WO2022145653A1 - 반도체 공정용 연마 조성물, 연마 조성물의 제조 방법 및 연마 조성물을 적용한 반도체 소자의 제조 방법 - Google Patents

반도체 공정용 연마 조성물, 연마 조성물의 제조 방법 및 연마 조성물을 적용한 반도체 소자의 제조 방법 Download PDF

Info

Publication number
WO2022145653A1
WO2022145653A1 PCT/KR2021/014483 KR2021014483W WO2022145653A1 WO 2022145653 A1 WO2022145653 A1 WO 2022145653A1 KR 2021014483 W KR2021014483 W KR 2021014483W WO 2022145653 A1 WO2022145653 A1 WO 2022145653A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing composition
abrasive particles
semiconductor
semiconductor processing
Prior art date
Application number
PCT/KR2021/014483
Other languages
English (en)
French (fr)
Inventor
박한터
한덕수
권장국
홍승철
Original Assignee
에스케이씨솔믹스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨솔믹스 주식회사 filed Critical 에스케이씨솔믹스 주식회사
Priority to US18/255,783 priority Critical patent/US20240030041A1/en
Priority to CN202180083214.8A priority patent/CN116568772A/zh
Priority claimed from KR1020210138360A external-priority patent/KR102681982B1/ko
Publication of WO2022145653A1 publication Critical patent/WO2022145653A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/67219Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one polishing chamber

