WO2022147830A1 - 一种制备多异氰酸酯的方法及反应装置 - Google Patents

一种制备多异氰酸酯的方法及反应装置 Download PDF

Info

Publication number
WO2022147830A1
WO2022147830A1 PCT/CN2021/071091 CN2021071091W WO2022147830A1 WO 2022147830 A1 WO2022147830 A1 WO 2022147830A1 CN 2021071091 W CN2021071091 W CN 2021071091W WO 2022147830 A1 WO2022147830 A1 WO 2022147830A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
reaction
reactor
reactors
pressure
Prior art date
Application number
PCT/CN2021/071091
Other languages
English (en)
French (fr)
Inventor
文放
吴雪峰
徐丹
马海洋
王振有
张宏科
陈良进
赵东科
Original Assignee
万华化学集团股份有限公司
万华化学(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司, 万华化学(宁波)有限公司 filed Critical 万华化学集团股份有限公司
Priority to HU2300387A priority Critical patent/HUP2300387A1/hu
Priority to PCT/CN2021/071091 priority patent/WO2022147830A1/zh
Publication of WO2022147830A1 publication Critical patent/WO2022147830A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/10Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by stirrers or by rotary drums or rotary receptacles or endless belts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/10Preparation of derivatives of isocyanic acid by reaction of amines with carbonyl halides, e.g. with phosgene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/14Derivatives of isocyanic acid containing at least two isocyanate groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/30Only oxygen atoms
    • C07D251/34Cyanuric or isocyanuric esters

