WO2022147701A1 - 一种考虑电流限幅的永磁同步电机鲁棒位置控制方法 - Google Patents

一种考虑电流限幅的永磁同步电机鲁棒位置控制方法 Download PDF

Info

Publication number
WO2022147701A1
WO2022147701A1 PCT/CN2021/070547 CN2021070547W WO2022147701A1 WO 2022147701 A1 WO2022147701 A1 WO 2022147701A1 CN 2021070547 W CN2021070547 W CN 2021070547W WO 2022147701 A1 WO2022147701 A1 WO 2022147701A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnet synchronous
synchronous motor
control
influence
Prior art date
Application number
PCT/CN2021/070547
Other languages
English (en)
French (fr)
Inventor
孙希明
张建一
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US17/429,880 priority Critical patent/US11594991B1/en
Priority to PCT/CN2021/070547 priority patent/WO2022147701A1/zh
Publication of WO2022147701A1 publication Critical patent/WO2022147701A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control

Definitions

  • the invention belongs to the technical field of AC permanent magnet synchronous motor control, and more particularly, relates to a system capable of realizing a motor on the basis of effectively overcoming the influence of system disturbances including current limit, unknown load torque and uncertainty of system parameters.
  • Permanent magnet synchronous motor position control technology for precise position tracking.
  • Precision position control is becoming increasingly important in numerous applications such as assembly robots, semiconductor production machinery, high-resolution CNC machine tools, and aero-engine electric drives. Due to its high efficiency, small size, large torque-to-weight ratio and almost no maintenance, permanent magnet synchronous motors have become an important tool in the field of precision position control. At the same time, the complex nonlinear characteristics, strong coupling characteristics, and the existence of internal and external disturbances in the system also increase the difficulty of precise position control of permanent magnet synchronous motors.
  • the three closed-loop cascade control structure of position loop-speed loop-current loop is usually adopted.
  • the controller used in the speed loop and the current loop is the PI controller, while the most basic P controller is used in the position loop.
  • This control method has the advantages of simple implementation and convenient adjustment, but it is essentially a linear control technology, and the permanent magnet synchronous motor system is a state-coupled nonlinear system, which also means that this control scheme is difficult to obtain excellent dynamic performance.
  • its robustness is poor, and its performance will deteriorate rapidly in the face of system parameter uncertainty and unknown load torque disturbance.
  • the present invention provides a robust position control method of the permanent magnet synchronous motor considering the current limit.
  • This method fully considers the influence of current limiting on the closed-loop system in the theoretical analysis stages such as controller design and stability analysis, and can effectively overcome the influence of system disturbances including system parameter uncertainty and unknown load torque.
  • the control target for precise tracking of the motor position More importantly, the technology is a continuous control method, which can overcome the inherent chattering problem while having the strong robustness of sliding mode control.
  • Step 1 Determine the limited amplitude link and the dynamic equation of the permanent magnet synchronous motor under the influence of disturbance:
  • is the rotor angle of the motor
  • i q is the q-axis stator current in the dq coordinate system
  • K t is the torque constant
  • J is the moment of inertia of the motor
  • B is the viscous friction coefficient
  • T L is the load torque .
  • i q * is the reference value of the q-axis stator current
  • K to , J o , and B o represent the nominal values of torque constant, moment of inertia, and coefficient of viscous friction, respectively, and It represents the deviation between the real value of the system parameter and the nominal value.
  • u(t) is the control quantity to be designed, that is, the position loop controller of the permanent magnet synchronous motor
  • Imax is the limit value of the limit link.
  • d(t) represents the aggregate interference term, and its specific expression is
  • Step 2 Control target determination and auxiliary signal construction:
  • the main goal is to ensure that the rotor angle of the motor can accurately reach the given position within a limited time, that is,
  • ⁇ d (t) is the target rotor position of the PMSM.
  • Step 3 Robust position controller design and closed-loop system stability analysis:
  • step 1 On the basis of step 1 and step 2, a robust position controller for permanent magnet synchronous motor of the following form is given:
  • the asymptotic stability of the closed-loop system can be proved by combining the Lyapunov stability method and the LaSalle–Yoshizawa theorem.
  • the position and speed of the motor are measured in real time through the sensor installed in the permanent magnet synchronous motor. After the system state quantity is obtained, it is substituted into the robust position controller given in step 3 to obtain the control signal. According to this control As the controller of the position loop of the permanent magnet synchronous motor, the signal can accurately track the rotor position of the motor, and at the same time, it can effectively suppress the influence of disturbances including system parameter uncertainty, unknown load torque and current limit, and ensure the permanent magnet synchronous motor. The synchronous motor system can still achieve fast and accurate positioning function under the influence of disturbance.
  • the permanent magnet synchronous motor position control technology proposed in the present invention can effectively overcome the influence of system disturbance including system parameter uncertainty, unknown load torque, etc., and can maintain high-performance position control under the influence of system disturbance.
  • the control algorithm designed by the present invention has strong anti-interference ability and robustness.
  • the control algorithm proposed by the present invention is a continuous robust control algorithm, and there is no discontinuous function term, so the inherent defects of sliding mode control are effectively eliminated. — "The chattering problem”.
  • the technical solution proposed by the present invention adopts the position-current cascade control structure, instead of the traditional position-speed-current three-closed-loop cascade structure, which saves the design of the speed loop and simplifies the control framework, and all the
  • the design of the controller has the advantages of simple structure, which is of great significance for practical industrial applications. Due to poor achievability and other reasons, the control algorithm with complex structure and difficult adjustment is not highly regarded in practical applications.
  • the permanent magnet synchronous motor position control technology proposed in the present invention fully considers the influence of the current limiting link, can effectively overcome the influence of internal and external disturbances in the system, and can ensure that even under the influence of disturbances, the motor can still be implemented quickly and accurately.
