晶体参数,确定温度控制参数,所述至少一个处理器使所述系统执行:确定所述实际晶体参数和所述参考晶体参数的差异;基于所述差异和参考晶体生长参数,确定所述温度控制参数。
在一些实施例中,为基于所述实际晶体参数和所述参考晶体参数,确定提拉控制参数,所述至少一个处理器使所述系统执行:基于所述实际晶体质量、原料熔融密度以及腔体尺寸,确定所述目标时间片内的液面下降速度;以及基于所述液面下降速度和参考晶体生长参数,确定所述提拉控制参数。
在一些实施例中,在所述获取目标时间片内的实际晶体参数之前,所述至少一个处理器使所述系统执行:加热腔体至预设温度;以及检测到所述腔体内的温度稳定在所述预设温度预设时间后,自动下降籽晶。
在一些实施例中,所述至少一个处理器使所述系统执行:在自动下降籽晶过程中,持续检测所述籽晶重量;以及若所述籽晶重量小于预设重量阈值,停止下降籽晶并发出提醒。
在一些实施例中,所述至少一个处理器使所述系统执行:获取籽晶下降过程中的实时图像;将所述实时图像和预设参考图像进行比对;以及根据比对结果,确定是否调整加 热参数。
在一些实施例中,所述至少一个处理器使所述系统执行:在晶体生长完成后,通过控制所述温度控制参数或所述提拉控制参数,执行自动收尾。
在一些实施例中,所述至少一个处理器使所述系统执行:在所述自动收尾过程中,持续检测晶体重量;以及若所述晶体重量大于预设重量阈值,发出提醒并控制提拉组件反向运动。
本说明书实施例提供一种晶体生长控制系统,应用于晶体制备过程,所述系统包括:获取模块,用于获取目标时间片内的实际晶体参数,其中,所述实际晶体参数包括实际晶体质量、实际晶体直径、实际晶体高度或实际晶体外形中的至少一个;以及获取目标时间片内的参考晶体参数,其中,所述参考晶体参数包括参考晶体质量、参考晶体直径、参考晶体高度或参考晶体外形中的至少一个;确定模块,用于基于所述实际晶体参数和所述参考晶体参数,确定温度控制参数;以及基于所述实际晶体参数和所述参考晶体参数,确定提拉控制参数;以及处理模块,用于分别基于所述温度控制参数和所述提拉控制参数,调节所述目标时间片之后的下一个时间片的温度和提拉速度。
本说明书实施例提供一种计算机可读存储介质,所述存储介质存储计算机指令,当所述计算机指令被处理器执行时,所述计算机指令指示所述处理器执行以下操作:获取目标时间片内的实际晶体参数,其中,所述实际晶体参数包括实际晶体质量、实际晶体直径、实际晶体高度或实际晶体外形中的至少一个;获取目标时间片内的参考晶体参数,其中,所述参考晶体参数包括参考晶体质量、参考晶体直径、参考晶体高度或参考晶体外形中的至少一个;基于所述实际晶体参数和所述参考晶体参数,确定温度控制参数;基于所述实际晶体参数和所述参考晶体参数,确定提拉控制参数;分别基于所述温度控制参数和所述提拉控制参数,调节所述目标时间片之后的下一个时间片的温度和提拉速度。
附图说明
图1是根据本说明书一些实施例所示的示例性晶体生长控制系统的示意图。
图2是根据本说明书一些实施例所示的示例性计算设备的示意图。
图3是根据本说明书一些实施例所示的示例性晶体生长控制系统的模块图。
图4是根据本说明书一些实施例所示的示例性晶体生长控制过程的流程图。
图5是根据本说明书一些实施例所示的确定参考晶体参数的示例性过程的流程图。
图6是根据本说明书一些实施例所示的用于确定预设晶体参数的示例性界面。
图7是根据本说明书一些实施例所示的用于确定预设晶体生长参数的示例性界面。
图8是根据本说明书一些实施例所示的确定温度控制参数的示例性过程的流程图。
图9是根据本说明书一些实施例所示的确定提拉控制参数的示例性过程的流程图。
图10是根据本说明书一些实施例所示的实际晶体直径与参考晶体直径的对比图。
图11是根据本说明书一些实施例所示的控制籽晶下降的示例性过程的流程图。
图12是根据本说明书一些实施例所示的示例性自动收尾过程的流程图。
图13是根据本说明书一些实施例所示的示例性晶体生长控制过程的示意图。
图14是根据本说明书一些实施例所示的示例性晶体生长控制系统的示例性操作界面。
图15是根据本说明书一些实施例所示的中频电源控制的示例性操作界面。
图16是根据本说明书一些实施例所示的参数选择的示例性操作界面。
图17是根据本说明书一些实施例所示的历史曲线查询的示例性操作界面。
图18是根据本说明书一些实施例所示的操作记录查询的示例性操作界面。
图19是根据本说明书一些实施例所示的称重校准的示例性操作界面。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同 时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
图1是根据本说明书一些实施例所示的示例性晶体生长控制系统的示意图。
在一些实施例中,晶体生长控制系统100可以应用于多种晶体(例如,硅酸钇镥(LYSO)、锗酸铋(BGO)等闪烁晶体、尖晶石晶体)生长过程中的生长控制。在一些实施例中,如图1所示,晶体生长控制系统100可以包括处理设备101、控制设备102、搬运组件103、加料称重组件104、晶体称重组件105、加热组件106、提拉组件107、转晶组件108、存储设备109和交互组件110。
处理设备101可以用于处理晶体生长过程中涉及的多种数据和/或信息。在一些实施例中,处理设备101可以获取晶体生长过程中的实际晶体参数(例如,实际晶体质量、实际晶体直径、实际晶体高度、实际晶体外形)和参考晶体参数(例如,参考晶体质量、参考晶体直径、参考晶体高度、参考晶体外形),并基于所获取的数据生成控制指令(例如,包含温度控制参数、提拉控制参数和/或转晶控制参数的控制指令、加料控制指令等)。处理设备101还可以将控制指令发送至控制设备102,由控制设备102基于控制指令控制提拉组件107、加热组件106、转晶组件108、搬运组件103等。在一些实施例中,处理设备101可以包括工业控制计算机。在一些实施例中,处理设备101可以作为上位控制监控设备或上位处理设备。
控制设备102可以用于控制晶体生长过程涉及的多种操作(例如,温度调整、提拉速度调整、转晶速度调整、加料操作等)。在一些实施例中,控制设备102可以从处理设备101接收控制指令,并基于控制指令控制晶体生长过程。在一些实施例中,控制设备102可以包括可编程序逻辑控制器(Programmable Logic Controller,PLC)。在一些实施例中,控制设备102可以作为下位实时控制设备。
在一些实施例中,处理设备101和/或控制设备102可以包括中央处理单元(CPU)、专用集成电路(ASIC)、专用指令集处理器(ASIP)、图像处理单元(GPU)、物理运算处理单元(PPU)、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、可编程逻辑装置(PLD)、控制器、微控制器单元、精简指令集计算机(RISC)、微处理器等或以上任意组合。在一些实施例中,处理设备101和控制设备102可以集成为一个设备。在一些实施例中,控制设备102可以是处理设备101的一部分。在一些实施例中,处理设备101和控制设备102的功能可以彼此共享或共同完成。
晶体称重组件105用于监测任意时刻的实际晶体质量(例如,籽晶重量、任意时间 的晶体重量),并将称重信号发送至处理设备101。加料称重组件104可以用于称量加料操作中涉及的加料重量,并将称重信号发送给至处理设备101。在一些实施例中,晶体称重组件105和加料称重组件104可以统称为“称重组件”。
搬运组件103可以用于将称量完毕的原料加入生长腔体内。在一些实施例中,搬运组件103可以包括提升机构1031、平移机构1032、翻转机构1033和夹持机构1034。
以具体的加料控制过程为例,晶体称重组件105可以实时称量晶体重量并反馈给处理设备101,处理设备101可以接收该称重信号,以判断是否进行加料操作。若确定进行加料操作,处理设备101可以发送控制指令至控制设备102。接收到控制指令后,控制设备102可以控制加料称重组件104称取目标加料量的原料,称料完成后,控制设备102可以控制搬运组件103将原料加入生长腔体内。具体地,控制设备102可以控制夹持机构1034夹持装有原料的盛料盘,并控制提升机构1031上移以带动盛料盘上移;然后控制平移机构1032水平移动以带动盛料盘水平移动至生长腔体上方;并控制翻转机构1033翻转以将原料倒入生长腔体,从而完成整个加料过程。
加热组件106用于对晶体生长腔体进行加热。在一些实施例中,加热组件106可以包括中频电源控制器1061和感应线圈1062。中频电源控制器1061可以作为温度控制的闭环执行单元,可以用来精确地执行处理设备101的温度控制指令。具体地,通过控制中频电源的电流或电压,可以调整感应线圈1062的加热功率。在一些实施例中,中频电源控制器1061可以通过RS232-485转换器与处理设备101和/或控制设备102进行信号转换,以传输感应线圈1062的温度数据。需要说明的是,还可以通过处理设备101直接对加热组件106进行控制,或者将控制设备102可以集成在处理设备101中,通过控制设备102对加热组件106进行控制。
提拉组件107用于带动籽晶或晶体上下移动。例如,晶体生长开始前,提拉组件107可以控制携带有籽晶的提拉杆向下移动。又例如,在晶体生长结束,提拉组件107可以执行收尾操作,拉动晶体向上脱离原料液面。在一些实施例中,提拉组件107可以包括提拉电机。
转晶组件108用于带动籽晶或晶体旋转。例如,在晶体生长过程中,转晶组件108可以控制晶体旋转。在一些实施例中,转晶组件108可以包括旋转电机。
存储设备109可以存储晶体生长过程中涉及的多种数据和/或信息。在一些实施例中,存储设备109可以存储晶体生长过程中的参数(例如,温度、提拉速度、转晶速度、晶体重量)、控制指令等。在一些实施例中,存储设备109可以与晶体生长控制系统100 中的一个或以上组件(例如,处理设备101、控制设备102、搬运组件103、加料称重组件104、晶体称重组件105、加热组件106等)直接连接或通信。晶体生长控制系统100中的一个或以上组件可以通过网络或直接访问存储设备109中存储的数据和/或指令。在一些实施例中,存储设备109可以是处理设备101和/或控制设备102的一部分。晶体生长控制过程中的相关数据(如,温度控制参数、提拉控制参数、参考晶体参数等)可以实时记录在存储设备109中。
在一些实施例中,存储设备109可以存储处理设备101用于执行或使用以完成本说明书中描述的示例性方法的数据和/或指令。在一些实施例中,存储设备109可以包括大容量存储器、可移动存储器、易失性读写存储器、只读存储器(ROM)等或其任意组合。示例性的大容量储存器可以包括磁盘、光盘、固态磁盘等。示例性可移动存储器可以包括闪存驱动器、软盘、光盘、存储卡、压缩盘、磁带等。示例性的挥发性只读存储器可以包括随机存取内存(RAM)。示例性的RAM可包括动态RAM(DRAM)、双倍速率同步动态RAM(DDR SDRAM)、静态RAM(SRAM)、闸流体RAM(T-RAM)和零电容RAM(Z-RAM)等。示例性的ROM可以包括掩模ROM(MROM)、可编程ROM(PROM)、可擦除可编程ROM(PEROM)、电子可擦除可编程ROM(EEPROM)、光盘ROM(CD-ROM)和数字通用磁盘ROM等。在一些实施例中,存储设备109可以在云平台上实现。仅作为示例,云平台可以包括私有云、公共云、混合云、社区云、分布云、内部云、多层云等或其任意组合。