Definitions

  • the present invention relates to a process for the preparation of polyisocyanates, in particular diisocyanates, and the use of a reaction apparatus used in the process.
  • the key point in the production process of polyisocyanates is the phosgenation reaction.
  • Impurities containing acid chloride groups, urea groups, and hydrochloride groups in the reaction solution have a significant impact on the reaction yield, product quality, and equipment operating life.
  • the industry mainly analyzes and controls the sum of impurities such as acid chloride groups, urea groups, and hydrochloride groups.
  • the total amount of impurities including acid chloride groups, urea groups, and hydrochloride groups is usually controlled to a very low level by greatly increasing the solvent consumption.
  • the product quality is highly controllable.
  • Chinese Patent Publication CN101153015A describes that the reaction and mixing effect can be enhanced through a hole jet reactor.
  • Chinese Patent Publication CN102317254A describes that the enhanced reaction and mixing effects are enhanced by injectors.
  • the above-mentioned patent is aimed at the gas-phase phosgenation process, and cannot solve the problem of the liquid-phase process.
  • Chinese Patent Publication CN1651406A describes a tubular reactor.
  • the mixing effect of the first half of the tube is enhanced by a stirrer, but the side reactions in the second half cannot be eliminated.
  • Chinese Patent Publication CN105126711A describes a tower-type reactor.
  • the diameter of amine hydrochloride particles is reduced and the effect of reaction with phosgene is increased, which can solve the problem of existing problems.
  • the common problems in the salt phosgenation reaction are that the salt concentration is too low, the hydrochloride agglomeration and the diamine encapsulation caused by the agglomeration make it difficult for the internal materials to participate in the next stage of the phosgenation reaction.
  • This method needs to add HCl additionally, which causes problems such as large size of equipment for recycling phosgene and excessive energy consumption of low-temperature cooling.
  • Chinese Patent Publication CN202131251U describes a hybrid reactor that is anti-clogging, easy to maintain, and flexibly adjustable.
  • the solvent is introduced into the inverted conical cavity for cleaning, so as to prevent the material from depositing in the low-pressure area, thereby avoiding clogging, and by replacing the nozzle to realize the long-term operation of the equipment. Only by flushing and replacing to avoid clogging, the reaction effect is not improved in essence, and there are problems of large solvent consumption and frequent nozzle replacement during operation.
  • Chinese Patent Publication CN2444949Y describes a new type of jet reactor.
  • a striker whose main body is a hollow cylinder and a plurality of fan-shaped impellers, which are arranged in an inclined sequence, the raw material liquid is rotated and liquefied at a high speed, and is sprayed out through the outlet end of the nozzle. Enter the rotary atomizer of the jet reactor.
  • This method needs to add more solvent to achieve the expected reaction effect, the best case of amine solution concentration is 27%, and the energy consumption is high.
  • United States Patent Publication US3226410A describes a method for spraying a solution of an amine compound into a solution of phosgene in a tube by means of a small hole transversely in the tube. In order to obtain a satisfactory yield, this method requires a low concentration of reactants, thus requiring a large energy consumption to recover the solvent. In addition, scaling problems on the walls cannot be avoided.
  • British Patent Publication GB1086782A adopts the method of salt-forming phosgenation to prepare xylylene diisocyanate, diamine and hydrogen chloride are salified at 0 ⁇ 60°C, and hydrochloride phosgenation is carried out at 120 ⁇ 128°C. Although the generation of by-products can be reduced, the yield is not high when the reaction concentration of hydrochloride is below 5.5%, and at the same time, a large amount of solvent needs to be removed by distillation, which is economical.
  • the existing technology is relatively limited in solving problems such as high solvent content, high energy consumption, low yield of side reactions, high solid content and easy blockage due to poor reaction effect in the liquid phase phosgenation process, and a new method is needed.
  • the inventors of the present invention found that the sum of impurity groups does not have a good corresponding relationship with the blocking frequency of equipment and product quality, that is, the sum of impurity groups such as acid chloride groups, urea groups, and hydrochloride groups cannot effectively characterize the reaction yield. , product quality, the actual impact of equipment operating life. Therefore, it is necessary to greatly increase the solvent consumption and control the sum of impurity groups such as acid chloride groups, urea groups, and hydrochloride groups to a very low level to make the product quality highly controllable. This problem restricts the longevity of the device. Periodic operation, reaction yield and energy consumption.
  • the total amount of single estimated impurities cannot reflect its influence on the reaction yield, product quality, and equipment operating life, because the monofunctional impurities and multifunctional impurities (monofunctional impurities refer to: except for NCO groups)
  • it also contains a group selected from hydrochloride group, urea group, acid chloride group and other groups and has only one non-NCO functional group impurity
  • multifunctional impurity refers to: contains a group selected from hydrochloride group , urea group, acyl chloride group and other groups with more than two groups and impurities with more than two non-NCO functional groups, the same below) has a significant difference in the degree of influence, among which monofunctional impurities are in addition to hydrochloride groups.
  • NCO groups which lead to a certain solubility in polyisocyanates, while multifunctional impurities do not have NCO groups, or the content of NCO groups is much lower than that of monofunctional groups. Impurities, resulting in extremely low solubility in polyisocyanates, once multifunctional impurities are formed, it will quickly lead to a decrease in the operation cycle of the equipment, so the device is forced to increase the addition of solvent in the reaction stage, and the energy consumption level is greatly increased.
  • the present invention provides a method for preparing polyisocyanate and a reaction device used in the method.
  • Monofunctional impurity refers to: in addition to NCO group, it also contains one group selected from hydrochloride group, urea group, acid chloride group and other groups and has only one non-NCO functional group impurity; multifunctional impurity is Refers to: impurities containing two or more groups selected from hydrochloride groups, urea groups, acid chloride groups, etc., the multifunctional impurities do not contain NCO groups, or the number of isocyanate groups is different from other The ratio of the sum of the number of groups (hydrochloride groups, urea groups, acid chloride groups, etc.) is less than or equal to 1.
  • the above-mentioned monofunctional impurity also contains NCO group, which leads to a certain solubility in polyisocyanate.
  • NCO group which leads to a certain solubility in polyisocyanate.
  • multifunctional impurities hardly contain NCO groups, or the content of NCO groups is much lower than that of monofunctional impurities, resulting in extremely low solubility in polydiisocyanates.
  • the precise control of the solvent consumption can be achieved, thereby achieving a substantial reduction in energy consumption.
  • the core equipment of the phosgenation reaction process is the phosgenation reactor.
  • the reactor configuration scheme of the cold reaction process and the thermal reaction process of the phosgenation reactor has a very significant impact on the reaction effect, and also determines the monofunctional impurities, Important factor for multifunctional impurities.
  • Monofunctional impurities are mainly produced in the cold reaction stage, while multifunctional impurities are mainly produced in the hot reaction stage.
  • the present invention controls the amount of monofunctional impurities produced in the cold reaction stage by conducting the cold reaction in a tubular reactor, and by controlling the process conditions, and in a column reactor and a tank reactor selected from the group consisting of The thermal reaction is carried out in a combination of one or more, by controlling the process conditions to control the amount of multifunctional impurities in the thermal reaction stage.
  • the control method of monofunctional impurities is to carry out a cold reaction in a tubular reactor.
  • the high shear effect of the tubular reactor is used to continuously reduce the particle size of the solid particles generated in the cold reaction stage, so that the polyamines encapsulated in the solid particles can be released and interact with the light.
  • a cold reaction occurs between gas and HCl to suppress the formation of monofunctional impurities.
  • the control method for multifunctional impurities is to set up one or more of a tower reactor and a kettle reactor in the thermal reaction stage, and adjust the phosgene concentration in the reactor by adjusting the pressure and flow rate in the reactor to avoid the
  • the phosgene concentration is too dilute, the mixing intensity is insufficient, the heat transfer is insufficient, the phosgene and the hydrochloride cannot be fully contacted, and the phosgene cannot absorb enough heat to complete the reaction, resulting in the monofunctional impurities generated in the cold reaction stage. functional group impurities.
  • the amount of circulating solvent can be reduced by 30%, the amount of circulating phosgene can be reduced by 25%, the energy consumption can be reduced by more than 25%, the yield of polyisocyanate product can be increased from 98.5% to more than 99.6%, and the cost of reaction equipment can be reduced. Deposit 60% of the material and extend the operating life of the equipment to two years.
  • a method for preparing polyisocyanate comprising the steps of:
  • step 2) make the material from step 1) further carry out the thermal reaction of phosgenation reaction
  • the amount of the monofunctional impurity generated in step 1) is controlled so that the content of the monofunctional impurity in the final product is 0.1 ppm to 20000 ppm, preferably 100 ppm to 15000 ppm, and
  • the amount of the multifunctional impurity produced in step 2) is controlled so that the content of the multifunctional impurity in the final product is 0.1 ppm to 1000 ppm, preferably 50 ppm to 500 ppm.
  • the polyisocyanate is preferably diisocyanate, more preferably diphenylmethylene diisocyanate (MDI), polydiphenylmethylene diisocyanate (PMDI), toluene diisocyanate (TDI), hexamethylene diisocyanate (HDI) or isophorone diisocyanate (IPDI).
  • MDI diphenylmethylene diisocyanate
  • PMDI polydiphenylmethylene diisocyanate
  • TDI toluene diisocyanate
  • HDI hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • the solvent in the polyamine solution and the phosgene solution is benzene, chlorobenzene, dichlorobenzene or toluene, preferably chlorobenzene or dichlorobenzene.
  • the mass fraction of the solvent in the polyamine solution is 40% to 90%, preferably 60% to 70%; when feeding, the temperature of the polyamine solution is 40°C to 150°C, preferably 60°C °C ⁇ 100°C; pressure is 10barg ⁇ 80barg, preferably 15barg ⁇ 50barg.
  • the mass fraction of phosgene in the phosgene solution is 40% to 80%, preferably 65% to 80%; during feeding, the temperature of the phosgene solution is -15°C to 80°C, It is preferably -10°C to 60°C; the pressure is preferably 10 barg to 80 barg, more preferably 15 barg to 50 barg.
  • the feeding of the polyamine solution and the phosgene solution is controlled so that the molar ratio of phosgene to polyamine is 1.2-8.5, preferably 1.5-8.0, more preferably 3.0-8.0, still more preferably 3.0-4.2.
  • the polyamine is preferably a diamine, more preferably diaminodiphenylmethane (MDA), polydiaminodiphenylmethane (DAM), diaminotoluene (TDA), hexamethylenediamine (HDA) or Isophoronediamine (IPDA).
  • MDA diaminodiphenylmethane
  • DAM polydiaminodiphenylmethane
  • TDA diaminotoluene
  • HDA hexamethylenediamine
  • IPDA Isophoronediamine
  • step 1) is carried out in a tubular reactor and step 2) is carried out in one or both reactors selected from the group consisting of tower reactors and tank reactors.
  • step 1)
  • the conditions for carrying out the cold reaction in the tubular reactor are:
  • the apparent liquid flow velocity in the tubular reactor is 1m/s ⁇ 5m/s, the apparent gas phase velocity is 5m/s ⁇ 20m/s, and the temperature of the tubular reactor is 80 °C ⁇ 160 °C, preferably 90 °C ⁇ 130 °C. °C; the pressure in the tubular reactor is 1 barg to 50 barg, preferably 5 barg to 50 barg.
  • the cold reaction is carried out in two or more tubular reactors.
  • the pressure and temperature in the tubular reactors of each stage decrease sequentially.
  • the thermal reaction is carried out in 3-stage tubular reactors, and the reaction conditions in each stage of tubular reactors are as follows.
  • the temperature is 100-130°C, preferably 110-125°C;
  • the pressure is 20-50 barg, preferably 25-50 barg;
  • the temperature is 80-125°C, preferably 85-120°C;
  • the pressure is 15-40 barg, preferably 15-30 barg;
  • the temperature is 80-115°C, preferably 90-100°C; the pressure is 1-30 barg, preferably 1-20 barg.
  • reaction conditions in step 1) are within the scope of the present invention, a good shearing effect can be ensured and the generation of monofunctional impurities can be suppressed.
  • the reaction conditions are not within the above range, the shearing effect will be poor, which will lead to the production of polyisocyanate on the surface of the solid particles, and the interior of the solid particles is polyamine, which will lead to side reactions between polyisocyanate and polyamine, resulting in excessive monofunctional impurities. , which affects the yield.
  • the total content of monofunctional impurities in the final product can be controlled to be between 0.1 ppm and 20000 ppm, even between 100 ppm and 15000 ppm.
  • step 2) the thermal reaction is carried out in one or both reactors selected from a tower reactor and a tank reactor.
  • the reaction is carried out in a combination of reactors selected from the group consisting of: single-stage or multi-stage tower reactors; single-stage or multi-stage tank reactors; single-stage or multi-stage reactors arranged in sequence along the direction of flow of material Tank reactors and single-stage or multi-stage tower reactors; and single-stage or multi-stage tower reactors and single-stage or multi-stage tank reactors arranged in sequence along the direction of flow of material.
  • the raw material of the hot reaction stage is the reaction solution from the cold reaction of step 1), the temperature of which is 40°C to 120°C, preferably 80°C to 100°C, and the pressure is 1 barg to 50 barg.
  • the reaction solution from the cold reaction stage is composed of: based on The total mass of the product obtained in step 1), the solvent mass concentration is 40% to 90%, the phosgene mass concentration is 20% to 60%, and the reaction product mass concentration is 10% to 30%, wherein the reaction product is an amino group containing Compounds containing hydrochloride groups, compounds containing acid chlorides, polyisocyanates, and compounds containing amino hydrochloride groups, compounds containing acid chloride groups, and polyisocyanates have a mass ratio of (15 to 30): (50 to 80 ): (5 ⁇ 30).