  • the rotor angle position tracking control has strong anti-interference ability and position tracking performance.
  • the controller designed by the present invention also has the advantages of simple structure and the like. The excellent anti-interference ability and the simple and easy-to-implement structure feature make the technical solution of the present invention have broad practical application prospects.
  • FIG. 1 is a block diagram of the robust position control of the permanent magnet synchronous motor proposed by the present invention
  • Figure 2 is a block diagram of three closed-loop position control of permanent magnet synchronous motor commonly used in industry
  • Fig. 3 (a) is the response curve of the rotor angle ⁇ of the permanent magnet synchronous motor under the control of the method proposed in the present invention under ideal conditions;
  • Figure 3(b) is the q-axis stator current i q curve of the permanent magnet synchronous motor of the method proposed by the present invention under ideal conditions;
  • Figure 4(a) is the response curve of the permanent magnet synchronous motor rotor angle ⁇ under ideal conditions under the control of common industrial methods
  • Figure 4(b) is the q-axis stator current i q curve of the permanent magnet synchronous motor under ideal conditions, which is commonly used in the industry;
  • Fig. 5(a) is the response curve of the rotor angle ⁇ of the permanent magnet synchronous motor under the influence of disturbance under the control of the method proposed in the present invention
  • Figure 5(b) is the q-axis stator current i q curve of the permanent magnet synchronous motor of the method proposed by the present invention under the influence of disturbance;
  • Figure 6(a) is the response curve of the permanent magnet synchronous motor rotor angle ⁇ under the influence of disturbance under the control of common industrial methods
  • Fig. 6(b) shows the q-axis stator current i q curve of the permanent magnet synchronous motor under the influence of disturbance.
  • the present embodiment discloses a method for robust position control of a permanent magnet synchronous motor considering current limiting.
  • the specific implementation is as follows:
  • This control framework takes the rotor coordinate system ( dq coordinate system) as the reference coordinate system.
  • the voltage equation of the system is:
  • u d and u q represent the components of the stator voltage on the d -axis and q-axis, id and i q respectively refer to the stator current on the d-axis and q-axis, and at the same time, R and L are the stator resistance and Stator inductance, n is the number of motor pole pairs, ⁇ f is the rotor permanent magnet flux linkage, and ⁇ refers to the motor speed.
  • Te represents the electromagnetic torque
  • K t is the torque constant
  • TL represents the load torque
  • is the rotor angle of the motor
  • J is the moment of inertia of the motor
  • B is the viscous friction coefficient
  • i q * is the reference value of the q-axis stator current
  • K to , J o , and B o represent the nominal values of torque constant, moment of inertia, and coefficient of viscous friction, respectively, and It represents the deviation between the real value of the system parameter and the nominal value.
  • u(t) is the control quantity to be designed, that is, the position loop controller of the permanent magnet synchronous motor
  • Imax is the limit value of the limit link.
  • d(t) represents the aggregate interference term, and its specific expression is
  • ⁇ d (t) is the target rotor position of the permanent magnet synchronous motor, that is, the position given signal, and assume that its continuous third-order derivative is bounded, that is,
  • the main goal is to ensure that the rotor angle of the motor can accurately reach the given position within a limited time, that is,
  • the position tracking error signal can be further defined as
  • ⁇ 1 and ⁇ 1 are constants.
  • the present invention proposes the following permanent magnet synchronous motor robust position controller:
  • the present invention briefly introduces how to apply the method in practical industry.
  • the sensor installed in the permanent magnet synchronous motor will measure the position and speed of the motor in real time, and after obtaining the system state quantity, it will be substituted into the position controller (25) designed by the present invention to obtain a control signal, according to the control signal
  • the controller of the position loop of the permanent magnet synchronous motor in Figure 1 it can accurately track the rotor position of the motor, and at the same time, it can effectively suppress the influence of disturbances including system parameter uncertainty, unknown load torque, and current limit, ensuring permanent
  • the magnetic synchronous motor system can still achieve fast and accurate positioning function under the influence of disturbance.
  • Figure 1 is a structural diagram of the technology proposed in the present invention.
  • the designed robust controller is used in the position loop, and the classic PI controller is used in the current loop.
  • Figure 2 shows a control framework that is most commonly used in industrial applications.
  • the position loop uses a P controller, and the speed loop and current loop both use a PI controller.
  • the present invention will simulate and compare the two control schemes to verify the effectiveness and superiority of the technology proposed by the present invention.
  • Figures 3-4 The simulation results are shown in Figures 3-4, in which Figures 3(a) and 3(b) are the simulation results of the method proposed in the present invention, and Figures 4(a) and 4(b) are the simulations of common industrial solutions
  • Fig. 3(b) and Fig. 4(b) are respectively What is given is the q-axis stator current i q curve of the method proposed by the present invention and the method commonly used in the industry. It can be seen from Fig. 3(b) and Fig.
  • FIGS. 6(b) are respectively What is given is the q-axis stator current i q curve of the method proposed by the present invention and the method commonly used in the industry.
  • Figures 5(b) and 6(b) show that the effect of the clipping link is still considered in Simulation 2. And it can be seen from Figure 5(a) that when there is the influence of the limiting link and the system parameters change, the method proposed in the present invention can still maintain a good position tracking performance, and the motor rotor still reaches the given position in about 0.45s.
  • the results of simulation 1 and simulation 2 show that compared with the three-closed-loop control scheme commonly used in the industry, the technical scheme proposed by the present invention has a faster dynamic response and can realize the position tracking of the permanent magnet synchronous motor in a shorter time. More importantly, the proposed technical solution has strong robustness to system parameter uncertainty, unknown load torque disturbance, etc. It can still ensure good position control performance under system parameter changes and load torque changes. It means that the present invention has important practical application prospects and can be applied in actual industrial production.