交互组件110可以用于与用户或晶体生长控制系统100中其他组件进行交互。在一些实施例中,交互组件110可以包括显示设备110-1和交互设备110-2。显示设备110-1可以包括数码管显示器、二维显示器、三维显示器等。交互设备110-2可以包括输入设备。输入设备可以包括鼠标、键盘、语音输入设备等。
在一些实施例中,处理设备101可以通过显示设备110-1和交互设备110-2与操作人员(例如,晶体制备工程师)进行人机交互,操作人员可以通过显示设备110-1查询实际晶体参数、温度控制参数、提拉控制参数等。
图2是根据本说明书一些实施例所示的示例性计算设备200的示意图。
在一些实施例中,处理设备101、控制设备102和/或存储设备109可以在计算设备200上实现,并被配置为实现本说明书中所披露的功能。
计算设备200可以包括用来实现本说明书所描述的系统的任意部件。例如,PLC可以在计算设备200上通过其硬件、软件程序、固件或其组合实现。为了方便起见图中仅绘 制了一台计算机,但是本说明书所描述的与加料控制相关的计算功能可以以分布的方式、由一组相似的平台所实施,以分散系统的处理负荷。
计算设备200可以包括与网络连接的通信端口205,用于实现数据通信。计算设备200可以包括一个处理器202(例如,CPU),可以以一个或多个处理器的形式执行程序指令。示例性的计算机平台可以包括一个内部总线201、不同形式的程序存储器和数据存储器,例如,硬盘207、只读存储器(ROM)203或随机存取存储器(RAM)204,用于存储由计算机处理和/或传输的各种各样的数据文件。计算设备还可以包括存储在只读存储器203、随机存取存储器204和/或其他类型的非暂时性存储介质中的由处理器202执行的程序指令。本说明书的方法和/或流程可以以程序指令的方式实现。计算设备200也包括输入/输出部件206,用于支持计算机与其他部件之间的输入/输出。计算设备200也可以通过网络通讯接收本披露中的程序和数据。
为理解方便,图2中仅示例性绘制了一个处理器。然而,需要注意的是,本说明书中的计算设备200可以包括多个处理器,本说明书中描述的由一个处理器实现的操作和/或方法也可以共同地或独立地由多个处理器实现。例如,如果本说明书中描述的计算设备300的处理器执行操作A和操作B,应当理解的是,操作A和操作B也可以由计算设备300中的两个或两个以上不同处理器共同或分别执行(例如,第一处理器执行操作A和第二处理器执行操作B,或第一处理器和第二处理器共同执行操作A和B)。
图3是根据本说明书一些实施例所示的示例性晶体生长控制系统的模块图。
如图3所示,晶体生长控制系统300可以包括获取模块301、确定模块302和控制模块303。在一些实施例中,晶体生长控制系统300可以通过处理设备101和/或控制设备102实现或集成于处理设备101和/或控制设备102中。
获取模块301可以用于获取目标时间片内的实际晶体参数。在一些实施例中,获取模块301可以用于获取目标时间片内的参考晶体参数。关于获取目标时间片内的实际晶体参数和参考晶体参数的更多内容可以参见流程图4及其描述,在此不作赘述。
确定模块302可以用于基于实际晶体参数和参考晶体参数,确定温度控制参数。在一些实施例中,确定模块302可以用于基于实际晶体参数和参考晶体参数,确定提拉控制参数。关于确定温度控制参数和提拉控制参数的更多内容可以参见流程图4及其描述,在此不作赘述。
控制模块303可以用于分别基于温度控制参数和提拉控制参数,调节目标时间片之后的下一个时间片的温度和提拉速度。关于调节目标时间片之后的下一个时间片的温度 和提拉速度的更多内容可以参见流程图4及其描述,在此不作赘述。
应当理解,图3所示的系统及其模块可以利用各种方式来实现。例如,在一些实施例中,系统及其模块可以通过硬件、软件或者软件和硬件的结合来实现。其中,硬件部分可以利用专用逻辑来实现;软件部分则可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域技术人员可以理解上述的方法和系统可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本说明书的系统及其模块不仅可以有诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用例如由各种类型的处理器所执行的软件实现,还可以由上述硬件电路和软件的结合(例如,固件)来实现。
需要注意的是,以上对于晶体生长控制系统300及其模块的描述,仅为描述方便,并不能把本说明书限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该系统的原理后,可能在不背离这一原理的情况下,对各个模块进行任意组合,或者构成子系统与其他模块连接。例如,图3中披露的获取模块301、确定模块302和控制模块303可以是一个系统中的不同模块,也可以是一个模块实现上述的两个模块的功能。又例如,晶体生长控制系统300中各个模块可以共用一个存储模块,各个模块也可以分别具有各自的存储模块。诸如此类的变形,均在本说明书的保护范围之内。
图4是根据本说明书一些实施例所示的示例性晶体生长控制过程的流程图。在一些实施例中,该过程400可以由处理设备(例如,处理设备101)和/或控制设备(例如,控制设备102)执行。例如,过程400可以以程序或指令的形式存储在存储设备(例如,存储设备、处理设备和/或控制设备的存储单元)中,当处理器202或图3所示的模块执行程序或指令时,可以实现过程400。在一些实施例中,过程400可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图4所示的操作的顺序并非限制性的。
步骤401,获取目标时间片内的实际晶体参数。在一些实施例中,该步骤401可以由获取模块301执行。
通常来说,晶体生长过程从准备引晶开始(或从引晶完成后开始,即,从晶体开始生长时开始)至生长到目标形状的晶体为止。晶体生长过程包括多个阶段(例如,引晶阶段、放肩阶段、等径阶段、收尾阶段)且需要较长时间(例如,10h、30h、50h、60h、 100h)。相应地,处理设备和/或控制设备可以将晶体生长过程划分为多个时刻或多个时间片。在一些实施例中,多个时刻间的时间间隔可以相同或不同。在一些实施例中,多个时间片的时间长度(可简称为“时长”)可以相同或不同。作为示例,时间片的长度可以是10秒、15秒、30秒、1分钟、10分钟等。
在一些实施例中,处理设备和/或控制设备可以根据待生长的晶体相关参数(例如,晶体类型、晶体尺寸、生长阶段),确定多个时间片的时间长度和/或数量。例如,引晶阶段或放肩阶段对应的时间片的时间长度(例如,5s、10s)可以不同于等径阶段对应的时间片的时间长度(例如,30s、1min)。
在一些实施例中,处理设备和/或控制设备可以根据控制精度确定多个时间片的时间长度和/或数量。例如,对于已确定总生长时间的晶体生长过程来说,时间片的数量越多(或单个时间片的时间长度越短),控制精度越高;反之,控制精度越低。具体例如,假设总生长时间为20h,处理设备和/或控制设备可以根据控制精度将总生长时间划分为1200个时间片,单个时间片的时间长度为1分钟;又例如,处理设备和/或控制设备也可以将总生长时间划分为400个时间片,单个时间片的时间长度为3分钟。
在一些实施例中,处理设备和/或控制设备可以综合考虑控制精度和系统的数据处理能力,确定多个时间片的时间长度和/或数量。例如,结合前文,时间片的数量越多(或单个时间片的时间长度越短),控制精度越高,但需要的数据处理能力越高。处理设备和/或控制设备可以在保证不超出数据处理能力前提下,综合确定多个时间片的时间长度和/或数量。
在一些实施例中,处理设备和/或控制设备可以选择多个时间片中的任意一个作为目标时间片。在一些实施例中,处理设备和/或控制设备可以选择特定阶段(例如,等径阶段、收尾阶段)对应的时间片作为目标时间片。在一些实施例中,处理设备和/或控制设备可以根据实际需求选择相应的时间片作为目标时间片。
在一些实施例中,实际晶体参数包括实际晶体质量、实际晶体直径、实际晶体高度、实际晶体外形等或其任意组合。
在一些实施例中,目标时间片内的实际晶体参数可以表征该目标时间片内晶体的实际生长情况。例如,目标时间片可以为10:00:00-10:01:00,该目标时间片内的实际晶体质量可以为10:00:00-10:01:00这个时间段内晶体增加的重量,该目标时间片内的实际晶体直径可以为10:00:00-10:01:00这个时间段内晶体直径的平均值,该目标时间片内的实际晶体高度可以为10:00:00-10:01:00这个时间段内晶体增加的高度,该目标时间片内的实际晶 体外形可以为10:00:00-10:01:00这个时间段内晶体的外形轮廓。
在一些实施例中,处理设备和/或控制设备可以获取目标时间片的终止时刻的实际晶体质量和起始时刻的实际晶体质量,并基于二者的差值确定该目标时间片内的实际晶体质量。
在一些实施例中,处理设备和/或控制设备可以基于目标时间片内的提拉高度和液面下降高度,确定该目标时间片内的实际晶体高度。具体地,处理设备和/或控制设备可以将目标时间片内的提拉高度(可以表示为h 1)和液面下降高度(可以记作h 2)的加和确定为该目标时间片内的实际晶体高度(可以记作h),即h=h 1+h 2
在一些实施例中,处理设备和/或控制设备可以根据晶体生长装置中的光栅尺读数确定液面下降高度。具体地,处理设备和/或控制设备可以将目标时间片的终止时刻的光栅尺读数(可以记作h t2)和起始时刻的光栅尺读数(可以记作h t1)的差值确定为提拉高度,即h 1=h t2-h t1。在一些实施例中,处理设备和/或控制设备可以根据提拉组件的运行参数确定提拉高度。具体地,处理设备和/或控制设备可以根据提拉电机的运转次数(可以记作n)和运转一次对应的提拉高度(记作Δh 1)确定对应的提拉高度(例如,h 1=n×Δh 1)。
在一些实施例中,处理设备和/或控制设备可以基于实际晶体质量、原料熔融态密度以及腔体尺寸确定液面下降高度。具体地,作为示例,如果没有在目标时间片内向腔体内补充晶体生长的原料,处理设备和/或控制设备可以基于公式(1)确定液面下降高度:
Figure PCTCN2021071114-appb-000001
其中,h 2表示液面下降高度,m表示实际晶体质量,ρ 1表示原料熔融态密度,S 1表示腔体横截面面积。在一些实施例中,如果腔体的横截面为圆形,可以基于圆形的直径确定腔体横截面面积;如果腔体的横截面为矩形,可以基于矩形的边长确定腔体横截面面积。
作为又一示例,如果在目标时间片内向腔体内补充了晶体生长的原料,处理设备和/或控制设备可以基于公式(2)确定液面下降高度:
Figure PCTCN2021071114-appb-000002
其中,h 3表示液面下降高度,m表示实际晶体质量,Δm表示反应原料的补充量,ρ 1表示原料熔融态密度,S 1表示腔体横截面面积。在一些实施例中,若反应原料的补充量与实际晶体质量相等,则液面下降高度为零,相应地,目标时间片内的实际晶体高度等于提拉高度,即h=h 1
在一些实施例中,处理设备和/或控制设备可以基于实际晶体质量和实际晶体高度, 确定实际晶体直径。具体地,处理设备和/或控制设备可以基于公式(3)确定实际晶体直径:
Figure PCTCN2021071114-appb-000003