Definitions

  • the present invention relates to a polishing composition for a semiconductor process, a method of manufacturing the polishing composition, and a method of manufacturing a semiconductor device to which the polishing composition is applied.
  • CMP chemical mechanical polishing
  • the substrate is pressed and rotated while the slurry is supplied to the polishing pad, and the surface is polished.
  • the target to be planarized varies according to the stage of the process, and there are also differences in the physical properties of the slurry applied at this time.
  • the CMP process has been applied to planarization of dielectrics such as silicon oxide film (SiO 2 ) and silicon nitride film (SiN), and is essentially used for planarization process for metal wiring such as tungsten (W) and copper (Cu).
  • dielectrics such as silicon oxide film (SiO 2 ) and silicon nitride film (SiN)
  • metal wiring such as tungsten (W) and copper (Cu).
  • films of various materials having different etch selectivity characteristics are required.
  • a carbon-based organic film has good etch selectivity with respect to other silicon-containing films, and thus can be used as a mask film or a sacrificial film.
  • Another object of the present invention is to provide an abrasive composition for a semiconductor process excellent in long-term storage stability because the polishing rate does not decrease when the polishing composition is polished at 60° C. or higher, and agglomeration between particles does not occur even after long-term storage.
  • Another object of the present invention is a polishing composition applied to a polishing process of an amorphous carbon layer, which can exhibit a high polishing rate for an amorphous carbon layer, which is a target film quality, and carbon residue generated during the polishing process. ) to prevent adsorption on a semiconductor substrate and to provide a polishing composition for a semiconductor process that can prevent contamination of the polishing pad.
  • Another object of the present invention is to provide a method of manufacturing a semiconductor device to which a polishing composition for a semiconductor process is applied.
  • the polishing composition for a semiconductor process is abrasive particles; accelerator; and a stabilizer, wherein the aggregation index (CI) represented by the following formula (1) is 0.5 to 5:
  • Sai is an average particle diameter of the abrasive particles included in the semiconductor process polishing composition measured by a dynamic light scattering particle size analyzer
  • the Saf is the average particle diameter of the abrasive particles included in the polishing composition for semiconductor processing, maintained at 60° C. for 17 hours, cooled at 15 to 25° C., and measured by a dynamic light scattering particle size analyzer.
  • a method of manufacturing a polishing composition for a semiconductor process comprises: a) preparing a polishing solution by mixing a stabilizer and an accelerator in a solvent; b) adjusting the pH of the polishing solution to 2 to 5 by adding a pH adjuster to the polishing solution; and c) mixing a surfactant and abrasive particles in the abrasive solution having a pH of 2 to 5.
  • a method of manufacturing a semiconductor device includes: 1) providing a polishing pad including a polishing layer; 2) supplying a polishing composition for a semiconductor process to the polishing pad; and 3) grinding the abrasive object while relatively rotating it so that the polished surface of the abrasive object comes into contact with the abrasive surface of the abrasive layer.
  • the polishing rate does not decrease when polishing at 60° C. or higher using the polishing composition, and the agglomeration between particles does not occur even after long-term storage, so the long-term storage stability is excellent, and polishing of an amorphous carbon layer
  • a high polishing rate may be exhibited, carbon residue generated during the polishing process may be prevented from adsorbing to the semiconductor substrate, and contamination of the polishing pad may be prevented.
  • FIG. 1 is a schematic process diagram of a semiconductor device manufacturing process according to an embodiment of the present invention.
  • the present invention provides abrasive particles; accelerator; And it includes a stabilizer, and relates to a polishing composition for a semiconductor process having a cohesive index (CI) of 0.5 to 5 represented by Equation 1 below:
  • Sai is an average particle diameter of the abrasive particles included in the semiconductor process polishing composition measured by a dynamic light scattering particle size analyzer
  • the Saf is the average particle diameter of the abrasive particles included in the polishing composition for semiconductor processing, maintained at 60° C. for 17 hours, cooled at 15 to 25° C., and measured by a dynamic light scattering particle size analyzer.
  • B is located on A means that B is located directly abutting on A or B is located on A while another layer is located in between, and B is located in contact with the surface of A It is not construed as being limited to
  • the complexity of the surface structure means that the line width of the semiconductor is narrowed, and the aspect ratio (horizontal to vertical ratio) is also gradually increasing, and in order to meet the increasing aspect ratio, the photoresist is getting thinner.
  • the thin and elongated photoresist does not withstand the etching process and collapses. In order to prevent this, a hardmask process has been introduced.
  • amorphous carbon and SiON were used as the hard mask material.
  • the amorphous carbon has excellent etching resistance when used as a hard mask, when a chemical mechanical polishing process is applied using a conventional polishing composition, a low removal rate and generation of carbon residue causes carbon residue It adsorbs to the film-like surface, causing a problem of generating defects in the semiconductor substrate.
  • the polishing composition for a semiconductor process of the present invention not only exhibits a high polishing rate for the amorphous carbon film, but also prevents re-adsorption of carbon residues, thereby preventing the occurrence of defects in the semiconductor substrate.
  • the polishing composition for a semiconductor process of the present invention includes abrasive particles, an accelerator and a stabilizer, and has a cohesive index (CI) of 0.5 to 5, expressed by Equation 1 below:
  • Sai is an average particle diameter of the abrasive particles included in the semiconductor process polishing composition measured by a dynamic light scattering particle size analyzer
  • the Saf is the average particle diameter of the abrasive particles included in the polishing composition for semiconductor processing, maintained at 60° C. for 17 hours, cooled at 15 to 25° C., and measured by a dynamic light scattering particle size analyzer.
  • the polishing rate does not decrease.
  • agglomeration or oxidation does not occur between the abrasive particles, thereby preventing an increase in particle size.
  • the average diameter of the particles may increase due to aggregation between particles.
  • the average diameter of the particles is increased as described above, when used in a polishing process, a problem that the polishing rate is lowered may occur.
  • the polishing composition is added to the polishing process at 60° C. or higher, it means that agglomeration between the abrasive particles in the polishing composition may occur.
  • the abrasive composition of the present invention prevents aggregation between the abrasive particles even when stored for a long time, thereby preventing an increase in the size of the abrasive particles. Specifically, it is possible to prevent aggregation of the abrasive particles as described above, thereby preventing a decrease in the polishing rate, and greatly improving storage stability.
  • Equation 1 relates to storage stability of the polishing composition of the present invention and stability during polishing at 60° C. or higher.
  • the initial average diameter (nm) of the abrasive particles and the average diameter (nm) of the abrasive particles measured after being maintained at 60° C. for 17 hours and cooled at 15 to 25° C. are 0.5 to 5 according to Equation 1 above This means that there is no significant change in the average diameter of the particles.
  • the dynamic light scattering method is a non-invasive technique for measuring the size of nanoparticles in a dispersion.
  • the dynamic light scattering method is to measure the intensity of scattered light over time in a particle suspension using a Brownian motion. By analyzing the intensity fluctuation of the scattered light, a diffusion coefficient for which the particle size can be determined can be determined, and the particle size can be obtained from this coefficient through the Stoke-Einsteinequation.
  • the average diameter of the particles measured by the dynamic light scattering method is the value calculated through the agglomeration index (CI) according to Equation 1 of the average particle diameter value of the abrasive particles included in the initial state and the abrasive composition that has undergone the agglomeration acceleration process is 0.5 to 5, 0.5 to 1.50, 0.5 to 1.40, 0.5 to 1.30, 0.5 to 1.25, 0.7 to 1.22, 0.7 to 1.15, and 0.7 to 1.12.
  • CI agglomeration index
  • the average diameter increase rate of the abrasive particles in the polishing composition may be 0.5% to 30% by the following Equation 2:
  • Sai is an average particle diameter of the abrasive particles included in the semiconductor process polishing composition measured by a dynamic light scattering particle size analyzer
  • the Saf is the average particle diameter of the abrasive particles included in the polishing composition for semiconductor processing, maintained at 60° C. for 17 hours, cooled at 15 to 25° C., and measured by a dynamic light scattering particle size analyzer.
  • the value according to Formula 2 is 0.5% to 30%, 0.5% to 25%, 0.5% to 20%, 0.5% to 15%, 0.5% to 10%, and may be 0.5% to 7% .
  • the polishing composition of the present invention can be used in the polishing process of an amorphous carbon layer (ACL, amorphous carbon layer), and the polishing rate for the amorphous carbon layer is 100 ⁇ /min to 250 ⁇ /min, 110 ⁇ /min to 200 ⁇ /min, and , may be 120 ⁇ /min to 200 ⁇ /min. That is, when the amorphous carbon film is polished using the polishing composition, when the polishing rate is within the above range, the polishing efficiency is excellent and can be used in the polishing process for the amorphous carbon film.
  • ACL amorphous carbon layer
  • the conventional polishing composition has a low polishing rate for the amorphous carbon film, so it is difficult to apply the polishing composition to the polishing process.
  • the polishing composition of the present invention when used in a polishing process of an amorphous carbon film, it exhibits a polishing rate of 100 ⁇ /min to 250 ⁇ /min, so that it can be used in a polishing process with a high polishing rate and is polished under a condition of 60° C. or higher. There is no reduction in the polishing rate and no reduction in the polishing rate even after long-term storage.
  • the abrasive particles may be selected from the group consisting of metal oxides, organic particles, organic-inorganic composite particles, and mixtures thereof.
  • the abrasive particles are abrasive particles that can be applied to a polishing composition for a semiconductor process, and are, for example, selected from the group consisting of metal oxides, organic particles, organic-inorganic composite particles, and mixtures thereof, and the metal oxide is colloidal silica, It may be selected from the group consisting of fumed silica, ceria, alumina, titania, zirconia, zeolite, and mixtures thereof, but the abrasive particles selectable by those skilled in the art are not limited to the above examples, and all abrasive particles can be used without limitation.
  • the organic particles include polystyrene, styrene-based copolymer, poly(meth)acrylate, (meth)acrylate-based copolymer, polyvinyl chloride, polyamide, polycarbonate, polyimide polymer;
  • a core/shell structure in which the polymer constitutes a core, a shell, or both, and these may be used alone or in combination, and the organic particles may be prepared by an emulsion polymerization method, a suspension polymerization method, or the like.
  • the abrasive particles of the present invention may be specifically selected from the group consisting of colloidal silica, fumed silica, ceria, and mixtures thereof.
  • the abrasive particles may have an average diameter of 10 nm to 120 nm, 20 nm to 100 nm, 40 nm to 80 nm, 45 nm to 70 nm, and 70 nm to 80 nm.
  • the metal oxide particles fall within the scope of the present invention, it is possible to prevent the occurrence of defects such as scratches on the semiconductor substrate in the polishing process, and the abrasive particles are excellent in dispersibility.
  • the accelerator may be selected from the group consisting of anionic low molecular weight, anionic polymer, hydroxyl acid, amino acid and cerium salt.
  • the cerium salt may be a trivalent cerium salt or a tetravalent cerium salt, and more specifically
  • the tetravalent cerum salt may be selected from the group consisting of cerium(IV) sulfate (Ce(SO 4 ) 2 ), cerium ammonium sulfate dihydrate, and cerium ammonium nitrate, but is not limited thereto.
  • the accelerator may be included in the polishing composition to facilitate removal of the surface layer of the amorphous carbon film by oxidizing the surface layer of the amorphous carbon film with an oxide or ions.
  • the cerium ammonium nitrite may be present in the slurry composition in the form of an ionic compound or a chelate compound, and when used in the form, it is possible to provide a high polishing rate for the amorphous carbon film.
  • the accelerator when the accelerator and the stabilizer are mixed and used, the accelerator not only exhibits an effect of increasing the polishing rate on the amorphous carbon film, but also increases the stability of the polishing composition by the stabilizer, and increases the stability of the polishing composition in the polishing process It is possible to prevent the occurrence of defects.