  • the temperature of the kettle reactor is 80°C to 180°C, preferably 80°C to 140°C; the rotor blade rotation Reynolds number of the kettle reactor is 1000 to 5000, preferably 1000 to 4500; the pressure in the kettle is 1barg to 50barg, preferably 1barg to 10barg .
  • the thermal reaction is carried out in a 2-6 stage tank reactor, more preferably a 3-5 stage tank reactor. More preferably, in accordance with the advancing direction of the material flow, the temperature in the tank reactors at each stage increases sequentially, and the pressure remains unchanged.
  • the reaction conditions in the tank reactors of each stage are as follows.
  • the temperature of the first-stage tank reactor is controlled to be 80°C to 120°C, preferably 80°C to 110°C, and the pressure is controlled to be 2 barg to 15 barg, preferably 2.5 barg to 10 barg;
  • the temperature of the second-stage tank reactor is controlled to be 80°C to 130°C, preferably 80°C to 120°C, and the pressure is controlled to be 2barg to 15barg, preferably 2.5barg to 10barg;
  • the temperature of the third-stage tank reactor is controlled to be 80°C to 140°C, preferably 80°C to 130°C, and the pressure is controlled to be 2barg to 15barg, preferably 2.5barg to 10barg;
  • the temperature of the fourth-stage tank reactor is controlled to be 90°C to 150°C, preferably 100°C to 140°C, and the pressure is controlled to be 2barg to 15barg, preferably 2.5barg to 10barg;
  • the temperature of the fifth-stage tank reactor is controlled to be 100°C to 170°C, preferably 110°C to 160°C, and the pressure is controlled to be 2 barg to 15 barg, preferably 2.5 barg to 10 barg.
  • the temperature of the tower reactor is 60°C ⁇ 180°C, preferably 80°C ⁇ 140°C; the superficial flow velocity is 2 ⁇ 20m/s, preferably 2 ⁇ 10m/s; the pressure in the tower is 1barg ⁇ 30barg, preferably 1 ⁇ 10barg .
  • the thermal reaction is carried out in a single stage tower reactor and/or a 4 to 5 stage tank reactor.
  • the total content of multifunctional impurities can be controlled at 0.1 Between ppm and 1000 ppm, preferably between 50 ppm and 500 ppm.
  • the content of monofunctional impurities and the content of multifunctional impurities respectively in the cold reaction stage and the hot reaction stage By controlling the content of monofunctional impurities and the content of multifunctional impurities respectively in the cold reaction stage and the hot reaction stage, the content of monofunctional impurities with higher solubility can be allowed to be slightly higher, and the content of multifunctional impurities with lower solubility is lower.
  • separately controlling the amount of monofunctional impurity and multifunctional impurity can not only reduce the possibility of clogging, but also greatly save the amount of solvent and reduce energy consumption.
  • a polyisocyanate prepared by the method of the present invention, wherein the total content of monofunctional impurities is 0.1 ppm to 20000 ppm, preferably 100 ppm to 15000 ppm, and the total content of multifunctional impurities is 0.1 ppm ppm to 1000 ppm, preferably 50 ppm to 500 ppm.
  • a reaction device used in the method of the present invention comprising:
  • One or more reactors selected from tubular reactors, tower reactors, and tank reactors,
  • tubular reactors wherein, one or more of the tubular reactors, tower reactors, and tank reactors are connected by pipelines.
  • the tubular reactor is a multi-stage tubular reactor.
  • the tower reactor is a single-stage tower reactor.
  • the tank reactor is a multistage tank reactor.
  • the tubular reactor includes piping, mixing elements, pressure control elements and heating elements.
  • the pipe is a combination of one or more selected from the group consisting of straight pipe, U-shaped pipe, S-shaped pipe, helical pipe and spindle-shaped pipe, preferably U-shaped pipe and/or S-shaped pipe.
  • the mixing elements are selected from packings, baffles, stationary vanes, moving vanes or sieves, preferably sieves.
  • the pressure control element is selected from butterfly valves, globe valves, ball valves and restrictor orifices, preferably globe valves and restrictor orifices.
  • the heating element is selected from jacket heating, tube heating and electrical heating, preferably jacket heating.
  • the diameter d of the straight pipe is preferably 25 to 500 mm, more preferably 100 to 300 mm.
  • the straight pipe diameter d of the U-shaped pipe is preferably 25-500 mm, more preferably 100-300 mm; the U-shaped spacing D is preferably 1000-5000 mm, more preferably 1500-2000 mm; the U-shaped height H is preferably 200-1000 mm, more preferably 300-700 mm; U-shaped width L is preferably 200-1000 mm, more preferably 300-700 mm; U-shaped fillet diameter R is preferably 0-500 mm, more preferably 0-350 mm.
  • the tower reactor includes a tower body, a tray, a pressure control element, a heating element, etc., wherein the tray is in the form of a rotating grid, a rotating float valve or a sieve hole.
  • the tower diameter of the tower body is preferably 1200mm-4500mm, more preferably 1800mm-2400mm; the tower height is preferably 2000mm-20000mm, more preferably 6000mm-9000mm.
  • the angle between the single layer of the rotating grid and the single layer grid is preferably 20-80°, more preferably 25-55°; the grid width is preferably 10mm-80mm, more preferably 20mm-40mm; the plate spacing is preferably It is 200mm - 1200mm, More preferably, it is 400mm - 600mm.
  • the diameter of the rotary float valve of the rotary float valve is preferably 5mm-80mm, more preferably 20mm-40mm; the distance between the rotary float valves is preferably 60mm-80mm, more preferably 55mm-75mm; the plate spacing is preferably 200mm-1200mm, More preferably, it is 400 mm - 600 mm.
  • the diameter of the screen holes is preferably 5mm-80mm, more preferably 20mm-40mm; the spacing between the screen holes is preferably 60mm-80mm, more preferably 55mm-75mm; the plate spacing is preferably 200mm-1200mm, more preferably 400mm-600mm .
  • the heating element is a jacket, a companion tube or an electric heating tube, preferably a jacket.
  • the tank-type reactor includes parts such as a tank body, agitator, paddles, and heating elements, and has a tank-type reactor of 2-6 stages, preferably a tank-type reactor body of 3-5 stages.
  • the technical advantage of the present invention is that, by using a special reactor and specific reaction conditions, the monofunctional impurities and the multifunctional impurities can be precisely controlled respectively, so that the amount of circulating solvent and the amount of circulating phosgene can be reduced by 30% and 25% compared with the conventional method. %, the energy consumption is reduced by more than 25%, the yield of polyisocyanate products is increased from 98.5% to more than 99.6%, the deposition material of the reaction equipment is reduced by 60%, and the operating life of the equipment is extended to more than two years.
  • Fig. 1 is the flow chart of the process for preparing diphenylmethylene diisocyanate (MDI) according to embodiment 1 of the present invention
  • Figure 2 is a schematic structural diagram of the U-shaped tube reactor used in Example 2 according to the present invention.
  • A1 1-stage tubular reactor
  • A2 2-stage tubular reactor
  • B1 Class 1 pressure relief device
  • B2 Class 2 pressure relief device
  • C1 1-stage tank reactor
  • C2 2-stage tank reactor
  • C4 4-stage tank reactor
  • the judgment method of the operation period is: when the steam valve of the last stage of the tank reactor is fully opened, the temperature of the tank reactor cannot be maintained at the target temperature, and the operation period is reached.
  • Analytical method for monofunctional impurities and multifunctional impurities use normal phase liquid chromatography (Agilent Poroshell 120EC-C18), pass through a silica-based column, dissolve the sample in dichloromethane and inject directly into the sample, and select tetrahydrofuran + n-hexane as the mobile phase ;
  • the column temperature is 40°C
  • the flow rate is 1ml/L
  • the injection volume is 20uL.
  • the peak position of each substance is determined by synthesizing standard substances, and the specific content of each substance is determined by formulating a standard curve.
  • This comparative example is provided with a four-stage kettle type reactor, and the diamine containing solvent and the phosgene solution containing solvent are directly injected into the first-stage kettle type reactor to react, and the temperature of the four-stage kettle type reactor is 80°C, At 90°C, 120°C, and 140°C, the pressures of the tank reactors were all 5 barg, and the Reynolds numbers of the tank reactors were 4050, 3000, 2600, and 2600, respectively. After the excess phosgene and solvent are removed by rectification, a polymerized MDI product is obtained, wherein the monofunctional impurity is 25000 ppm, and the multifunctional impurity is 1200 ppm.
  • the solvents in the diamine solution and the phosgene solution are both dichlorobenzene, the mass fraction of the solvent in the diamine solution is 70%, the temperature is 70°C, and the pressure is 25 barg; the mass fraction of phosgene in the phosgene solution is 45%, the temperature is 15°C, the pressure is 18 barg; the molar ratio of phosgene to diamine is 5.0.
  • the diamine is diaminodiphenylmethane (MDA).
  • the high pressure steam consumption under this comparative example is 1.4 t/t of polymerized MDI, the reaction yield is 98.6%, and the operation period of the reaction section is 9 months.
  • This comparative example is provided with a five-stage kettle type reactor, and the diamine containing solvent and the phosgene solution containing solvent are directly injected into the first-stage kettle type reactor to react.
  • the pressures of the tank reactors were all 5 barg, and the Reynolds numbers of the tank reactors were 4500, 4000, 2600, 2600 and 2600, respectively.
  • a polymerized MDI product is obtained, wherein the monofunctional impurity is 12500 ppm, and the multifunctional impurity is 1300 ppm.
  • the solvents in the diamine solution and the phosgene solution are both dichlorobenzene, the mass fraction of the solvent in the diamine solution is 72%, the temperature is 65°C, and the pressure is 20 barg; the mass fraction of the solute in the phosgene solution is 48 %, the temperature is -3°C, the pressure is 15 barg; the molar ratio of phosgene to diamine is 5.04.
  • the diamine is diaminodiphenylmethane (MDA).
  • the high-pressure steam consumption in this comparative example is 1.45 t/t polymerized MDI, the reaction yield is 98.8%, and the operation period of the reaction section is 9.5 months.
  • This comparative example is provided with a four-stage kettle type reactor, and the diamine containing solvent and the phosgene solution containing solvent are directly injected into the first-stage kettle type reactor to react, and the temperature of the four-stage kettle type reactor is 80°C, At 90°C, 110°C, and 140°C, the pressures of the tank reactors were all 5 barg, and the Reynolds numbers of the tank reactors were 4000, 3800, 2800, and 2600, respectively. After the excess phosgene and solvent are removed by rectification, a polymerized MDI product is obtained, wherein the monofunctional impurity is 32000 ppm and the multifunctional impurity is 400 ppm.
  • the solvents in the diamine solution and the phosgene solution are both dichlorobenzene, the mass fraction of the solvent in the diamine solution is 68%, the temperature is 20°C, and the pressure is 25 barg; the mass fraction of the solute in the phosgene solution is 45% %, the temperature is -5 °C, the pressure is 20 barg; the molar ratio of phosgene to diamine is 5.2.
  • the diamine is diaminodiphenylmethane (MDA).
  • the high-pressure steam consumption in this comparative example is 1.45 t/t of polymerized MDI, the reaction yield is 98.3%, and the operation period of the reaction section is 8.5 months.
  • the cold reaction stage adopts a multistage tubular reactor, and the hot reaction stage adopts a multistage tank reactor
  • the tubular reactor is a 2-stage, the pressure release device is a 2-stage; the shape of the tubular reactor is designed as a U shape, and the pressure release device is a stop valve; the straight pipe diameter d of the U-shaped mixing tube is 300mm, The U-shaped spacing D is 2000mm, the U-shaped height H is 600mm, the U-shaped width L is 600mm, and the U-shaped fillet diameter is 300mm.
  • the apparent liquid flow velocity in the tubular reactor is 0.5m/s, the apparent gas phase velocity is 3.2m/s, the temperature of the first-stage tubular reactor is 120 °C, the pressure is 45 barg, and the temperature of the second-stage tubular reactor is 90°C, pressure 20 barg.
  • the diamine containing the solvent and the phosgene solution containing the solvent are injected into the U-shaped tubular reactor to react, wherein the solvent in the diamine solution and the phosgene solution is dichlorobenzene, and the solvent mass fraction in the diamine solution is 64%, the temperature of the diamine solution is 70°C, the pressure is 50barg; the mass fraction of phosgene in the phosgene solution is 70%, the temperature of the phosgene solution is -10°C, the pressure is 50barg, the molar ratio of phosgene to diamine is 4.0.
  • the diamine is diaminodiphenylmethane (MDA).
  • the four-stage tank reactor has four stages, the temperatures of the four-stage tank reactor are 75°C, 90°C, 120°C, and 140°C, respectively, and the blade rotation Reynolds number of the four-stage tank reactor is 4050. , 3000, 2600, 2600, the pressure of the tank reactor is 5barg.
  • a polymerized MDI product is obtained, wherein the monofunctional impurity is 24000 ppm, and the multifunctional impurity is 600 ppm.
  • the high pressure steam consumption in this example is 1.38t/t of polymerized MDI, the reaction yield is 98.7%, and the operation period of the reaction section is 16 months.
  • the tubular reactor is 2-stage and the pressure release device is 2-stage;
  • the shape of the tubular reactor is designed as U-shape, and the pressure release device is a stop valve;
  • the straight pipe diameter d of the U-shape mixing tube is 300mm,
  • the U-shaped spacing D is 2000mm, the U-shaped height H is 600mm, the U-shaped width L is 600mm, and the U-shaped fillet diameter is 300mm.
  • the apparent liquid flow velocity in the tubular reactor is 2.5m/s, the apparent gas phase velocity is 8.4m/s, the temperature of the first-stage tubular reactor is 120°C, the pressure is 45barg, and the temperature of the second-stage tubular reactor is 90°C, pressure 20 barg.
  • the diamine containing the solvent and the phosgene solution containing the solvent are injected into the U-shaped tubular reactor to react, wherein the solvent in the diamine solution and the phosgene solution is dichlorobenzene, and the solvent mass fraction in the diamine solution is 64%, the temperature of the diamine solution is 70°C, the pressure is 50barg, the mass fraction of phosgene in the phosgene solution is 70%, the temperature of the phosgene solution is -10°C, and the pressure is 50barg; the molar ratio of phosgene to diamine is 4.0.
  • the diamine is diaminodiphenylmethane (MDA).
  • the four-stage tank reactor has four stages, the temperature of the four-stage tank reactor is 75°C, 90°C, 120°C, and 140°C, respectively, and the blade rotation Reynolds number of the four-stage tank reactor is 850. , 850, 860, 860, the pressure of the tank reactor is 5barg.
  • a polymerized MDI product is obtained, wherein the monofunctional impurity is 8000 ppm, and the multifunctional impurity is 1300 ppm.
  • the high pressure steam consumption in this example is 1.35t/t of polymerized MDI, the reaction yield is 98.4%, and the operation period of the reaction section is 14 months.
  • the tubular reactor is 3-stage, and the pressure release device is 3-stage; the shape of the tubular reactor is designed as U-shaped, and the pressure release device is a stop valve; the straight pipe diameter d of the U-shaped mixing tube is 350mm, The U-shaped spacing D is 2000mm, the U-shaped height H is 600mm, the U-shaped width L is 600mm, and the U-shaped fillet diameter is 300mm.