其中,d表示实际晶体直径,m表示实际晶体质量,ρ s表示晶体密度,h表示实际晶体高度。
在一些实施例中,处理设备和/或控制设备可以从图像采集装置(例如,3D摄像机)获取目标时间片内的实际晶体外形。在一些实施例中,处理设备和/或控制设备可以基于实际晶体质量、实际晶体直径、实际晶体高度、晶体密度等参数构建晶体生长模型,并基于晶体生长模型确定实际晶体外形。关于构建晶体生长模型的更多内容可以参见图5及其描述,在此不再赘述。
步骤402,获取目标时间片内的参考晶体参数。在一些实施例中,该步骤402可以由获取模块301执行。
在一些实施例中,参考晶体参数可以包括参考晶体质量、参考晶体直径、参考晶体高度、参考晶体外形等或其任意组合。
在一些实施例中,目标时间片内的参考晶体参数可以表征晶体生长过程中该目标时间片内的晶体理论生长情况。例如,目标时间片可以为10:00:00-10:01:00,该目标时间片内的参考晶体质量可以为10:00:00-10:01:00这个时间段内晶体理论上应增加的重量,该目标时间片内的参考晶体直径可以为10:00:00-10:01:00这个时间段内晶体理论直径的平均值,该目标时间片内的参考晶体高度可以为10:00:00-10:01:00这个时间段内晶体理论上应增加的高度,该目标时间片内的参考晶体外形可以为10:00:00-10:01:00这个时间段内晶体的理论外形轮廓。
在一些实施例中,处理设备和/或控制设备可以基于预设晶体参数和/或预设晶体生长参数,构建(例如,通过三维建模方法构建)晶体生长模型,并基于晶体生长模型确定目标时间片内的参考晶体参数。在一些实施例中,处理设备和/或控制设备还可以基于晶体生长模型确定目标时间片对应的参考晶体生长参数(例如,参考晶体生长速度、参考生长系数)。在本说明书中,也可以将“参考晶体参数”和“参考晶体生长参数”统称为“参考晶体参数”。即,参考晶体参数可以包括参考晶体质量、参考晶体直径、参考晶体高度、参考晶体外形、参考晶体生长速度、参考生长系数等或其任意组合。
在一些实施例中,晶体生长模型可以表征晶体在整个生长过程中的理论生长情况。 在一些实施例中,预设晶体参数可以包括晶体类型、预设晶体密度、预设晶体质量、预设籽晶高度、预设籽晶直径、预设肩部高度、预设等径高度、预设等径直径、预设尾部高度、预设晶尾高度、预设晶尾直径、预设肩部角度、预设尾部角度、籽晶和肩部前端的过渡夹角、肩部末端和等径前端的过渡夹角、籽晶和肩部前端的过渡夹角与肩部末端和等径前端的过渡夹角的比值等或其任意组合。在一些实施例中,预设晶体生长参数可以包括预设晶体生长速度(例如,对应不同晶体生长阶段的预设晶体生长速度)、预设生长系数(例如,对应不同晶体生长阶段的预设晶体生长系数)等或其任意组合。关于晶体生长模型的更多内容可以参见图5-7及其相关内容,在此不再赘述。
步骤403,基于实际晶体参数和参考晶体参数,确定温度控制参数。在一些实施例中,该步骤403可以由确定模块302执行。
在一些实施例中,温度控制参数可以用于控制晶体生长装置中的炉膛的温度。具体地,温度控制参数可以包括用于控制加热组件(例如,中频电源、感应线圈)的加热参数变化量(例如,中频电源的功率变化量、电流变化量、感应线圈的功率变化量、电流变化量)的参数。在一些实施例中,温度控制参数还可以包括用于控制晶体生长装置中换热组件(例如,晶体生长装置的炉体上的循环水换热组件)的换热参数变化量(例如,循环水的流量变化量、流速变化量)的参数。
在一些实施例中,处理设备和/或控制设备可以基于实际晶体参数和参考晶体参数的差异以及参考晶体生长参数(例如,参考生长系数),确定温度控制参数。关于确定温度控制参数的更多内容可以参见图8及其描述,在此不再赘述。
步骤404,基于实际晶体参数和参考晶体参数,确定提拉控制参数。在一些实施例中,该步骤404可以由确定模块302执行。
在一些实施例中,提拉控制参数可以用于控制晶体生长装置中的提拉组件(例如,提拉电机)的提拉过程。具体地,提拉控制参数可以包括用于控制提拉组件的提拉参数变化量(例如,提拉电机的转速变化量、功率变化量)的参数。
在一些实施例中,处理设备和/或控制设备可以基于实际晶体参数和参考晶体参数间的差异(例如,实际晶体质量和参考晶体质量间的差异、实际晶体直径和参考晶体直径间的差异),确定或调整提拉控制参数。例如,如果实际晶体质量与参考晶体质量间的差值大于预设阈值,处理设备和/或控制设备可以增加提拉控制参数。
在一些实施例中,处理设备和/或控制设备可以基于液面下降速度和参考晶体生长参数(例如,参考生长速度),确定提拉控制参数。具体地,结合前文公式(1)和公式(2) 所述,处理设备和/或控制设备可以获取实际晶体质量、原料熔融密度、腔体尺寸以及目标时间片内的加料量(如有),确定目标时间片内的液面下降高度,并进一步确定目标时间片内的液面下降速度;然后可以基于液面下降速度和参考晶体生长参数,确定提拉控制参数。关于确定提拉控制参数的更多内容可以参见图9及其相关内容,在此不再赘述。
步骤405,分别基于温度控制参数和提拉控制参数,调节目标时间片之后的下一个时间片的温度和提拉速度。在一些实施例中,该步骤405可以由控制模块303执行。
在一些实施例中,处理设备和/或控制设备可以基于当前目标时间片内的晶体实际情况和晶体理论情况的差异,通过调节下一目标时间片的温度(例如,晶体生长装置中炉膛的温度)和提拉速度(例如,提拉电机的提拉速度),调整下一目标时间片的晶体生长情况。
在一些实施例中,处理设备和/或控制设备可以基于目标时间片内加热组件的加热参数和温度控制参数,调节目标时间片之后的下一个时间片的温度。在一些实施例中,目标时间片内加热组件的加热参数可以是目标时间片内加热组件的平均加热参数(例如,感应线圈的平均功率、平均电流)或目标时间片的终止时刻的加热参数值(例如,感应线圈的功率值、电流值)。
在一些实施例中,类似地,处理设备和/或控制设备可以基于目标时间片内提拉组件的提拉速度和提拉控制参数,调节目标时间片之后的下一个时间片的提拉速度。在一些实施例中,目标时间片内的提拉速度可以是目标时间片内的平均提拉速度或目标时间片的终止时刻的提拉速度。
仅作为示例,假设目标时间片为10:00:00~10:01:00,该目标时间片内晶体生长装置中炉膛的温度为2000℃、提拉速度为10cm/h,分别对应感应线圈的功率为2200kW(或电流为10A)、提拉电机的转速为1000r/min(或功率为3kW);通过步骤403确定的温度控制参数为感应线圈的功率变化值为+1kW(或电流变化值+0.1A)、通过步骤404确定的提拉控制参数为提拉电机的转速变化值为-3r/min(或功率为-0.1kW);相应地,在下一个时间片10:01:00~10:02:00,控制模块303可以将晶体生长装置中感应线圈的功率调节为2201kW(或将感应线圈的电流调节为10.1A),并将提拉电机的转速调节为997r/min(或将提拉电机的功率调节为2.9kW)。
在一些实施例中,处理设备和/或控制设备可以依次循环多次执行步骤401-405,以控制整个晶体生长过程,完成晶体自动生长控制。
在一些实施例中,处理设备和/或控制设备还可以基于实际晶体参数和参考晶体参 数间的差异(例如,实际晶体质量和参考晶体质量间的差异、实际晶体直径和参考晶体直径间的差异),确定或调整转晶控制参数。转晶控制参数可以包括用于控制转晶组件的转晶参数变化量(例如,转晶电机的转速变化量、功率变化量)的参数。例如,如果实际晶体质量与参考晶体质量间的差值大于预设阈值,处理设备和/或控制设备可以增加转晶控制参数。
根据本说明书一些实施例,在晶体生长控制过程中,都是基于前一个时间片的实际晶体参数与参考晶体参数,确定后一个时间片的温度控制参数和提拉控制参数,并分别基于温度控制参数和提拉控制参数调节该时间片的温度和提拉速度。由于时间片的划分可以根据待生长的晶体相关参数和/或控制精度要求进行划分,因此根据步骤401-405可以高效准确地对整个晶体生长过程进行控制。此外,由于参考晶体参数可以基于理论的晶体生长模型确定,可以使得最终生长得到的实际晶体的参数更接近理论晶体参数。
应当注意的是,上述有关流程的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对流程进行各种修正和改变。然而,这些修正和改变仍在本说明书的范围之内。例如,过程400可以包括存储步骤,在存储步骤中,处理设备和/或控制设备可以将过程400涉及的信息和/或数据(例如,温度控制参数、提拉控制参数)存储在存储设备(例如,存储设备109)中。又例如,参考晶体参数和/或参考晶体生长参数可以是系统默认值、用户设定值等,而不必须通过晶体生长模型确定。
图5是根据本说明书一些实施例所示的确定参考晶体参数的示例性过程的流程图。在一些实施例中,该过程500可以由处理设备(例如,处理设备101)和/或控制设备(例如,控制设备102)执行。例如,过程500可以以程序或指令的形式存储在存储设备(例如,存储设备、处理设备和/或控制设备的存储单元)中,当处理器202或图3所示的模块执行程序或指令时,可以实现过程500。在一些实施例中,过程500可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图5所示的操作的顺序并非限制性的。
步骤501,基于预设晶体参数或预设晶体生长参数中的至少一种,构建晶体生长模型。在一些实施例中,该步骤501可以由确定模块302执行。
在一些实施例中,晶体生长模型可以表征晶体在整个生长过程中的理论生长情况。在一些实施例中,晶体生长模型可以用于确定随时间变化的参考晶体参数。
在一些实施例中,预设晶体参数可以包括晶体类型、预设晶体密度、预设晶体质量、 预设籽晶高度、预设籽晶直径、预设肩部高度、预设等径高度、预设等径直径、预设尾部高度、预设晶尾高度、预设晶尾直径、预设肩部角度、预设尾部角度、籽晶和肩部前端的过渡夹角、肩部末端和等径前端的过渡夹角、籽晶和肩部前端的过渡夹角与肩部末端和等径前端的过渡夹角的比值等或其任意组合。在一些实施例中,预设晶体生长参数可以包括预设晶体生长速度(例如,对应不同晶体生长阶段的预设晶体生长速度)、预设生长系数(例如,对应不同晶体生长阶段的预设晶体生长系数)等或其任意组合。关于预设晶体参数和/或预设晶体生长参数的更多内容可以参见图6、图7及其相关内容,在此不再赘述。
在一些实施例中,预设晶体参数和/或预设晶体生长参数可以是系统自动设置(例如,基于经验值、大数据统计、机器学习等方式确定)、用户手动设置或半自动设置(即自动设置与手动设置结合)。例如,处理设备和/或控制设备可以根据晶体类型,自动确定该晶体类型对应的各项其他预设晶体参数和/或预设晶体生长参数。又例如,处理设备和/或控制设备可以根据晶体类型和晶体尺寸等参数,自动确定该晶体类型对应的各项其他预设晶体参数和/或预设晶体生长参数。
在一些实施例中,处理设备和/或控制设备可以基于预设晶体参数和/或预设晶体生长参数,通过三维建模方法构建晶体生长模型。示例性三维建模算法可以为根据预设晶体参数和/或预设晶体生长参数,构建几何模型。
在一些实施例中,在构建晶体生长模型时,处理设备和/或控制设备还可以考虑晶体生长过程中可能涉及的内部应力、内部缺陷、内部组分分布、各个晶体生长阶段的连续性(避免出现参数突变)等参数,以使所构建的晶体生长模型可以准确体现晶体的整个生长过程。