Abstract

本发明属于交流永磁同步电机控制技术领域,提供了一种考虑电流限幅的永磁同步电机鲁棒位置控制方法。该方法在控制器设计及稳定性分析等理论分析阶段充分考虑了电流限幅对闭环系统的影响,能够有效克服包含系统参数不确定性以及未知负载转矩在内的系统干扰的影响,最终实现电机位置精准跟踪的控制目标。更为重要的是该技术为一种连续控制方法,能够在具有滑模控制强鲁棒性的同时,克服其所固有的抖振问题。同时,本发明所设计控制器还具有结构简单等优点。优良的抗干扰能力以及简单易实现的结构特点使本发明所提技术方案拥有广阔的现实应用前景。

Description

一种考虑电流限幅的永磁同步电机鲁棒位置控制方法 技术领域
本发明属于交流永磁同步电机控制技术领域,更具体地,涉及一种能够在有效克服包含电流限幅、未知负载转矩以及系统参数不确定性在内的系统干扰影响的基础上,实现电机位置精准跟踪的永磁同步电机位置控制技术。
背景技术
精密位置控制在装配机器人、半导体生产机械、高分辨率数控机床和航空发动机电力传动等众多应用中变得越来越重要。而由于具有效率高、体积小、扭矩重量比大和几乎无需维护等优良特点,永磁同步电机成为精密位置控制领域内的重要工具。与此同时,复杂的非线性特性、强耦合特点以及系统内外干扰的存在也增加了永磁同步电机精准位置控制的难度。
在工业永磁同步电机位置控制中,通常采用位置环—速度环—电流环的三闭环级联控制结构。具体而言,在速度环和电流环中所使用的控制器为PI控制器,而在位置环中则采用的是最基本的P控制器。这种控制方法具有实现简单,调节方便等优点,但其本质上属于线性控制技术,而永磁同步电机系统是一个状态耦合的非线性系统,这也意味着此控制方案难以获得优良的动态性能,同时其鲁棒性较差,在面对系统参数不确定性以及未知负载转矩干扰时性能将迅速恶化。
为实现高精度永磁同步电机位置控制,诸如自适应控制、鲁棒控制、滑模控制等先进控制算法被陆续提出,解决了众多实际工业应用问题。然而,尽管永磁同步电机位置控制已经取得了较大的进展,其仍存在很多开放性问题值得考虑并解决:
1)出于安全性考虑,目前很多方法在电流环参考电流之后会增加一个限幅环节,以间接实现对电机电流的约束,避免电流超过限制值,但在进行控制器设计以及稳定性分析时,现有技术方案大多没有考虑电流限幅环节对系统的影响,也就是说,限幅环节在理论分析时被忽略掉,而在实际应用时直接添加这一环节。然而,限幅环节的存在会影响系统动态,因当参考电流值超过限幅环节界限后,其将被保持在一个定值,导致其与所设计的参考电流不再相同,而参考电流的改变意味着电机实际电流也会跟随参考电流发生变化,作为直接后果则是系统的动态响应与不存在限幅环节时存在明显差异,在严重情况下甚至可能破坏系统的稳定性。故,在控制器实际工业应用之前的理论分析阶段应该充分考虑限幅环节的存在对系统响应的影响,并采取合理的方式避免或抑制其对系统动态性能、稳定性等产生的不利影响。
2)包含系统参数不确定性以及未知负载转矩影响在内的系统内外干扰始终是困扰永磁同步电机控制的最大技术困难之一。具体而言,在实际工业应用时,一方面,因受工作环境变化等因素影响,永磁同步电机系统参数的实际值与其标称值之间往往存在一定偏差,这将导致许多依赖系统精确参数的算法的控制性能大打折扣。另一方面,在很多实际工作情况下,永磁同步电机系统的负载转矩往往是未知的且处于变动之中,而这将明显影响永磁同步电机的位置控制及速度追踪性能。现有处理系统干扰影响的一种有效方法为滑模控制算法,其具有鲁棒性强、动态响应快等优点,但其本质上属于不连续控制算法,其控制器中所包含的不连续开关函数项将会引起系统的抖振。而抖振问题是滑模控制在实际应用时的最大障碍,抖振的存在会恶化系统的动态性能以及静态指标,同时加剧系统的机械损耗和能量消耗,在更严重情况下,高频抖振还有可能激 发系统未建模动态,严重破坏系统稳定性,甚至导致控制系统无法正常运行。
总结而言,如何在进行永磁同步电机位置控制算法设计过程中充分考虑电流限幅环节的存在,并能在不引入抖振的前提下保证所提方法能够有效抑制系统内外干扰的影响,最终实现永磁同步电机精准位置控制,是目前一个急需得到解决的问题。
发明内容
致力于解决现有技术中永磁同步电机位置控制方法中存在的缺陷与不足,本发明提供了一种考虑电流限幅的永磁同步电机鲁棒位置控制方法。该方法在控制器设计及稳定性分析等理论分析阶段充分考虑了电流限幅对闭环系统的影响,能够有效克服包含系统参数不确定性以及未知负载转矩在内的系统干扰的影响,最终实现电机位置精准跟踪的控制目标。更为重要的是该技术为一种连续控制方法,能够在具有滑模控制强鲁棒性的同时,克服其所固有的抖振问题。
本发明的技术方案:
一种考虑电流限幅的永磁同步电机鲁棒位置控制方法,步骤如下:
步骤1:确定受限幅环节以及干扰影响下的永磁同步电机动态方程:
在实际系统中,永磁同步电机控制系统的动态方程可表示为
Figure PCTCN2021070547-appb-000001
式中,θ为电机转子角度,i q表示在d-q坐标系下q轴定子电流,K t指的是转矩常数,J为电机转动惯量,而B为粘性摩擦系数,T L表示负载转矩。
需要指出的是,上述公式中的参数皆为实际系统参数,而在实际应用中,这些参数的真实值往往难以获得,研究者仅能得到相关参数的标称值。故进一步考虑系统参数不确定性、未知负载转矩以及电流环追踪误差的影响,可将永 磁同步电机动态方程改写为
Figure PCTCN2021070547-appb-000002
其中,i q *为q轴定子电流的参考值,K to、J o、B o分别表示转矩常数、转动惯量、粘性摩擦系数的标称值,
Figure PCTCN2021070547-appb-000003
Figure PCTCN2021070547-appb-000004
则表示系统参数真实值与标称值之间的偏差。
限幅环节对参考电流的影响可以由如下公式表示:
Figure PCTCN2021070547-appb-000005