  • the apparent liquid flow velocity in the tubular reactor is 5.1m/s, the apparent gas flow velocity is 20.6m/s, the temperature of the first-stage tubular reactor is 135°C, the pressure is 46 barg, and the temperature of the second-stage tubular reactor is 120°C, pressure 24 barg, tertiary tubular reactor temperature 98°C, pressure 13 barg.
  • the diamine containing the solvent and the phosgene solution containing the solvent are injected into the U-shaped tubular reactor to react, wherein the solvent in the diamine solution and the phosgene solution is dichlorobenzene, and the solvent mass fraction in the diamine solution is 64%, the temperature of the diamine solution is 60°C and the pressure is 50barg; the temperature of the phosgene solution is 45°C and the pressure is 52barg.
  • the mass fraction of phosgene in the phosgene solution was 65%, and the molar ratio of phosgene to diamine was 3.6.
  • the diamine is diaminodiphenylmethane (MDA).
  • a tower reactor is used, the inner part adopts a rotating grid, the angle between the single-layer grid and the single-layer grid is 30°, the grid width is 35mm, and the plate spacing is 450mm.
  • the heating element of the tower is a jacket, the pressure release device controls the tower reactor pressure at 2 barg, the heating element controls the tower reactor temperature at 120°C, and the superficial flow rate is 1.9 m/s.
  • a polymerized MDI product is obtained, wherein the monofunctional impurity is 20800 ppm, and the multifunctional impurity is 1090 ppm.
  • the high-pressure steam consumption in this example is 1.33t/t polymerized MDI, the reaction yield is 98.5%, and the operation period of the reaction section is 13 months.
  • the tubular reactor is 2-stage and the pressure release device is 2-stage;
  • the shape of the tubular reactor is designed as U-shape, and the pressure release device is a stop valve;
  • the straight pipe diameter d of the U-shape mixing tube is 300mm,
  • the U-shaped spacing D is 2000mm, the U-shaped height H is 600mm, the U-shaped width L is 600mm, and the U-shaped fillet diameter is 300mm.
  • the apparent liquid flow velocity in the tubular reactor is 2.5m/s, the apparent gas phase velocity is 8.4m/s, the temperature of the first-stage tubular reactor is 120°C, the pressure is 45barg, and the temperature of the second-stage tubular reactor is 90°C, pressure 20 barg.
  • the diamine containing the solvent and the phosgene solution containing the solvent are injected into the U-shaped tubular reactor to react, wherein the solvent in the diamine solution and the phosgene solution is dichlorobenzene, and the solvent mass fraction in the diamine solution is 64%, the temperature of the diamine solution is 70°C, the pressure is 50barg, the mass fraction of phosgene in the phosgene solution is 70%, the temperature of the phosgene solution is -10°C, the pressure is 50barg, the molar ratio of phosgene to diamine is 4.0, where the diamine is diaminodiphenylmethane (MDA).
  • MDA diaminodiphenylmethane
  • the four-stage tank reactor has four stages, the temperature of the four-stage tank reactor is 85°C, 90°C, 120°C, and 140°C, respectively, and the blade rotation Reynolds number of the four-stage tank reactor is 4050. , 3000, 2600, 2600, the pressure of the tank reactor is 5barg.
  • a polymerized MDI product is obtained, wherein the monofunctional impurity is 8000 ppm, and the multifunctional impurity is 300 ppm.
  • the high pressure steam consumption in this example is 1.05t/t of polymerized MDI, the reaction yield is 99.4%, and the operation period of the reaction section is 24 months.
  • the tubular reactor is 3-stage, and the pressure release device is 3-stage; the shape of the tubular reactor is designed as U-shaped, and the pressure release device is a stop valve; the straight pipe diameter d of the U-shaped mixing tube is 350mm, The U-shaped spacing D is 2000mm, the U-shaped height H is 600mm, the U-shaped width L is 600mm, and the U-shaped fillet diameter is 300mm.
  • the apparent liquid flow velocity in the tubular reactor is 4.8m/s
  • the apparent gas phase velocity is 19.2m/s
  • the temperature of the first-stage tubular reactor is 120 °C
  • the pressure is 48 barg
  • the temperature of the second-stage tubular reactor is 115°C
  • pressure 25 barg is tertiary tubular reactor temperature 95°C, pressure 12 barg.
  • the diamine containing the solvent and the phosgene solution containing the solvent are injected into the U-shaped tubular reactor to react, wherein the solvent in the diamine solution and the phosgene solution is dichlorobenzene, and the solvent mass fraction in the diamine solution is 64%, the temperature of the diamine solution is 60°C, the pressure is 50barg, the mass fraction of phosgene in the phosgene solution is 65%, the temperature of the phosgene solution is 10°C, and the pressure is 50barg.
  • the molar ratio of phosgene to diamine was 3.6. Wherein the diamine is diaminodiphenylmethane (MDA).
  • a tower reactor is used, the inner part adopts a rotating grid, the angle between the single-layer grid and the single-layer grid is 30°, the grid width is 35mm, and the plate spacing is 450mm.
  • the heating element of the tower is a jacket, the pressure release device controls the tower reactor pressure at 2 barg, the heating element controls the tower reactor temperature at 120°C, and the superficial flow rate is 5.2 m/s.
  • a polymerized MDI product is obtained, wherein the monofunctional impurity is 9000 ppm, and the multifunctional impurity is 350 ppm.
  • the high pressure steam consumption in this example is 1.03t/t of polymerized MDI, the reaction yield is 99.5%, and the operation period of the reaction section is 24 months.
  • the cold reaction stage adopts a multi-stage tubular reactor, and the thermal reaction stage adopts a tower reactor + a kettle reactor
  • the tubular reactor is 3-stage, and the pressure release device is 3-stage; the shape of the tubular reactor is designed as U-shaped, and the pressure release device is a stop valve; the straight pipe diameter d of the U-shaped mixing tube is 350mm, The U-shaped spacing D is 2000mm, the U-shaped height H is 600mm, the U-shaped width L is 600mm, and the U-shaped fillet diameter is 300mm.
  • the apparent liquid flow velocity in the tubular reactor is 4.8m/s
  • the apparent gas phase velocity is 19.2m/s
  • the temperature of the first-stage tubular reactor is 120 °C
  • the pressure is 48 barg
  • the temperature of the second-stage tubular reactor is 115°C
  • pressure 25 barg is tertiary tubular reactor temperature 95°C, pressure 12 barg.
  • the diamine containing the solvent and the phosgene solution containing the solvent are injected into the U-shaped tubular reactor to react, wherein the solvent in the diamine solution and the phosgene solution is dichlorobenzene, and the solvent mass fraction in the diamine solution is 64%, the temperature of the diamine solution is 60°C, the pressure is 50barg, the mass fraction of phosgene in the phosgene solution is 65%, the temperature of the phosgene solution is 20°C, and the pressure is 50barg.
  • the molar ratio of phosgene to diamine was 3.6. Wherein the diamine is diaminodiphenylmethane (MDA).
  • Condition of thermal reaction stage adopt tower reactor + kettle reactor, in which the tower reactor conditions are, the inner part adopts rotating grille, the angle between single layer and single layer grille is 40°, and the width of grille is 40mm
  • the board spacing is 500mm.
  • the heating element of the tower is a jacket, the pressure release device controls the tower reactor pressure at 1.5barg, the heating element controls the tower reactor temperature at 115°C, and the superficial flow rate is 6.3m/s
  • the five-stage tank reactor has five stages.
  • the temperatures of the five-stage tank reactor are 85°C, 90°C, 120°C, 130°C, and 140°C, respectively.
  • the blade rotation Reynolds numbers of the five-stage tank reactor are 4050 and 3000, respectively. , 2600, 2600, 2600, the pressure of the tank reactor is 3barg.
  • a polymerized MDI product is obtained, wherein the monofunctional impurity is 8200 ppm, and the multifunctional impurity is 300 ppm.
  • the high pressure steam consumption in this example is 1.04t/t of polymerized MDI, the reaction yield is 99.6%, and the operation period of the reaction section is 24 months.
  • the tubular reactor is 2-stage and the pressure release device is 2-stage;
  • the shape of the tubular reactor is designed as U-shape, and the pressure release device is a stop valve;
  • the straight pipe diameter d of the U-shape mixing tube is 300mm,
  • the U-shaped spacing D is 2000mm, the U-shaped height H is 600mm, the U-shaped width L is 600mm, and the U-shaped fillet diameter is 300mm.
  • the apparent liquid flow velocity in the tubular reactor is 1.1 m/s, the apparent gas flow velocity is 5.1 m/s, the temperature of the first-stage tubular reactor is 120 °C, the pressure is 45 barg, and the temperature of the second-stage tubular reactor is 90°C, pressure 20 barg.
  • the diamine containing the solvent and the phosgene solution containing the solvent are injected into the U-shaped tubular reactor to react, wherein the solvent in the diamine solution and the phosgene solution is dichlorobenzene, and the solvent mass fraction in the diamine solution is 64%, the temperature of the diamine solution is 70°C, the pressure is 50barg, the mass fraction of phosgene in the phosgene solution is 70%, the temperature of the phosgene solution is -10°C, the pressure is 50barg, the molar ratio of phosgene to diamine is 4.0, where the diamine is diaminodiphenylmethane (MDA).
  • MDA diaminodiphenylmethane
  • the four-stage tank reactor has four stages, the temperatures of the four-stage tank reactor are 85°C, 90°C, 120°C, and 140°C, respectively, and the blade rotation Reynolds number of the four-stage tank reactor is 1050. , 1080, 1070, 1050, the pressure of the tank reactor is 5barg.
  • a polymerized MDI product is obtained, wherein the monofunctional impurity is 19000 ppm, and the multifunctional impurity is 940 ppm.
  • the high-pressure steam consumption in this embodiment is 1.32t/t polymerized MDI, the reaction yield is 98.8%, and the operation period of the reaction section is 17 months.
  • the tubular reactor is 3-stage, and the pressure release device is 3-stage; the shape of the tubular reactor is designed as U-shaped, and the pressure release device is a stop valve; the straight pipe diameter d of the U-shaped mixing tube is 350mm, The U-shaped spacing D is 2000mm, the U-shaped height H is 600mm, the U-shaped width L is 600mm, and the U-shaped fillet diameter is 300mm.
  • the apparent liquid flow velocity in the tubular reactor is 4.8m/s
  • the apparent gas phase velocity is 19.2m/s
  • the temperature of the first-stage tubular reactor is 120 °C
  • the pressure is 48 barg
  • the temperature of the second-stage tubular reactor is 115°C
  • pressure 25 barg is tertiary tubular reactor temperature 95°C, pressure 12 barg.
  • the diamine containing the solvent and the phosgene solution containing the solvent are injected into the U-shaped tubular reactor to react, wherein the solvent in the diamine solution and the phosgene solution is dichlorobenzene, and the solvent mass fraction in the diamine solution is 64%, the temperature of the diamine solution is 60°C, the pressure is 50barg, the mass fraction of phosgene in the phosgene solution is 65%, the temperature of the phosgene solution is 40°C, and the pressure is 50barg.
  • the molar ratio of phosgene to diamine was 3.6. Wherein the diamine is diaminodiphenylmethane (MDA).
  • a tower reactor is used, the inner part adopts a rotating grid, the angle between the single-layer grid and the single-layer grid is 30°, the grid width is 35mm, and the plate spacing is 450mm.
  • the heating element of the tower is a jacket, the pressure release device controls the tower reactor pressure at 2 barg, the heating element controls the tower reactor temperature at 120°C, and the superficial flow rate is 2.1 m/s.
  • a polymerized MDI product is obtained, wherein the monofunctional impurity is 19500 ppm, and the multifunctional impurity is 880 ppm.
  • the high-pressure steam consumption in this example is 1.31 t/t of polymerized MDI, the reaction yield is 98.8%, and the operation period of the reaction section is 17 months.
  • This comparative example is provided with a five-stage tank reactor, and the diamine containing solvent and the phosgene solution containing solvent are directly injected into the first-level tank-type reactor to react, and the temperature of the fourth-level tank-type reactor is respectively 85 °C, 93°C, 115°C, and 135°C, and the pressure of the tank reactor is 5 barg. After rectification to remove excess phosgene and solvent, TDI product is obtained, in which the monofunctional impurity is 46000ppm and the multifunctional impurity is 700ppm.
  • the solvent in the diamine solution and the phosgene solution is dichlorobenzene
  • the mass fraction of the solvent in the diamine solution is 82%
  • the mass fraction of phosgene in the phosgene solution is 61%
  • the temperature of the phosgene solution is 20 °C
  • the pressure is 50 barg.
  • the molar ratio of phosgene to diamine was 8.2.
  • the diamine is diaminotoluene.
  • the high pressure steam consumption under this comparative example is 2.2t/t TDI, the reaction yield is 94.5%, and the operation period of the reaction section is 8 months.
  • the cold reaction stage adopts a multi-stage tubular reactor, and the thermal reaction stage adopts a tower reactor
  • the tubular reactor is 4-stage, and the pressure release device is 4-stage;
  • the shape of the tubular reactor is designed as U-shaped, and the pressure release device is a stop valve;
  • the straight pipe diameter d of the U-shaped mixing tube is 350mm,
  • the U-shaped spacing D is 2000mm, the U-shaped height H is 600mm, the U-shaped width L is 600mm, and the U-shaped fillet diameter is 300mm.
  • the apparent liquid flow velocity in the tubular reactor is 4.9m/s
  • the apparent gas flow velocity is 15.2m/s
  • the temperature of the first-stage tubular reactor is 120°C
  • the pressure is 28 barg
  • the temperature of the second-stage tubular reactor is 112°C, 18 barg pressure, 98°C third stage tubular reactor temperature and 10 barg pressure, and 4th stage tubular reactor temperature 90°C and 5 barg pressure.
  • the diamine is diaminotoluene.
  • the diamine containing the solvent and the phosgene solution containing the solvent are injected into the U-shaped tubular reactor to react, wherein the solvent in the diamine solution and the phosgene solution is dichlorobenzene, and the solvent mass fraction in the diamine solution is 65%, the temperature of the diamine solution is 65°C, the pressure is 45barg, the mass fraction of phosgene in the phosgene solution is 66%, the temperature of the phosgene solution is 50°C, and the pressure is 30barg.
  • the molar ratio of phosgene to diamine was 7.4.
  • a tower reactor is used, the inner part adopts a rotating grid, the angle between the single-layer grid and the single-layer grid is 45°, the grid width is 35mm, and the plate spacing is 450mm.
  • the heating element of the tower is a jacket, the pressure release device controls the tower reactor pressure at 1 barg, the heating element controls the tower reactor temperature at 125°C, and the superficial flow rate is 3.8m/s.
  • TDI product After rectification to remove excess phosgene and solvent, TDI product is obtained, wherein the monofunctional impurity is 6000ppm, and the multifunctional impurity is 470ppm.
  • the high-pressure steam consumption in this example is 2.01 t/t of polymerized MDI, the reaction yield is 96.7%, and the operation period of the reaction section is 24 months.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种制备多异氰酸酯的方法、使用该方法得到的多异氰酸酯以及在该方法中使用的反应装置。所述方法包括如下步骤:1)使多胺溶液和光气溶液进行光气化反应的冷反应;2)使来自步骤1)的物料进一步进行热反应;其中,控制在步骤1)中产生的单官能团杂质的量,使得在最终产物中的单官能团杂质的含量为0.1ppm~20000ppm,以及控制在步骤2)中产生的多官能团杂质的量,使得在最终产物中的多官能团杂质的含量为0.1ppm~1000ppm。在本发明中通过分别在冷反应阶段和热反应阶段分别控制单官能团杂质、多官能团杂质的含量,可以实现对于溶剂消耗量的精确控制,从而实现能耗的大幅度降低。