在本说明书实施例中,基于预设晶体参数和/或预设晶体生长参数构建晶体生长模型,可以使晶体生长模型不仅可以体现晶体的外形数据,也可以体现各个生长阶段的控制数据。相应地,可以基于该晶体生长模型,准确有效地对晶体生长过程进行控制。
步骤502,基于晶体生长模型,确定目标时间片对应的参考晶体参数和/或参考晶体生长系参数。在一些实施例中,该步骤502可以由确定模块302执行。
如前文所述,晶体生长模型可以表征晶体在整个生长过程中的理论生长情况。相应地,处理设备和/或控制设备可以基于晶体生长模型,确定目标时间片对应的参考晶体参数(其可以体现晶体在目标时间片内的理论生长情况)。例如,处理设备和/或控制设备可以将目标时间片输入晶体生长模型,并基于晶体生长模型的输出确定该目标时间片对应的参考晶体参数和/或参考晶体生长参数。
根据本说明书实施例,可以基于预设晶体参数和/或预设晶体生长参数构建晶体生长模型,其可以表征晶体在整个生长过程中的理论生长情况。相应地,基于该晶体生长模型,可以确定生长过程中任意时刻或任意时间片对应的参考晶体参数和/或参考晶体生长参数。进而可以基于所确定的参考晶体参数和/或参考晶体生长参数,准确有效地控制后续生长过程。
应当注意的是,上述有关流程的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对流程进行各种修正和改变。然而,这些修正和改变仍在本说明书的范围之内。例如,构建晶体生长模型后,处理设备和/或控制设备可以将晶体生长模型存储于存储设备(例如,存储设备109)中。
图6是根据本说明书一些实施例所示的用于确定预设晶体参数的示例性界面。图7是根据本说明书一些实施例所示的用于确定预设晶体生长参数的示例性界面。
如图6所示,用户可以通过界面600手动输入预设晶体参数(例如,图中所示的“几何参数”)。结合图5所述,预设晶体参数可以包括晶体类型(例如,晶体编号)、预设晶体密度(例如,固态密度、液态密度)、预设晶体质量、预设籽晶高度、预设籽晶直径、预设肩部高度、预设等径高度(例如,等径1高度、等径2高度、等径3高度、等径4高度)、预设等径直径、预设尾部高度、预设晶尾高度、预设晶尾直径、预设肩部角度、预设尾部角度、R1/R2(即,籽晶和肩部前端(例如,图7中的肩部1)的过渡夹角与肩部末端(例如,图7中的肩部3)和等径前端(例如,图6或图7中的等径1)的过渡夹角的比值)等或其任意组合。
在一些实施例中,用户输入预设晶体参数后,界面600还可以显示基于预设晶体参数所确定的计算结果,例如,理论质量、理论提拉高度、理论液面下降高度、理论晶体长度等。
在一些实施例中,界面600还可以显示坩埚直径。用户也可以手动输入坩埚直径。
在一些实施例中,用户输入预设晶体参数后,处理设备和/或控制设备可以基于预设晶体参数,构建初步的晶体生长模型。处理设备和/或控制设备可以通过界面600展示初步的晶体生长模型对应的外形图预览。通过该外形图预览,用户可以直观地更改相应的参数。此外,通过界面600展示的计算结果(例如,理论质量、理论提拉高度、理论液面下降高度、理论晶体长度等),用户可以检验当前晶体生长模型是否符合目标设计需求。
进一步地,如图7所示,用户可以通过界面700输入预设晶体生长参数(例如,图中所示的“控制参数”)。从图7可以看出,图中左侧“高度”列即为用户通过界面600 所输入的预设晶体参数。在通过界面700输入预设晶体生长系数时,用户还可以进一步调整预设晶体参数。结合图5所述,预设晶体生长参数可以包括预设晶体生长速度(例如,对应不同晶体生长阶段的预设晶体生长速度)、预设生长系数(例如,对应不同晶体生长阶段的比例项、积分项)、预设转晶速度(例如,对应不同晶体生长阶段的预设转晶速度)等或其任意组合。
在一些实施例中,用户输入预设晶体生长参数后,处理设备和/或控制设备可以基于初步的晶体生长模型,构建最终晶体生长模型。如本说明书任何其他位置所述,处理设备和/或控制设备可以基于晶体生长模型,控制整个晶体生长过程。
图8是根据本说明书一些实施例所示的确定温度控制参数的示例性过程的流程图。在一些实施例中,该过程800可以由处理设备(例如,处理设备101)和/或控制设备(例如,控制设备102)执行。例如,过程800可以以程序或指令的形式存储在存储设备(例如,存储设备、处理设备和/或控制设备的存储单元)中,当处理器202或图3所示的模块执行程序或指令时,可以实现过程800。在一些实施例中,过程800可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图8所示的操作的顺序并非限制性的。
步骤801,确定实际晶体参数和参考晶体参数的差异。在一些实施例中,该步骤801可以由确定模块302执行。
结合图5所述,实际晶体参数可以包括实际晶体直径、实际晶体高度、实际晶体外形等或其任意组合。参考晶体参数可以包括参考晶体直径、参考晶体高度、参考晶体外形等或其任意组合。
在一些实施例中,实际晶体参数和参考晶体参数的差异可以包括实际晶体质量和参考晶体质量的差异。例如,实际晶体质量为m 1,参考晶体质量为m 2,实际晶体质量和参考晶体质量的差异可以是二者差值的绝对值(即|m 1-m 2|)。
在一些实施例中,实际晶体参数和参考晶体参数的差异可以包括实际晶体直径和参考晶体直径的差异。例如,实际晶体直径为d 1,参考晶体直径为d 2,实际晶体直径和参考晶体直径的差异可以是二者差值的绝对值(即|d 1-d 2|)。
在一些实施例中,实际晶体参数和参考晶体参数的差异可以包括实际晶体高度和参考晶体高度的差异、实际晶体外形和参考晶体外形的差异等。本说明书对此不作限制。
在一些实施例中,可以通过数值、公式、向量、矩阵、文字、图像等方式体现实际晶体参数和参考晶体参数的差异。
在一些实施例中,处理设备和/或控制设备可以通过界面(例如,界面1000)显示实际晶体参数和参考晶体参数的差异。例如,如图10所示,处理设备和/或控制设备可以通过界面1000,以曲线图的方式显示实际晶体直径和参考晶体直径的差异。
步骤802,基于差异和预设参考晶体生长参数,确定温度控制参数。在一些实施例中,该步骤802可以由确定模块302执行。
在一些实施例中,结合图4和图5所述,处理设备和/或控制设备可以确定目标时间片对应的参考晶体生长参数。例如,处理设备和/或控制设备可以基于晶体生长模型,确定目标时间片对应的参考晶体生长参数。在一些实施例中,参考晶体参数可以包括参数生长系数、参考生长速度等或其任意组合。在一些实施例中,参考生长系数可以包括比例项、积分项等。
在一些实施例中,如本说明书任何其他位置所述,构建晶体生长模型时,处理设备和/或控制设备可以考虑各个晶体生长阶段的连续性等因素。相应地,基于晶体生长模型所确定的参考晶体生长参数也满足连续性要求,即不同时刻或不同时间片之间的参考晶体生长参数是连续或渐变的。例如,等径1阶段的比例项为2,等径2阶段的比例项为5,等径1阶段的时长为1h,则等径1阶段比例项的变化速率可以为0.05/min(即,由2连续渐变至5)。
在一些实施例中,温度控制参数可以用于控制晶体生长装置中的炉膛的温度。具体地,温度控制参数可以包括用于控制加热组件(例如,中频电源、感应线圈)的加热参数变化量(例如,中频电源的功率变化量、电流变化量、感应线圈的功率变化量、电流变化量)的参数。关于温度控制参数的更多内容可以参见步骤403的描述,在此不再赘述。
仅作为示例,确定模块302可以通过公式(4),确定温度控制参数:
Figure PCTCN2021071114-appb-000004
其中,W表示温度控制参数,Δe表示实际晶体质量和参考晶体质量的差异(或实际晶体直径和参考晶体直径的差异),P表示比例项,I表示积分项,dt表示目标时间片的时长。
应当注意的是,上述有关流程的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对流程进行各种修正和改变。然而,这些修正和改变仍在本说明书的范围之内。例如,参考晶体生长参数可以是系统默认值、用户设定值等,而不必须通过晶体生长模型确定。可以理解,通过任何方式确定的参考晶体生长参数也满足连续性要求。
图9是根据本说明书一些实施例所示的确定提拉控制参数的示例性过程的流程图。在一些实施例中,该过程900可以由处理设备(例如,处理设备101)和/或控制设备(例如,控制设备102)执行。例如,过程900可以以程序或指令的形式存储在存储设备(例如,存储设备、处理设备和/或控制设备的存储单元)中,当处理器202或图3所示的模块执行程序或指令时,可以实现过程900。在一些实施例中,过程900可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图9所示的操作的顺序并非限制性的。
步骤901,基于实际晶体质量、原料熔融密度以及腔体尺寸,确定目标时间片内的液面下降速度。具体地,该步骤可以由确定模块302执行。
在一些实施例中,结合前文公式(1),处理设备和/或控制设备可以基于实际晶体质量、原料熔融密度和腔体尺寸,确定目标时间片内的液面下降高度。在一些实施例中,结合前文公式(2),处理设备和/或控制设备可以基于实际晶体质量、原料熔融密度、腔体尺寸和目标时间片内的加料量,确定目标时间片内的液面下降高度。
进一步地,处理设备和/或控制设备可以基于液面下降高度和目标时间片的时长,确定目标时间片内的液面下降速度。例如,目标时间片内的液面下降速度=目标时间片内的液面下降高度/目标时间片的时长。
步骤902,基于液面下降速度和参考晶体生长参数,确定提拉控制参数。具体地,该步骤可以由确定模块302执行。
在一些实施例中,结合图4和图5所述,处理设备和/或控制设备可以确定目标时间片对应的参考晶体生长参数。例如,处理设备和/或控制设备可以基于晶体生长模型,确定目标时间片对应的参考晶体生长参数。在一些实施例中,参考晶体参数可以包括参数生长系数、参考生长速度等或其任意组合。
在一些实施例中,提拉控制参数可以用于控制晶体生长装置中的提拉组件(例如,提拉电机)的提拉过程。具体地,提拉控制参数可以包括用于控制提拉组件的提拉参数变化量(例如,提拉电机的转速变化量、功率变化量)的参数。关于提拉控制参数的更多内容可以参见步骤404的描述,在此不再赘述。
在一些实施例中,确定模块302可以基于通过公式(5),确定提拉控制参数:
ΔP=a*(v r-v l)-P c        (5)
其中,ΔP表示提拉控制参数,a表示提拉电机转速(或功率)与提拉速度间的转换系数,v r表示参考生长速度,v l表示液面下降速度,P c表示目标时间片对应的提拉电机转速(或 功率)。
在一些实施例中,处理设备和/或控制设备可以基于实际晶体参数和参考晶体参数间的差异(例如,实际晶体质量和参考晶体质量间的差异、实际晶体直径和参考晶体直径间的差异),确定或调整提拉控制参数。例如,如果实际晶体质量与参考晶体质量间的差值大于预设阈值,处理设备和/或控制设备可以增加提拉控制参数。
应当注意的是,上述有关流程的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对流程进行各种修正和改变。然而,这些修正和改变仍在本说明书的范围之内。
图11是根据本说明书一些实施例所示的控制籽晶下降的示例性过程的流程图。在一些实施例中,该过程1100可以由处理设备(例如,处理设备101)和/或控制设备(例如,控制设备102)执行。例如,过程1100可以以程序或指令的形式存储在存储设备(例如,存储设备、处理设备和/或控制设备的存储单元)中,当处理器202或图3所示的模块执行程序或指令时,可以实现过程1100。在一些实施例中,过程1100可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图11所示的操作的顺序并非限制性的。