  • the stabilizer is an amino acid, and more specifically, the amino acid is arginine, histidine, lysine, aspartic acid, glutamic acid, glutamine ( Glutamine, Cysteine, Proline, Asparagine, threonine, Alanine, Glycine, Valine, Leucine, Isoleucine, and mixtures thereof It may be selected from the group consisting of, and is preferably alanine, but it is not limited to the above example, and the amino acid that can increase the stability of the polishing composition and suppress the occurrence of defects in the polishing process is not limited by mixing and using the accelerator. All are available
  • the polishing composition of the present invention further includes a surfactant, exhibits a high polishing rate for the amorphous carbon film, and can prevent re-adsorption of carbon residues on the semiconductor substrate by reducing the surface tension.
  • polishing rate of the amorphous carbon film when an accelerator is included in the polishing composition, the polishing rate is increased. However, carbon residue generated during the polishing process is adsorbed to the semiconductor substrate or contamination may occur.
  • a surfactant is included in the polishing composition to reduce the surface tension of the polishing composition, and according to the decrease in the surface tension, re-adsorption of carbon residues to the substrate surface is prevented, and contamination of the polishing pad problems can be avoided.
  • the surfactant may include a nonionic fluorine-based polymer compound.
  • the surfactant includes a fluorine-based polymer compound, and when used in a polishing process for the amorphous carbon film, it is possible to prevent re-adsorption of carbon residues generated on the surface of the semiconductor substrate.
  • the surfactant contains fluorine, it is possible to suppress the growth of microorganisms such as bacteria and mold.
  • bacteria and mold may occur, and the polishing composition in which the bacteria and mold are generated cannot be used in the polishing process and may have to be discarded.
  • the surfactant includes a nonionic fluorine-based polymer compound, and when the polishing composition is stored for a long time, the generation of bacteria and mold can be prevented, and long-term storage stability can be improved.
  • the surfactant of the present invention may be selected from the group consisting of FS-30, FS-31, FS-34, ET-3015, ET-3150, ET-3050, and mixtures thereof, manufactured by Chemours tm . It is not particularly limited as long as it is a material that serves to prevent re-adsorption of carbon residues on the surface of the semiconductor substrate in the process.
  • the surfactant of the present invention is a nonionic surfactant, and a surfactant including a nonionic fluorine-based polymer compound may be used alone or mixed with other nonionic surfactants.
  • the nonionic surfactant is polyethylene glycol, polypropylene glycol, polyethylene-propylene copolymer, polyalkyl oxide, polyoxyethylene oxide; PEO ), polyethylene oxide, polypropylene oxide, fluorine-based surfactants are sodium sulfonate fluorosurfactant, phosphate ester fluorosurfactant, amine oxide fluorosurfactant oxide fluorosurfactant, betaine fluorosurfactant, ammonium carboxylate fluorosurfactant, stearate ester fluorosurfactant, quaternary ammonium fluorosurfactant, ethylene It may be selected from the group consisting of oxide/propylene oxide fluorosurfactants (ethylene oxide/propylene oxide fluorosurfactant) and polyoxyethylene fluorosurfactant.
  • the polishing composition of the present invention may include a pH adjusting agent, wherein the pH adjusting agent is hydrochloric acid, phosphoric acid, sulfuric acid, hydrofluoric acid, nitric acid, hydrobromic acid, iodic acid, formic acid, malonic acid, maleic acid, oxalic acid, acetic acid, adipic acid, citric acid , adipic acid, acetic acid, propionic acid, fumaric acid, lactic acid, salicylic acid, pimelin, benzoic acid, succinic acid, phthalic acid, butyric acid, glutaric acid, glutamic acid, glycolic acid, lactic acid, aspartic acid, at least selected from the group consisting of tartaric acid and potassium hydroxide It can be any one.
  • the pH adjusting agent is hydrochloric acid, phosphoric acid, sulfuric acid, hydrofluoric acid, nitric acid, hydrobromic acid, iodic acid, formic acid, malonic acid, male
  • the pH adjusting agent may represent a pH of the polishing composition for a semiconductor process of 2 to 5, preferably 2 to 4.
  • the acidic environment is maintained within this range, the polishing rate and quality can be maintained above a certain level while preventing excessive corrosion of metal components or polishing equipment.
  • the polishing composition for a semiconductor process includes 0.1 wt% to 0.5 wt% of abrasive particles, 1 wt% to 2 wt% of an accelerator, 1 wt% to 2 wt% of a stabilizer, and 0.001 wt% to a surfactant 0.01% by weight and the remainder of the solvent.
  • the accelerator is stabilized by the stabilizer, the polishing rate by the accelerator in the polishing composition can be increased, and the occurrence of defects in the polishing process is prevented by the stabilizer and the surfactant can do.
  • the solvent is ultrapure water, it is not limited to the above example, and any solvent that can be used as a solvent of the polishing composition can be used without limitation.
  • the surfactant When the surfactant is included below the range value, the occurrence of surface defects of the semiconductor substrate increases during the polishing process. .
  • the manufacturing method for the polishing composition of the present invention comprises the steps of: a) preparing a polishing solution by mixing a stabilizer and an accelerator in a solvent; b) adjusting the pH of the polishing solution to 2 to 5 by adding a pH adjuster to the polishing solution; and d) mixing a surfactant and abrasive particles into the polishing solution having a pH of 2 to 5.
  • the first solvent may be prepared by mixing the stabilizer with the solvent, and then the accelerator may be mixed to prepare a polishing solution.
  • the accelerator When the accelerator is prepared by mixing other stabilizers, pH adjusters, surfactants and abrasive particles in ultrapure water as a solvent, the accelerator is not stabilized in the abrasive composition, so that it is difficult to store for a long time or in the abrasive composition. In this case, the effect of increasing the polishing rate by the accelerator may not appear.
  • a mixed solution is prepared by mixing a stabilizer in a solvent, an accelerator is dissolved in the mixed solution to prepare a polishing solution, and then a polishing composition is prepared by the following steps.
  • a method of manufacturing a semiconductor device includes: 1) providing a polishing pad including a polishing layer; 2) supplying a polishing composition for a semiconductor process to the polishing pad; and 3) grinding the abrasive object while relatively rotating so that the polished surface of the abrasive object comes into contact with the abrasive surface of the abrasive layer, wherein the abrasive composition includes abrasive particles, an accelerator and a stabilizer,
  • the aggregation index (CI) represented by the following formula (1) is 0.5 to 5:
  • Sai is an average particle diameter of the abrasive particles included in the semiconductor process polishing composition measured by a dynamic light scattering particle size analyzer
  • the Saf is the average particle diameter of the abrasive particles included in the polishing composition for semiconductor processing, maintained at 60° C. for 17 hours, cooled at 15 to 25° C., and measured by a dynamic light scattering particle size analyzer.
  • FIG. 1 is a schematic flowchart of a semiconductor device manufacturing process according to an exemplary embodiment.
  • a semiconductor substrate 130 to be polished is disposed on the polishing pad 110 .
  • the polishing slurry 150 is sprayed on the polishing pad 110 through the nozzle 140 .
  • the flow rate of the polishing slurry 150 supplied through the nozzle 140 may be selected according to the purpose within the range of about 10 cm 3 /min to about 1,000 cm 3 /min, for example, from about 50 cm 3 /min to It may be about 500 cm3 / min, but is not limited thereto.
  • the to-be-polished surface of the semiconductor substrate 130 is in direct contact with the polishing surface of the polishing pad 110 .
  • the semiconductor substrate 130 and the polishing pad 110 may be rotated relative to each other, so that the surface of the semiconductor substrate 130 may be polished.
  • the rotation direction of the semiconductor substrate 130 and the rotation direction of the polishing pad 110 may be in the same direction or in opposite directions.
  • the rotation speed of the semiconductor substrate 130 and the polishing pad 110 may be selected depending on the purpose in the range of about 10 rpm to about 500 rpm, respectively, for example, it may be about 30 rpm to about 200 rpm, However, the present invention is not limited thereto.
  • polishing the substrate is an organic layer, and may be applied to a polishing process for a carbon-based organic layer.
  • the carbon-based organic film may be exemplified by a C-SOH (spin on hardmask) film, an amorphous carbon layer, or an NCP film, and preferably has an excellent selective polishing effect and can exhibit a high polishing rate. It is an amorphous carbon film.
  • polishing composition for a semiconductor process Since the detailed description of the polishing composition for a semiconductor process overlaps with the description above, the description thereof will be omitted.
  • the semiconductor substrate 130 is polished and the conditioner 170 is used simultaneously with the polishing.
  • the method may further include processing the polishing surface of the pad 110 .
  • a mixed solution was prepared by mixing alanine as a stabilizer in ultrapure water, and a polishing solution was prepared by mixing cerium ammonium nitrite.
  • a polishing composition was prepared by mixing nitric acid with the polishing solution to adjust the pH to 2.1, and mixing FS-30 manufactured by Chemours tm as a surfactant and colloidal silica having a diameter of 75 nm.
  • Example 1 75 0.25 0.6 One 0.005 Remainder
  • Example 2 45 1.25 0.6 One 0.005
  • Example 3 45 0.25 0.6 One 0.005
  • Example 4 75 2.5 0.6
  • Example 5 75 1.25 0.6
  • Comparative Example 1 45 0.25 0.6
  • Comparative Example 2 60 0.25 0.6
  • One 0.005 Comparative Example 3 45 2.5 0.6
  • polishing rates were measured for Example 1, Comparative Example 1, and Comparative Example 2 to measure the polishing rate for the ACL film according to the size change of the abrasive particles.
  • An amorphous carbon layer (ACL) having a thickness of 2,000 ⁇ was polished under conditions of 2 psi, carrier speed 87 rpm, platen speed 93 rpm, and an inflow flow rate of the polishing composition of 200 ml/min for 60 seconds to increase the polishing rate. measured.
  • Table 2 compares the polishing rate by the average diameter of abrasive particles included in the polishing composition.
  • the polishing rate was 141 ⁇ /min and 120 ⁇ /min or more.
  • the average diameter of the abrasive particles was 45 nm and the polishing rate was 63 ⁇ /min
  • Comparative Example 2 the average diameter of the abrasive particles was 60 nm and the polishing rate was 103 ⁇ /min, and the polishing rate for the amorphous carbon film was low. confirmed to be According to the experimental results, when the size of the abrasive particles was small, it was confirmed that the polishing rate for the amorphous carbon film was low.
  • the contents were varied, and the size change according to the polishing rate, the number of defects and the temperature change was measured.
  • the polishing rate was measured under the same polishing conditions as in Experimental Example 1, and the occurrence of defects was checked using KLA Tencor AIT-XP+.
  • the average diameter of the initial particles and the average diameter of the particles after heating were measured using a dynamic light scattering particle size analyzer.
  • Heating conditions for measurement were maintaining the polishing composition in an oven preheated to 60° C. for 17 hours, cooling it at 20° C., and measuring the average diameter.
  • the dynamic light scattering particle size analysis was performed using a dynamic light scattering particle size analyzer, specifically, Malvern's Nano-ZS was used, a material was input as colloidal silica, and 1.457 was input as a refractive index.
  • Equation 1 For the average diameter of the measured particles, a value according to Equation 1 was confirmed, and the diameter increase rate of the abrasive particles was calculated by Equation 2 below:
  • Sai is an average particle diameter of particles included in the semiconductor process polishing composition measured by a dynamic light scattering particle size analyzer
  • the Saf is a value measured by a dynamic light scattering particle size analyzer of the average particle diameter of the particles included in the polishing composition after the polishing composition is maintained at 60° C. for 17 hours and then cooled at 15 to 25° C. to accelerate agglomeration.
  • Example 1 141 21003 75.26 75.79 One 1.01
  • Example 2 83 29500 44.8 49.85 11 1.11
  • Example 3 60 21167 46.11 47.18 2 1.02
  • Example 4 116 59623 73.42 89.21 22 1.22
  • Example 5 145 31185 75.86 81.77 8 1.08 Comparative Example 3 102 54327 44.01 230.9 425 5.25
  • the value according to Equation 1 was confirmed to be about 1, and the polishing composition was maintained in an oven preheated to 60° C. for 17 hours, and the particles were cooled at 20° C. It was confirmed that there was no significant change in the average diameter of As a result of analyzing other examples, when the particle diameter was 45 nm, the polishing rate increased as the content increased, but the polishing composition was maintained in an oven preheated to 60° C. for 17 hours, and after cooling it at 20° C. The size of the abrasive particles increased, and when the particle diameter was 75 nm, there was no significant difference in the polishing rate as the content increased, and it was confirmed that the particle size increase after heating was larger than when the particle diameter was 45 nm.
  • Comparative Example 3 was an abrasive composition having an average diameter of 45 nm and a content of 2.5% by weight, and it was confirmed that the increase rate of the abrasive particles after heating was very large, thereby significantly increasing the occurrence of defects. did.
  • the present invention relates to a polishing composition for a semiconductor process, a method of manufacturing the polishing composition, and a method of manufacturing a semiconductor device to which the polishing composition is applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