Description

一种制备多异氰酸酯的方法及反应装置 技术领域
本发明涉及一种制备多异氰酸酯,特别是二异氰酸酯的方法,及使用在该方法中使用的反应装置。
背景技术
多异氰酸酯在生产过程中的关键点在于光气化反应。反应液中的含有酰氯基、脲基、盐酸盐基团类的杂质对于反应收率、产品质量、设备运行寿命有着显著的影响。目前行业内对主要通过分析和控制酰氯基团、脲基、盐酸盐基团等杂质的总和。为了降低这些杂质的浓度,进而减少设备的堵塞的频次,通常通过大幅度提高溶剂消耗量,将包含酰氯基团、脲基、盐酸盐基团的等杂质总和控制到极低的水平,来使得产品质量高度可控。
根据公开专利报道,解决反应效果不佳、收率低、堵塞设备有以下几种方法:
中国专利公开CN101153015A描述可通过孔射流式反应器强化反应及混合效果。中国专利公开CN102317254A描述通过喷射器提升强化反应及混合效果。但是上述专利针对的是气相法光气化工艺,无法解决液相过程的问题。
中国专利公开CN1651406A描述一种管状反应器,通过搅拌器加强管内前半段的混合效果,但是无法消除后半段的副反应。
中国专利公开CN105126711A描述了一种塔式反应器,通过在塔内设置静旋片、动旋片,促进胺盐酸盐颗粒直径减小,增大与光气反应的效果,能够解决已有成盐光气化反应中常见的成盐浓度过低、盐酸盐结块以及结块导致的二胺包裹,内部物料难以参与到下一阶段的光气化反应的问题。该方法需要额外加入HCl,造成循环光气回收的设备尺寸偏大、低温冷却的能量消耗过大等问题。
中国专利公开CN202131251U描述了一种防堵塞、易维修、可灵活调节的混合式反应器。该方法通过在倒圆锥形内腔内通入溶剂进行清洗,防止物料在低压区域产生沉淀,进而避免堵塞,并通过更换喷嘴来实现设备长周期运转。仅通过冲洗、更换来避免堵塞,没有在本质上实现反应效果改善提升的,存在溶剂消耗量大、操作过程更换喷嘴操作频繁的问题。
中国专利公开CN2444949Y描述了一种新型喷射反应器,通过设置主体为 空心圆柱的撞针,并设置多个扇形叶轮、呈倾斜状顺序排列使原料液流高速旋转液化、通过喷嘴出口端旋转喷射而出进入喷射反应器的旋转雾化器。该方法需要加入较多的溶剂以达到预期的反应效果,胺溶液浓度最好的情况为27%,能耗较高。
美国专利公开US3226410A描述了一种方法,借助在管中横向的小孔,把胺化合物溶液喷入到管中的光气溶液中。为了得到满意的产率,该方法要求反应物浓度低,因此需要较大的能耗回收溶剂。此外,也无法避免壁上的结垢问题。
英国专利公开GB1086782A采用成盐光气化制备苯二亚甲基二异氰酸酯的方法,二胺与氯化氢在0~60℃成盐,120~128℃进行盐酸盐光气化。虽然能够减少副产物的生成,但是盐酸盐反应浓度在5.5%以下时收率不高,同时需要蒸馏脱除大量的溶剂,经济性差。
综上,现有技术针对液相光气化过程反应效果差将带来溶剂含量高能耗大、副反应多产品收率低、固体含量高易堵塞等问题解决措施较为局限,需要一种新的反应工艺,并制定明确、有效的杂质控制目标,实现降低能耗、提高收率、减少堵塞等目标。
本发明的发明人发现杂质基团总和与设备的堵塞频次、产品质量没有良好的对应关系,即对于酰氯基团、脲基、盐酸盐基团等杂质基团总和无法有效表征对于反应收率、产品质量、设备运行寿命的实际影响程度。因此必须通过大幅度提高溶剂消耗量,将酰氯基团、脲基、盐酸盐基团等杂质基团总和控制到极低的水平,来使得产品质量高度可控,该问题制约了装置的长周期运行、反应收率及能耗。
通过进一步研究发现,单一的评估杂质的总量无法反应出其对于反应收率、产品质量、设备运行寿命的影响,原因在于单官能团杂质、多官能团杂质(单官能团杂质是指:除了NCO基团之外,还包含选自盐酸盐基团、脲基、酰氯基等基团中的一个基团且仅有一个非NCO官能团的杂质;多官能团杂质是指:包含选自盐酸盐基团、脲基、酰氯基团等基团中的两个以上基团且有两个以上的非NCO官能团的杂质,下同)的影响程度有着显著的差异,其中单官能团杂质除了盐酸盐基团、脲基、酰氯基等基团之外,仍有NCO基团,导致其在聚异氰酸酯中仍有一定的溶解度,而多官能团杂质没有NCO基团、或者NCO基团含量远远低于单官能团杂质,导致其在聚异氰酸酯中的溶解度极低,一旦有多官能团杂质的生成,将迅速导致设备运行周期下降,从而装置被迫在反应阶段增加溶剂的加入,能耗水平大幅度提高。
发明内容
本发明提供了一种制备多异氰酸酯的方法及在该方法中使用的反应装置。
本发明的发明人发现单一的评估单官能团的杂质总量无法反映出其对于反应收率、产品质量、设备运行寿命的影响,原因在于单官能团杂质、多官能团杂质对工艺的影响程度有着显著的差异。单官能团杂质是指:除了NCO基团之外,还包含选自盐酸盐基团、脲基、酰氯基等基团中的一个基团且仅有一个非NCO官能团的杂质;多官能团杂质是指:包含选自盐酸盐基团、脲基、酰氯基团等基团中的两个以上基团的杂质,所述多官能团杂质不包含NCO基团,或者异氰酸根基团数量与其它基团数量总和(盐酸盐基团、脲基、酰氯基团等)之比小于或等于1。上述单官能团杂质除了盐酸盐基团、脲基、酰氯基等基团之外,还包含NCO基团,导致其在聚异氰酸酯中仍有一定的溶解度。而多官能团杂质几乎不包含NCO基团、或者NCO基团含量远低于单官能团杂质,导致其在聚二异氰酸酯中的溶解度极低。一旦有多官能团杂质的生成,将迅速导致设备运行周期下降,从而装置被迫在反应阶段增加溶剂的加入,能耗水平大幅度提高。
在现有技术中并没有认识到多官能团杂质的影响,也没有对多官能团杂质进行单独控制,因此无法达到对于溶剂消耗量的精确控制。
在本发明中通过分别在冷反应阶段和热反应阶段分别控制单官能团杂质、多官能团杂质的含量,可以实现对于溶剂消耗量的精确控制,从而实现能耗的大幅度降低。
光气化反应过程的核心设备在于光气化反应器,光气化反应器的冷反应过程、热反应过程的反应器配置方案,对于反应效果有着十分显著的影响,同时也是决定单官能团杂质、多官能团杂质的重要因素。
单官能团杂质主要是在冷反应阶段产生的,而多官能团杂质主要是在热反应阶段产生的。针对此,本发明通过在管式反应器中进行冷反应,并通过控制工艺条件来控制在冷反应阶段产生的单官能团杂质的量,以及在选自塔式反应器和釜式反应器中的一种或多种的组合中实施热反应,通过控制工艺条件来至控制热反应阶段的多官能团杂质的量。
具体而言,单官能团杂质的控制方法是,在管式反应器中进行冷反应。通过设置管式反应器中的反应条件,利用管式反应器的高剪切效应,不断削小冷反应阶段产生的固体颗粒粒径,使得包裹在固体颗粒中的多胺得以被释放出来与光气、HCl发生冷反应,来抑制单官能团杂质的生成。
多官能团杂质的控制方法是,在热反应阶段设置塔式反应器和釜式反应器中的一种或者多种,通过调整反应器内压力、流速,调节反应器内的光气浓度,避免因光气浓度过稀,混合强度不足,热量传递不充分,光气与盐酸盐无法充分接触,无法吸收足够的热量完成反应,导致冷反应阶段产生的单官能团杂质在热反应阶段进一步转化为多官能团杂质。
在现有技术中均未在冷热反应阶段对单官能团杂质、多官能团杂质进行分别控制,在混合效果、热量输入、停留时间上未达到最优设计,无法得到质量最佳的光气化反应液。
通过实施本发明的制备方法,可实现循环溶剂量减少30%、循环光气量减少25%,实现能耗下降25%以上,多异氰酸酯产品收率从98.5%提升至99.6%以上,减少反应设备的沉积物质60%、延长设备的运行寿命至两年。
因此,根据本发明的第一方面,提供了一种制备多异氰酸酯的方法,其包括如下步骤:
1)使多胺溶液和光气溶液进行光气化反应的冷反应;
2)使来自步骤1)的物料进一步进行光气化反应的热反应,
其中,控制在步骤1)中产生的单官能团杂质的量,使得在最终产物中的单官能团杂质的含量为0.1ppm~20000ppm,优选100ppm~15000ppm,以及
控制在步骤2)中产生的多官能团杂质的量,使得在最终产物中的多官能团杂质的含量为0.1ppm~1000ppm,优选为50ppm~500ppm。
当单官能团杂质和多官能团杂质的含量低于下限时,会导致生产成本上升,生产效率下降。
当单官能团杂质和多官能团杂质的含量高于上限时,会导致循环溶剂量增加、能耗上升、设备的运行寿命下降。
所述多异氰酸酯优选为二异氰酸酯,更优选为二苯基亚甲基二异氰酸酯(MDI)、聚二苯基亚甲基二异氰酸酯(PMDI)、甲苯二异氰酸酯(TDI)、六亚甲基二异氰酸酯(HDI)或异佛尔酮二异氰酸酯(IPDI)。
所述多胺溶液和光气溶液中的溶剂为苯、氯苯、二氯苯或甲苯,优选氯苯或二氯苯。
基于所述多胺溶液的总重量,多胺溶液中的溶剂质量分数为40%~90%,优选60%~70%;进料时,多胺溶液的温度为40℃~150℃,优选60℃~100℃;压力为10barg~80barg,优选15barg~50barg。
基于所述光气溶液的总重量,光气溶液中的光气质量分数为40%~80%,优选65%~80%;进料时,光气溶液的温度为-15℃~80℃,优选-10℃~60℃;压 力优选为10barg~80barg,更优选15barg~50barg。
控制所述多胺溶液和所述光气溶液的进料,使得光气与多胺的摩尔比为1.2~8.5,优选1.5~8.0,更优选为3.0~8.0,进一步更优选为3.0~4.2。
所述多胺优选为二胺,更优选为二氨基二苯基甲烷(MDA)、聚二氨基二苯基甲烷(DAM)、二氨基甲苯(TDA)、六亚甲基二胺(HDA)或异佛尔酮二胺(IPDA)。
优选地,步骤1)在管式反应器中进行,以及步骤2)在选自塔式反应器和釜式反应器中的一种或者两种反应器中进行。
在步骤1)中,
优选地,在管式反应器中实施冷反应的条件为:
管式反应器中的表观液相流速为1m/s~5m/s,表观气相流速为5m/s~20m/s,管式反应器温度为80℃~160℃,优选90℃~130℃;管式反应器内压力为1barg~50barg,优选5barg~50barg。
优选地,所述冷反应在二级以上管式反应器中进行。在二级以上的管式反应器中进行冷反应时,沿着物料流行进的方向,优选各级管式反应器中的压力依次下降,温度依次降低。
更优选地,例如,在3级管式反应器中进行所述热反应,各级管式反应器中的反应条件如下。
在第1级管式反应器中,温度为100~130℃,优选110~125℃;压力为在20~50barg,优选25~50barg;
在第2级管式反应器中,温度为80~125℃,优选85~120℃;压力为在15~40barg,优选15~30barg;
在第3级管式反应器中,温度为80~115℃,优选90~100℃;压力为在1~30barg,优选1~20barg。
当在步骤1)中的反应条件在本发明所述的范围内时,能够确保良好的剪切效果,抑制单官能团杂质的生成。当反应条件不在上述范围内时,导致剪切效果较差,将导致固体颗粒表面生产多异氰酸酯,固体颗粒内部为多胺,从而导致多异氰酸酯与多胺发生副反应,产生过多的单官能团杂质,影响收率。
在本发明中,在所述反应条件下,能够控制单官能团杂质在最终产品中的总含量在0.1ppm~20000ppm之间,甚至在100ppm~15000ppm之间。
在步骤2)中,在选自塔式反应器和釜式反应器中的一种或者两种反应器中进行热反应。优选地,在反应器组合中进行反应,其选自:单级或多级塔式反应器;单级或多级釜式反应器;沿着物料流行进的方向依次设置的单级或多级 釜式反应器和单级或多级塔式反应器;以及沿着物料流行进的方向依次设置的单级或多级塔式反应器和单级或多级釜式反应器。
热反应阶段的原料为来自步骤1)的冷反应的反应液,其温度为40℃~120℃,优选80℃~100℃,压力为1barg~50barg,来自冷反应阶段的反应液组成为:基于步骤1)中得到的产物的总质量,溶剂质量浓度为40%~90%,光气质量浓度为20%~60%,反应产物质量浓度为10%~30%,其中,反应产物为包含氨基盐酸盐基团的化合物、包含酰氯的化合物、多异氰酸酯,以及包含氨基盐酸盐基团的化合物、包含酰氯基团的化合物、多异氰酸酯的质量比为(15~30):(50~80):(5~30)。
在釜式反应器中实施热反应时,其中条件为:
釜式反应器温度为80℃~180℃,优选80℃~140℃;釜式反应器桨叶旋转雷诺数为1000~5000,优选1000~4500;釜内压力为1barg~50barg,优选1barg~10barg。
优选地,在2~6级釜式反应器,更优选3~5级釜式反应器中进行所述热反应。更优选地,按照物料流行进的方向,在各级釜式反应器中的温度依次升高,压力保持不变。
更优选地,例如,在5级釜式反应器进行所述热反应时,各级釜式反应器中的反应条件如下。
其中,第1级釜式反应器温度控制80℃~120℃,优选80℃~110℃,压力控制2barg~15barg,优选2.5barg~10barg;