其中,u(t)为待设计的控制量,即永磁同步电机位置环控制器,而I max为限幅环节的限幅值。
则有如下关系成立:i q *=f(u)=u+Δu
其中,Δu=f(u)-u表示限幅环节带来的影响。
综上,可以得到完整的综合考虑系统干扰以及限幅环节影响的永磁同步电机动态方程:
Figure PCTCN2021070547-appb-000006
其中,d(t)表示集总干扰项,其具体表达式为
Figure PCTCN2021070547-appb-000007
步骤2:控制目标确定及辅助信号构造:
在永磁同步电机位置控制里,其主要目标是保证电机转子角度能够在有限时间内精准地到达给定位置,即
Figure PCTCN2021070547-appb-000008
式中,θ d(t)为永磁同步电机的目标转子位置。
进一步可定义位置跟踪误差信号为e 1=θ d
在此基础上,为便于进行后续控制器设计以及稳定性分析工作,构造如下形式的辅助信号:
Figure PCTCN2021070547-appb-000009
其中,α和β均为大于0的正常数。
步骤3:鲁棒位置控制器设计及闭环系统稳定性分析:
在步骤1和步骤2的基础上,给出如下形式永磁同步电机鲁棒位置控制器:
Figure PCTCN2021070547-appb-000010
其中,k和λ为正的控制增益。
构造李雅普诺夫候选函数:
Figure PCTCN2021070547-appb-000011
进而,结合Lyapunov稳定性方法以及LaSalle–Yoshizawa定理可以证得闭环系统渐近稳定性。
步骤4:技术方案实现:
首先,通过安装在永磁同步电机内的传感器对电机的位置及速度进行实时测量,在得到系统状态量后,将其代入步骤3所给出的鲁棒位置控制器得到控制信号,根据此控制信号作为永磁同步电机位置环的控制器,便可实现对电机转子位置的精准追踪,同时能够有效抑制包括系统参数不确定性、未知负载转矩以及电流限幅等干扰的影响,保证永磁同步电机系统在干扰影响下仍能实现快速精准的定位功能。
相对于现有技术,本发明的有益效果如下:
(1)现有技术中,绝大数方法在控制器设计以及系统动态性能分析等阶段忽略电流限幅环节的存在。然而,限幅环节的存在会对系统动态性能以及稳定性产生影响。本发明所提技术方案的一个优势则在于细致考虑了限幅环节对系统的影响。在理论分析阶段,本发明将限幅环节进行数学化描述,并通过所设 计的鲁棒控制器抑制其影响,系统稳定性分析过程则证明即使存在限幅环节影响,本发明所提技术方案仍能实现既定控制目标。
(2)本发明所提出的永磁同步电机位置控制技术能够有效克服包含系统参数不确定性、未知负载转矩等在内的系统干扰的影响,能够在系统干扰影响下保持高性能的位置控制效果,这说明本发明所设计的控制算法具有较强的抗干扰能力与鲁棒性。同时,不同于同样具有强抗干扰特性的滑模控制算法,本发明所提出的控制算法是一种连续的鲁棒控制算法,不存在不连续函数项,因此有效杜绝了滑模控制的固有缺陷—“抖振问题”。
(3)本发明所提出的技术方案采用位置—电流级联控制结构,而非传统的位置—速度—电流三闭环级联结构,其省去了速度环的设计,简化了控制框架,且所设计控制器具有结构简单等优点,这对于实际工业应用具有重要意义,因可实现性差等原因,结构复杂、调节困难的控制算法在实际应用中并不受推崇。
总结而言,本发明所提出的永磁同步电机位置控制技术充分考虑了电流限幅环节的影响,能够有效克服系统内外干扰影响,可以保证即使在存在干扰影响下,仍能快速精准地实现电机转子角度位置跟踪控制,具有较强的抗干扰能力以及位置追踪性能。同时,本发明所设计控制器还具有结构简单等优点。优良的抗干扰能力以及简单易实现的结构特点使本发明所提技术方案拥有广阔的现实应用前景。
附图说明
图1为本发明所提永磁同步电机鲁棒位置控制框图;
图2为工业常用永磁同步电机三闭环位置控制框图;
图3(a)为理想条件下永磁同步电机转子角度θ在本发明所提方法控制下的响应曲 线;
图3(b)为理想条件下本发明所提方法的永磁同步电机q轴定子电流i q曲线;
图4(a)为理想条件下永磁同步电机转子角度θ在工业常用方法控制下的响应曲线;
图4(b)为理想条件下工业常用方法的永磁同步电机q轴定子电流i q曲线;
图5(a)为干扰影响下永磁同步电机转子角度θ在本发明所提方法控制下的响应曲线;
图5(b)为干扰影响下本发明所提方法的永磁同步电机q轴定子电流i q曲线;
图6(a)为干扰影响下永磁同步电机转子角度θ在工业常用方法控制下的响应曲线;
图6(b)为干扰影响下工业常用方法的永磁同步电机q轴定子电流i q曲线。
具体实施方式
下面结合附图及具体实施例,对本发明所提技术方案做进一步详细说明。
实施例一
如图1所示,本实施例公开了一种考虑电流限幅的永磁同步电机鲁棒位置控制方法,具体实施方式如下:
(一)确定受限幅环节以及干扰影响下的永磁同步电机动态方程:
本技术方案所研究对象为表贴式永磁同步电机,且基于如图1所示的i d=0矢量控制框架,此控制框架是以转子坐标系(d-q坐标系)为参考坐标系,在此坐标系下,系统的电压方程为:
Figure PCTCN2021070547-appb-000012
式中,u d和u q表示定子电压在d轴和q轴上的分量,i d,i q则分别指的是d轴和q轴 上的定子电流,同时,R与L为定子电阻和定子电感,n为电机极对数,ψ f为转子永磁体磁链,ω则指的是电机转速。
表贴式永磁同步电机电磁转矩的表达式如下:
T e=K ti q             (2)
其中,T e表示电磁转矩,K t为转矩常数。
接下来,给出如下的永磁同步电机系统运动方程:
Figure PCTCN2021070547-appb-000013
其中,T L表示负载转矩,θ为电机转子角度,J为电机转动惯量,而B为粘性摩擦系数。
结合式(2)和式(3)可以得到永磁同步电机控制系统的状态方程为