본 발명은 반도체 공정용 연마 조성물, 연마 조성물의 제조 방법 및 연마 조성물을 적용한 반도체 소자의 제조 방법에 관한 것으로, 연마 입자, 가속화제 및 안정화제를 포함하는 연마 조성물로, 연마 조성물을 60℃ 이상에서 장시간 보관 후에도 입자 간의 뭉침 현상이 발생하지 않아, 장시간 보관 안정성이 우수하고, 비정질탄소막((Amorphous carbon layer)의 연마 공정에 적용되는 연마 조성물로, 높은 연마율을 나타낼 수 있고, 연마 공정 중 발생되는 탄소 잔여물(Carbon residue)의 반도체 기판 상의 흡착을 방지하고, 연마 패드의 오염을 방지할 수 있다. 또한, 반도체 공정용 연마 조성물을 적용한 반도체 소자의 제조 방법을 제공할 수 있다.

Description

반도체 공정용 연마 조성물, 연마 조성물의 제조 방법 및 연마 조성물을 적용한 반도체 소자의 제조 방법
본 발명은 반도체 공정용 연마 조성물, 연마 조성물의 제조 방법 및 연마 조성물을 적용한 반도체 소자의 제조 방법에 관한 것이다.
반도체 소자는 더욱 미세화, 고밀도화됨에 따라 더욱 미세한 패턴 형성 기술이 사용되고 있으며, 그에 따라 반도체 소자의 표면 구조가 더욱 복잡해지고 층간 막들의 단차도 더욱 커지고 있다. 반도체 소자를 제조하는 데 있어서 기판 상에 형성된 특정한 막에서의 단차를 제거하기 위한 평탄화 기술로서 화학적 기계적 연마(Chemical Mechanical Polishing: 이하 "CMP"라 칭함) 공정이 이용된다.
CMP 공정은 연마패드에 슬러리가 제공되면서 기판이 가압, 회전하며 표면이 연마된다. 공정의 단계에 따라 평탄화하고자 하는 대상이 달라지고, 이 때에 적용되는 슬러리의 물성에도 차이가 있다.
구체적으로 CMP 공정은 실리콘산화막(SiO2), 실리콘질화막(SiN) 등 유전체의 평탄화에 적용되어 왔을 뿐만 아니라 텅스텐(W), 구리(Cu) 등의 금속 배선에 대한 평탄화 공정에도 필수적으로 사용된다.
반도체 장치가 고집적화됨에 따라, 보다 미세한 패턴의 형성과 다층 구조의 회로 등이 요구되고 있다.
이를 위하여 식각 선택비 특성이 서로 다른 다양한 물질의 막들을 필요로 한다. 이러한 다양한 물질의 막들 중에 탄소 계열의 유기막은 다른 실리콘 함유막에 대하여 식각 선택비 특성이 좋아 마스크막이나 희생막으로 사용될 수 있다.
반도체 제조 공정에서 유기막에 대하여 화학적 기계적 연마(Chemical mechanical polishing) 공정을 진행하여 제거하는 것이 요구되고 있다. 그러나 반도체 제조 공정에서 적용되는 유기막에 대해, CMP 공정을 적용하여 효율적으로 연마할 수 있는 연마 조성물이 개발되지 못하고 있다.
상기의 문제를 해결할 수 있는 반도체 공정용 연마 조성물의 개발이 필요하다.
본 발명의 목적은 반도체 공정용 연마 조성물, 연마 조성물의 제조 방법 및 연마 조성물을 적용한 반도체 소자의 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은 연마 조성물을 60℃ 이상에서 연마 시 연마율 저하가 나타나지 않고, 장시간 보관 후에도 입자 간의 뭉침 현상이 발생하지 않아, 장시간 보관 안정성이 우수한 반도체 공정용 연마 조성물을 제공하는 것이다.
본 발명의 다른 목적은 비정질탄소막((Amorphous carbon layer)의 연마 공정에 적용되는 연마 조성물로, 대상 막질인 비정질탄소막에 대해 높은 연마율을 나타낼 수 있고, 연마 공정 중 발생되는 탄소 잔여물(Carbon residue)의 반도체 기판 상의 흡착을 방지하고, 연마 패드의 오염을 방지할 수 있는 반도체 공정용 연마 조성물을 제공하는 것이다.
본 발명의 다른 목적은 반도체 공정용 연마 조성물을 적용한 반도체 소자의 제조 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 반도체 공정용 연마 조성물은 연마 입자; 가속화제; 및 안정화제를 포함하고, 하기의 수식 1로 표시되는 응집 지수(CI)가 0.5 내지 5이다:
[식 1]
Figure PCTKR2021014483-appb-img-000001
여기서,
상기 Sai는 동적 광산란 입도분석기에 의해서 측정된 상기 반도체 공정 연마 조성물 내에 포함된 연마 입자의 평균 입경이고,
상기 Saf는 반도체 공정용 연마 조성물을 60℃에서 17시간 동안 유지 후, 15 내지 25℃에서 냉각하고, 동적 광산란 입도분석기에 의해서 측정된 상기 연마 조성물 내에 포함된 연마 입자의 평균 입경이다.
본 발명의 다른 일 실시예에 따른 반도체 공정용 연마 조성물의 제조 방법은 a) 용매에 안정화제 및 가속화제를 넣고 혼합하여 연마 용액을 제조하는 단계; b) 상기 연마 용액에 pH 조절제를 넣어 연마 용액의 pH를 2 내지 5로 조정하는 단계; 및 c) 상기 pH가 2 내지 5인 연마 용액에 계면활성제 및 연마 입자를 혼합하는 단계를 포함할 수 있다.
본 발명의 다른 일 실시예에 따른 반도체 소자의 제조 방법은 1) 연마층을 포함하는 연마패드를 제공하는 단계; 2) 상기 연마패드로 반도체 공정용 연마 조성물을 공급하는 단계; 및 3) 상기 연마층의 연마면에 연마 대상의 피연마면이 맞닿도록 상대 회전시키면서 상기 연마 대상을 연마시키는 단계;를 포함할 수 있다.
본 발명은 연마 조성물을 이용하여 60℃ 이상에서 연마 시 연마율 저하가 나타나지 않고, 장시간 보관 후에도 입자 간의 뭉침 현상이 발생하지 않아, 장시간 보관 안정성이 우수하고, 비정질탄소막((Amorphous carbon layer)의 연마 공정에 이용되어, 높은 연마율을 나타낼 수 있고, 연마 공정 중 발생되는 탄소 잔여물(Carbon residue)이 반도체 기판에 흡착되는 것을 방지하고, 연마 패드의 오염을 방지할 수 있다.
또한, 반도체 공정용 연마 조성물을 적용한 반도체 소자의 제조 방법을 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 반도체 소자 제조 공정의 개략적인 공정도이다.
본 발명은 연마 입자; 가속화제; 및 안정화제를 포함하고, 하기의 수식 1로 표시되는 응집 지수(CI)가 0.5 내지 5인 반도체 공정용 연마 조성물에 관한 것이다:
[식 1]
Figure PCTKR2021014483-appb-img-000002
여기서,
상기 Sai는 동적 광산란 입도분석기에 의해서 측정된 상기 반도체 공정 연마 조성물 내에 포함된 연마 입자의 평균 입경이고,
상기 Saf는 반도체 공정용 연마 조성물을 60℃에서 17시간 동안 유지 후, 15 내지 25℃에서 냉각하고, 동적 광산란 입도분석기에 의해서 측정된 상기 연마 조성물 내에 포함된 연마 입자의 평균 입경이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 명세서에서, 어떤 구성이 다른 구성을 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 그 외 다른 구성을 제외하는 것이 아니라 다른 구성들을 더 포함할 수도 있음을 의미한다.
본 명세서에서, 어떤 구성이 다른 구성과 "연결"되어 있다고 할 때, 이는 '직접적으로 연결'되어 있는 경우만이 아니라, '그 중간에 다른 구성을 사이에 두고 연결'되어 있는 경우도 포함한다.
본 명세서에서, A 상에 B가 위치한다는 의미는 A 상에 직접 맞닿게 B가 위치하거나 그 사이에 다른 층이 위치하면서 A 상에 B가 위치하는 것을 의미하며 A의 표면에 맞닿게 B가 위치하는 것으로 한정되어 해석되지 않는다.
본 명세서에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본 명세서에서, "A 및/또는 B"의 기재는, "A, B, 또는, A 및 B" 를 의미한다.
본 명세서에서, “제1”, “제2” 또는 “A”, “B”와 같은 용어는 특별한 설명이 없는 한 동일한 용어를 서로 구별하기 위하여 사용된다.
본 명세서에서 단수 표현은 특별한 설명이 없으면 문맥상 해석되는 단수 또는 복수를 포함하는 의미로 해석된다.
이하, 본 발명을 보다 상세하게 설명한다.
반도체 소자는 더욱 미세화되고, 고밀도화됨에 따라, 표면 구조가 더욱 복잡해지고 있다. 상기 표면 구조의 복잡화는 반도체의 선폭이 좁아짐을 의미하는 것으로, Aspect ratio(가로 대 세로 비율)도 점점 증가되고 있고, 증가되는 Aspect ratio를 맞추기 위해, 포토레지스트(Photoresist)가 점점 얇아지고 있다.
다만, 얇고 길어진 포토레지스트는 에칭(Etching) 공정에서 견디지 못하고 무너지는 현상이 나타나며, 이를 방지하기 위해, 하드 마스크(Hardmask) 공정이 도입되었다.
상기 하드 마스크 재료로, 비정질탄소(Amorphous carbon) 및 SiON이 사용되었다.
상기 비정질탄소는 하드마스크로 사용 시 우수한 에칭 내성을 갖고 있음에도 불구하고, 종래 연마 조성물을 이용하여 화학 기계적 연마 공정을 적용하면, 낮은 연마율 및 탄소 잔여물(Carbon residue)의 발생으로, 탄소 잔여물이 막질 표면에 흡착하여, 반도체 기판의 결함을 발생시키는 문제를 발생한다.
이에 본 발명의 반도체 공정용 연마 조성물은 비정질탄소막에 대한 높은 연마율을 나타낼 뿐 아니라, 탄소 잔여물에 대한 재흡착을 방지하여, 반도체 기판의 결함 발생을 방지할 수 있다.
구체적으로 본 발명의 반도체 공정용 연마 조성물은 연마 입자, 가속화제 및 안정화제를 포함하며, 하기의 수식 1로 표시되는 응집 지수(CI)가 0.5 내지 5이다:
[식 1]
Figure PCTKR2021014483-appb-img-000003
여기서,
상기 Sai는 동적 광산란 입도분석기에 의해서 측정된 상기 반도체 공정 연마 조성물 내에 포함된 연마 입자의 평균 입경이고,
상기 Saf는 반도체 공정용 연마 조성물을 60℃에서 17시간 동안 유지 후, 15 내지 25℃에서 냉각하고, 동적 광산란 입도분석기에 의해서 측정된 상기 연마 조성물 내에 포함된 연마 입자의 평균 입경이다.
상기 본 발명의 연마 조성물은 60℃ 이상에서 연마 공정을 진행하더라도, 연마율이 저하되지 않는다. 또한, 연마 입자 간에 뭉침 현상 또는 산화가 일어나지 않아, 입자 사이즈가 커지는 것을 방지할 수 있다.
구체적으로, 연마 조성물은 장시간 보관 시에는 입자간의 뭉침 현상으로 인해, 입자의 평균 직경이 증가할 수 있다. 상기와 같이 입자의 평균 직경이 증가하게 되면, 연마 공정에 사용 시, 연마율이 저하되는 문제가 발생할 수 있다. 또한, 60℃ 이상에서의 연마 공정에 연마 조성물을 투입하는 경우, 연마 조성물 내 연마 입자 간의 뭉침 현상이 발생할 수 있음을 의미한다.
반면, 본 발명의 연마 조성물은 장시간 보관 시에도, 연마 입자 간의 뭉침 현상을 방지하여, 연마 입자의 크기가 증가하는 문제를 방지할 수 있다. 구체적으로, 상기와 같이 연마 입자의 뭉침 현상을 방지하여, 연마율의 저하를 방지할 수 있고, 보관 안정성을 크게 개선할 수 있다.
상기 식 1은 본 발명의 연마 조성물에 대한 보관 안정성 및 60℃ 이상에서 연마 시의 안정성에 관한 것이다. 상기 연마 입자의 초기 평균 직경(nm) 및 60℃에서 17시간 동안 유지 후, 15 내지 25℃에서 냉각하고 측정한 연마 입자의 평균 직경(nm)의 값이 상기 식 1에 의해 0.5 내지 5인 경우 입자의 평균 직경에 큰 변화가 없는 것을 의미한다고 할 것이다.
이는 앞서 설명한 바와 같이, 장 시간 보관에 의해서도 입자의 평균 직경에 변화가 나타나지 않음을 의미하여, 보관 안정성이 우수하고, 장 시간 보관에 의한 연마율 저하 문제도 방지할 수 있다.
상기 동적 광산란법(DLS)은 분산 내 나노 입자의 크기를 측정하는 비침투성 기법이다. 상기 동적 광산란법은 브라운 운동(Brounian motion)을 이용하여 입자 현탁액에서 시간에 따른 산란광의 세기를 측정하는 것이다. 상기의 산란광의 세기 변동을 분석하면 입도를 알 수 있는 확산 계수를 결정할 수 있으며, 스토크-아인슈타인 방정식(Stoke-Einsteinequation)을 통해 이 계수로부터 입도를 구할 수 있다.