第2级釜式反应器温度控制80℃~130℃,优选80℃~120℃,压力控制2barg~15barg,优选2.5barg~10barg;
第3级釜式反应器温度控制80℃~140℃,优选80℃~130℃,压力控制2barg~15barg,优选2.5barg~10barg;
第4级釜式反应器温度控制90℃~150℃,优选100℃~140℃,压力控制2barg~15barg,优选2.5barg~10barg;
第5级釜式反应器温度控制100℃~170℃,优选110℃~160℃,压力控制2barg~15barg,优选2.5barg~10barg。
和/或在塔式反应器中实施所述热反应。
在塔式反应器中实施热反应时,其中条件为:
塔式反应器温度为60℃~180℃,优选80℃~140℃;空塔流速为2~20m/s,优选为2~10m/s;塔内压力为1barg~30barg,优选为1~10barg。
优选地,在单级塔式反应器和/或4至5级釜式反应器中进行所述热反应。
当来自冷反应阶段的反应液的溶液的温度、压力、混合强度在上述范围内时,有利于确保良好的剪切效果,抑制多官能团杂质的生成。在热反应步骤中,通过使用选自塔式反应器、釜式反应器中的一种或者多种反应器,并且在本发明所述的条件下反应,能够将多官能团杂质总含量控制在0.1ppm~1000ppm之间,优选50ppm~500ppm之间。
通过在冷反应阶段和热反应阶段分别控制单官能团杂质的含量和多官能团杂质的含量,能够允许溶解度较大的单官能团杂质的含量稍高,而溶解度较低的多官能团杂质的含量较低。与现有技术中控制杂质的总量相比,分别控制单官能团杂质和多官能团杂质的量,不仅能改减少堵塞的可能性,还大大节省了溶剂的用量,降低了能耗。
根据本发明的第二方面,提供了一种根据本发明所述的方法制备的多异氰酸酯,其中,单官能团杂质总含量为0.1ppm~20000ppm,优选100ppm~15000ppm,以及多官能团杂质总含量为0.1ppm~1000ppm,优选50ppm~500ppm。
根据本发明的第三方面,提供了一种在本发明所述的方法中使用的反应装置,其包括:
管式反应器;和
选自管式反应器、塔式反应器、釜式反应器中的一种或者多种反应器,
其中,所述管式反应器、塔式反应器、釜式反应器中的一种或者多种反应器通过管线连接。
优选地,所述管式反应器为多级管式反应器。
优选地,所述塔式反应器为单级塔式反应器。
优选地,所述釜式反应器为多级釜式反应器。
所述管式反应器包括管道、混合元件、压力控制元件和加热元件。管道为选自直管、U形管、S形管、螺旋管和纺锤形管中的一种或多种的组合,优选U形管和/或S形管。混合元件选自密封填料、折流挡板、静止旋片、动旋片或筛板,优选筛板。压力控制元件选自蝶阀、截止阀、球阀和限流孔板,优选截止阀、限流孔板。加热元件选自夹套加热、伴管加热和电加热,优选夹套加热。
所述直管直径d优选为25~500mm,更优选100~300mm。
所述U形管的直管直径d优选为25~500mm,更优选100~300mm;U型间距D优选为1000~5000mm,更优选1500mm~2000mm;U型高度H优选为200~1000mm,更优选300~700mm;U型宽度L优选为200~1000mm,更优选 300~700mm;U型圆角直径R优选为0~500mm,更优选0~350mm。
所述的塔式反应器包括塔体、塔板、压力控制元件和加热元件等,其中塔板形式为旋转格栅、旋转浮阀或筛孔等。
所述塔体的塔直径优选为1200mm~4500mm,更优选1800mm~2400mm;塔高度优选为2000mm~20000mm,更优选6000mm~9000mm。
所述旋转格栅的单层与单层格栅之间角度优选为20~80°,更优选为25~55°;格栅宽度优选为10mm~80mm,更优选为20mm~40mm;板间距优选为200mm~1200mm,更优选为400mm~600mm。
所述旋转浮阀的旋转浮阀直径优选为5mm~80mm,更优选为20mm~40mm;旋转浮阀之间间距优选为60mm~80mm,更优选为55mm~75mm;板间距优选为200mm~1200mm,更优选为400mm~600mm。
所述筛孔直径优选为5mm~80mm,更优选为20mm~40mm;筛孔之间间距优选为60mm~80mm,更优选为55mm~75mm;板间距优选为200mm~1200mm,更优选为400mm~600mm。
所述加热元件为夹套、伴管或电加热管,优选夹套。
所述釜式反应器包括釜体、搅拌器、桨叶和加热元件等部分,其具有2~6级釜式反应器,优选3~5级釜式反应器体。
本发明的技术优势在于,通过使用特殊的反应器和特定的反应条件,分别对单官能团杂质、多官能团杂质进行精确控制,实现较常规方法下的循环溶剂量减少30%、循环光气量减少25%,实现能耗下降25%以上,多异氰酸酯产品收率从98.5%提升至99.6%以上,减少反应设备的沉积物质60%、延长设备的运行寿命至两年以上。
附图说明
图1为根据本发明的实施例1的用于制备二苯基亚甲基二异氰酸酯(MDI)工艺的流程图;
图2为根据本发明的实施例2中使用的U形管反应器结构示意图。
附图标记
A1:1级管式反应器;
A2:2级管式反应器;
B1:1级压力释放装置;
B2:2级压力释放装置;
C1:1级釜式反应器;
C2:2级釜式反应器;
C3:3级釜式反应器;
C4:4级釜式反应器;
D:U形间距                  H:U形高度
L:U形宽度                  R:U形圆角半径(内径)
d:管道直径
具体实施方式
下面用实施例并结合附图对本发明做进一步说明,但本发明不受其限制。下列实施例中未表明具体条件的试验方法,通常按照常规条件。
各对比例及实施例涉及到的判定方法、分析方法如下:
1、运行周期的判定方法是:当最后一级釜式反应器的蒸汽阀门全开的状态下,也无法使釜式反应器的温度维持在目标温度上,则达到运行周期。
2、单官能团杂质、多官能团杂质的分析方法:使用正相液相色谱(安捷伦Poroshell 120EC-C18),通过硅基柱,样品以二氯甲烷溶解后直接进样,流动相选择四氢呋喃+正己烷;色谱柱温40℃,流速1ml/L,进样量20uL,通过合成标准物质确定各个物质的出峰位置,通过制定标准曲线确定各个物质的具体含量。
3、光气化反应收率测定:使用甲苯溶解反应液,加入二正丁基胺溶液将反应液中的NCO基团完全反应,使用盐酸标准液滴定,最终确定反应液中的NCO%含量;使用甲苯溶解MDA,使用盐酸标准液滴定,最终确定MDA液中的AN%含量。光气化反应收率=(8*NCO%/21)/AN%。
对比例1
(MDI的制备,其中单官能团杂质、多官能团杂质均未得到有效控制)
本对比例设置有四级釜式反应器,含有溶剂的二胺与含有溶剂的光气溶液直接注入第一级釜式反应器中发生反应,四级釜式反应器的温度分别为80℃、90℃、120℃、140℃,釜式反应器压力均为5barg,釜式反应器的雷诺数分别为4050、3000、2600、2600。经过精馏脱除过量的光气及溶剂之后得到聚合MDI产品,其中单官能团杂质为25000ppm、多官能团杂质为1200ppm。
其中二胺溶液、光气溶液中的溶剂均为二氯苯,二胺溶液中的溶剂质量分率为70%,温度为70℃,压力为25barg;光气溶液中的光气质量分率为45%,温度为15℃,压力为18barg;光气与二胺的摩尔比为5.0。其中二胺为二氨基二苯基甲烷(MDA)。
该对比例下的高压蒸汽消耗为1.4t/t聚合MDI,反应收率为98.6%,反应 工段运行周期为9个月。
对比例2
(MDI的制备,其中单官能团杂质得到有效控制、多官能团杂质未有效控制)
本对比例设置有五级釜式反应器,含有溶剂的二胺与含有溶剂的光气溶液直接注入第一级釜式反应器中发生反应,五级釜式反应器的温度分别为80℃、90℃、110℃、120℃、140℃,釜式反应器压力均为5barg,釜式反应器的雷诺数分别为4500、4000、2600、2600和2600。经过精馏脱除过量的光气及溶剂之后得到聚合MDI产品,其中单官能团杂质为12500ppm、多官能团杂质为1300ppm。
其中二胺溶液、光气溶液中的溶剂均为二氯苯,二胺溶液中的溶剂质量分率为72%,温度为65℃,压力为20barg;光气溶液中的溶质质量分率为48%,温度为-3℃,压力为15barg;光气与二胺的摩尔比为5.04。其中二胺为二氨基二苯基甲烷(MDA)。
该对比例下的高压蒸汽消耗为1.45t/t聚合MDI,反应收率为98.8%,反应工段运行周期为9.5个月。
对比例3
(MDI的制备,其中单官能团杂质未有效控制、多官能团杂质得到有效控制)
本对比例设置有四级釜式反应器,含有溶剂的二胺与含有溶剂的光气溶液直接注入第一级釜式反应器中发生反应,四级釜式反应器的温度分别为80℃、90℃、110℃、140℃,釜式反应器压力均为5barg,釜式反应器的雷诺数分别为4000、3800、2800、2600。经过精馏脱除过量的光气及溶剂之后得到聚合MDI产品,其中单官能团杂质为32000ppm、多官能团杂质为400ppm。
其中二胺溶液、光气溶液中的溶剂均为二氯苯,二胺溶液中的溶剂质量分率为68%,温度为20℃,压力为25barg;光气溶液中的溶质质量分率为45%,温度为-5℃,压力为20barg;光气与二胺的摩尔比为5.2。其中二胺为二氨基二苯基甲烷(MDA)。
该对比例下的高压蒸汽消耗为1.45t/t聚合MDI,反应收率为98.3%,反应工段运行周期为8.5个月。
对比例4
(MDI的制备,冷反应的操作参数偏离本发明的范围,单官能团杂质含量超出本发明的范围,冷反应阶段采用多级管式反应器,热反应阶段采用多级釜式反应器)
冷反应阶段条件:管式反应器为2级,压力释放装置为2级;管式反应器的形状设计为U型,压力释放装置为截止阀;U型混合管的直管直径d为300mm,U型间距D为2000mm,U型高度H为600mm,U型宽度L为600mm,U型圆角直径为300mm。管式反应器中表观液相流速为0.5m/s,表观气相流速为3.2m/s,第一级管式反应器温度120℃,压力为45barg,第二级管式反应器温度为90℃,压力为20barg。
含有溶剂的二胺与含有溶剂的光气溶液注入U型管式反应器中发生反应,其中二胺溶液、光气溶液中的溶剂均为二氯苯,二胺溶液中的溶剂质量分率为64%,二胺溶液温度为70℃,压力为50barg;光气溶液中的光气质量分率为70%,光气溶液温度为-10℃,压力为50barg,光气与二胺的摩尔比为4.0。其中二胺为二氨基二苯基甲烷(MDA)。
热反应阶段条件:釜式反应器为四级,四级釜式反应器的温度分别为75℃、90℃、120℃、140℃,四级釜式反应器的桨叶旋转雷诺数分别为4050、3000、2600、2600,釜式反应器压力均为5barg。
经过精馏脱除过量的光气及溶剂之后得到聚合MDI产品,其中单官能团杂质为24000ppm、多官能团杂质为600ppm。
该实施例下的高压蒸汽消耗为1.38t/t聚合MDI,反应收率为98.7%,反应工段运行周期为16个月。
对比例5
(MDI的制备,热反应的操作参数偏离本发明的范围,多官能团杂质含量超出本发明的范围,冷反应阶段采用多级管式反应器,热反应阶段采用多级釜式工艺)
冷反应阶段条件:管式反应器为2级,压力释放装置为2级;管式反应器的形状设计为U型,压力释放装置为截止阀;U型混合管的直管直径d为300mm,U型间距D为2000mm,U型高度H为600mm,U型宽度L为600mm,U型圆角直径为300mm。管式反应器中表观液相流速为2.5m/s,表观气相流速为8.4m/s,第一级管式反应器温度120℃,压力为45barg,第二级管式反应器温度为90℃,压力为20barg。
含有溶剂的二胺与含有溶剂的光气溶液注入U型管式反应器中发生反应,其中二胺溶液、光气溶液中的溶剂均为二氯苯,二胺溶液中的溶剂质量分率为64%,二胺溶液温度为70℃,压力为50barg,光气溶液中的光气质量分率为70%,光气溶液温度为-10℃,压力为50barg;光气与二胺的摩尔比为4.0。其中二胺为二氨基二苯基甲烷(MDA)。
热反应阶段条件:釜式反应器为四级,四级釜式反应器的温度分别为75℃、90℃、120℃、140℃,四级釜式反应器的桨叶旋转雷诺数分别为850、850、860、860,釜式反应器压力均为5barg。
经过精馏脱除过量的光气及溶剂之后得到聚合MDI产品,其中单官能团杂质为8000ppm、多官能团杂质为1300ppm。
该实施例下的高压蒸汽消耗为1.35t/t聚合MDI,反应收率为98.4%,反应工段运行周期为14个月。
对比例6
(MDI的制备,其中单官能团杂质、多官能团杂质均略高出控制限,冷反应的管式反应器操作流速略高于控制限,塔流速略低于下限,冷反应阶段采用多级管式反应器,热反应阶段采用塔式反应器)