Figure PCTCN2021070547-appb-000014
需要指出的是,上述公式中的参数皆为实际系统参数,而在实际应用时,这些参数的真实值往往难以获得,研究者仅能得到相关参数的标称值。故进一步考虑系统参数不确定性、未知负载转矩以及电流环追踪误差的影响,可将式(4)改写为
Figure PCTCN2021070547-appb-000015
其中,i q *为q轴定子电流的参考值,K to、J o、B o分别表示转矩常数、转动惯量、粘性摩擦系数的标称值,
Figure PCTCN2021070547-appb-000016
Figure PCTCN2021070547-appb-000017
则表示系统参数真实值与标称值之间的偏差。
结合图1可知,为避免电机电流过大进而超过安全界限,不能将位置环控制器生成的控制量u直接作为q轴定子电流的参考值送给电流内环,而是需要在位置环控制器u之后施加一个限幅环节,以保证将电机电流给定值约束在给定范 围之内,从而实现对电机电流的间接限制。不难得知,当位置环控制器输出值大小超过限幅环节界限时,其将被做限幅处理,这将导致位置环输出值与实际送给电流内环的电流参考值之间差生偏差。不同于大多数已有技术方案,本发明将考虑限幅环节对闭环系统的影响,而不是简单地将这一环节忽略。
限幅环节对参考电流的影响可以由如下公式表示:
Figure PCTCN2021070547-appb-000018
其中,u(t)为待设计的控制量,即永磁同步电机位置环控制器,而I max为限幅环节的限幅值。则有如下关系成立
i q *=f(u)=u+Δu                 (7)
其中,Δu=f(u)-u表示限幅环节带来的影响。
结合式(5)、(6)和(7)可以得到完整的综合考虑系统内外干扰以及限幅环节影响的永磁同步电机动态方程:
Figure PCTCN2021070547-appb-000019
其中,d(t)表示集总干扰项,其具体表达式为
Figure PCTCN2021070547-appb-000020
对于集总干扰d(t)及其一、二阶导数,通常做如下有界假设:
Figure PCTCN2021070547-appb-000021
(二)控制目标确定及辅助信号构造:
假设θ d(t)为永磁同步电机的目标转子位置,也即位置给定信号,并假设其连续三阶导数是有界的,即
Figure PCTCN2021070547-appb-000022
在永磁同步电机位置控制里,其主要目标是保证电机转子角度能够在有限时间内精准地到达给定位置,即
Figure PCTCN2021070547-appb-000023
进一步可定义位置跟踪误差信号为
e 1=θ d-θ              (13)
在此基础上,为便于进行后续控制器设计以及稳定性分析工作,构造如下形式的辅助信号:
Figure PCTCN2021070547-appb-000024
其中,α和β均为大于0的正常数。
根据式(8)、(13)和(14)可得
Figure PCTCN2021070547-appb-000025
通过对上式求导,并做变形处理,不难得知
Figure PCTCN2021070547-appb-000026
而令
Figure PCTCN2021070547-appb-000027
Figure PCTCN2021070547-appb-000028
则有
Figure PCTCN2021070547-appb-000029
下面对H(t)跟N(t)的有界性进行分析,首先分析N(t)的有界性,根据式(10)和(11),可以很容易地得到
Figure PCTCN2021070547-appb-000030
式中,ε 1和ε 1为正常数。
接下来,对H(t)的有界性进行分析,根据式(14)有
Figure PCTCN2021070547-appb-000031
则可将H(t)重写为
H(t)=q·Z               (22)
其中,Z=(r,e 1,e 2) T,而
Figure PCTCN2021070547-appb-000032
则可知
||H|| =|H|=||q||||Z||≤ρ||Z||             (24)
式中,ρ≥||q||为正常数。
(三)鲁棒位置控制器设计及闭环系统稳定性分析:
在前两部分的基础之上,本发明提出如下永磁同步电机鲁棒位置控制器:
Figure PCTCN2021070547-appb-000033
其中,k和λ为正的可调控制增益。
将控制器(25)代入式(19),有
Figure PCTCN2021070547-appb-000034
下面进行系统稳定性分析,证明第(二)部分所提系统控制目标可以实现。首先,给出如下定理:
定理:当如下条件
Figure PCTCN2021070547-appb-000035
成立时,永磁同步电机转子角度在本发明所设计控制器(25)的作用下将精准地到达给定位置,即
Figure PCTCN2021070547-appb-000036
证明:构造如下形式的李雅普诺夫候选函数
Figure PCTCN2021070547-appb-000037
定义
Λ=2λ|e 2|-Ne 2                (30)
下面分析其恒大于0。由Ne 2≤||N|| |e 2|可以得知
-Ne 2≥-||N|| |e 2|              (31)
而结合式(20)以及增益条件(27),可推得
2λ|e 2|-||N|| |e 2|≥λ|e 2|≥0          (32)
Λ=2λ|e 2|-Ne 2≥2λ|e 2|-||N|| |e 2|≥λ|e 2|≥0          (33)
同时,-Ne 2≤||N|| |e 2|,则有
Λ=2λ|e 2|-Ne 2≤(2λ+||N|| )|e 2|      (34)
那么结合式(33)和(34),有