상기 동적 광산란법에 의해 측정된 입자의 평균 직경은 초기 상태 및 응집 가속화 과정을 거친 연마 조성물 내에 포함된 연마 입자의 평균 입경 값을 상기 식 1에 의한 응집 지수(CI)를 통해 계산한 값이 0.5 내지 5이며, 0.5 내지 1.50이며, 0.5 내지 1.40이며, 0.5 내지 1.30이며, 0.5 내지 1.25이며, 0.7 내지 1.22이며, 0.7 내지 1.15이며, 0.7 내지 1.12일 수 있다. 상기 범위 내에서 응집 지수를 만족하는 경우, 60℃ 이상에서 장시간 보관 시에도, 연마 입자의 크기가 증가하는 문제를 방지하여, 연마율의 저하를 방지할 수 있어, 보관 안정성이 크게 개선될 수 있다. 또한, 60℃ 이상에서의 연마 공정에 이용 시에도 연마율 저하 문제가 발생하지 않을 수 있다.
본 발명의 다른 일 실시예에서, 연마 조성물 내 연마 입자의 평균 직경 증가율은 하기 식 2에 의해, 0.5% 내지 30%일 수 있다:
[식 2]
Figure PCTKR2021014483-appb-img-000004
여기서,
상기 Sai는 동적 광산란 입도분석기에 의해서 측정된 상기 반도체 공정 연마 조성물 내에 포함된 연마 입자의 평균 입경이고,
상기 Saf는 반도체 공정용 연마 조성물을 60℃에서 17시간 동안 유지 후, 15 내지 25℃에서 냉각하고, 동적 광산란 입도분석기에 의해서 측정된 상기 연마 조성물 내에 포함된 연마 입자의 평균 입경이다.
상기 식 2에 의한 값은 0.5% 내지 30%이며, 0.5% 내지 25%이며, 0.5% 내지 20%이며, 0.5% 내지 15%이며, 0.5% 내지 10%이며, 0.5% 내지 7%일 수 있다. 상기 범위 내를 만족하는 경우, 60℃ 이상에서 장시간 보관 시에도, 연마 입자의 크기가 증가하는 문제를 방지하여, 연마율의 저하를 방지할 수 있어, 보관 안정성이 크게 개선될 수 있다. 또한, 60℃ 이상에서의 연마 공정에 이용 시에도 연마율 저하 문제가 발생하지 않고, 결함 발생을 방지할 수 있다.
특히, 본 발명의 연마 조성물은 비정질탄소막(ACL, Amorphous carbon layer)의 연마 공정에 사용할 수 있는 것으로, 비정질탄소막에 대한 연마율이 100Å/min 내지 250Å/min이며, 110Å/min 내지 200Å/min이며, 120Å/min 내지 200Å/min 일 수 있다. 즉, 연마 조성물을 이용하여, 비정탄소막을 연마하는 경우, 상기 범위 내의 연마율에 포함되는 경우, 연마 효율이 우수하여 비정질탄소막에 대한 연마 공정에 이용할 수 있다.
종래 연마 조성물은 비정질탄소막에 대한 연마율이 낮아, 연마 공정에 적용이 어려운 문제가 있다.
상기의 문제를 해결하기 위해, 연마 조성물에 첨가제를 혼합하여 비정질탄소막에 대한 연마율을 높이기 위한 기술 개발이 진행되었으나, 상기 종래 연마 조성물의 경우에는 연마율을 높이더라도, 고온 조건 하에서 연마 공정 시, 연마율이 떨어지거나, 장시간 보관 시, 연마 입자의 응집이 발생하여 보관 안정성이 떨어지는 문제가 발생하였다.
또한, 연마 공정 상에서 발생하는 탄소 잔류물(Carbon residue)가 반도체 기판의 표면에 흡착되는 문제 및 연마 패드의 오염을 유발하는 문제가 발생하였다.
본 발명의 연마 조성물의 경우, 비정질탄소막의 연마 공정에 이용 시, 100Å/min 내지 250Å/min의 연마율을 나타내어, 높은 연마율로 연마 공정에 이용이 가능할 뿐 아니라, 60℃ 이상의 조건 하에서도 연마율 저하가 발생하지 않고, 장시간 보관 후에도 연마율 저하가 발생하지 않는다.
뿐만 아니라, 연마 공정 상에서 발생하는 탄소 잔류물이 반도체 기판의 표면에 흡착되는 문제를 방지하고, 연마 패드의 오염 발생을 방지할 수 있다.
구체적으로, 상기 연마 입자는 금속 산화물, 유기 입자, 유기-무기 복합 입자 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있다.
상기 연마 입자는 반도체 공정용 연마 조성물에 적용될 수 있는 연마 입자로, 예를 들어, 금속 산화물, 유기 입자, 유기-무기 복합 입자 및 이들의 혼합으로 이루어진 군으로부터 선택되며, 금속 산화물은 콜로이달 실리카, 흄드 실리카, 세리아, 알루미나, 티타니아, 지르코니아, 제올라이트 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있으나, 상기 예시에 국한되지 않고 통상의 기술자에 의해 선택 가능한 연마 입자는 제한 없이 모두 사용 가능하다.
상기 유기 입자는 폴리스티렌, 스티렌계 공중합체, 폴리(메타)아크릴레이트, (메타)아크릴레이트계 공중 합체, 폴리염화비닐, 폴리아미드, 폴리카보네이트, 폴리이미드 고분자; 또는 상기 고분자가 코어, 쉘, 또는 둘 다를 구성하는 코어/쉘 구조의 입자가 있으며, 이들은 단독 또는 혼합 사용될 수 있으며, 상기 유기 입자는 유화 중합법, 현탁 중합법 등에 의해 제조될 수 있다.
상기 본 발명의 연마 입자는 구체적으로 콜로이달 실리카, 흄드 실리카, 세리아 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있다.
상기 연마 입자는 평균 직경이 10 nm 내지 120 nm이며, 20 nm 내지 100 nm이며, 40 nm 내지 80 nm이며, 45 nm 내지 70nm이며, 70 nm 내지 80nm일 수 있다. 상기 금속산화물 입자가 본 발명의 범위 내에 해당되는 경우, 연마 공정에서 반도체 기판에 스크레치 등 결함 발생을 방지할 수 있고, 연마 입자의 분산성이 우수하다.
상기 가속화제는 음이온계 저분자, 음이온계 고분자, 하이드록실산, 아미노산 및 세륨염으로 이루어진 군으로부터 선택될 수 있으며, 구체적으로 상기 세륨염은 3가 세륨염 또는 4가 세륨염일 수 있고, 보다 구체적으로 상기 4가 세룸염은 황산세륨(Ⅳ)(Ce(SO4)2), 암모늄세륨설페이트디하이드레이트 및 세륨암모늄나이트라이트(Cerium Ammonium Nitrate)로 이루어진 군으로부터 선택될 수 있으나 상기 예시에 국한되지 않는다.
상기 가속화제는 연마 조성물에 포함되어 비정질탄소막의 표면층을 산화물 또는 이온으로 산화시켜 비정질탄소막의 표면층의 제거를 용이하게 하게 할 수 있다.
또한, 연마 정지막층에 존재하는 유기막 물질의 잔류물(Residue)이 쉽게 제거될 수 있게 함으로써 보다 균일한 연마를 가능하게 하는 장점이 있다.
상기 세륨암모늄나이트라이트는 이온 화합물 또는 킬레이트 화합물 형태로 슬러리 조성물 내 존재할 수 있으며, 상기 형태로 사용하는 경우 비정질탄소막에 대하여 높은 연마 속도를 제공할 수 있다.
다만, 비정질탄소막에 대한 연마율을 높이기 위해, 가속화제만 포함시키는 경우, 연마 조성물의 안정성이 떨어져 장시간 보관에 어려움이 발생할 수 있고, 연마 공정 상에서의 반도체 기판의 표면 결함이 발생할 수 있다.
이에 본 발명의 경우, 가속화제 및 안정화제를 혼합하여 사용함에 따라, 가속화제에 의한 비정질탄소막에 대한 연마율 상승 효과를 나타낼 뿐 아니라, 안정화제에 의해 연마 조성물의 안정성을 높이며, 연마 공정 상에서의 결함 발생을 방지할 수 있다.
구체적으로, 상기 안정화제는 아미노산이며, 보다 구체적으로 상기 아미노산은 아르기닌(Arginine), 히스티딘(Histidine), 리신(Lysine), 아스파트산(Aspartic acid), 글루타믹 산(Glutamic acid), 글루타민(Glutamine), 시스테인(Cysteine), 프로린(Proline), 아스파라긴(Asparagine), 트레오닌(threonine) 알라닌(Alanine), 글리신(Glycine), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine) 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있으며, 바람직하게는 알라닌이지만 상기 예시에 국한되지 않고 가속화제화 함께 혼합하여 사용하여 연마 조성물의 안정성을 높일 수 있고, 연마 공정 상에서 결함 발생을 억제할 수 있는 아미노산은 제한 없이 모두 사용 가능하다.
본 발명의 연마용 조성물은 계면활성제를 추가로 포함하는 것으로, 비정질탄소막에 대한 높은 연마율을 나타내며, 표면 장력의 감소에 의해 반도체 기판에 대한 탄소 잔여물의 재흡착을 방지할 수 있다.
상기 비정질탄소막에 대한 연마율을 높이기 위해, 연마 조성물에 가속화제를 포함하는 경우, 연마율은 상승하게 되지만, 연마 공정 상에서 발생되는 탄소 잔여물(Carbon residue)이 반도체 기판에 흡착하거나, 연마 패드의 오염이 발생할 수 있다.
상기 문제를 해결하기 위해서는, 연마 조성물에 계면활성제를 포함시켜, 연마 조성물의 표면 장력을 감소시키고, 상기 표면 장력의 감소에 따라, 탄소잔여물의 기판 표면에 대한 재흡착을 방지하고, 연마패드의 오염 문제를 방지할 수 있다.
구체적으로, 상기 계면활성제는 비이온성 불소계 고분자 화합물을 포함할 수 있다. 상기 계면활성제는 불소계 고분자 화합물을 포함하며, 비정질탄소막에 대한 연마 공정에 이용 시, 발생되는 탄소 잔여물이 반도체 기판의 표면에 재흡착되는 것을 방지할 수 있다.
또한, 상기 계면활성제는, 불소를 포함하고 있어, 세균 및 곰팡이와 같은 미생물의 번식을 억제할 수 있다. 연마 조성물은 장시간 보관 시, 세균 및 곰팡이가 발생할 수 있고, 상기 세균 및 곰팡이가 발생한 연마 조성물은 연마 공정에 이용이 불가하여 폐기해야 할 수 있다.
본 발명의 연마 조성물은 상기 계면활성제가 비이온성 불소계 고분자 화합물을 포함하는 것으로, 연마 조성물을 장시간 보관 시, 세균 및 곰팡이 발생을 방지하여, 장시간 보관 안정성을 높일 수 있다.
상기 본 발명의 계면활성제는 구체적으로, Chemourstm 사의 FS-30, FS-31, FS-34, ET-3015, ET-3150, ET-3050 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있으나, 연마 공정에서 탄소 잔여물이 반도체 기판의 표면에 재흡착되는 것을 방지하는 역할을 하는 물질이면 특별히 제한되지 않는다.
상기 본 발명의 계면활성제는 비이온성 계면활성제로, 비이온성 불소계 고분자 화합물을 포함하는 계면활성제를 단독으로 사용할 수도 있으며, 다른 비이온성 계면활성제와 혼합하여 사용도 가능하다.
상기 비이온성 계면활성제는 폴리에틸렌글리콜(polyethylen glycol), 폴리프로필렌글리콜(polypropylene glycol), 폴리에틸렌-프로필렌 공중 합체(polyethylene-propylene copolymer), 폴리알킬 옥사이드(polyalkyl oxide), 폴리옥시에틸렌 옥사이드 (polyoxyethylene oxide; PEO), 폴리에틸렌 옥사이드(polyethylene oxide), 폴리프로필렌 옥사이드(polypropylene oxide), 불소계 계면활성제는 술폰산 나트륨 불소계 계면활성제(sodium sulfonate fluorosurfactant), 인산 에스테르 불소계 계면활성제(phosphate ester fluorosurfactant), 산화 아민 불소계 계면활성제(amine oxide fluorosurfactant), 베타인 불소계 계면활성제(betaine fluorosurfactant), 카르복시산 암모늄 불소계 계면활성제(ammonium carboxylate fluorosurfactant), 스테아르산 에스테르 불소계 계면활성제(stearate ester fluorosurfactant), 4급 암모늄 불소계 계면활성제(quaternary ammonium fluorosurfactant), 에틸렌옥사이드/프로필렌옥사이드 불소계 계면활성제(ethylene oxide/propylene oxide fluorosurfactant) 및 폴리옥시에틸렌 불소계 계면활성제(polyoxyethylene fluorosurfactant)로 이루어진 군에서 선택될 수 있다.