步骤1101,加热腔体至预设温度。在一些实施例中,该步骤1101可以由控制模块303执行。
在一些实施例中,预设温度可以是原料的熔融温度、晶体开始生长对应的温度或介于原料的熔融温度和晶体开始生长对应的温度之间的任何温度值。在一些实施例中,预设温度可以是系统默认值,也可以由用户结合实际需求设定。在一些实施例中,不同的晶体类型可以对应不同的预设温度。在一些实施例中,不同的晶体生长参数(例如,晶体外形、晶体高度、晶体直径)可以对应不同的预设温度。在一些实施例中,不同的腔体(例如,不同形状、不同尺寸、不同导热性的腔体)可以对应不同的预设温度。
在一些实施例中,处理设备和/或控制设备可以通过加热组件(例如,加热组件106)对腔体进行加热。在一些实施例中,腔体内可以设置温度传感器,当温度传感器感知到腔体内温度达到预设温度时,处理设备和/或控制设备可以通过提示装置发出提示(例如,发出语音或蜂鸣等提示)。
步骤1102,检测到腔体内的温度稳定在预设温度预设时间后,自动下降籽晶。在一些实施例中,该步骤1102可以由控制模块303执行。
在一些实施例中,预设时间可以为系统默认值,也可以根据不同情况进行调整。例 如,预设时间可以为5分钟、10分钟、20分钟、30分钟、40分钟、1小时、1.5小时等。
在一些实施例中,不同的晶体类型可以对应不同的预设时间。在一些实施例中,不同的晶体生长参数(例如,晶体外形、晶体高度、晶体直径)可以对应不同的预设时间。在一些实施例中,不同的腔体(例如,不同形状、不同尺寸、不同导热性的腔体)可以对应不同的预设时间。预设时间只需保证原料可以完全熔化即可,可以根据实际需求设置,本说明书对此不做限制。
在一些实施例中,处理设备和/或控制设备可以通过控制提拉电机运动以使籽晶缓慢下降。在一些实施例中,下降籽晶的速度可以是系统默认值,也可以根据不同情况进行调整。
步骤1103,在自动下降籽晶过程中,持续检测籽晶重量。在一些实施例中,该步骤1103可以由控制模块303执行。
在一些实施例中,在籽晶下降过程中,处理设备和/或控制设备可以通过称重组件(例如,晶体称重组件105)实时监测籽晶重量。
步骤1104,若籽晶重量小于预设重量阈值,停止下降籽晶并发出提醒。在一些实施例中,该步骤1104可以由控制模块303执行。
在籽晶持续下降过程中,籽晶与原料液面接触后,籽晶底端会被熔化,籽晶重量会减少。随后,处理设备和/或控制设备可以在熔融态原料中继续缓慢下降籽晶,在这个过程中,籽晶重量逐渐减少。处理设备和/或控制设备可以持续监测籽晶重量,当监测到籽晶重量小于预设重量阈值(或籽晶重量突然减少量(例如,当前时刻与前一时刻的重量差)大于预设重量差阈值)时,表明此时籽晶可能碰到腔体壁,处理设备和/或控制设备可以发出提醒。例如,处理设备和/或控制设备可以通过语音或蜂鸣进行提醒。
在一些实施例中,预设重量阈值可以是籽晶接触原料液面熔化后的最小重量。预设重量差阈值可以是籽晶在相邻时刻间可以减小的最大重量。在一些实施例中,预设重量阈值和/或预设重量差阈值可以为系统默认值,也可以根据不同情况进行调整。例如,预设重量阈值可以为籽晶重量的0.8倍或0.7倍。又例如,预设重量差阈值可以是1克、2克等。
在一些实施例中,在籽晶下降过程中,处理设备和/或控制设备还可以获取腔体内的实时图像(例如,通过红外高清摄像仪拍摄的籽晶图像);将实时图像和预设参考图像进行比对;根据比对结果,确定是否调整加热参数(例如,加热组件106的参数)。在一些实施例中,预设参考图像可以是理论上籽晶正常熔化过程中各个时间点的图像。
具体地,当籽晶与原料液面接触时,例如,实时图像中显示籽晶与原料液形成弯月 面,或籽晶重量波动在预设范围时(例如,突然增加或突然减少1-2g)时,处理设备和/或控制设备可以将实时图像中的相关信息(例如,弯月面的大小、亮度、弯月面光圈的大小、原料液流线流动范围等)与预设参考图像中的相应信息进行比对(例如,确定相似度),并基于比对结果确定是否调整加热参数。例如,如果相似度大于预设相似度阈值,则判断无需调整加热参数;如果相似度小于或等于预设相似度阈值,则需要调增加热参数。
在一些实施例中,处理设备和/或控制设备可以将预设参考图像和实时图像划分为多个彼此对应的区域,对于每个区域,处理设备和/或控制设备可以将实时图像信息与相应的预设参考图像信息进行比对(例如,确定相似度)。当两个或以上区域的比对结果满足要求时,认为腔体内温度合适,无需调整加热参数。
在一些实施例中,处理设备和/或控制设备可以预先设置籽晶接触原料液后需要熔化的长度。当检测到籽晶熔化的长度满足要求后(例如,完成熔化后20-40分钟后),理设备和/或控制设备可以对腔体内的温度进行再次比对,如果此时腔体内温度合适,则腔体进入恒温状态,籽晶接种完成。
应当注意的是,上述有关流程的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对流程进行各种修正和改变。然而,这些修正和改变仍在本说明书的范围之内。例如,籽晶重量波动预设范围可以根据实际需求设定,例如,0.5g、3g、5g等。又例如,籽晶的实时图像可以通过任何图像采集设备获取。
图12是根据本说明书一些实施例所示的示例性自动收尾过程的流程图。在一些实施例中,该过程1200可以由处理设备(例如,处理设备101)和/或控制设备(例如,控制设备102)执行。例如,过程1200可以以程序或指令的形式存储在存储设备(例如,存储设备、处理设备和/或控制设备的存储单元)中,当处理器202或图3所示的模块执行程序或指令时,可以实现过程1200。在一些实施例中,过程1200可以利用以下未描述的一个或以上附加操作,和/或不通过以下所讨论的一个或以上操作完成。另外,如图12所示的操作的顺序并非限制性的。
步骤1201,在晶体生长完成后,通过控制温度控制参数或提拉控制参数,执行自动收尾。在一些实施例中,该步骤1201可以由控制模块303执行。
在一些实施例中,在执行自动收尾过程中,处理设备和/或控制设备可以通过控制温度控制参数(例如,控制感应线圈的功率或电流)或提拉控制参数(例如,控制提拉组件的功率),控制晶体自动收尾。具体地,在晶体生长完成后,处理设备和/或控制设备可 以控制提拉电机按照预设的提拉速度将晶体向上拉起到预设高度,使得晶体底部距离原料液面一定高度(例如,5cm、10cm、20cm、30cm);当晶体被提拉到预设高度后,处理设备和/或控制设备可以控制中频电源的电流或功率逐渐减小,使腔体内温度逐渐降低。
在一些实施例中,预设的提拉速度或预设高度可以为系统默认值,也可以根据不同情况进行调整。例如,在提拉过程中,随着晶体逐渐离开原料液,可能由于温度骤减而导致内部出现结构应力。处理设备和/或控制设备可以结合内部结构应力情况,调整预设提拉速度,以保证晶体不会因其内部结构应力而出现开裂现象。例如,提拉速度可以为1-10mm/h。
步骤1202,在自动收尾过程中,持续检测晶体重量。在一些实施例中,该步骤1202可以由控制模块303执行。
在一些实施例中,在提拉过程中,处理设备和/或控制设备可以通过称重组件(例如,晶体称重组件105)实时监测晶体重量。
步骤1203,若晶体重量大于预设重量阈值,发出提醒并控制提拉组件反向运动。在一些实施例中,该步骤1203可以由控制模块303执行。
在提拉过程中,处理设备和/或控制设备可以持续监测晶体重量,当监测到晶体重量大于预设重量阈值(或晶体重量突然增加量(例如,当前时刻与前一时刻的重量差)大于预设重量差阈值)时,表明此时晶体可能与腔体壁粘结,处理设备和/或控制设备可以发出提醒并控制提拉组件反向运动,从而使得晶体与腔体粘结处拉力减少,降低晶体开裂的几率。
在一些实施例中,预设重量阈值可以大于晶体完全脱离原料液后的重量。预设重量差阈值可以是晶体在相邻时刻间可以增大的最大重量。在一些实施例中,预设重量阈值和/或预设重量差阈值可以是系统默认值,也可以根据不同情况进行调整。例如,假设晶体完全脱离原料液后的重量为20kg,预设重量阈值可以设置为21kg、22kg等。
在一些实施例中,处理设备和/或控制设备可以控制提拉组件(例如,提拉电机)反向运动直到晶体重量小于预设重量阈值,此时,重新向上提拉晶体,当晶体重量再次大于预设重量阈值时,又控制提拉组件反向运动,多次反复,直到晶体重量持续小于预设重量阈值,说明晶体被从腔体壁上拉脱。
应当注意的是,上述有关流程的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对流程进行各种修正和改变。然而,这些修正和改变仍在本说明书的范围之内。
图13是根据本说明书一些实施例所示的示例性晶体生长控制过程的示意图。
在晶体制备过程中,籽晶与原料液面接触熔化后,当籽晶重量小于预设重量阈值时,稳定一段时间后进入晶体生长阶段。在一些实施例中,处理设备和/或控制设备可以采自动控制方式控制晶体生长(例如,启动自动控制)。
启动自动控制后,可以执行步骤1301,初始化各项参数。初始化可以删除与此次晶体制备无关的历史数据。完成初始化后,晶体生长控制系统100分别执行以下步骤:
步骤13022,处理设备101建立晶体生长模型。处理设备101还可以基于晶体生长模型确定参考晶体参数和/或参考晶体生长参数。关于晶体生长模型的更多内容可以参见图5-7及其相关内容,在此不再赘述。
步骤13023,处理设备101确定实际晶体参数。具体地,处理设备101可以通过晶体称重组件105实时获取实际晶体质量,还可以实时计算各个时间片内的实际晶体高度、实际晶体直径等。
步骤13024,处理设备101确定提拉控制参数。关于提拉控制参数的更多内容可以参见图4、图9及其相关内容,在此不再赘述。
步骤13025,处理设备101确定转晶控制参数。具体地,处理设备101可以根据特定时间片对应的参考晶体参数和/或参考晶体生长参数,确定该时间片对应的转晶控制参数,进而基于转晶控制参数,调整下一时间片的转晶速度。
步骤13026,处理设备101确定温度控制参数。
步骤13027,处理设备101确定参考晶体生长参数(例如,参考生长系数)。在一些实施例中,步骤13026可以合并于步骤13022中,即,处理设备101可以基于晶体生长模型确定参考晶体生长系数。在一些实施例汇总,处理设备101也可以单独确定参考晶体生长系数,即,无需通过晶体生长模型确定。关于参考晶体生长参数的更多内容可以参见图4-7及其相关内容,在此不再赘述。
步骤13021,提拉组件107将当前速度反馈给处理设备101。在一些实施例中,处理设备101可以通过光栅尺读取晶体的提拉高度或者根据提拉电机的转速计算得到提拉高度,进而计算得到提拉速度。
步骤13028,晶体称重组件105将称重信号反馈给处理设备101。处理设备101可以基于称重信号确定实际晶体质量。在一些实施例中,步骤13027可以合并于步骤13023中,即,处理设备101基于称重信号确定实际晶体参数。
步骤13029,加热组件106将当前温度信号反馈给处理设备101。处理设备101可 以基于温度信号确定温度值。