0≤λ|e 2|≤2λ|e 2|-||N|| |e 2|≤Λ≤(2λ+||N|| )|e 2|      (35)
进一步,根据式(29)的形式可以得知
Figure PCTCN2021070547-appb-000038
上述结果说明所设计V(t)是非负的,因此可作为李雅普诺夫函数。对李雅普诺夫函数求导,结合式(14)和(26)可得
Figure PCTCN2021070547-appb-000039
Figure PCTCN2021070547-appb-000040
则可将式(37)化简为
Figure PCTCN2021070547-appb-000041
进一步,通过式(20)、(24)和(27)可以得到
Figure PCTCN2021070547-appb-000042
则可将式(39)改写为
Figure PCTCN2021070547-appb-000043
其中,
Figure PCTCN2021070547-appb-000044
Figure PCTCN2021070547-appb-000045
时,下式成立
Figure PCTCN2021070547-appb-000046
根据式(36)和(42)的结果可以得到
V,r,e 1,e 2∈ζ             (43)
则根据控制器(25)的表达式可进一步得知
u∈ζ               (44)
上述结果说明闭环系统内的信号以及控制输入都是有界的。接下来,根据式(29)和(42),并使用LaSalle–Yoshizawa定理可以得出
Figure PCTCN2021070547-appb-000047
Figure PCTCN2021070547-appb-000048
则定理得证,即永磁同步电机转子角度将精准追踪到给定目标位置。
(四)技术方案实现:
在此,本发明简要介绍如何将本方法在实际工业中进行应用。首先,安装在永磁同步电机内的传感器将对电机的位置及速度进行实时测量,在得到系统状态量后将其代入本发明所设计的位置控制器(25)得到控制信号,根据此控制信号作为图1中永磁同步电机位置环的控制器便可实现对电机转子位置的精准跟踪,同时能够有效抑制包括系统参数不确定性、未知负载转矩以及电流限幅等干扰的影响,保证永磁同步电机系统在干扰影响下仍能实现快速精准的定位功能。
仿真验证:图1为本发明所提技术的结构图,在位置环中采用所设计的鲁棒控制器,电流环中使用经典的PI控制器。而图2给出的是在工业应用中最常用的一种控制框架,其位置环采用P控制器,速度环和电流环则均使用PI控制器。本发明将对这两种控制方案进行仿真对比,以验证本发明所提技术的有效性及优越性。
仿真1:理想条件下所提技术的位置跟踪性能
本次仿真将考虑理想条件下所提方法的控制性能,即系统参数的真实值已知且等于其标称值,且不存在负载转矩变化等外界干扰的影响。在本次仿真中,系统参数设置为:J=J o=0.011kg·m 2,B=B o=0.005N·m·s/rad,K=K to=3.6N·m/A,且负载转矩T L=4.5N·m,电流限幅环节的限幅值为±10A。仿真结果如图3‐4所示,其中,图 3(a)和图3(b)为本发明所提方法的仿真结果,图4(a)和图4(b)为工业常用方案的仿真结果,图3(a)和图4(a)中的实线为永磁同步电机转子响应曲线,而虚线表示转子目标位置θ d=3π,图3(b)和图4(b)则分别给出的是本发明所提方法和工业常用方法的q轴定子电流i q曲线。由图3(b)和图4(b)可以看出,限幅环节产生了约束作用,将i q限制在±10A之内,即本仿真考虑了限幅环节的影响。且进一步通过对比图3(a)和图4(a)可知,本发明所提方法使电机转子角度在0.45s左右就精准地到达了给定目标位置,而工业常用方案的到达时间则在0.65s以上,这说明,相较于工业常用方案,本发明所设计永磁同步电机位置控制器具有更快的调节速度,可以使永磁同步电机系统获得更好的动态性能。
仿真2:干扰影响下所提技术的位置跟踪性能
进一步,为验证所提方法的鲁棒性,仿真2考虑了系统参数不确定性以及外界负载转矩突变等内外干扰的影响,将转动惯量和粘性摩擦系数调整为J=0.022kg·m 2,B=0.025N·m·s/rad
而其它系统参数与控制器参数保持不变。同时,为模拟负载转矩变化现象,仿真在0.8s时将负载转矩调整为9N·m,并在1s时将负载转矩调回4.5N·m。仿真结果见图5‐6,其中,图5(a)和图5(b)为本发明所提方法的仿真结果,而图6(a)和图6(b)为工业常用方案的仿真结果。同样,图5(a)和图6(a)中的实线为永磁同步电机转子响应曲线,而虚线表示转子目标位置θ d=3π,图5(b)和图6(b)则分别给出的是本发明所提方法和工业常用方法的q轴定子电流i q曲线。图5(b)和图6(b)表明在仿真2中仍考虑了限幅环节的作用。且由图5(a)可知,在存在限幅环节影响和系统参数发生变化时,本发明所提方法仍能保持良好的位置跟踪性能,电机转子依旧在0.45s左右到达给定位置。同时,当负载转矩发生突变时,在本发明 所设计控制器的调节作用下,电机转子位置波动很小,波动范围仅为±0.1rad,且很快又回归稳定状态,位置跟踪误差重新收敛于0。而从图6(a)的工业常用方案的转子动态响应曲线中可以看出,在系统参数发生变化时,工业常用的三闭环控制方案的控制效果急剧下降,电机转子角度发生超调,且在0.7s左右才稳定在给定目标位置。同时,在负载转矩突变时,电机转子位置发生了明显的波动,波动范围达到了±0.7rad,远大于本发明所提方法的约束范围。
总结而言,仿真1和仿真2的结果说明相对于工业常用的三闭环控制方案,本发明所提出的技术方案具有更快的动态响应,可以在更短时间内实现永磁同步电机的位置跟踪控制,更重要的是所提技术方案对系统参数不确定性、未知负载转矩干扰等具有强鲁棒性,其在系统参数变动以及负载转矩变化下仍能保证良好的位置控制性能,这意味着本发明具有重要的现实应用前景,可以被应用于实际工业生产之中。