본 발명의 연마 조성물은 pH 조절제를 포함할 수 있고, 상기 pH 조절제는 염산, 인산, 황산, 불산, 질산, 브롬산, 요오드산, 포름산, 말론산, 말레인산, 옥살산, 초산, 아디프산, 구연산, 아디프산, 아세트산, 프로피온산, 푸마르산, 유산, 살리실산, 피멜린, 벤조산, 숙신산, 프탈산, 부티르산, 글루타르산, 글루타민산, 글리콜산, 락트산, 아스파라긴산, 타르타르산 및 수산화칼륨으로 이루어진 군으로부터 선택되는 적어도 어느 하나일 수 있다.
상기 pH 조절제는 반도체공정용 연마 조성물의 pH를 2 내지 5이거나, 바람직하게는 2 내지 4로 나타낼 수 있다. 이러한 범위로 산성 환경을 유지하는 경우, 금속성분이나 연마장치의 지나친 부식은 방지하면서 연마속도와 품질을 일정 수준 이상으로 유지할 수 있다.
상기 반도체 공정용 연마 조성물은 상기 반도체 공정용 연마 조성물은 연마입자 0.1 중량% 내지 0.5 중량%, 가속화제 1 중량% 내지 2 중량%, 안정화제 1 중량% 내지 2 중량%, 계면활성제 0.001 중량% 내지 0.01 중량% 및 나머지 용매로 포함될 수 있다. 상기 범위 내에서 연마 조성물에 포함되는 경우, 안정화제에 의해 가속화제가 안정화되어, 연마 조성물 내에서 가속화제에 의한 연마율이 높아질 수 있고, 안정화제 및 계면활성제에 의해 연마 공정 상에서의 결함 발생을 방지할 수 있다.
상기 용매는 초순수이지만, 상기 예시에 국한되지 않고, 연마 조성물의 용매로 사용될 수 있는 것은 제한없이 모두 사용 가능하다.
상기 계면활성제는 범위 값 미만으로 포함하는 경우, 연마 공정 상에서 반도체 기판의 표면 결함의 발생이 증가하게 되며, 상기 범위 값을 초과하여 포함하는 경우에는 연마 조성물의 제조 시 거품이 다량 발생하는 문제가 있다.
본 발명의 연마 조성물에 대한 제조 방법은, a) 용매에 안정화제 및 가속화제를 넣고 혼합하여 연마 용액을 제조하는 단계; b) 상기 연마 용액에 pH 조절제를 넣어 연마 용액의 pH를 2 내지 5로 조정하는 단계; 및 d) 상기 pH가 2 내지 5인 연마 용액에 계면활성제 및 연마 입자를 혼합하는 단계를 포함할 수 있다.
상기 a) 단계는 가속화제의 안정화를 위해, 용매에 안정화제를 혼합하여 제1 용매로 제조하고, 이후 가속화제를 혼합하여 연마 용액으로 제조할 수 있다.
상기 가속화제는 용매인 초순수에 다른 안정화제, pH 조절제, 계면활성제 및 연마 입자와 혼합하여 제조하게 되면, 연마 조성물 내에서 가속화제가 안정화되지 않아 연마 조성물로 제조 시 장시간 보관이 어렵거나, 연마 조성물 내에서 가속화제에 의한 연마율 상승 효과가 나타나지 않을 수 있다.
이러한 문제를 방지하기 위해, 용매에 안정화제를 혼합하여 혼합 용액을 제조한 후, 상기 혼합 용액에 가속화제를 용해시켜 연마 용액으로 제조한 후, 이후 단계에 의해 연마 조성물을 제조하게 된다.
본 발명의 다른 일 실시예에 따른 반도체 소자의 제조 방법은, 1) 연마층을 포함하는 연마패드를 제공하는 단계; 2) 상기 연마패드로 반도체 공정용 연마 조성물을 공급하는 단계; 및 3) 상기 연마층의 연마면에 연마 대상의 피연마면이 맞닿도록 상대 회전시키면서 상기 연마 대상을 연마시키는 단계;를 포함하며, 상기 연마 조성물은 연마 입자, 가속화제 및 안정화제를 포함하며, 하기의 수식 1로 표시되는 응집 지수(CI)가 0.5 내지 5이다:
[식 1]
Figure PCTKR2021014483-appb-img-000005
여기서,
상기 Sai는 동적 광산란 입도분석기에 의해서 측정된 상기 반도체 공정 연마 조성물 내에 포함된 연마 입자의 평균 입경이고,
상기 Saf는 반도체 공정용 연마 조성물을 60℃에서 17시간 동안 유지 후, 15 내지 25℃에서 냉각하고, 동적 광산란 입도분석기에 의해서 측정된 상기 연마 조성물 내에 포함된 연마 입자의 평균 입경이다.
도 1는 일 실시예에 따른 반도체 소자 제조 공정의 개략적인 공정도를 도시한 것이다. 상기 도 1을 참조할 때, 상기 일 실시예에 따른 연마패드(110)를 정반(120) 상에 장착한 후, 연마 대상인 반도체 기판(130)을 상기 연마패드(110) 상에 배치한다. 연마를 위해 상기 연마패드(110) 상에 노즐(140)을 통해, 연마 슬러리(150)이 분사된다.
상기 상기 노즐(140)을 통하여 공급되는 연마 슬러리(150)의 유량은 약 10 ㎤/분 내지 약 1,000 ㎤/분 범위 내에서 목적에 따라 선택될 수 있으며, 예를 들어, 약 50 ㎤/분 내지 약 500 ㎤/분일 수 있으나, 이에 제한되는 것은 아니다.
상기 반도체 기판(130)의 피연마면은 상기 연마패드(110)의 연마면에 직접 접촉된다.
이후, 상기 반도체 기판(130)과 상기 연마패드(110)는 서로 상대 회전하여, 상기 반도체 기판(130)의 표면이 연마될 수 있다. 이때, 상기 반도체 기판(130)의 회전 방향 및 상기 연마패드(110)의 회전 방향은 동일한 방향일 수도 있고, 반대 방향일 수도 있다. 상기 반도체 기판(130)과 상기 연마패드(110)의 회전 속도는 각각 약 10 rpm 내지 약 500 rpm 범위에서 목적에 따라 선택될 수 있으며, 예를 들어, 약 30 rpm 내지 약 200 rpm 일 수 있으나, 이에 제한되는 것은 아니다.
상기 기판 연마 공정에 대한 일 예시로, 기판을 연마하는 것은 유기막으로, 탄소 계열의 유기막에 대한 연마 공정에 적용될 수 있다.
구체적으로 상기 탄소 계열의 유기막은 C-SOH(spin on hardmask)막, 비정질탄소막(amorphous carbon layer) 또는 NCP막을 예시할 수 있으며, 바람직하게는 선택적인 연마 효과가 우수하며, 높은 연마율을 나타낼 수 있는 비정질탄소막이다.
반도체공정용 연마 조성물에 대한 구체적인 설명은 위에서 한 설명과 중복되므로 그 기재를 생략한다.
일 구현예에서, 상기 반도체 소자의 제조 방법은, 상기 연마패드(110)의 연마면을 연마에 적합한 상태로 유지시키기 위하여, 상기 반도체 기판(130)의 연마와 동시에 컨디셔너(170)를 통해 상기 연마패드(110)의 연마면을 가공하는 단계를 더 포함할 수 있다.
반도체 연마용 조성물의 제조
실시예 1
초순수에 안정화제로 알라닌을 혼합하여 혼합 용액을 제조하고, 세륨암모늄나이트라이트를 혼합하여 연마 용액을 제조하였다.
상기 연마 용액에 질산을 혼합하여 pH가 2.1이 되도록 조정하고, 계면활성제인 Chemourstm 사의 FS-30 및 직경이 75nm인 콜로이달 실리카를 혼합하여 연마 조성물을 제조하였다.
실시예 1 내지 실시예 5, 비교예 1 및 비교예 2에 대한 구성성분의 함량은 하기 표 1과 같다.
구분 연마 입자 가속화제 안정화제 계면활성제 용매
Size
(nm)
함량
실시예 1 75 0.25 0.6 1 0.005 나머지
실시예 2 45 1.25 0.6 1 0.005
실시예 3 45 0.25 0.6 1 0.005
실시예 4 75 2.5 0.6 1 0.005
실시예 5 75 1.25 0.6 1 0.005
비교예 1 45 0.25 0.6 1 0.005
비교예 2 60 0.25 0.6 1 0.005
비교예 3 45 2.5 0.6 1 0.005
(단위 중량%)
실험예 1
연마 입자 크기의 변화에 따른 연마율 측정
실시예 1, 비교예 1 및 비교예 2에 대해 연마율을 측정하여 연마 입자의 크기 변화에 따른 ACL 막에 대한 연마율을 측정하였다.
두께가 2,000Å인 비정질탄소막(ACL, Amorphous carbon layer)을 60초 동안 2 psi, 캐리어 속도 87rpm, 플레이튼 속도 93rpm 및 연마 조성물의 유입 유속이 200ml/min 조건 하에서 연마 공정을 진행하여, 연마율을 측정하였다.
Removal rate(Å/min)
실시예 1 141
비교예 1 63
비교예 2 103
상기 표 2는 연마 조성물에 포함되는 연마 입자의 평균 직경에 의한 연마율을 비교한 것으로, 실시예 1의 경우, 141Å/min으로 120Å/min 이상의 연마율을 나타냈다. 반면, 비교예 1은 연마 입자의 평균 직경이 45nm로 연마율이 63Å/min이며, 비교예 2는 연마 입자의 평균 직경이 60nm로 연마율이 103Å/min으로, 비정질탄소막에 대한 연마율이 낮은 것으로 확인되었다. 상기 실험 결과에 의하면, 연마 입자의 크기가 작은 경우에는 비정질탄소막에 대한 연마율이 낮게 나타나는 것을 확인하였다. 실험예 2
연마 입자의 함량 범위에 따른 연마율 및 표면 결함 측정 결과
연마 입자의 크기로 75nm인 콜로이달 실리카 및 45nm인 콜로이달 실리카를 포함하는 연마 조성물에 대해서, 함량을 달리하고, 연마율, 결함 수 및 온도 변화에 따른 크기 변화 측정하였다.
상기 실험예 1과 동일한 연마 조건 하에서 연마율을 측정하였으며, KLA Tencor AIT-XP+ 를 사용하여 결함 발생 여부를 확인하였다.
입자 크기의 증가 여부를 확인하기 위해, 동적 광산란 입도 분석기를 이용하여 입자 초기의 평균 직경 및 가열 후의 입자의 평균 직경을 측저하였다.
측정을 위한 가열 조건은, 60℃로 예열된 오븐 내에 연마 조성물을 17시간 동안 유지시키고, 이를 20℃에서 냉각하고, 평균 직경을 측정하였다.
상기 동적 광산란 입도 분석은, 동적 광산란 입도 분석기를 이용하여, 구체적으로, Malvern사의 Nano-ZS를 이용하였으며, 콜로이달 실리카(Colloidal Silica)로 물질 입력하고, 굴절률로 1.457을 입력하였다.
상기 입도 분석 기에 상기 실시예 및 비교예의 연마 조성물을 각 2ml씩 상기 동적 광산란 입도 분석기에 주입하여, 입자의 평균 직경이 측정하였다.
측정된 입자의 평균 직경에 대해, 하기 식 1에 따른 값을 확인하였고, 연마 입자의 직경 증가율은 하기 식 2에 의해 계산하였다:
[식 1]
Figure PCTKR2021014483-appb-img-000006
[식 2]
Figure PCTKR2021014483-appb-img-000007
여기서,
상기 Sai는 동적 광산란 입도분석기에 의해서 측정된 상기 반도체 공정 연마 조성물 내에 포함된 입자의 평균 입경이고,
상기 상기 Saf는 연마 조성물이 60℃에서 17시간 동안 유지 후, 15 내지 25℃에서 냉각하는 응집 가속화 과정을 거친 연마 조성물 내에 포함된 입자의 평균 입경을 동적 광산란 입도분석기에 의해 측정한 값이다.
Removal rate
(Å/min)
Defect(ea) 초기 입자 평균 직경(nm) 가열 후 입자 평균 직경(nm) 직경 증가율
(식 2, %)
식 1의 값
실시예 1 141 21003 75.26 75.79 1 1.01
실시예 2 83 29500 44.8 49.85 11 1.11
실시예 3 60 21167 46.11 47.18 2 1.02
실시예 4 116 59623 73.42 89.21 22 1.22
실시예 5 145 31185 75.86 81.77 8 1.08
비교예 3 102 54327 44.01 230.9 425 5.25
상기 표 3에 의하면, 실시예 1 내지 실시예 5는 상기 식 1에 의한 값이 약 1 정도로, 확인되어 60℃로 예열된 오븐 내에 연마 조성물을 17시간 동안 유지시키고, 이를 20℃에서 냉각하더라도 입자의 평균 직경에 큰 변화가 나타나지 않음을 확인하였다. 다른 실시예들을 분석한 결과, 입자의 직경이 45nm인 경우, 함량이 증가함에 따라 연마율이 증가하였으나, 60℃로 예열된 오븐 내에 연마 조성물을 17시간 동안 유지시키고, 이를 20℃에서 냉각한 후 연마 입자의 크기가 증가하였으며, 입자의 직경이 75nm인 경우, 함량이 증가함에 따라 연마율에서 큰 차이를 나타내지 않고, 입자의 직경이 45nm인 경우에 비해 가열 후 입자의 크기 증가가 큰 것으로 확인하였다. 반면, 비교예 3은 연마 입자의 평균 직경이 45nm이고, 함량을 2.5중량%로 포함한 연마 조성물로, 가열 후 연마 입자의 증가율이 매우 큰 것을 확인할 수 있으며, 이로 인해 결함 발생이 크게 증가함을 확인하였다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
110: 연마패드
120: 정반
130: 반도체 기판
140: 노즐
150: 연마 슬러리
160: 연마 헤드
170: 컨디셔너
본 발명은 반도체 공정용 연마 조성물, 연마 조성물의 제조 방법 및 연마 조성물을 적용한 반도체 소자의 제조 방법에 관한 것이다.