步骤1303,根据上述步骤13021~步骤13029的相关数据,处理设备101可以确定晶体生长的控制参数(例如,提拉控制参数、转晶控制参数、温度控制参数)。进一步地,处理设备101可以将各项控制参数传输至控制设备102,由控制设备102控制后续过程。具体地,控制设备102可以基于提拉控制参数,控制提拉组件107的提拉过程。控制设备102可以基于温度控制参数,控制加热组件106的加热过程。控制设备102可以基于转晶控制参数,控制转晶组件108的转晶过程。
图14是根据本说明书一些实施例所示的示例性晶体生长控制系统的示例性操作界面。
如图14所示,操作界面1400分为5大功能区:(1)晶体生长信息显示区域(位于操作界面1400左侧),用于观察晶体生长过程的实时数据,例如,生长阶段、晶体重量、中频电源信息等;(2)功能模块切换按钮区域(位于操作界面1400顶端),用于在各个子功能模块(例如,实时曲线、中频电源设置、记录查询等)之间进行转换;(3)子功能模块显示区域(位于操作界面1400中部),用于显示各个子功能模块内的内容;(4)警报区(位于操作界面1400下方中间部分),用于显示当前系统的警报内容,并提示操作人员针对警报执行相应的处理;(5)通信状态显示区域(位于操作界面1400下方右侧),用于实时显示设备或模块的通信状态,例如,中频电源通信连接、PCL通信连接等。
应当注意的是,上述有关操作界面图的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对流程进行各种修正和改变。然而,这些修正和改变仍在本说明书的范围之内。例如,操作界面还可以包括其他功能区,比如,晶体实时外形区域。
图15是根据本说明书一些实施例所示的中频电源控制的示例性操作界面。
结合图5和图8所述,处理设备和/或控制设备可以基于温度控制参数,调节任意时间片的温度。例如,处理设备和/或控制设备可以基于温度控制参数,通过自动控制调节加热组件(例如,中频电源、感应线圈)的参数。如图15所示,操作界面1500可以显示中频电源的具体控制情况,例如,目标功率、时间、功率比等。在一些实施例中,自动控制可以用于晶体生长的中后期阶段(例如,放肩阶段、等径阶段、收尾阶段等)。
在一些实施例中,还可以通过手动控制方式控制中频电源的参数。手动控制可以用于晶体生长的前期阶段(例如,籽晶下降过程、腔体升温过程等)。例如,如图15所示,可以通过“启动中频电源”和“关闭中频电源”按钮来执行对中频电源的开关。操作界面 1500还可以显示中频电源的具体信息,例如,运行状态、设定功率、输出功率等。
图16是根据本说明书一些实施例所示的参数选择的示例性操作界面。
在一些实施例中,晶体生长控制系统100具有参数选择功能,如图16所示,用户可以通过操作界面1600查询已经运行过的参数,例如,实际晶体生长参数(例如,晶体生长的温度、提拉速度、转晶速度等)、参考晶体参数(例如,参考晶体质量、参考晶体直径、参考晶体高度)、参考晶体生长参数(例如,参考生长系数、参考提拉速度)。进一步地,用户还可以通过操作界面1600选择参数。选择参数后,可以保存选择的参数(即“保存当前参数”)、将选择的参数应用到当前的晶体生长过程(即“应用参数到当前”)、将选择的参数删除(即“删除当前参数”)、查询选择的参数的详细内容(即“查询参数列表”)等。
图17是根据本说明书一些实施例所示的历史曲线查询的示例性操作界面。
在一些实施例中,晶体生长控制系统100具有历史曲线查询功能。如图17所示,操作界面1700可以显示历史曲线,横轴表示时间,纵轴表示历史目标数据。在一些实施例中,历史目标数据可以是晶体生长数据(例如,实际晶体高度、实际晶体直径、生长速度、生长阶段、实际晶体质量等)、控制参数(例如,转晶速度、提拉速度、温度等)等。如图17所示,用户可以在操作界面1700输入查询时间段(即“选择起始时间”和“选择结束时间”),并输入查询的历史目标数据(即“选择需要查询的数据”),点击“查询”按钮,即可查询该时间段内的历史目标数据。操作界面1700的显示区域可以显示该时间段内该历史目标数据的历史曲线,用户可以直观地查看数据走势,进而判断晶体生长状况。进一步地,用户可以同时查询同一时间段内的多个历史目标数据,例如,用户可以在操作界面1700同时输入实际晶体直径、实际晶体高度和提拉速度,显示区域会同时显示上述三个参数的历史曲线,便于用户查看。
图18是根据本说明书一些实施例所示的操作记录查询的示例性操作界面。
在一些实施例中,晶体生长控制系统100具有操作记录查询的功能。如图18所示,用户可以在操作界面1800输入查询时间段(即“选择起始时间”和“选择结束时间”),即可查询该时间段内的操作记录,并显示在操作界面1800的表格中。
图19是根据本说明书一些实施例所示的称重校准的示例性操作界面。
在一些实施例中,晶体生长控制系统100具有称重校准功能。在一些情况下,称重组件(例如,加料称重组件104、晶体称重组件105)使用一段时间后会有一定误差,需要进行校准,或者更换称重组件后,也需要进行校准。在一些实施例中,如图19所示,可以 对称重组件进行标定零点和标定重量的操作,标定零点可以对称重组件进行调零,标定重量可以调整称重组件的精度。如图19所示,用户可以通过操作界面1900点击“标定零点”按钮、输入额定量程和标定量程并点击“标定重量”按钮,对称重组件进行校准(即“启动长晶校准模式”)。具体地,在称重组件未进行称量时,可以通过点击“标定零点”按钮,对称重组件进行归零操作;并在“设置额定量程”中输入称重组件的最大量程,并点击“确定”按钮进行设置;然后将标准砝码放置于称重组件上,并在“设置标定量程”中输入该标准砝码的重量、点击“确定”按钮进行设置,最后点击“标定重量”按钮;处理设备101可以将标定量程发送至称重组件,根据称重组件的获取值(例如,标准砝码的重量)对称重组件进行校准。在一些实施例中,可以通过多个不同重量的标准砝码对称重组件进行校准。在一些实施例中,在校准过程中输入的标定零点、额定量程、标定量程以及称重组件的形变数据可以对应存储在称重组件中。
需要注意的是,以上描述,仅为描述方便,并不能把本说明书限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解本说明书的原理后,可以在不背离这一原理的情况下,对实施上述流程及系统、装置、设备进行形式和细节上的各种修正和改变。然而,这些变化和修改不脱离本说明书的范围。
本说明书实施例可能带来的有益效果包括但不限于:
(1)通过实时获取晶体生长过程中的实际晶体参数,并根据实际晶体参数与参考晶体参数的差异,调整温度控制参数和提拉控制参数,可以使得晶体生长过程中的控制更加精确,提高了制备的晶体的品质。
(2)通过将晶体生长控制过程划分为多个时间片进行控制,并且在各个时间片之间进行渐变控制,使得晶体生长过程的控制更加精确,使得实际晶体与晶体生长模型一致。
(3)通过设置籽晶下降过程中的持续重量检测、收尾过程中的重量检测和控制提拉电机反向运动,可以有效避免籽晶与腔体碰撞壁和粘结,提高了晶体生长控制过程的稳定性。
需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
以上内容描述了本说明书和/或一些其他的示例。根据上述内容,本说明书还可以做出不同的变形。本说明书披露的主题能够以不同的形式和例子所实现,并且本说明书可以被应用于大量的应用程序中。后文权利要求中所要求保护的所有应用、修饰以及改变都属于本说明书的范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”、或“一个实施例”、或“一替代性实施例”、或“另一实施例”或“另一个实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
本领域技术人员能够理解,本说明书所披露的内容可以出现多种变型和改进。例如,以上所描述的不同系统组件都是通过硬件设备所实现的,但是也可能只通过软件的解决方案得以实现。例如:在现有的服务器上安装系统。此外,这里所披露的位置信息的提供可能是通过一个固件、固件/软件的组合、固件/硬件的组合或硬件/固件/软件的组合得以实现。
所有软件或其中的一部分有时可能会通过网络进行通信,如互联网或其他通信网络。此类通信能够将软件从一个计算机设备或处理器加载到另一个。例如:从放射治疗系统的一个管理服务器或主机计算机加载至一个计算机环境的硬件平台,或其他实现系统的计算机环境,或与提供确定轮椅目标结构参数所需要的信息相关的类似功能的系统。因此,另一种能够传递软件元素的介质也可以被用作局部设备之间的物理连接,例如光波、电波、电磁波等,通过电缆、光缆或者空气实现传播。用来载波的物理介质如电缆、无线连接或光缆等类似设备,也可以被认为是承载软件的介质。在这里的用法除非限制了有形的“储存”介质,其他表示计算机或机器“可读介质”的术语都表示在处理器执行任何指令的过程中参与的介质。
本说明书各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、VisualBasic、Fortran2003、Perl、COBOL2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,例如,局域网(LAN)或广域网(WAN)、或连接至外部计算机(例如通过因特网)、或在云计算环境中、或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中 通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述属性、数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本说明书引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档、物件等,特将其全部内容并入本说明书作为参考。与本说明书内容不一致或产生冲突的申请历史文件除外,对本说明书权利要求最广范围有限制的文件(当前或之后附加于本说明书中的)也除外。需要说明的是,如果本说明书附属材料中的描述、定义、和/或术语的使用与本说明书所述内容有不一致或冲突的地方,以本说明书的描述、定义和/或术语的使用为准。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不限于本说明书明确介绍和描述的实施例。

Claims (28)

  1. 一种晶体生长控制方法,包括:
    获取目标时间片内的实际晶体参数,其中,所述实际晶体参数包括实际晶体质量、实际晶体直径、实际晶体高度或实际晶体外形中的至少一个;
    获取目标时间片内的参考晶体参数,其中,所述参考晶体参数包括参考晶体质量、参考晶体直径、参考晶体高度或参考晶体外形中的至少一个;
    基于所述实际晶体参数和所述参考晶体参数,确定温度控制参数;
    基于所述实际晶体参数和所述参考晶体参数,确定提拉控制参数;以及
    分别基于所述温度控制参数和所述提拉控制参数,调节所述目标时间片之后的下一个时间片的温度和提拉速度。
  2. 如权利要求1所述的晶体生长控制方法,其中,所述获取目标时间片内的实际晶体参数包括:
    基于所述实际晶体质量、原料熔融态密度以及腔体尺寸,确定所述目标时间片内的液面下降高度;
    基于所述目标时间片内的提拉高度和所述液面下降高度,确定所述实际晶体高度;以及
    基于所述实际晶体质量和所述实际晶体高度,确定所述实际晶体直径。