Claims (1)

  1. 一种考虑电流限幅的永磁同步电机鲁棒位置控制方法,其特征在于,步骤如下:
    步骤1:确定受限幅环节以及干扰影响下的永磁同步电机动态方程
    在实际系统中,永磁同步电机控制系统的动态方程表示为
    Figure PCTCN2021070547-appb-100001
    其中,θ为电机转子角度,i q表示在d-q坐标系下q轴定子电流,K t指的是转矩常数,J为电机转动惯量,B为粘性摩擦系数,T L表示负载转矩;
    进一步考虑系统参数不确定性、未知负载转矩以及电流环追踪误差的影响,将永磁同步电机动态方程改写为
    Figure PCTCN2021070547-appb-100002
    其中,i q *为q轴定子电流的参考值,K to、J o、B o分别表示转矩常数、转动惯量、粘性摩擦系数的标称值,
    Figure PCTCN2021070547-appb-100003
    Figure PCTCN2021070547-appb-100004
    则表示系统参数真实值与标称值之间的偏差;
    限幅环节对参考电流的影响由如下公式表示:
    Figure PCTCN2021070547-appb-100005
    其中,u(t)为待设计的控制量,即永磁同步电机位置环控制器,I max为限幅环节的限幅值;
    则有如下关系成立:i q *=f(u)=u+Δu;
    其中,Δu=f(u)-u表示限幅环节带来的影响;
    得到完整的综合考虑系统干扰以及限幅环节影响的永磁同步电机动态方程:
    Figure PCTCN2021070547-appb-100006
    其中,d(t)表示集总干扰项,其具体表达式为
    Figure PCTCN2021070547-appb-100007
    步骤2:控制目标确定及辅助信号构造
    在永磁同步电机位置控制中,保证电机转子角度在有限时间内精准地到达给定位置,即
    Figure PCTCN2021070547-appb-100008
    其中,θ d(t)为永磁同步电机的目标转子位置;
    进一步定义位置跟踪误差信号为e 1=θ d-θ;
    为进行后续控制器设计以及稳定性分析工作,构造如下形式的辅助信号:
    Figure PCTCN2021070547-appb-100009
    其中,α和β均为大于0的正常数;
    步骤3:鲁棒位置控制器设计及闭环系统稳定性分析
    在步骤1和步骤2的基础上,给出如下形式永磁同步电机鲁棒位置控制器:
    Figure PCTCN2021070547-appb-100010
    其中,k和λ为正的控制增益;
    构造李雅普诺夫候选函数:
    Figure PCTCN2021070547-appb-100011
    结合Lyapunov稳定性方法以及LaSalle–Yoshizawa定理证得闭环系统渐近稳定性;
    步骤4:首先,通过安装在永磁同步电机内的传感器对电机的位置及速度进行实时测量,在得到系统状态量后,将其代入步骤3所给出的鲁棒位置控制器得到控制信号,根据此控制信号作为永磁同步电机位置环的控制器,便实现对电机转子位置的精准追踪,同时有效抑制包括系统参数不确定性、未知负载转矩以及电流限幅的影响,保证永磁同步电机系统在干扰影响下仍能实现快速精准的定位功能。
PCT/CN2021/070547 2021-01-07 2021-01-07 一种考虑电流限幅的永磁同步电机鲁棒位置控制方法 WO2022147701A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/429,880 US11594991B1 (en) 2021-01-07 2021-01-07 Robust position control method for permanent magnet synchronous motor considering current limitation
PCT/CN2021/070547 WO2022147701A1 (zh) 2021-01-07 2021-01-07 一种考虑电流限幅的永磁同步电机鲁棒位置控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/070547 WO2022147701A1 (zh) 2021-01-07 2021-01-07 一种考虑电流限幅的永磁同步电机鲁棒位置控制方法