Claims (10)

  1. 연마 입자;
    가속화제; 및
    안정화제를 포함하고,
    하기의 수식 1로 표시되는 응집 지수(CI)가 0.5 내지 5인
    반도체 공정용 연마 조성물:
    [식 1]
    Figure PCTKR2021014483-appb-img-000008
    여기서,
    상기 Sai는 동적 광산란 입도분석기에 의해서 측정된 상기 반도체 공정 연마 조성물 내에 포함된 연마 입자의 평균 입경이고,
    상기 Saf는 반도체 공정용 연마 조성물을 60℃에서 17시간 동안 유지 후, 15 내지 25℃에서 냉각하고, 동적 광산란 입도분석기에 의해서 측정된 상기 연마 조성물 내에 포함된 연마 입자의 평균 입경이다.
  2. 제1항에 있어서,
    상기 연마 입자는 금속 산화물, 유기 입자, 유기-무기 복합 입자 및 이들의 혼합으로 이루어진 군으로부터 선택되는
    반도체 공정용 연마 조성물.
  3. 제1항에 있어서,
    상기 가속화제는 음이온계 저분자, 음이온계 고분자, 하이드록실산 및 세륨염으로 이루어진 군으로부터 선택되는
    반도체 공정용 연마 조성물.
  4. 제1항에 있어서,
    상기 안정화제는 아미노산인
    반도체 공정용 연마 조성물.
  5. 제1항에 있어서,
    상기 연마 조성물은 계면활성제를 포함하는
    반도체 공정용 연마 조성물.
  6. 제1항에 있어서,
    상기 연마 조성물은 pH 조절제를 포함하는
    반도체 공정용 연마 조성물.
  7. 제1항에 있어서,
    상기 연마 입자는 하기 식 2에 따른 입자의 평균 직경 증가율이 0.5% 내지 30%인
    반도체 공정용 연마 조성물:
    [식 2]
    Figure PCTKR2021014483-appb-img-000009
    여기서,
    상기 Sai는 동적 광산란 입도분석기에 의해서 측정된 상기 반도체 공정 연마 조성물 내에 포함된 연마 입자의 평균 입경이고,
    상기 Saf는 반도체 공정용 연마 조성물을 60℃에서 17시간 동안 유지 후, 15 내지 25℃에서 냉각하고, 동적 광산란 입도분석기에 의해서 측정된 상기 연마 조성물 내에 포함된 연마 입자의 평균 입경이다.
  8. a) 용매에 안정화제 및 가속화제를 넣고 혼합하여 연마 용액을 제조하는 단계;
    b) 상기 연마 용액에 pH 조절제를 넣어 연마 용액의 pH를 2 내지 5로 조정하는 단계; 및
    c) 상기 pH가 2 내지 5인 연마 용액에 계면활성제 및 연마 입자를 혼합하는 단계를 포함하며,
    상기 연마 조성물은 하기의 수식 1로 표시되는 응집 지수(CI)가 0.5 내지 5인
    반도체 공정용 연마 조성물의 제조 방법:
    [식 1]
    Figure PCTKR2021014483-appb-img-000010
    여기서,
    상기 Sai는 동적 광산란 입도분석기에 의해서 측정된 상기 반도체 공정 연마 조성물 내에 포함된 연마 입자의 평균 입경이고,
    상기 Saf는 반도체 공정용 연마 조성물을 60℃에서 17시간 동안 유지 후, 15 내지 25℃에서 냉각하고, 동적 광산란 입도분석기에 의해서 측정된 상기 연마 조성물 내에 포함된 연마 입자의 평균 입경이다.
  9. 제8항에 있어서,
    상기 a) 단계는 용매에 안정화제를 혼합하여 혼합 용액으로 제조하고,
    상기 혼합 용액에 가속화제를 혼합하여 연마 용액으로 제조하는 것인
    반도체 공정용 연마 조성물의 제조 방법.
  10. 1) 연마층을 포함하는 연마패드를 제공하는 단계;
    2) 상기 연마패드로 반도체 공정용 연마 조성물을 공급하는 단계; 및
    3) 상기 연마층의 연마면에 연마 대상의 피연마면이 맞닿도록 상대 회전시키면서 상기 연마 대상을 연마시키는 단계를 포함하며,
    상기 연마 조성물은 연마 입자, 가속화제 및 안정화제를 포함하며,
    상기 연마 조성물은 하기의 수식 1로 표시되는 응집 지수(CI)가 0.5 내지 5인
    반도체 소자의 제조 방법:
    [식 1]
    Figure PCTKR2021014483-appb-img-000011
    여기서,
    상기 Sai는 동적 광산란 입도분석기에 의해서 측정된 상기 반도체 공정 연마 조성물 내에 포함된 연마 입자의 평균 입경이고,
    상기 Saf는 반도체 공정용 연마 조성물을 60℃에서 17시간 동안 유지 후, 15 내지 25℃에서 냉각하고, 동적 광산란 입도분석기에 의해서 측정된 상기 연마 조성물 내에 포함된 연마 입자의 평균 입경이다.
PCT/KR2021/014483 2020-12-30 2021-10-18 반도체 공정용 연마 조성물, 연마 조성물의 제조 방법 및 연마 조성물을 적용한 반도체 소자의 제조 방법 WO2022145653A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/255,783 US20240030041A1 (en) 2020-12-30 2021-10-18 Polishing composition for semiconductor processing polishing composition preparation method, and semiconductor device manufacturing method to which polishing composition is applied
CN202180083214.8A CN116568772A (zh) 2020-12-30 2021-10-18 半导体工艺用抛光组合物、抛光组合物的制备方法以及适用抛光组合物的半导体器件的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200187468 2020-12-30
KR10-2020-0187468 2020-12-30
KR1020210138360A KR102681982B1 (ko) 2020-12-30 2021-10-18 반도체 공정용 연마 조성물, 연마 조성물의 제조 방법 및 연마 조성물을 적용한 반도체 소자의 제조 방법
KR10-2021-0138360 2021-10-18