冷反应阶段条件:管式反应器为3级,压力释放装置为3级;管式反应器的形状设计为U型,压力释放装置为截止阀;U型混合管的直管直径d为350mm,U型间距D为2000mm,U型高度H为600mm,U型宽度L为600mm,U型圆角直径为300mm。管式反应器中表观液相流速为5.1m/s,表观气相流速为20.6m/s,第一级管式反应器温度135℃,压力为46barg,第二级管式反应器温度为120℃,压力为24barg,第三级管式反应器温度为98℃,压力为13barg。
含有溶剂的二胺与含有溶剂的光气溶液注入U型管式反应器中发生反应,其中二胺溶液、光气溶液中的溶剂均为二氯苯,二胺溶液中的溶剂质量分率为64%,二胺溶液温度为60℃,压力为50barg;光气溶液温度为45℃,压力为52barg。光气溶液中的光气质量分率为65%,光气与二胺的摩尔比为3.6。其中二胺为二氨基二苯基甲烷(MDA)。
热反应阶段条件:采用塔式反应器,内件采用旋转格栅,单层与单层格栅之间角度为30°,格栅宽度为35mm板间距为450mm。该塔的加热元件为夹套,压力释放装置将塔式反应器压力控制在2barg,加热元件将塔式反应器温度控制在120℃,空塔流速为1.9m/s。
经过精馏脱除过量的光气及溶剂之后得到聚合MDI产品,其中单官能团杂质为20800ppm、多官能团杂质为1090ppm。
该实施例下的高压蒸汽消耗为1.33t/t聚合MDI,反应收率为98.5%,反应工段运行周期为13个月。
实施例1
(MDI的制备,其中单官能团杂质、多官能团杂质均得到了有效控制,冷反应阶段采用多级管,热反应阶段采用多级釜式工艺)
冷反应阶段条件:管式反应器为2级,压力释放装置为2级;管式反应器的形状设计为U型,压力释放装置为截止阀;U型混合管的直管直径d为300mm,U型间距D为2000mm,U型高度H为600mm,U型宽度L为600mm,U型圆角直径为300mm。管式反应器中表观液相流速为2.5m/s,表观气相流速为8.4m/s,第一级管式反应器温度120℃,压力为45barg,第二级管式反应器温度为90℃,压力为20barg。
含有溶剂的二胺与含有溶剂的光气溶液注入U型管式反应器中发生反应,其中二胺溶液、光气溶液中的溶剂均为二氯苯,二胺溶液中的溶剂质量分率为64%,二胺溶液温度为70℃,压力为50barg,光气溶液中的光气质量分率为70%,光气溶液温度为-10℃,压力为50barg,光气与二胺的摩尔比为4.0,其中二胺为二氨基二苯基甲烷(MDA)。
热反应阶段条件:釜式反应器为四级,四级釜式反应器的温度分别为85℃、90℃、120℃、140℃,四级釜式反应器的桨叶旋转雷诺数分别为4050、3000、2600、2600,釜式反应器压力均为5barg。
经过精馏脱除过量的光气及溶剂之后得到聚合MDI产品,其中单官能团杂质为8000ppm、多官能团杂质为300ppm。
该实施例下的高压蒸汽消耗为1.05t/t聚合MDI,反应收率为99.4%,反应工段运行周期为24个月。
实施例2
(MDI的制备,其中单官能团杂质、多官能团杂质均得到了有效控制,冷反应阶段采用多级管,热反应阶段采用塔式反应器)
冷反应阶段条件:管式反应器为3级,压力释放装置为3级;管式反应器的形状设计为U型,压力释放装置为截止阀;U型混合管的直管直径d为350mm,U型间距D为2000mm,U型高度H为600mm,U型宽度L为600mm, U型圆角直径为300mm。管式反应器中表观液相流速为4.8m/s,表观气相流速为19.2m/s,第一级管式反应器温度120℃,压力为48barg,第二级管式反应器温度为115℃,压力为25barg,第三级管式反应器温度为95℃,压力为12barg。
含有溶剂的二胺与含有溶剂的光气溶液注入U型管式反应器中发生反应,其中二胺溶液、光气溶液中的溶剂均为二氯苯,二胺溶液中的溶剂质量分率为64%,二胺溶液温度为60℃,压力为50barg,光气溶液中的光气质量分率为65%,光气溶液温度为10℃,压力为50barg。光气与二胺的摩尔比为3.6。其中二胺为二氨基二苯基甲烷(MDA)。
热反应阶段条件:采用塔式反应器,内件采用旋转格栅,单层与单层格栅之间角度为30°,格栅宽度为35mm板间距为450mm。该塔的加热元件为夹套,压力释放装置将塔式反应器压力控制在2barg,加热元件将塔式反应器温度控制在120℃,空塔流速为5.2m/s。
经过精馏脱除过量的光气及溶剂之后得到聚合MDI产品,其中单官能团杂质为9000ppm、多官能团杂质为350ppm。
该实施例下的高压蒸汽消耗为1.03t/t聚合MDI,反应收率为99.5%,反应工段运行周期为24个月。
实施例3
(MDI的制备,其中单官能团杂质、多官能团杂质均得到了有效控制,冷反应阶段采用多级管式反应器,热反应阶段采用塔式反应器+釜式反应器)
冷反应阶段条件:管式反应器为3级,压力释放装置为3级;管式反应器的形状设计为U型,压力释放装置为截止阀;U型混合管的直管直径d为350mm,U型间距D为2000mm,U型高度H为600mm,U型宽度L为600mm,U型圆角直径为300mm。管式反应器中表观液相流速为4.8m/s,表观气相流速为19.2m/s,第一级管式反应器温度120℃,压力为48barg,第二级管式反应器温度为115℃,压力为25barg,第三级管式反应器温度为95℃,压力为12barg。
含有溶剂的二胺与含有溶剂的光气溶液注入U型管式反应器中发生反应,其中二胺溶液、光气溶液中的溶剂均为二氯苯,二胺溶液中的溶剂质量分率为64%,二胺溶液温度为60℃,压力为50barg,光气溶液中的光气质量分率为65%,光气溶液温度为20℃,压力为50barg。光气与二胺的摩尔比为3.6。其中二胺为二氨基二苯基甲烷(MDA)。
热反应阶段条件:采用塔式反应器+釜式反应器,其中塔式反应器条件为,内件采用旋转格栅,单层与单层格栅之间角度为40°,格栅宽度为40mm板间距为500mm。该塔的加热元件为夹套,压力释放装置将塔式反应器压力控制在1.5barg,加热元件将塔式反应器温度控制在115℃,空塔流速为6.3m/s
釜式反应器为五级,五级釜式反应器的温度分别为85℃、90℃、120℃、130℃、140℃,五级釜式反应器的桨叶旋转雷诺数分别为4050、3000、2600、2600、2600,釜式反应器压力均为3barg。
经过精馏脱除过量的光气及溶剂之后得到聚合MDI产品,其中单官能团杂质为8200ppm、多官能团杂质为300ppm。
该实施例下的高压蒸汽消耗为1.04t/t聚合MDI,反应收率为99.6%,反应工段运行周期为24个月。
实施例4
(MDI的制备,其中单官能团杂质、多官能团杂质均得到了有效控制,但是冷反应的管式反应器操作流速接近下限,热反应搅拌强度接近下限,冷反应阶段采用多级管,热反应阶段采用多级釜式工艺)
冷反应阶段条件:管式反应器为2级,压力释放装置为2级;管式反应器的形状设计为U型,压力释放装置为截止阀;U型混合管的直管直径d为300mm,U型间距D为2000mm,U型高度H为600mm,U型宽度L为600mm,U型圆角直径为300mm。管式反应器中表观液相流速为1.1m/s,表观气相流速为5.1m/s,第一级管式反应器温度120℃,压力为45barg,第二级管式反应器温度为90℃,压力为20barg。
含有溶剂的二胺与含有溶剂的光气溶液注入U型管式反应器中发生反应,其中二胺溶液、光气溶液中的溶剂均为二氯苯,二胺溶液中的溶剂质量分率为64%,二胺溶液温度为70℃,压力为50barg,光气溶液中的光气质量分率为70%,光气溶液温度为-10℃,压力为50barg,光气与二胺的摩尔比为4.0,其中二胺为二氨基二苯基甲烷(MDA)。
热反应阶段条件:釜式反应器为四级,四级釜式反应器的温度分别为85℃、90℃、120℃、140℃,四级釜式反应器的桨叶旋转雷诺数分别为1050、1080、1070、1050,釜式反应器压力均为5barg。
经过精馏脱除过量的光气及溶剂之后得到聚合MDI产品,其中单官能团杂质为19000ppm、多官能团杂质为940ppm。
该实施例下的高压蒸汽消耗为1.32t/t聚合MDI,反应收率为98.8%,反应 工段运行周期为17个月。
实施例5
(MDI的制备,其中单官能团杂质、多官能团杂质均得到了有效控制,但是冷反应的管式反应器操作流速接近上限,塔流速接近下限,冷反应阶段采用多级管式反应器,热反应阶段采用塔式反应器)
冷反应阶段条件:管式反应器为3级,压力释放装置为3级;管式反应器的形状设计为U型,压力释放装置为截止阀;U型混合管的直管直径d为350mm,U型间距D为2000mm,U型高度H为600mm,U型宽度L为600mm,U型圆角直径为300mm。管式反应器中表观液相流速为4.8m/s,表观气相流速为19.2m/s,第一级管式反应器温度120℃,压力为48barg,第二级管式反应器温度为115℃,压力为25barg,第三级管式反应器温度为95℃,压力为12barg。
含有溶剂的二胺与含有溶剂的光气溶液注入U型管式反应器中发生反应,其中二胺溶液、光气溶液中的溶剂均为二氯苯,二胺溶液中的溶剂质量分率为64%,二胺溶液温度为60℃,压力为50barg,光气溶液中的光气质量分率为65%,光气溶液温度为40℃,压力为50barg。光气与二胺的摩尔比为3.6。其中二胺为二氨基二苯基甲烷(MDA)。
热反应阶段条件:采用塔式反应器,内件采用旋转格栅,单层与单层格栅之间角度为30°,格栅宽度为35mm板间距为450mm。该塔的加热元件为夹套,压力释放装置将塔式反应器压力控制在2barg,加热元件将塔式反应器温度控制在120℃,空塔流速为2.1m/s。
经过精馏脱除过量的光气及溶剂之后得到聚合MDI产品,其中单官能团杂质为19500ppm、多官能团杂质为880ppm。
该实施例下的高压蒸汽消耗为1.31t/t聚合MDI,反应收率为98.8%,反应工段运行周期为17个月。
对比例1T
(TDI的制备,其中单官能团杂质未有效控制、多官能团杂质得到有效控制)
本对比例设置有五级釜式反应器,含有溶剂的二胺与含有溶剂的光气溶液直接注入第一级釜式反应器中发生反应,四级釜式反应器的温度分别为85℃、 93℃、115℃、135℃,釜式反应器压力均为5barg。经过精馏脱除过量的光气及溶剂之后得到TDI产品,其中单官能团杂质为46000ppm、多官能团杂质为700ppm。
其中二胺溶液、光气溶液中的溶剂均为二氯苯,二胺溶液中的溶剂质量分率为82%,光气溶液中的光气质量分率为61%,光气溶液温度为20℃,压力为50barg。光气与二胺的摩尔比为8.2。其中,二胺为二氨基甲苯。
该对比例下的高压蒸汽消耗为2.2t/t TDI,反应收率为94.5%,反应工段运行周期为8个月。
实施例2T
(TDI的制备,其中单官能团杂质、多官能团杂质均得到了有效控制,冷反应阶段采用多级管式反应器,热反应阶段采用塔式反应器)
冷反应阶段条件:管式反应器为4级,压力释放装置为4级;管式反应器的形状设计为U型,压力释放装置为截止阀;U型混合管的直管直径d为350mm,U型间距D为2000mm,U型高度H为600mm,U型宽度L为600mm,U型圆角直径为300mm。管式反应器中表观液相流速为4.9m/s,表观气相流速为15.2m/s,第一级管式反应器温度120℃,压力为28barg,第二级管式反应器温度为112℃,压力为18barg,第三级管式反应器温度为98℃,压力为10barg,第四级管式反应器温度为90℃,压力为5barg。其中,二胺为二氨基甲苯。
含有溶剂的二胺与含有溶剂的光气溶液注入U型管式反应器中发生反应,其中二胺溶液、光气溶液中的溶剂均为二氯苯,二胺溶液中的溶剂质量分率为65%,二胺溶液温度为65℃,压力为45barg,光气溶液中的光气质量分率为66%,光气溶液温度为50℃,压力为30barg。光气与二胺的摩尔比为7.4。
热反应阶段条件:采用塔式反应器,内件采用旋转格栅,单层与单层格栅之间角度为45°,格栅宽度为35mm板间距为450mm。该塔的加热元件为夹套,压力释放装置将塔式反应器压力控制在1barg,加热元件将塔式反应器温度控制在125℃,空塔流速为3.8m/s。
经过精馏脱除过量的光气及溶剂之后得到TDI产品,其中单官能团杂质为6000ppm、多官能团杂质为470ppm。
该实施例下的高压蒸汽消耗为2.01t/t聚合MDI,反应收率为96.7%,反应工段运行周期为24个月。
表1 实验效果对比
Figure PCTCN2021071091-appb-000001
从上表可以看出,通过使用特定的反应器和设置反应条件对单官能团杂质、多官能团杂质进行分别控制之后,蒸汽能耗出现明显下降,反应收率有所上升,运行周期得到大幅度延长。