Publications (1)

Publication Number Publication Date
WO2022147701A1 true WO2022147701A1 (zh) 2022-07-14

Family

ID=82357021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070547 WO2022147701A1 (zh) 2021-01-07 2021-01-07 一种考虑电流限幅的永磁同步电机鲁棒位置控制方法

Country Status (2)

Country Link
US (1) US11594991B1 (zh)
WO (1) WO2022147701A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108322120A (zh) * 2018-01-30 2018-07-24 天津大学 适用于永磁同步电机的鲁棒非线性预测转矩控制方法
CN110190795A (zh) * 2019-06-11 2019-08-30 东北大学 一种永磁同步电机级联式鲁棒预测电流控制方法
CN111010062A (zh) * 2019-12-20 2020-04-14 合肥工业大学 一种采用级联结构的永磁同步电机鲁棒速度控制方法
CN111987943A (zh) * 2020-07-23 2020-11-24 西安理工大学 一种永磁同步电机模型预测控制的鲁棒性能提升方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100237817A1 (en) * 2009-03-23 2010-09-23 Jingbo Liu Method and Apparatus for Estimating Rotor Position in a Sensorless Synchronous Motor
US9093940B2 (en) * 2013-02-14 2015-07-28 Deere & Company Methods of determining initial position of a rotor and systems thereof
KR101852754B1 (ko) * 2016-10-27 2018-04-27 엘에스산전 주식회사 영구자석 동기전동기의 센서리스 제어 시스템
US10333444B2 (en) * 2017-08-31 2019-06-25 Eaton Intelligent Power Limited System and method for stability control in adjustable speed drive with DC link thin film capacitor
US10291160B1 (en) * 2018-03-09 2019-05-14 Haier Us Appliance Solutions, Inc. Method for operating a synchronous motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108322120A (zh) * 2018-01-30 2018-07-24 天津大学 适用于永磁同步电机的鲁棒非线性预测转矩控制方法
CN110190795A (zh) * 2019-06-11 2019-08-30 东北大学 一种永磁同步电机级联式鲁棒预测电流控制方法
CN111010062A (zh) * 2019-12-20 2020-04-14 合肥工业大学 一种采用级联结构的永磁同步电机鲁棒速度控制方法
CN111987943A (zh) * 2020-07-23 2020-11-24 西安理工大学 一种永磁同步电机模型预测控制的鲁棒性能提升方法

Also Published As

Publication number Publication date
US20230048547A1 (en) 2023-02-16
US11594991B1 (en) 2023-02-28

Similar Documents

Publication Publication Date Title
CN110429881B (zh) 一种永磁同步电机的自抗扰控制方法
Fu et al. A novel robust super-twisting nonsingular terminal sliding mode controller for permanent magnet linear synchronous motors
WO2022232977A1 (zh) 基于快速积分终端滑模及干扰估计的永磁同步电机有限时间调速控制方法
WO2022087799A1 (zh) 一种考虑电流饱和以及干扰抑制的永磁同步电机速度控制方法
CN102208891A (zh) 基于摩擦和扰动补偿的pmsm伺服系统控制方法
CN113206623B (zh) 基于快速积分终端滑模及干扰估计的永磁同步电机有限时间调速控制方法
CN116317794A (zh) 航空发动机电动执行机构高精度控制方法
WO2022147701A1 (zh) 一种考虑电流限幅的永磁同步电机鲁棒位置控制方法
Shi et al. The research of fuzzy PID control application in DC motor of automatic doors
Fu et al. A novel robust adaptive nonsingular fast integral terminal sliding mode controller for permanent magnet linear synchronous motors
Cheng et al. Robust proximate time-optimal servomechanism with speed constraint for rapid motion control
Zhang et al. Single neuron PID sliding mode parallel compound control for alternating current servo system
CN112422006B (zh) 一种考虑电流饱和以及干扰抑制的永磁同步电机速度控制方法
Bai et al. Robust composite finite-time convergent speed control of induction machine based on multiple sources disturbance estimation technology generalized proportional integral observer
CN112821829B (zh) 一种考虑电流限幅的永磁同步电机鲁棒位置控制方法
Yang A neural network model reference adaptive system for speed estimation of sensorless induction motor
Qu et al. Sliding-mode anti-disturbance speed control of permanent magnet synchronous motor based on an advanced reaching law
Li et al. Permanent magnet brushless motor control based on ADRC
Du et al. Contour error control of XY motion platform based on robust predictive
Liao et al. Speed Model Predictive Control for SPMSM Based on EKF Observer
CN116599401B (zh) 一种基于自适应滑模趋近律的永磁同步电机调速控制方法
CN109660154B (zh) 一种伺服柔性负载新型速度控制方法
Bai et al. Active Disturbance Rejection Control for DC Motor with Measurement Delay Using the PDE-Backstepping Predictor
Pu et al. Design of Lightweight and Miniaturized Motor Control System Based on Anti-Integral Saturation
Liu et al. Application of Complementary Sliding Mode Control with State Observer in Servo System of Voice Coil Motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21916759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21916759

Country of ref document: EP

Kind code of ref document: A1