Publications (1)

Publication Number Publication Date
WO2022145653A1 true WO2022145653A1 (ko) 2022-07-07

Family

ID=82259357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014483 WO2022145653A1 (ko) 2020-12-30 2021-10-18 반도체 공정용 연마 조성물, 연마 조성물의 제조 방법 및 연마 조성물을 적용한 반도체 소자의 제조 방법

Country Status (2)

Country Link
US (1) US20240030041A1 (ko)
WO (1) WO2022145653A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100643628B1 (ko) * 2005-11-04 2006-11-10 제일모직주식회사 다결정 실리콘 연마용 cmp 슬러리 조성물 및 이의 제조방법
KR20180064018A (ko) * 2016-12-05 2018-06-14 솔브레인 주식회사 화학적 기계적 연마 슬러리 조성물 및 이를 이용한 반도체 소자의 제조방법
KR20190053739A (ko) * 2017-11-10 2019-05-20 삼성에스디아이 주식회사 유기막 cmp 슬러리 조성물 및 이를 이용한 연마 방법
KR20200057566A (ko) * 2018-11-16 2020-05-26 삼성에스디아이 주식회사 비정질탄소막용 cmp 슬러리 조성물 및 이를 이용한 연마 방법
KR20200062732A (ko) * 2018-11-27 2020-06-04 주식회사 케이씨텍 연마용 슬러리 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100643628B1 (ko) * 2005-11-04 2006-11-10 제일모직주식회사 다결정 실리콘 연마용 cmp 슬러리 조성물 및 이의 제조방법
KR20180064018A (ko) * 2016-12-05 2018-06-14 솔브레인 주식회사 화학적 기계적 연마 슬러리 조성물 및 이를 이용한 반도체 소자의 제조방법
KR20190053739A (ko) * 2017-11-10 2019-05-20 삼성에스디아이 주식회사 유기막 cmp 슬러리 조성물 및 이를 이용한 연마 방법
KR20200057566A (ko) * 2018-11-16 2020-05-26 삼성에스디아이 주식회사 비정질탄소막용 cmp 슬러리 조성물 및 이를 이용한 연마 방법
KR20200062732A (ko) * 2018-11-27 2020-06-04 주식회사 케이씨텍 연마용 슬러리 조성물

Also Published As

Publication number Publication date
US20240030041A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
JP3490038B2 (ja) 金属配線形成方法
US6443811B1 (en) Ceria slurry solution for improved defect control of silicon dioxide chemical-mechanical polishing
US20130171824A1 (en) Process for chemically mechanically polishing substrates containing silicon oxide dielectric films and polysilicon and/or silicon nitride films
KR20090093805A (ko) 화학적 기계적 연마용 수계 슬러리 조성물 및 화학적 기계적 연마 방법
TWI805556B (zh) 表面處理組合物
WO2010140788A2 (ko) 이온화되지 않는 열활성 나노촉매를 포함하는 화학 기계적 연마 슬러리 조성물 및 이를 이용한 연마방법
WO2013100451A1 (ko) Cmp 슬러리 조성물 및 이를 이용한 연마 방법
US20130273739A1 (en) Aqueous polishing composition and process for chemically mechanically polishing substrates having patterned or unpatterned low-k dielectric layers
US9676966B2 (en) Chemical mechanical polishing composition and process
WO2022145653A1 (ko) 반도체 공정용 연마 조성물, 연마 조성물의 제조 방법 및 연마 조성물을 적용한 반도체 소자의 제조 방법
WO2024010249A1 (ko) 구리 배리어층 연마용 cmp 슬러리 조성물
WO2022124559A1 (ko) 반도체 공정용 연마 조성물, 연마 조성물의 제조 방법 및 연마 조성물을 적용한 반도체 소자의 제조 방법
WO2020130332A1 (ko) 연마 슬러리 조성물
WO2015060610A1 (ko) 금속막 연마 슬러리 조성물 및 이를 이용한 금속막 연마 시 발생하는 스크래치의 감소 방법
WO2011010819A2 (ko) 멀티 선택비를 갖는 연마 슬러리 조성물 및 이를 사용한 반도체 소자 제조방법
WO2022045866A1 (ko) 반도체 공정용 연마 조성물, 연마 조성물의 제조 방법 및 연마 조성물을 적용한 반도체 소자의 제조 방법
WO2023282475A1 (ko) 표면 결함수 및 헤이즈 저감용 실리콘 웨이퍼 최종 연마용 슬러리 조성물 및 그를 이용한 최종 연마 방법
WO2011081503A2 (en) Chemical mechanical polishing slurry compositions and polishing method using the same
WO2020101134A1 (ko) 연마 슬러리 조성물 및 그의 제조방법
WO2017057906A1 (ko) 유기막 연마용 cmp 슬러리 조성물 및 이를 이용한 연마방법
WO2022145654A1 (ko) 반도체 공정용 연마 조성물, 연마 조성물의 제조 방법 및 연마 조성물을 적용한 반도체 소자의 제조 방법
WO2020141804A1 (ko) 화학-기계적 연마 입자 및 이를 포함하는 연마 슬러리 조성물
KR102681982B1 (ko) 반도체 공정용 연마 조성물, 연마 조성물의 제조 방법 및 연마 조성물을 적용한 반도체 소자의 제조 방법
WO2016148409A1 (ko) 연마입자 및 그를 포함하는 연마 슬러리 조성물
KR102681990B1 (ko) 반도체 공정용 연마 조성물, 연마 조성물의 제조 방법 및 연마 조성물을 적용한 반도체 소자의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915451

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18255783

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180083214.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915451

Country of ref document: EP

Kind code of ref document: A1