Claims (10)

  1. 一种制备多异氰酸酯的方法,其包括如下步骤:
    1)使多胺溶液和光气溶液进行光气化反应的冷反应;
    2)使来自步骤1)中的物料进一步进行光气化反应的热反应,
    其中,控制在步骤1)中产生的单官能团杂质的量,使得在最终产物中的单官能团杂质的含量为0.1ppm~20000ppm,优选100ppm~15000ppm,以及
    控制在步骤2)中产生的多官能团杂质的量,使得在最终产物中的多官能团杂质的含量为0.1ppm~1000ppm,优选为50ppm~500ppm,
    所述多异氰酸酯优选为二异氰酸酯,更优选为二苯基亚甲基二异氰酸酯(MDI)、聚二苯基亚甲基二异氰酸酯(PMDI)、甲苯二异氰酸酯(TDI)、六亚甲基二异氰酸酯(HDI)或异佛尔酮二异氰酸酯(IPDI),
    所述多胺优选为二胺,更优选为二氨基二苯基甲烷(MDA)、聚二氨基二苯基甲烷(DAM)、二氨基甲苯(TDA)、六亚甲基二胺(HDA)或异佛尔酮二胺(IPDA),
    优选地,步骤1)在管式反应器中进行,以及步骤2)在选自塔式反应器和釜式反应器中的一种或者两种反应器中进行。
  2. 根据权利要求1所述的方法,其中,
    所述多胺溶液和光气溶液中的溶剂为苯、氯苯、二氯苯或甲苯,优选氯苯或二氯苯;
    优选地,基于所述多胺溶液的总重量,多胺溶液中的溶剂质量分数为40%~90%,优选60%~70%;进料时,所述多胺溶液的温度为40℃~150℃,优选60℃~100℃;压力为10barg~80barg,优选15barg~50barg;
    优选地,基于所述光气溶液的总重量,光气溶液中的光气质量分数为40%~80%,优选65%~80%,进料时,所述光气溶液的温度为-15℃~80℃,优选-10℃~60℃;压力为10barg~80barg,优选为15barg~50barg;
    优选地,控制所述多胺溶液和所述光气溶液的进料,使得光气与多胺的摩尔比为1.2~8.5,优选1.5~8.0,更优选为3.0~8.0,进一步更优选为3.0~4.2。
  3. 根据权利要求1或2所述的方法,其中,在管式反应器中实施冷反应的条件为:
    管式反应器中的表观液相流速为1m/s~5m/s,表观气相流速为5m/s~20m/s,管式反应器温度为80℃~160℃,优选90℃~130℃,管式反应器的压力为1barg~50barg,优选5barg~50barg。
  4. 根据权利要求1至3中的任一项所述的方法,其中,
    在步骤1)中,所述冷反应在二级以上管式反应器中进行;优选地,沿着物料流行进的方向,各级管式反应器中的压力依次下降,温度依次降低;
    在步骤2)中,在反应器组合中进行反应,其选自:单级或多级塔式反应器;单级或多级釜式反应器;沿着物料流行进的方向依次设置的单级或多级釜式反应器和单级或多级塔式反应器;以及沿着物料流行进的方向依次设置的单级或多级塔式反应器和单级或多级釜式反应器。
  5. 根据权利要求1至4中的任一项所述的方法,其中,
    进入步骤2)中的原料为来自步骤1)的冷反应的反应液,温度为40℃~120℃,优选80℃~100℃;压力为1barg~50barg,来自冷反应阶段的反应液组成为:基于步骤1)中得到的产物的总质量,溶剂质量浓度为40%~90%,光气质量浓度为20%~60%,反应产物质量浓度为10%~30%,优选地,所述冷反应的反应产物为包含氨基盐酸盐基团的化合物、包含酰氯基团的化合物、多异氰酸酯,以及包含氨基盐酸盐基团的化合物、包含酰氯基团的化合物、多异氰酸酯的质量比为(15~30):(50~80):(5~30)。
  6. 根据权利要求1至5中的任一项所述的方法,其中,
    当在釜式反应器中实施热反应时,其中条件为:
    釜式反应器温度为80℃~180℃,优选80℃~140℃;釜式反应器桨叶旋转雷诺数为1000~5000,优选1000~4500;釜内压力为1barg~50barg,优选1barg~10barg;
    当在塔式反应器中实施热反应时,其中条件为:
    塔式反应器温度为60℃~180℃,优选80℃~140℃;空塔流速为2~20m/s,优选2~10m/s;塔内压力为1barg~30barg,优选1barg~10barg。
  7. 根据权利要求6所述的方法,其中,
    在2~6级釜式反应器,优选3~5级釜式反应器中进行所述热反应;更优选地,按照物料流行进的方向,在各级釜式反应器中的温度依次升高,压力保持 不变。
  8. 根据权利要求1至7中的任一项所述的方法制备的多异氰酸酯,其中,单官能团杂质总含量为0.1ppm~20000ppm,优选100ppm~15000ppm,以及多官能团杂质总含量为0.1ppm~1000ppm,优选50ppm~500ppm。
  9. 一种用于根据权利要求1至7中的任一项所述的方法中的反应装置,其包括:
    管式反应器;和
    选自塔式反应器、釜式反应器中的一种或者多种反应器,
    其中,各反应器之间通过管线连接;
    优选地,所述管式反应器为多级管式反应器;
    优选地,所述塔式反应器为单级塔式反应器;
    优选地,所述釜式反应器为多级釜式反应器。
  10. 根据权利要求9所述的反应装置,其中,
    所述管式反应器包括管道、混合元件、压力控制元件、加热元件;
    所述管道为选自直管、U形管、S形管、螺旋管和纺锤形管中的一种或多种的组合,优选U形管和/或S形管;
    所述混合元件选自密封填料、折流挡板、静止旋片、动旋片或筛板,优选筛板;
    所述压力控制元件选自蝶阀、截止阀、球阀和限流孔板,优选截止阀、限流孔板;
    所述加热元件选自夹套加热、伴管加热或电加热,优选夹套加热。
PCT/CN2021/071091 2021-01-11 2021-01-11 一种制备多异氰酸酯的方法及反应装置 WO2022147830A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
HU2300387A HUP2300387A1 (hu) 2021-01-11 2021-01-11 Eljárás poliizocianát elõállítására és reagáltató berendezés ehhez
PCT/CN2021/071091 WO2022147830A1 (zh) 2021-01-11 2021-01-11 一种制备多异氰酸酯的方法及反应装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071091 WO2022147830A1 (zh) 2021-01-11 2021-01-11 一种制备多异氰酸酯的方法及反应装置

Publications (1)

Publication Number Publication Date
WO2022147830A1 true WO2022147830A1 (zh) 2022-07-14

Family

ID=82357669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071091 WO2022147830A1 (zh) 2021-01-11 2021-01-11 一种制备多异氰酸酯的方法及反应装置

Country Status (2)

Country Link
HU (1) HUP2300387A1 (zh)
WO (1) WO2022147830A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117820171A (zh) * 2024-01-09 2024-04-05 中国融通资源开发集团有限公司 一种三氨基甲苯光气化合成甲苯三异氰酸酯的工艺方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3226410A (en) * 1962-07-20 1965-12-28 Fmc Corp Continuous method of preparing aromatic isocyanates
CN1729168A (zh) * 2002-12-19 2006-02-01 巴斯福股份公司 连续生产异氰酸酯的方法
CN101698652A (zh) * 2009-11-05 2010-04-28 甘肃银达化工有限公司 一种tdi生产中循环溶剂的净化方法
EP2179985A1 (en) * 2007-08-21 2010-04-28 Ningbo Wanhua Polyurethanes Co., Ltd. Jet reactor with flow ducts and process for preparing isocyanates using it
CN104945283A (zh) * 2014-03-25 2015-09-30 万华化学集团股份有限公司 一种制备异氰酸酯单体的方法
CN108137488A (zh) * 2015-09-30 2018-06-08 科思创德国股份有限公司 制备异氰酸酯的方法
CN110327848A (zh) * 2019-05-29 2019-10-15 江苏蓝丰生物化工股份有限公司 一种用于光气化反应的装置、光气化反应的生产工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3226410A (en) * 1962-07-20 1965-12-28 Fmc Corp Continuous method of preparing aromatic isocyanates
CN1729168A (zh) * 2002-12-19 2006-02-01 巴斯福股份公司 连续生产异氰酸酯的方法
EP2179985A1 (en) * 2007-08-21 2010-04-28 Ningbo Wanhua Polyurethanes Co., Ltd. Jet reactor with flow ducts and process for preparing isocyanates using it
CN101698652A (zh) * 2009-11-05 2010-04-28 甘肃银达化工有限公司 一种tdi生产中循环溶剂的净化方法
CN104945283A (zh) * 2014-03-25 2015-09-30 万华化学集团股份有限公司 一种制备异氰酸酯单体的方法
CN108137488A (zh) * 2015-09-30 2018-06-08 科思创德国股份有限公司 制备异氰酸酯的方法
CN110327848A (zh) * 2019-05-29 2019-10-15 江苏蓝丰生物化工股份有限公司 一种用于光气化反应的装置、光气化反应的生产工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117820171A (zh) * 2024-01-09 2024-04-05 中国融通资源开发集团有限公司 一种三氨基甲苯光气化合成甲苯三异氰酸酯的工艺方法

Also Published As

Publication number Publication date
HUP2300387A1 (hu) 2024-01-28

Similar Documents

Publication Publication Date Title
JP4324558B2 (ja) イソシアネートの連続製造方法
CN1266123C (zh) 在气相中制备异氰酸酯的方法
CN100572358C (zh) 异氰酸酯的制备方法
CN101796022B (zh) 制备异氰酸酯的方法
CN104945283A (zh) 一种制备异氰酸酯单体的方法
WO2022147830A1 (zh) 一种制备多异氰酸酯的方法及反应装置
EP2088139A1 (en) A hole jet reactor and a process for the preparation of an isocyanate using the reactor
CN101805272B (zh) 一种通过界面光气化反应制备异氰酸酯的方法
CN105195080B (zh) 苯二亚甲基二异氰酸酯的合成装置和方法
JPH03294249A (ja) メチレン架橋されたポリアリールアミンの製造方法
WO2022147939A1 (zh) 一种制备二异氰酸酯的方法及其装置
CN105126711B (zh) 一种搅拌研磨反应器及其用于制备异氰酸酯的方法
CN1656062A (zh) 异氰酸酯的制备方法
US11542228B2 (en) Method and device for preparing diisocyanate
CN114749116B (zh) 一种制备多异氰酸酯的方法及反应装置
JP7093183B2 (ja) 気相中におけるジイソシアネートの製造方法
CN205288387U (zh) 苯二亚甲基二异氰酸酯的合成装置
KR20050117553A (ko) 폴리이소시아네이트의 제조 방법
CN101811018B (zh) 搅拌桨斜置式反应器、采用该反应器的系统及其方法
WO2011130907A1 (zh) 一种通过界面光气化反应制备异氰酸酯的方法
CN115286535B (zh) 一种异氰酸酯的制备工艺以及成盐、光化反应耦合装置
CN108906045B (zh) 一种催化剂及使用该催化剂进行选择性加氢去除多氯乙酸的方法
CN101844064A (zh) 一种气相热解制备异氰酸酯的反应器及制备方法
CN112920060A (zh) 一种2,6-二氯-4-氨基苯酚的合成装置及其应用
CN111349020A (zh) 光气连续法制备3,3-二甲基-4,4-联苯二异氰酸酯的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21916884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21916884

Country of ref document: EP

Kind code of ref document: A1