  3. 如权利要求1所述的晶体生长控制方法,其中,所述获取目标时间片内的参考晶体参数包括:
    基于预设晶体参数或预设晶体生长参数中的至少一种,构建晶体生长模型;以及
    基于所述晶体生长模型,确定所述目标时间片对应的所述参考晶体参数。
  4. 如权利要求3所述的晶体生长控制方法,其中,所述预设晶体参数包括晶体类型、预设晶体密度、预设晶体质量、预设籽晶高度、预设籽晶直径、预设肩部高度、预设等径高度、预设等径直径、预设尾部高度、预设晶尾高度、预设晶尾直径、预设肩部角度、预设尾部角度、籽晶和肩部前端的过渡夹角与肩部末端和等径前端的过渡夹角的比值中的至少一种。
  5. 如权利要求3所述的晶体生长控制方法,其中,所述预设晶体生长参数包括预设晶体生长速度或预设生长系数中的至少一种。
  6. 如权利要求3所述的晶体生长控制方法,其中,所述基于预设晶体参数,构建晶体生长模型包括:
    基于所述预设晶体参数,通过三维建模方法构建所述晶体生长模型。
  7. 如权利要求1所述的晶体生长控制方法,其中,所述基于所述实际晶体参数和所述参考晶体参数,确定温度控制参数包括:
    确定所述实际晶体参数和所述参考晶体参数的差异;
    基于所述差异和参考晶体生长参数,确定所述温度控制参数。
  8. 如权利要求1所述的晶体生长控制方法,其中,所述基于所述实际晶体参数和所述参考晶体参数,确定提拉控制参数包括:
    基于所述实际晶体质量、原料熔融密度以及腔体尺寸,确定所述目标时间片内的液面下降速度;以及
    基于所述液面下降速度和参考晶体生长参数,确定所述提拉控制参数。
  9. 如权利要求1所述的晶体生长控制方法,其中,在所述获取目标时间片内的实际晶体参数之前,所述方法还包括:
    加热腔体至预设温度;以及
    检测到所述腔体内的温度稳定在所述预设温度预设时间后,自动下降籽晶。
  10. 如权利要求9所述的晶体生长控制方法,其中,所述方法还包括:
    在自动下降籽晶过程中,持续检测所述籽晶重量;以及
    若所述籽晶重量小于预设重量阈值,停止下降籽晶并发出提醒。
  11. 如权利要求9所述的晶体生长控制方法,其中,所述方法还包括:
    获取籽晶下降过程中的实时图像;
    将所述实时图像和预设参考图像进行比对;以及
    根据比对结果,确定是否调整加热参数。
  12. 如权利要求1所述的晶体生长控制方法,其中,所述方法还包括:
    在晶体生长完成后,通过控制所述温度控制参数或所述提拉控制参数,执行自动收尾。
  13. 如权利要求12所述的晶体生长控制方法,其中,所述方法还包括:
    在所述自动收尾过程中,持续检测晶体重量;以及
    若所述晶体重量大于预设重量阈值,发出提醒并控制提拉组件反向运动。
  14. 一种晶体生长控制系统,应用于晶体制备过程,其中,所述系统包括:
    至少一个存储器,用于存储计算机指令;
    至少一个处理器,所述至少一个处理器与所述至少一个存储器通讯,当所述至少一个处理器执行所述计算机指令时,所述至少一个处理器使所述系统执行:
    获取目标时间片内的实际晶体参数,其中,所述实际晶体参数包括实际晶体质量、实际晶体直径、实际晶体高度或实际晶体外形中的至少一个;
    获取目标时间片内的参考晶体参数,其中,所述参考晶体参数包括参考晶体质量、参考晶体直径、参考晶体高度或参考晶体外形中的至少一个;
    基于所述实际晶体参数和所述参考晶体参数,确定温度控制参数;
    基于所述实际晶体参数和所述参考晶体参数,确定提拉控制参数;
    分别基于所述温度控制参数和所述提拉控制参数,调节所述目标时间片之后的下一个时间片的温度和提拉速度。
  15. 如权利要求14所述的晶体生长控制系统,其中,为获取目标时间片内的实际晶体参数,所述至少一个处理器使所述系统执行:
    基于所述实际晶体质量、原料熔融态密度以及腔体尺寸,确定所述目标时间片内的液面下降高度;
    基于所述目标时间片内的提拉高度和所述液面下降高度,确定所述实际晶体高度;以及
    基于所述实际晶体质量和所述实际晶体高度,确定所述实际晶体直径。
  16. 如权利要求14所述的晶体生长控制系统,其中,为获取目标时间片内的参考晶体参数,所述至少一个处理器使所述系统执行:
    基于预设晶体参数或预设晶体生长参数中的至少一种,构建晶体生长模型;以及
    基于所述晶体生长模型,确定所述目标时间片对应的所述参考晶体参数。
  17. 如权利要求16所述的晶体生长控制系统,其中,所述预设晶体参数包括晶体类型、预设晶体密度、预设晶体质量、预设籽晶高度、预设籽晶直径、预设肩部高度、预设等径高度、预设等径直径、预设尾部高度、预设晶尾高度、预设晶尾直径、预设肩部角度、预设尾部角度、籽晶和肩部前端的过渡夹角与肩部末端和等径前端的过渡夹角的比值中的至少一种。
  18. 如权利要求16所述的晶体生长控制系统,其中,所述预设晶体生长参数包括预设晶体生长速度或预设生长系数中的至少一种。
  19. 如权利要求16所述的晶体生长控制系统,其中,为基于预设晶体参数,构建晶体生长模型,所述至少一个处理器使所述系统执行:
    基于所述预设晶体参数,通过三维建模方法构建所述晶体生长模型。
  20. 如权利要求14所述的晶体生长控制系统,其中,为基于所述实际晶体参数和所述参考晶体参数,确定温度控制参数,所述至少一个处理器使所述系统执行:
    确定所述实际晶体参数和所述参考晶体参数的差异;
    基于所述差异和参考晶体生长参数,确定所述温度控制参数。
  21. 如权利要求14所述的晶体生长控制系统,其中,为基于所述实际晶体参数和所述参考晶体参数,确定提拉控制参数,所述至少一个处理器使所述系统执行:
    基于所述实际晶体质量、原料熔融密度以及腔体尺寸,确定所述目标时间片内的液面下降速度;以及
    基于所述液面下降速度和参考晶体生长参数,确定所述提拉控制参数。
  22. 如权利要求14所述的晶体生长控制系统,其中,在所述获取目标时间片内的实际晶体参数之前,所述至少一个处理器使所述系统执行:
    加热腔体至预设温度;以及
    检测到所述腔体内的温度稳定在所述预设温度预设时间后,自动下降籽晶。
  23. 如权利要求22所述的晶体生长控制系统,其中,所述至少一个处理器使所述系统执行:
    在自动下降籽晶过程中,持续检测所述籽晶重量;以及
    若所述籽晶重量小于预设重量阈值,停止下降籽晶并发出提醒。
  24. 如权利要求22所述的晶体生长控制系统,其中,所述至少一个处理器使所述系统执行:
    获取籽晶下降过程中的实时图像;
    将所述实时图像和预设参考图像进行比对;以及
    根据比对结果,确定是否调整加热参数。
  25. 如权利要求14所述的晶体生长控制系统,其中,所述至少一个处理器使所述系统执行:
    在晶体生长完成后,通过控制所述温度控制参数或所述提拉控制参数,执行自动收尾。
  26. 如权利要求25所述的晶体生长控制系统,其中,所述至少一个处理器使所述系统执行:
    在所述自动收尾过程中,持续检测晶体重量;以及
    若所述晶体重量大于预设重量阈值,发出提醒并控制提拉组件反向运动。
  27. 一种晶体生长控制系统,应用于晶体制备过程,其中,所述系统包括:
    获取模块,用于
    获取目标时间片内的实际晶体参数,其中,所述实际晶体参数包括实际晶体质量、实际晶体直径、实际晶体高度或实际晶体外形中的至少一个;以及
    获取目标时间片内的参考晶体参数,其中,所述参考晶体参数包括参考晶体质量、 参考晶体直径、参考晶体高度或参考晶体外形中的至少一个;
    确定模块,用于
    基于所述实际晶体参数和所述参考晶体参数,确定温度控制参数;以及
    基于所述实际晶体参数和所述参考晶体参数,确定提拉控制参数;以及
    处理模块,用于分别基于所述温度控制参数和所述提拉控制参数,调节所述目标时间片之后的下一个时间片的温度和提拉速度。
  28. 一种计算机可读存储介质,其中,所述存储介质存储计算机指令,当所述计算机指令被处理器执行时,所述计算机指令指示所述处理器执行以下操作:
    获取目标时间片内的实际晶体参数,其中,所述实际晶体参数包括实际晶体质量、实际晶体直径、实际晶体高度或实际晶体外形中的至少一个;
    获取目标时间片内的参考晶体参数,其中,所述参考晶体参数包括参考晶体质量、参考晶体直径、参考晶体高度或参考晶体外形中的至少一个;
    基于所述实际晶体参数和所述参考晶体参数,确定温度控制参数;
    基于所述实际晶体参数和所述参考晶体参数,确定提拉控制参数;
    分别基于所述温度控制参数和所述提拉控制参数,调节所述目标时间片之后的下一个时间片的温度和提拉速度。
PCT/CN2021/071114 2021-01-11 2021-01-11 一种晶体生长控制方法和系统 WO2022147835A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/071114 WO2022147835A1 (zh) 2021-01-11 2021-01-11 一种晶体生长控制方法和系统
CN202180000165.7A CN112789371A (zh) 2021-01-11 2021-01-11 一种晶体生长控制方法和系统
EP21721809.8A EP4050131A4 (en) 2021-01-11 2021-01-11 METHOD AND SYSTEM FOR REGULATING CRYSTALS GROWTH
US17/227,256 US20220220630A1 (en) 2021-01-11 2021-04-09 Methods and systems for controlling crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071114 WO2022147835A1 (zh) 2021-01-11 2021-01-11 一种晶体生长控制方法和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/227,256 Continuation US20220220630A1 (en) 2021-01-11 2021-04-09 Methods and systems for controlling crystal growth

Publications (1)

Publication Number Publication Date
WO2022147835A1 true WO2022147835A1 (zh) 2022-07-14

Family

ID=75762940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071114 WO2022147835A1 (zh) 2021-01-11 2021-01-11 一种晶体生长控制方法和系统

Country Status (4)

Country Link
US (1) US20220220630A1 (zh)
EP (1) EP4050131A4 (zh)
CN (1) CN112789371A (zh)
WO (1) WO2022147835A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115404542B (zh) * 2021-05-28 2024-03-01 隆基绿能科技股份有限公司 单晶直拉生长方法、装置、设备及计算机可读存储介质
CN113344439B (zh) * 2021-06-29 2024-04-26 蓝思系统集成有限公司 一种晶体生长控制方法、装置、系统及可读存储介质
CN113755947A (zh) * 2021-09-17 2021-12-07 青海高景太阳能科技有限公司 一种12吋单晶拉制的放肩工艺方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800612A (en) * 1996-02-08 1998-09-01 Komatsu Electronic Metals Co., Ltd. Single-crystal semiconductor pulling apparatus
CN1344335A (zh) * 1999-03-22 2002-04-10 Memc电子材料有限公司 生长处理中控制硅晶体直径的方法与装置
CN1396965A (zh) * 2000-02-01 2003-02-12 Memc电子材料有限公司 用于控制硅晶体生长使生长速率和直径的偏差减至最小的方法
JP2003192487A (ja) * 2001-12-21 2003-07-09 Sumitomo Mitsubishi Silicon Corp 単結晶の育成方法および育成装置
CN101591802A (zh) * 2009-07-10 2009-12-02 无锡市惠德晶体控制设备有限公司 提拉法晶体生长的等径控制方法
CN106283178A (zh) * 2016-08-30 2017-01-04 中国科学院合肥物质科学研究院 一种大尺寸提拉法单晶生长设计和控制方法
CN108624952A (zh) * 2018-04-25 2018-10-09 上海翌波光电科技股份有限公司 一种晶体生长控制装置及控制方法
CN108754599A (zh) * 2018-05-31 2018-11-06 西安理工大学 一种基于有限元数值模拟的硅单晶生长温度控制方法
CN109183141A (zh) * 2018-10-29 2019-01-11 上海新昇半导体科技有限公司 一种晶体生长控制方法、装置、系统及计算机存储介质
CN109234795A (zh) * 2018-10-29 2019-01-18 上海新昇半导体科技有限公司 一种晶体生长控制方法、装置、系统及计算机存储介质
CN111690980A (zh) * 2019-03-11 2020-09-22 上海新昇半导体科技有限公司 一种用于放肩过程的晶体生长控制方法、装置、系统及计算机存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761692A (en) * 1971-10-01 1973-09-25 Texas Instruments Inc Automated crystal pulling system
US5246535A (en) * 1990-04-27 1993-09-21 Nkk Corporation Method and apparatus for controlling the diameter of a silicon single crystal
US8221545B2 (en) * 2008-07-31 2012-07-17 Sumco Phoenix Corporation Procedure for in-situ determination of thermal gradients at the crystal growth front
TWI411709B (zh) * 2009-03-27 2013-10-11 Sumco Corp 單晶直徑的控制方法
US20100242831A1 (en) * 2009-03-31 2010-09-30 Memc Electronic Materials, Inc. Methods for weighing a pulled object having a changing weight
CN104651926A (zh) * 2015-03-16 2015-05-27 内蒙古京晶光电科技有限公司 一种用于蓝宝石生长粘锅时保护夹持装置的控制方法
CN105839176A (zh) * 2016-05-17 2016-08-10 中国科学院上海光学精密机械研究所 自动控制的微下拉晶体生长装置和自动控制方法
JP6604338B2 (ja) * 2017-01-05 2019-11-13 株式会社Sumco シリコン単結晶の引き上げ条件演算プログラム、シリコン単結晶のホットゾーンの改良方法、およびシリコン単結晶の育成方法
CN111826710A (zh) * 2019-04-23 2020-10-27 上海新昇半导体科技有限公司 一种控制硅熔体坩埚安全升降的方法和装置
CN112323141A (zh) * 2020-11-03 2021-02-05 上海新昇半导体科技有限公司 单晶生长方法及单晶生长设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800612A (en) * 1996-02-08 1998-09-01 Komatsu Electronic Metals Co., Ltd. Single-crystal semiconductor pulling apparatus
CN1344335A (zh) * 1999-03-22 2002-04-10 Memc电子材料有限公司 生长处理中控制硅晶体直径的方法与装置
CN1396965A (zh) * 2000-02-01 2003-02-12 Memc电子材料有限公司 用于控制硅晶体生长使生长速率和直径的偏差减至最小的方法
JP2003192487A (ja) * 2001-12-21 2003-07-09 Sumitomo Mitsubishi Silicon Corp 単結晶の育成方法および育成装置
CN101591802A (zh) * 2009-07-10 2009-12-02 无锡市惠德晶体控制设备有限公司 提拉法晶体生长的等径控制方法
CN106283178A (zh) * 2016-08-30 2017-01-04 中国科学院合肥物质科学研究院 一种大尺寸提拉法单晶生长设计和控制方法
CN108624952A (zh) * 2018-04-25 2018-10-09 上海翌波光电科技股份有限公司 一种晶体生长控制装置及控制方法
CN108754599A (zh) * 2018-05-31 2018-11-06 西安理工大学 一种基于有限元数值模拟的硅单晶生长温度控制方法
CN109183141A (zh) * 2018-10-29 2019-01-11 上海新昇半导体科技有限公司 一种晶体生长控制方法、装置、系统及计算机存储介质
CN109234795A (zh) * 2018-10-29 2019-01-18 上海新昇半导体科技有限公司 一种晶体生长控制方法、装置、系统及计算机存储介质
CN111690980A (zh) * 2019-03-11 2020-09-22 上海新昇半导体科技有限公司 一种用于放肩过程的晶体生长控制方法、装置、系统及计算机存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4050131A4 *

Also Published As

Publication number Publication date
US20220220630A1 (en) 2022-07-14
CN112789371A (zh) 2021-05-11
EP4050131A1 (en) 2022-08-31
EP4050131A4 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
WO2022147835A1 (zh) 一种晶体生长控制方法和系统
CN111690980A (zh) 一种用于放肩过程的晶体生长控制方法、装置、系统及计算机存储介质
JP6651529B2 (ja) インゴット界面の形状を制御することができる単結晶成長システム及び方法
WO2023098060A1 (zh) 温度控制方法和设备、计算机存储介质以及单晶炉
CN109234795A (zh) 一种晶体生长控制方法、装置、系统及计算机存储介质
CN111910245B (zh) 一种拉晶尾部控制方法及系统、计算机存储介质
JP2002541047A (ja) 半導体結晶成長処理のテーパー成長を制御する方法及びシステム
WO2022213675A1 (zh) 一种拉晶控制方法和设备、单晶炉以及计算机存储介质
JP2015124127A (ja) 単結晶の引上げ方法
TW201732095A (zh) 單晶矽之製造方法及製造系統
TWI749487B (zh) 一種控制矽熔體坩堝安全升降的方法和裝置
US10072352B2 (en) Silicon single crystal growing apparatus and silocon single crystal growing method using same
TWI802023B (zh) 製造無缺陷單晶矽結晶的方法和裝置
US9273411B2 (en) Growth determination in the solidification of a crystalline material
CN112520437B (zh) 一种加料控制方法和系统
KR20230124726A (ko) 첨가제 공급 시스템들, 이러한 첨가제 공급 시스템들의사용으로 단결정 실리콘 잉곳을 형성하기 위한 잉곳 풀러 장치 및 방법들
JP2023123669A (ja) 単結晶シリコンインゴットを成長させる際の動的ステートチャートの作製および使用
KR20110086985A (ko) 융액온도 제어시스템 및 그 제어방법
KR20150036923A (ko) 잉곳 성장 제어장치 및 이에 적용되는 잉곳 성장 제어방법
JP2010105914A (ja) 結晶体の製造方法
JPH0755878B2 (ja) 半導体単結晶の直径制御方法
JP2597015B2 (ja) ガラス溶融装置の溶融ガラス流出量調節方法および装置
CN110685008A (zh) 一种稳定提拉法晶体生长界面的控制装置和方法
CN116575114B (zh) 一种引晶方法
JPH0416436B2 (zh)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021721809

Country of ref document: EP

Effective date: 20210506

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21721809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE