WO2022145255A1 - Silica heat reflection plate - Google Patents

Silica heat reflection plate Download PDF

Info

Publication number
WO2022145255A1
WO2022145255A1 PCT/JP2021/046703 JP2021046703W WO2022145255A1 WO 2022145255 A1 WO2022145255 A1 WO 2022145255A1 JP 2021046703 W JP2021046703 W JP 2021046703W WO 2022145255 A1 WO2022145255 A1 WO 2022145255A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
plate
reflector
film
silica plate
Prior art date
Application number
PCT/JP2021/046703
Other languages
French (fr)
Japanese (ja)
Inventor
智弘 丸子
好裕 石黒
尊信 松村
裕也 大川
Original Assignee
株式会社フルヤ金属
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021098989A external-priority patent/JP7096409B1/en
Application filed by 株式会社フルヤ金属 filed Critical 株式会社フルヤ金属
Priority to KR1020237012567A priority Critical patent/KR20230069174A/en
Priority to CN202180077002.9A priority patent/CN116457920A/en
Priority to TW110148379A priority patent/TW202225625A/en
Publication of WO2022145255A1 publication Critical patent/WO2022145255A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment

Definitions

  • the present disclosure can be used, for example, in the field of semiconductors and electronic components as a heat reflector of various heat treatment devices that heat-treat wafers, substrates, etc. at high temperatures, and since it has high reflectance, it is possible to save energy in the heat treatment devices. Also, it relates to a silica heat reflector capable of suppressing contamination.
  • a heat insulating body there is a heat insulating body having a quartz plate that closes the opening of the heat treatment chamber, is laminated apart from each other, and is exposed to the heat treatment chamber.
  • a gold thin film is formed inside the quartz plate, and the gold thin film is characterized by being formed by gold vapor deposition (see, for example, Patent Document 1).
  • a quartz plate having a hole for passing a quartz tube in the center and a hole for passing a quartz rod, an organic substance is added to a mixture of platinum (Pt) and an oxide (SiO, PbO, etc.) to form a paste.
  • Pt platinum
  • SiO, PbO, etc. oxide
  • the heat shield plate is formed of a reflective film and a transparent quartz layer covering the surface of the reflective film.
  • a pair of circular transparent quartz plates for forming a transparent quartz layer are used, a reflective film is provided on one side of one of the transparent quartz plates, and the reflective film is used.
  • Patent Document 1 a gold thin film is used as a reflective film, but the melting point of gold is 1064 ° C., and there is a problem that it melts, the film is turned up or shrunk during heat treatment at 1500 ° C. or higher. There was a problem with heat resistance in practice.
  • a heater conduction portion is provided in the center with a quartz tube for use as a reflector and a heater, but there are some locations where the radiant heat cannot be completely shielded due to this structure. In order to save more energy, it is necessary to take a large reflection area ratio, make the reflector thinner, and reduce the heat capacity.
  • Patent Document 3 a method of sandwiching between quartz plates and welding is adopted, but since it is affected by heat, there is a problem that the film is peeled off when it is carried out with a thin film. Furthermore, it is difficult to keep the inside in a vacuum, and the risk of damaging the thin film due to an increase in internal pressure during high-temperature use is unavoidable. Further, even in the method of casting transparent quartz, thermal and physical damage cannot be avoided when it is applied to a metal thin film.
  • the present disclosure can secure a larger reflection area ratio than the conventional method, has a small heat capacity, can save energy, has a high reflectance, suppresses contamination in the furnace, and has a long life of silica heat reflection.
  • the purpose is to provide a board.
  • the present inventors have solved the above-mentioned problems by arranging a reflector having a surface layer containing Ir, Pt, Rh, Ru, Re, Hf or Mo as a reflecting surface inside the silica plate. It was found that the present invention was completed. That is, the silica heat-reflecting plate according to the present invention is arranged inside the silica plate and the outer periphery is completely covered by the silica plate, and is incident on one surface of the silica plate.
  • a silica thermal reflector having a reflector that reflects the infrared rays, wherein the reflector is a thin film, a plate, or a foil, and the surface layer including at least the reflecting surface of the reflector is Ir, Pt, Rh. , Ru, Re, Hf or Mo, or an alloy comprising at least one selected from Ir, Pt, Rh, Ru, Re, Hf and Mo.
  • the silica plate is a laminated plate in which a first silica plate and a second silica plate are arranged facing each other and peripheral portions are continuously joined in an annular shape along the peripheral edge. It is preferable to have the structure of. Since the silica plate and the reflector can be made thin, the heat capacity can be reduced.
  • the structure of the laminated plate is provided between the facing surfaces of the first silica plate and the second silica plate, and is provided on the first silica plate side and the first silica plate. 2 It is preferable that at least one of the silica plates has a cavity sealed by a joint portion between the peripheral portions, and the reflector is arranged in the cavity. Since the reflector is in a cavity which is a closed space, stress in the peeling direction due to the reflector is less likely to be applied to the joint between the peripheral edges, and contamination in the furnace due to breakage of the reflector can be suppressed. Further, damage due to the difference in thermal expansion between the silica plate and the reflector can be avoided.
  • the silica heat reflecting plate according to the present invention has the cavity at least on the first silica plate side, and has a thin film formed as the reflector on the surface of the first silica plate in the cavity, and the thin film.
  • a laminated film having a base film and a reflective film as a surface layer including the reflective surface in this order from the surface side in the cavity of the first silica plate, and the base film is Ta, Mo, It consists of Ti, Zr, Nb, Cr, W, Co or Ni, or an alloy containing at least one selected from Ta, Mo, Ti, Zr, Nb, Cr, W, Co and Ni.
  • the reflective film is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or an alloy containing at least one selected from Ir, Pt, Rh, Ru, Re, Hf and Mo. It is preferable that the base film and the reflective film have different compositions. Since the reflector is formed on the surface inside the cavity of the first silica plate, stress in the peeling direction due to the reflector is less likely to be applied to the joint between the peripheral edges, and the inside of the furnace is contaminated due to damage to the reflector. Can be suppressed. Further, damage due to the difference in thermal expansion between the silica plate and the reflector can be avoided.
  • the first silica plate is a flat plate
  • the cavity is provided on the side of the second silica plate
  • a thin film formed as the reflector on the surface of the first silica plate is formed.
  • the thin film is a laminated film having a base film and a reflective film as a surface layer including the reflective surface in order from the surface side of the first silica plate
  • the base film is Ta, Mo. , Ti, Zr, Nb, Cr, W, Co or Ni, or an alloy containing at least one selected from Ta, Mo, Ti, Zr, Nb, Cr, W, Co and Ni.
  • the reflective film is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or an alloy containing at least one selected from Ir, Pt, Rh, Ru, Re, Hf and Mo. Therefore, it is preferable that the base film and the reflective film have different compositions. Since a thin film as a reflector is formed on the first silica plate which is a flat plate, a silica heat reflector having excellent productivity can be obtained.
  • the reflector is a plate or foil and is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or Ir, Pt, Rh, Ru, It is preferably made of an alloy containing at least one selected from Re, Hf and Mo.
  • a plate or foil as a reflector is housed in the cavity, and corrosion of the plate or foil is unlikely to occur. Further, it is difficult to apply stress in the peeling direction due to the plate or foil to the joints between the peripheral edges.
  • the pressure in the cavity is preferably reduced to less than atmospheric pressure. It is possible to suppress the increase in the internal pressure of the cavity during the heat treatment, and it is possible to further suppress the contamination in the furnace.
  • the first silica plate has a bank portion provided on the peripheral portion and a recess surrounded by the bank portion to form the cavity.
  • the silica plate has a flat plate shape, or (2) the first silica plate has a flat plate shape, and the second silica plate is surrounded by a bank portion provided on the peripheral portion and the bank portion. It is preferable to have a recess constituting the cavity.
  • the silica heat reflector has at least one support column portion that stands between the facing surfaces of the structure of the laminated plate in the cavity.
  • the joint strength of the laminated plate structure can be increased by the support column portion.
  • the silica heat reflector according to the present invention includes a form in which the support column portion is columnar or tubular. By making it columnar or tubular, it is possible to increase the area of the reflector while increasing the bonding strength.
  • the silica heat reflecting plate has a plurality of the strut portions, the strut portions are tubular, and each strut portion shares a part of the tubular wall with each other. It is preferable to have a dimensional space filling structure. By adopting a three-dimensional space filling structure, it is possible to increase the area of the reflector while increasing the joint strength, and further increase the strength of the reflector itself.
  • the three-dimensional space-filling structure includes a form of a honeycomb structure, a rectangular lattice structure, a square lattice structure, or a diamond lattice structure.
  • the facing surfaces of the first silica plate and the second silica plate are flat surfaces
  • the reflector is the first silica plate on the second silica plate side.
  • It is a thin film formed in the inner region of the annular joint portion between the peripheral portions of the surface of the above, and the thin film is a surface including the base film and the reflective surface in order from the surface side of the first silica plate.
  • the silica heat reflecting plate according to the present invention has the cavity at least on the first silica plate side, and has a thin film formed as the reflector on the surface of the first silica plate in the cavity, and the thin film.
  • a Mo film or an alloy film containing 50% by mass or more of Mo is used, the thin film formed as a reflector may be a single-layer film.
  • the first silica plate is a flat plate
  • the cavity is provided on the side of the second silica plate
  • a thin film formed as the reflector on the surface of the first silica plate is formed.
  • the thin film preferably has a Mo film or an alloy film containing 50% by mass or more of Mo.
  • the thin film formed as a reflector may be a single-layer film.
  • the facing surfaces of the first silica plate and the second silica plate are flat surfaces, and the reflector is the first silica plate on the second silica plate side.
  • the thin film is preferably a Mo film or an alloy film containing 50% by mass or more of Mo.
  • the thin film formed as a reflector may be a single-layer film.
  • the thin film having the cavity on the first silica plate side and the second silica plate side and formed as the reflector on the surface of the first silica plate in the cavity.
  • the thin film is preferably a Mo film or an alloy film containing 50% by mass or more of Mo.
  • the thin film formed as a reflector may be a single-layer film.
  • the thickness of the reflector is preferably 0.01 ⁇ m or more and 5 mm or less.
  • the heat capacity of the silica heat reflector can be reduced while maintaining the reflection efficiency of radiant heat by the reflector.
  • the joint portion between the peripheral portions is a surface activated joint portion.
  • the thin film, which is a reflector is less susceptible to thermal and physical damage due to the bonding process.
  • the joint strength at the joint is increased, the silica heat reflector has a longer life, corrosion resistance is increased, and contamination in the furnace is suppressed.
  • a silica heat reflector can be provided.
  • FIG. 1 It is a schematic diagram which shows the 8th example of the AA cross section. It is a schematic diagram which shows the 9th example of the AA cross section. It is a schematic diagram which shows the tenth example of the AA cross section. It is a schematic diagram which shows the eleventh example of the AA cross section. It is a schematic diagram which shows the twelfth example of the AA cross section. It is a schematic diagram which shows the thirteenth example of the AA cross section. It is a graph which shows the reflectance of the reflector of Example 1. FIG. It is a graph which shows the relationship between the wavelength of blackbody radiation emitted by a substance at 1000 degreeC, and the amount of radiation. It is a graph which shows the reflectance of the reflector of Example 5. It is a graph which shows the reflectance of the reflector of Example 6. It is a schematic diagram which shows the 14th example of the AA cross section.
  • the silica heat reflector according to the present embodiment will be described with reference to FIGS. 1 and 2.
  • the silica heat reflecting plate 100 according to the present embodiment is arranged inside the silica plate 1 and the silica plate 1 so that the outer periphery is completely covered by the silica plate 1 and is on one surface of the silica plate 1. It has a reflector 5 that reflects incident infrared rays. In FIG. 1, the direction toward the paper surface is the incident direction of infrared rays. In FIG. 2, the direction from top to bottom is the incident direction of infrared rays.
  • the reflector 5 is a thin film, and the surface layer including at least the reflective surface of the reflector 5 is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or Ir, Pt, Rh, Ru, Re, It consists of an alloy containing at least one selected from Hf and Mo.
  • FIG. 2 shows a form in which the reflector 5 is a laminated film, and a reflective film 4 as a surface layer including a reflective surface is formed on the base film 3. At this time, it is preferable that the entire surface of the reflector 5 surrounded by the peripheral edge of the reflector is a reflecting surface without providing through holes or irregularities.
  • the silica plate 1 is a laminated plate in which the first silica plate 1a and the second silica plate 1b are arranged facing each other and the peripheral edges are continuously joined in an annular shape along the peripheral edge. It is preferable to have a structure.
  • the first silica plate 1a and the second silica plate 1b form a laminated plate structure by a joint portion 2 between peripheral portions. As shown in FIG. 1, the joint portion 2 between the peripheral portions is continuous in an annular shape along the peripheral edge of the silica plate 1.
  • the joint portion 2 between the peripheral portions can be seen as a boundary portion between the first silica plate 1a and the second silica plate 1b by seeing through the second silica plate 1b, and is shown as a gray area.
  • the silica plate can be made thin, so that the heat capacity can be reduced.
  • the shape of the silica plate 1 with the reflector 5 viewed from the front is, for example, a circle, an ellipse, a rectangle, or a square, and a circle is preferable. Further, it is preferable that the outer plate surface of the silica plate 1 with the reflector 5 viewed from the front is a flat surface without providing through holes or irregularities.
  • the circular diameter is, for example, 5 to 50 cm.
  • the width of the annular shape of the joint portion 2 between the peripheral portions is, for example, 0.5 to 20 mm.
  • the wall thickness of the silica plate 1 is preferably 0.1 to 20 mm, more preferably 0.2 to 10 mm.
  • the wall thickness of the first silica plate 1a is preferably 0.05 to 10 mm, more preferably 0.5 to 1.5 mm.
  • the wall thickness of the second silica plate 1b is preferably 0.05 to 10 mm, more preferably 0.5 to 1.5 mm.
  • the silica plate 1 includes a form of a crystalline silica plate or an amorphous silica plate.
  • the impurity concentration of the silica plate 1 is 100 ppm or less, preferably 90 ppm or less.
  • the structure of the laminated plate is provided between the facing surfaces of the first silica plate 1a and the second silica plate 1b, and the first silica plate 1a side and the second silica plate 1b side. It is preferable that at least one of the cavities 12 is sealed by a joint portion 2 between peripheral portions, and the reflector 5 is arranged in the cavity 12.
  • the cavity 12 has a form provided on the first silica plate 1a side, a form provided on both sides of the first silica plate 1a side and the second silica plate 1b side, and a form provided on the second silica plate 1b side. ..
  • FIG. 2 shows a form in which the cavity 12 is provided on the side of the first silica plate 1a.
  • a recess is provided on one surface of the first silica plate 1a
  • the second silica plate 1b is a flat plate having no recess
  • the structure of the laminated plate of the first silica plate 1a and the second silica plate 1b is provided on the side of the first silica plate 1a.
  • the cavity 12 is provided only on the first silica plate 1a side of the facing surfaces of the first silica plate 1a and the second silica plate 1b, and is sealed by the joint portion 2 between the peripheral portions.
  • the reflector 5 Since the reflector 5 is located in the cavity 12 which is a closed space, it is difficult to apply stress in the peeling direction due to the reflector to the joint between the peripheral edges, and it is possible to suppress contamination in the furnace due to damage to the reflector. can. Further, damage due to the difference in thermal expansion between the silica plate and the reflector can be avoided.
  • FIG. 3 shows a form in which the cavity 12 is provided on both sides of the first silica plate 1a side and the second silica plate 1b side.
  • a recess is provided on one surface of the first silica plate 1a
  • a recess is provided on one surface of the second silica plate 1b so that the recesses fit together.
  • the structure of the laminated plate of the second silica plate 1b is provided on both the first silica plate 1a side and the second silica plate 1b side of the facing surfaces of the first silica plate 1a and the second silica plate 1b.
  • FIG. 4 shows a form in which the cavity 12 is provided on the second silica plate 1b side.
  • the first silica plate 1a is a flat plate having no recess, and the recess is provided on one surface of the second silica plate 1b, and the structure of the laminated plate of the first silica plate 1a and the second silica plate 1b is provided. Therefore, the cavity 12 is provided on the second silica plate 1b side. As a result, the cavity 12 is provided only on the second silica plate 1b side of the facing surfaces of the first silica plate 1a and the second silica plate 1b.
  • the height of the cavity 12 (length in the vertical direction in FIG. 2) is preferably 0.1 ⁇ m to 5 mm, more preferably 0.1 ⁇ m to 1 mm.
  • the cavity 12 has a recess provided only on the first silica plate 1a side, a recess provided on both the first silica plate 1a side and the second silica plate 1b side, and a recess provided only on the second silica plate 1b side.
  • the recesses form a bank portion 11 on the peripheral edge of the first silica plate 1a and / or on the peripheral edge of the second silica plate 1b. In the form of FIG.
  • the top surface of the bank portion 11 formed on the first silica plate 1a is joined to the flat plate portion of the second silica plate 1b arranged to face each other, and the joint portion 2 between the peripheral portions is formed. Will be done.
  • the top surfaces of the bank portions 11 of the first silica plate 1a and the second silica plate 1b are joined to each other, and the joining portion 2 between the peripheral portions is formed.
  • the top surface of the bank portion 11 formed on the second silica plate 1b is joined to the flat plate portion of the first silica plate 1a arranged to face each other, and the joint portion 2 between the peripheral portions is joined. Is formed.
  • the recess can be formed by, for example, an etching method.
  • the first silica plate 1a has a bank portion 11 provided on the peripheral portion and a recess surrounded by the bank portion 11 to form a cavity 12.
  • the second silica plate 1b preferably has a flat plate shape. By providing the recess only in the first silica plate 1a, the cavity 12 can be provided in the silica plate with a simple structure.
  • silica heat reflectors having such a form include silica heat reflectors 103, 106, 109, 112 exemplified in FIGS. 5, 8, 12, or 15.
  • the first silica plate 1a has a flat plate shape
  • the second silica plate 1b has a bank portion 11 and a bank portion provided on the peripheral portion. It is preferable to have a recess surrounded by 11 and constituting the cavity 12. By providing the recess only in the second silica plate 1b, the cavity 12 can be provided in the silica plate with a simple structure.
  • the silica heat reflector having such a form in addition to FIG. 4, there are silica heat reflectors 105, 108, 111 exemplified in FIG. 7, FIG. 11 or FIG.
  • the cavity 12 is provided at least on the first silica plate 1a side, and is on the surface of the first silica plate 1a in the cavity 12.
  • the thin film has a thin film formed as a reflector 5, and the thin film has a base film 3 and a reflective film 4 as a surface layer including a reflective surface in this order from the surface side in the cavity 12 of the first silica plate 1a. It is a laminated film, and the base film 3 is made of Ta, Mo, Ti, Zr, Nb, Cr, W, Co or Ni, or Ta, Mo, Ti, Zr, Nb, Cr, W, Co and Ni.
  • the reflective film 4 is made of an alloy containing at least one selected from Ir, Pt, Rh, Ru, Re, Hf or Mo, or Ir, Pt, Rh, Ru, Re, Hf and It is preferably made of an alloy containing at least one selected from Mo, and the base film 3 and the reflective film 4 have different compositions. Since the reflector is formed on the surface inside the cavity of the first silica plate, stress in the peeling direction due to the reflector is less likely to be applied to the joint between the peripheral edges, and the inside of the furnace is contaminated due to damage to the reflector. Can be suppressed. Further, damage due to the difference in thermal expansion between the silica plate and the reflector can be avoided.
  • the undercoat 3 is made of Ta, Mo, Ti, Zr, Nb, Cr, W, Co or Ni, or at least one selected from Ta, Mo, Ti, Zr, Nb, Cr, W, Co and Ni. It is preferably made of an alloy containing one or more. Such a metal or alloy has a high melting point and is excellent in adhesion to a silica plate.
  • the undercoat film 3 is preferably a thin film obtained by, for example, a sputtering film, a coating film, CVD, vapor deposition, or the like.
  • the alloy containing at least one selected from Ta, Mo, Ti, Zr, Nb, Cr, W, Co and Ni it is preferable that the alloy contains any one of these elements in the largest mass.
  • an alloy containing 50% by mass or more of Ta, Mo, Ti, Zr, Nb, Cr, W, Co or Ni still more preferably an alloy containing 60% by mass or more, and most preferably 70% by mass or more. It is an alloy, for example, a Ta-Mo-based alloy, a Ta-Cr-based alloy, or a Cr-Co-based alloy.
  • the film thickness of the base film 3 is preferably 5 to 500 nm, more preferably 10 to 100 nm. The base film 3 improves the adhesion of the reflective film 4.
  • the reflective film 4 is deposited on the surface of the base film 3.
  • the reflective film 4 is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or an alloy containing at least one selected from Ir, Pt, Rh, Ru, Re, Hf and Mo. Is preferable. Such metals or alloys have a high melting point and high infrared reflectance. In addition, the reactivity with the base film is low.
  • the reflective film 4 is preferably a thin film obtained by, for example, a sputtering film, a coating film, CVD, vapor deposition, or the like.
  • the alloy containing at least one selected from Ir, Pt, Rh, Ru, Re, Hf and Mo it is preferable that the alloy contains any one of these elements in the largest mass, and more preferably.
  • the film thickness of the reflective film 4 is preferably 5 to 1000 nm, more preferably 10 to 300 nm.
  • the base film 3 / reflective film 4 is a Ta film / Ir film, a Mo film / Ir film, or the like.
  • the film thickness of the laminated film is preferably 10 to 1500 nm, more preferably 20 to 400 nm.
  • the thickness of the reflector 5 may be equal to the height of the cavity 12, that is, the reflective film 4 may be in contact with the surface of the second silica plate 1b.
  • the interference fringes generated by the partial contact between the reflective film 4 and the second silica plate are reduced.
  • the base film 3 is preferably deposited on the surface (bottom surface of the recess) in the cavity 12 of the first silica plate 1a, and the reflective film 4 is preferably deposited on the surface of the base film 3. It is preferable that the reflective film 4 is in contact with the surface of the second silica plate 1b, but is not formed on the surface of the second silica plate 1b, that is, it is not deposited.
  • the first silica plate 1a is a flat plate
  • the cavity 12 is provided on the second silica plate 1b side
  • the cavity 12 is on the surface of the first silica plate 1a.
  • the thin film has a thin film formed as a reflector 5, and the thin film is a laminated film having a base film 3 and a reflective film 4 as a surface layer including a reflective surface in this order from the surface side of the first silica plate 1a.
  • the undercoat 3 is made of Ta, Mo, Ti, Zr, Nb, Cr, W, Co or Ni, or at least selected from Ta, Mo, Ti, Zr, Nb, Cr, W, Co and Ni.
  • the reflective film 4 is made of an alloy containing any one of them, and the reflective film 4 is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or is selected from Ir, Pt, Rh, Ru, Re, Hf and Mo. It is preferably made of an alloy containing at least one of them.
  • the form shown in FIG. 4 is different from the form shown in FIG. 2 or 3 in that the first silica plate 1a is a flat plate and the cavity 12 is on the second silica plate 1b side, but the other aspects are the same. .. Since a thin film as a reflector is formed on the first silica plate 1a which is a flat plate, a silica heat reflector having excellent productivity can be obtained.
  • the thickness of the reflector 5 may be equal to the height of the cavity 12, that is, the reflective film 4 may be in contact with the surface of the second silica plate 1b (bottom surface of the recess). .. The interference fringes generated by the partial contact between the reflective film 4 and the second silica plate are reduced.
  • the base film 3 is preferably deposited on the surface of the first silica plate 1a, and the reflective film 4 is preferably deposited on the surface of the base film 3.
  • the form shown in FIG. 7 is different from the form shown in FIG. 5 or 6 in that the first silica plate 1a is a flat plate and the cavity 12 is on the second silica plate 1b side, but the other aspects are the same. .. Since a thin film as a reflector is formed on the first silica plate 1a which is a flat plate, a silica heat reflector having excellent productivity can be obtained.
  • the silica heat reflectors 106 to 111 have at least one silica heat reflector plate 106 to 111 standing between facing surfaces of the laminated plate structure in the cavity 12. It is preferable to have the support column 6.
  • the strut portion 6 can increase the joint strength of the structure of the laminated plate. As shown in FIG. 8 or 12, for example, the support column 6 extends from the bottom surface of the recess of the first silica plate 1a, and the top surface of the support column 6 is joined to the surface of the flat plate-shaped second silica plate 1b. There are various forms.
  • the bank portion 11 is formed by forming the recess by etching only the first silica plate 1a. , It can be formed by making the support column 6 a non-etched part in the same way as making the bank part 11 a non-etched part. Further, the support column 6 extends from the bottom surface of the recess of the first silica plate 1a and extends from the bottom surface of the recess of the second silica plate 1b, as shown in FIG. 10 or 13, for example, and extends from the bottom surface of the recess of the second silica plate 1b. There is a form in which the faces are joined together.
  • the first silica plate 1a and the second silica plate 1b are etched.
  • the bank portion 11 is formed by forming the concave portion, and at this time, it can be formed by making the strut portion 6 a non-etched portion in the same manner as the bank portion 11 being a non-etched portion. Further, as the support column 6, for example, as shown in FIG. 11 or FIG.
  • the support column 6 extends from the bottom surface of the recess of the second silica plate 1b, and the top surface of the support column 6 is joined to the surface of the flat plate-shaped first silica plate 1a.
  • the bank portion 11 is formed by forming the recess by etching only the second silica plate 1b, and at this time, the support column is formed. It can be formed by making the portion 6 a non-etched portion.
  • the joint portion between the strut portion 6 and the first silica plate 1a or the second silica plate 1b, or the joint portion between the strut portions 6 is shown by the joint portion 7.
  • the reflector 5 is the same as the silica heat reflectors 100 to 105 shown in FIGS. 2 to 7. At this time, the reflector 5 formed on the outside of the support 6 is not provided with through holes or irregularities, and the inner circumference of the reflector on the outside of the support 6 and the entire surface surrounded by the peripheral edge of the reflector are covered. It is preferably a reflective surface.
  • the silica heat reflectors 106 to 111 include a form in which the support column 6 is columnar or tubular.
  • the shape of the cross section of the main shaft of the support column 6 is preferably a circle, an ellipse, or a polygon having a triangle or more. For polygons of triangle or more, it is preferably a square or a regular hexagon.
  • the silica heat reflector has a plurality of support columns 6, the support columns 6 are tubular, and each support column 6 shares a part of the cylinder wall with each other in three dimensions. It is preferable to have a space filling structure.
  • the three-dimensional space-filling structure includes a form such as a honeycomb structure, a rectangular lattice structure, a square lattice structure, or a diamond lattice structure.
  • FIG. 9 illustrates a silica heat reflector 100 having a strut portion having a honeycomb structure.
  • the honeycomb structure is a structure in which hexagonal cylinders are arranged without gaps, preferably a structure in which regular hexagonal cylinders are arranged without gaps.
  • the rectangular lattice structure is a structure in which square cylinders having a rectangular cross section are arranged without gaps.
  • the cubic lattice structure is a structure in which square cylinders with a square cross section are arranged without gaps.
  • the rhombic lattice structure is a structure in which square cylinders with a rhombic cross section are arranged without gaps.
  • the tubular shape of the support column 6 is not provided with through holes or irregularities in the formed reflector 5. It is preferable that the entire surface surrounded by the peripheral edge of the reflector inside the reflector is a reflecting surface.
  • the facing surfaces of the first silica plate 1a and the second silica plate 1b are flat surfaces
  • the reflector 5 is a second silica plate. It is a thin film formed in the inner region of the annular junction 2 between the peripheral edges of the surface of the first silica plate 1a on the 1b side, and the thin films are sequentially formed with the base film from the surface side of the first silica plate 1a.
  • a laminated film having a reflective film as a surface layer including a reflective surface, and the underlying film is made of Ta, Mo, Ti, Zr, Nb, Cr, W, Co or Ni, or Ta, Mo.
  • the reflective film is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or , Ir, Pt, Rh, Ru, Re, Hf and Mo, and preferably an alloy containing at least one of them, and the undercoat film and the reflective film have different compositions.
  • the form in which the reflector 5 is a laminated film is not shown.
  • the base film is preferably deposited on the surface of the first silica plate, and the reflective film is preferably deposited on the surface of the base film.
  • the reflective film is in contact with the surface of the second silica plate, but is not formed on the surface of the second silica plate, that is, is not deposited.
  • a silica heat reflector having excellent productivity can be obtained.
  • the reflector can be brought into close contact with the second silica plate, and interference fringes can be further suppressed.
  • the film thickness of the laminated film is preferably 10 to 500 nm. By reducing the thickness of the laminated film, even if the cavity 12 is not provided, it is possible to provide an annular joint between the peripheral edges due to stress deformation of the first silica plate and the second silica plate, and the laminated film can be formed.
  • the inside of the silica plate makes it possible to completely cover the outer circumference.
  • the reason for selecting the metal or alloy of the reflector 5 is the same as that of the silica heat reflectors 100 to 105 shown in FIGS. 2 to 7.
  • the silica heat reflecting plate according to the present embodiment has a cavity at least on the first silica plate side, and has a thin film formed as a reflector on the surface of the cavity of the first silica plate, and the thin film is a Mo film or a Mo film or a thin film. It is preferable that the alloy film contains 50% by mass or more of Mo. When the Mo film or the alloy film containing 50% by mass or more of Mo is used, the thin film formed as a reflector may be a single-layer film.
  • the silica heat reflector according to the present embodiment has a structure in which the reflector 5 which is a laminated film is replaced with a Mo film or an alloy film containing 50% by mass or more of Mo in FIGS. 2, 5, 8 or 12. .. Further, as in the silica plate 1 of FIGS. 3, 6, 10 or 13, the cavity 12 may be provided on both sides of the first silica plate 1a side and the second silica plate 1b side. .. In this embodiment, a recess is provided on one surface of the first silica plate 1a, and a recess is provided on one surface of the second silica plate 1b so that the recesses fit together. And the structure of the laminated plate of the second silica plate 1b.
  • the cavities 12 are provided on both the first silica plate 1a side and the second silica plate 1b side of the facing surfaces of the first silica plate 1a and the second silica plate 1b.
  • the direction of incident infrared rays of the silica heat reflector according to the present embodiment may be either a direction from top to bottom or a direction from bottom to top.
  • the first silica plate is a flat plate
  • the cavity is on the second silica plate side
  • the thin film formed as a reflector on the surface of the first silica plate is formed.
  • the thin film formed as a reflector may be a single-layer film.
  • the silica heat reflector according to the present embodiment has a structure in which the reflector 5 which is a laminated film is replaced with a Mo film or an alloy film containing 50% by mass or more of Mo in FIGS. 4, 7, 11 or 14. ..
  • the direction of incident infrared rays of the silica heat reflector according to the present embodiment may be either a direction from top to bottom or a direction from bottom to top.
  • the facing surfaces of the first silica plate and the second silica plate are flat surfaces, and the reflector is the surface of the first silica plate on the second silica plate side. It is a thin film formed in the inner region of the annular junction between the peripheral portions, and the thin film is preferably a Mo film or an alloy film containing 50% by mass or more of Mo. When the Mo film or the alloy film containing 50% by mass or more of Mo is used, the thin film formed as a reflector may be a single-layer film. In FIG.
  • the silica heat reflector according to the present embodiment has a structure in which the reflector 5 is replaced with a Mo film or an alloy film containing 50% by mass or more of Mo.
  • the direction of incident infrared rays of the silica heat reflector according to the present embodiment may be either a direction from top to bottom or a direction from bottom to top.
  • the silica heat reflecting plate according to the present embodiment has a cavity on the first silica plate side and the second silica plate side, and has a thin film formed as a reflector on the surface inside the cavity of the first silica plate, and is a thin film.
  • the thin film formed as a reflector may be a single-layer film.
  • the silica heat reflector according to the present embodiment has a structure in which the reflector 5 which is a laminated film is replaced with a Mo film or an alloy film containing 50% by mass or more of Mo in FIGS. 3, 6, 10 or 13. ..
  • the direction of incident infrared rays of the silica heat reflector according to the present embodiment may be either a direction from top to bottom or a direction from bottom to top.
  • the Mo content of the alloy film containing Mo is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more. ..
  • the Mo film or the alloy film containing 50% by mass or more of Mo is preferably formed with the same film thickness as the reflector 5 which is a laminated film, and the area ratio of the thin film formed on the bottom surface of the recess is the laminated film. It is preferable that the film is formed in the same range as the reflector 5.
  • the joint portion 2 between the peripheral portions is a surface activated joint portion.
  • the joint portion 7 including the support portion 6 is preferably a surface-activated joint portion. Since it is possible to join at a relatively low temperature, it is possible to join without thermal or physical damage to the reflective film, and by joining while keeping the inside vacuum, the joining strength at the joint is increased.
  • the silica heat reflector has a longer life, has higher corrosion resistance, and suppresses contamination in the furnace.
  • the surface-activated joint portion refers to a portion where at least one of the parts to be joined is brought into a surface-activated state, and then the joint parts are combined by applying pressure to integrate and join the surface structures at the atomic level. ..
  • the surface-activated joint portion includes a room temperature-activated joint portion and a plasma-activated joint portion.
  • the room temperature activated joints include, for example, a joint that is surface-activated using a high-speed atomic beam and bonded, a joint that forms a nano-adhesive layer using an active metal such as Si and is surface-activated and bonded, and ions. There are joints that are surface activated and joined using a beam.
  • the plasma-activated junction includes, for example, a junction that is surface-activated and bonded using oxygen plasma, and a junction that is surface-activated and bonded using nitrogen plasma.
  • the pressure in the cavity 12 is preferably reduced to less than atmospheric pressure.
  • the pressure in the cavity 12 is more preferably 10-2 Pa or less. It is possible to suppress the increase in the internal pressure of the cavity 12 during the heat treatment, and it is possible to further suppress the contamination in the furnace. In addition, deterioration of the reflective film at high temperatures can be suppressed.
  • the reflector 8 is a plate and is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or Ir. It is preferably made of an alloy containing at least one selected from Pt, Rh, Ru, Re, Hf and Mo. As the alloy containing at least one selected from Ir, Pt, Rh, Ru, Re, Hf and Mo, it is preferable that the alloy contains any one of these elements in the largest mass, and more preferably.
  • An alloy containing 50% by mass or more of Ir, Pt, Rh, Ru, Re, Hf or Mo more preferably an alloy containing 60% by mass or more, and most preferably an alloy containing 70% by mass or more, for example, Ir-. It is a Pt-based alloy, an Ir-Rh-based alloy, or a Pt-Ru-based alloy.
  • a plate as a reflector is housed in the cavity 12, and corrosion of the plate is unlikely to occur. Further, it is difficult to apply stress in the peeling direction due to the plate to the joint portion between the peripheral portions.
  • the reflector 8 which is a plate is preferably formed in an area of 50 to 100% with respect to the total area of the bottom surface of the recess, and more preferably formed in an area of 80 to 100%.
  • the reflector is a foil and is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or Ir, Pt, Rh, Ru, Re, Hf. And preferably an alloy containing at least one selected from Mo (not shown).
  • the alloy containing at least one selected from Ir, Pt, Rh, Ru, Re, Hf and Mo it is preferable that the alloy contains any one of these elements in the largest mass, and more preferably.
  • An alloy containing 50% by mass or more of Ir, Pt, Rh, Ru, Re, Hf or Mo more preferably an alloy containing 60% by mass or more, and most preferably an alloy containing 70% by mass or more, for example, Ir-. It is a Pt-based alloy, an Ir-Rh-based alloy, or a Pt-Ru-based alloy.
  • the foil instead of the reflector 8 being a plate, the foil is housed in the cavity 12, and corrosion of the foil is unlikely to occur. Further, it is difficult to apply stress in the peeling direction due to the foil to the joints between the peripheral edges.
  • the reflector which is a foil, is preferably formed in an area of 50 to 100% with respect to the total area of the bottom surface of the recess, and more preferably formed in an area of 80 to 100%.
  • the thickness of the reflector is preferably 0.01 ⁇ m to 5 mm, more preferably 0.02 ⁇ m to 2 mm.
  • the heat capacity of the silica heat reflector can be reduced while maintaining high reflection efficiency by the reflector. If the thickness of the reflector is less than 0.01 ⁇ m, it becomes difficult to maintain the reflection efficiency, and if it exceeds 5 mm, the amount of heat of the reflector may become too large.
  • the film thickness of the laminated film is preferably 10 nm or more and 1500 nm or less, and more preferably 20 nm or more and 400 nm or less.
  • the plate thickness is preferably 0.5 mm or more and 5.0 mm or less, and more preferably 0.5 mm or more and 2.0 mm or less.
  • the thickness of the foil is preferably 3 ⁇ m or more and 2.0 mm or less, and more preferably 8 ⁇ m or more and 1.0 mm or less.
  • the value obtained by subtracting the thickness of the reflector from the height of the cavity is 200 ⁇ m or less. It is preferably 100 ⁇ m or less, and more preferably 100 ⁇ m or less. If the gap in the height direction in the cavity exceeds 200 ⁇ m, the deformation of the silica plate due to atmospheric pressure becomes large, and as a result, the stress applied in the vicinity of the joint portion becomes large, and the joint portion may be cracked.
  • the infrared incident direction is from top to bottom.
  • the incident direction of infrared rays may be either a direction from top to bottom or a direction from bottom to top.
  • Example 1 The form in which the reflector is a laminated film
  • the silica heat reflector shown in FIG. 2 is manufactured. First, two silica plates having an outer circumference of 300 mm and a thickness of 1.2 mm were prepared and used as a first silica plate and a second silica plate, respectively. Next, a width of 10 mm from the outer periphery of the first silica plate was left as a joint with the second silica plate, and etching was performed on the other parts to provide a recess for a cavity having a depth of 1 ⁇ m.
  • h Planck's constant (6.626070115 ⁇ 10 ⁇ 34 J ⁇ s)
  • k B Boltzmann constant (1.380649 ⁇ 10-23 J / K)
  • c optical velocity (299792458 m / s)
  • wavelength. (Nm).
  • FIG. 17 it is necessary to reflect radiant heat at 1000 ° C., and it can be confirmed that the wavelength is 2000 nm to 2600 nm and the amount of radiation is large. Further, as a result of FIG. 16, it was confirmed that the reflector in this example had a reflectance of 90% or more at a wavelength of 2000 nm or more at 1000 ° C.
  • a high-speed atomic beam was applied to the joint of the first silica plate in a vacuum with a vacuum degree of 10-2 Pa or less.
  • a silica heat-reflecting plate was produced by irradiating and activating the surface and pressing the second silica plate against the first silica plate.
  • Example 2 The form in which the reflector is a laminated film
  • two silica plates having an outer circumference of 300 mm and a thickness of 1.2 mm were prepared and used as a first silica plate and a second silica plate, respectively.
  • a width of 5 mm from the outer periphery of the first silica plate was masked as a joint with the second silica plate.
  • Ta was formed into a film of 50 nm as a base film on the surface of the masked first silica plate by a sputtering method
  • Ir was formed into a film of 150 nm as a reflective film on the surface of the base film by a sputtering method to form a reflector.
  • Example 3 The form in which the reflector is a laminated film
  • two silica plates having an outer circumference of 300 mm and a thickness of 1.2 mm were prepared and used as a first silica plate and a second silica plate, respectively.
  • a width of 5 mm from the outer periphery of the first silica plate was masked as a joint with the second silica plate.
  • Ta was formed into a film of 50 nm as a base film on the surface of the masked first silica plate by a sputtering method
  • Ir was formed into a film of 150 nm as a reflective film on the surface of the base film by a sputtering method to form a reflector.
  • Example 4 The reflector is a laminated film, and there is a honeycomb-shaped strut.
  • the silica heat reflector shown in FIG. 12 is manufactured. First, two silica plates having an outer circumference of 300 mm and a thickness of 1.2 mm were prepared and used as a first silica plate and a second silica plate, respectively. Next, mask the width of 10 mm from the outer circumference of the first silica plate, and then, in other places, a honeycomb with a regular hexagonal width of 10 mm (one side length is 5.77 mm) and a wall pillar thickness of 0.3 mm.
  • etching was performed to provide a recess for a cavity having a depth of 1 ⁇ m.
  • Ta was formed into a film of 50 nm as a base film on the bottom surface of the recess of the masked first silica plate by a sputtering method
  • Ir was formed into a film of 150 nm as a reflective film on the base film by a sputtering method to form a reflector. ..
  • the masking was removed.
  • the reflector of this embodiment has a honeycomb structure with respect to the reflector of Example 1.
  • the reflectance shown in FIG. 16 shows the value of the form in which the entire surface is a reflective film.
  • the area ratio of the reflective film portion to the entire surface is 94.34. Therefore, it is considered that the reflectance characteristic of this example has a reflectance obtained by multiplying the reflectance shown in FIG. 16 by 0.9434.
  • a high-speed atomic beam is applied to the joining portion 2 of the first silica plate in a vacuum having a vacuum degree of 10-2 Pa or less.
  • the support column was irradiated to activate the surface, and the second silica plate was pressed against the first silica plate to join them to prepare a silica heat reflecting plate.
  • Example 5 The form in which the reflector is a Pt foil
  • the silica heat reflector shown in FIG. 15 is manufactured. First, two silica plates having an outer circumference of 300 mm and a thickness of 1.2 mm were prepared and used as a first silica plate and a second silica plate, respectively. Next, a width of 7 mm from the outer periphery of the first silica plate was left as a joint with the second silica plate, and cutting was performed on the other parts to provide a recess for a cavity having a depth of 0.2 mm.
  • a Pt foil having an outer circumference of 284 mm and a thickness of 100 ⁇ m was placed on the bottom surface of the recess of the first silica plate to form a reflector.
  • the reflectance of the reflector was measured using an ultraviolet visible spectrophotometer (model: UV-3100PC manufactured by Shimadzu Corporation). The measured reflectance is shown in FIG. The measurement was performed by shining light for measurement directly on the surface of the reflector. As a result of FIG. 18, it was confirmed that the reflector in this example had a reflectance of 80% or more at a wavelength of 2000 nm or more at 1000 ° C.
  • a high-speed atomic beam is applied to the joint of the first silica plate in a vacuum with a vacuum degree of 10-2 Pa or less.
  • the surface was activated by irradiation, and the second silica plate was pressed against the first silica plate to join them to prepare a silica heat reflecting plate.
  • Example 6 The form in which the reflector is a Mo film
  • two silica plates having an outer circumference of 300 mm and a thickness of 1.2 mm were prepared and used as a first silica plate and a second silica plate, respectively.
  • a width of 5 mm from the outer periphery of the first silica plate was masked as a joint with the second silica plate.
  • Mo was formed into a film of 200 nm as a reflector on the surface of the masked first silica plate by a sputtering method.
  • the masking was removed.
  • the reflectance of the reflector was measured using an ultraviolet visible spectrophotometer (manufactured by Shimadzu Corporation, model: UV-3100PC). The result of the measured reflectance is shown in FIG. The measurement was performed by shining light for measurement directly on the surface of the reflector. Further, as a result of FIG. 19, it was confirmed that the reflector in this example had a reflectance of 80% or more at a wavelength of 2000 nm or more at 1000 ° C.
  • a high-speed atomic beam was applied to the joint of the first silica plate in a vacuum with a vacuum degree of 10-2 Pa or less.
  • a silica heat-reflecting plate was produced by irradiating and activating the surface and pressing the second silica plate against the first silica plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The purpose of the present disclosure is to provide a silica heat reflection plate which has a high reflectance and a long service life, while being suppressed in the possibility of contaminating a furnace. A silica heat reflection plate 100 according to the present disclosure comprises: a silica plate 1; and a reflector 5 which is arranged within the silica plate 1 such that the outer periphery thereof is completely surrounded by the silica plate 1, and which reflects the infrared light incident on one surface of the silica plate 1. The reflector 5 is a thin film, a plate or a foil; and at least a surface layer of the reflector 5, said surface layer comprising a reflection surface, is formed of Ir, Pt, Rh, Ru, Re or Hf, or is alternatively formed of an alloy that contains at least one element that is selected from among Ir, Pt, Rh, Ru, Re, Hf and Mo.

Description

シリカ熱反射板Silica heat reflector
 本開示は、例えば、半導体・電子部品の分野で、ウエハ、基板等を高温で熱処理する種々の熱処理装置の熱反射板として利用でき、高反射率を有することから熱処理装置の省エネルギー化が可能であり、また、汚染を抑制することが可能なシリカ熱反射板に関する。 The present disclosure can be used, for example, in the field of semiconductors and electronic components as a heat reflector of various heat treatment devices that heat-treat wafers, substrates, etc. at high temperatures, and since it has high reflectance, it is possible to save energy in the heat treatment devices. Also, it relates to a silica heat reflector capable of suppressing contamination.
 半導体ウエハの製造または処理工程においては、半導体ウエハに各種の性質を付与するため熱処理作業が行われている。例えば、半導体ウエハを高純度石英製の炉芯管に収納し、炉芯管内の雰囲気を制御して、熱処理作業が行われる。この熱処理工程に使用される熱処理装置では、炉内の高温維持と炉床部への熱放散を防止するため、炉内と炉床との間に炉開口部を塞ぐように保温体(蓋体)が設けられている。 In the process of manufacturing or processing a semiconductor wafer, heat treatment work is performed to impart various properties to the semiconductor wafer. For example, a semiconductor wafer is housed in a high-purity quartz furnace core tube, and the atmosphere inside the furnace core tube is controlled to perform heat treatment work. In the heat treatment apparatus used in this heat treatment step, in order to maintain a high temperature in the furnace and prevent heat from being dissipated to the hearth, a heat insulating body (lid) is used so as to close the furnace opening between the inside and the hearth. ) Is provided.
 このような保温体としては、熱処理室の開口部を閉塞し、互いに離間して積層され、かつ熱処理室に露出する石英板を有する保温体があり、石英板は表面が平滑で気泡がなく、石英板の内部に金薄膜が形成されていて、金薄膜は、金蒸着により形成されたという特徴がある(例えば、特許文献1を参照。)。 As such a heat insulating body, there is a heat insulating body having a quartz plate that closes the opening of the heat treatment chamber, is laminated apart from each other, and is exposed to the heat treatment chamber. A gold thin film is formed inside the quartz plate, and the gold thin film is characterized by being formed by gold vapor deposition (see, for example, Patent Document 1).
 また、石英管を中心に通すための孔及び石英ロッドを通すための孔を有する石英板の上に、白金(Pt)及び酸化物(SiOやPbOなど)の混合物に有機物を加えてペースト状にしたものをスクリーン印刷により塗布し、これを焼き固めることにより抵抗発熱体よりなる例えば厚さ5~10ミクロンの反射面を形成する技術の開示がある(例えば、特許文献2を参照。)。 Further, on a quartz plate having a hole for passing a quartz tube in the center and a hole for passing a quartz rod, an organic substance is added to a mixture of platinum (Pt) and an oxide (SiO, PbO, etc.) to form a paste. There is a disclosure of a technique for forming a reflective surface having a thickness of, for example, 5 to 10 microns, which is made of a resistance heating element, by applying the obtained product by screen printing and baking it (see, for example, Patent Document 2).
 縦型熱処理炉の断熱構造体が、複数本の支柱と、これら支柱に上下方向に所定間隔で設けられた複数枚の反射性を有する遮熱板とから構成されている技術の開示がある(例えば、特許文献3を参照。)。特許文献3によれば、遮熱板は、反射膜と、この反射膜の表面を被覆する透明石英層とから形成されている。この遮熱板を形成する一つの方法としては、透明石英層を形成する円形の一対の透明石英板を用い、その一方の透明石英板の片方の面に反射膜を設け、この反射膜をもう一方の透明石英板との間で挟み込み、両透明石英板の周縁部を溶接して密封および一体化する方法がある。 There is a disclosure of a technique in which the heat insulating structure of a vertical heat treatment furnace is composed of a plurality of columns and a plurality of reflective heat shield plates provided on the columns at predetermined intervals in the vertical direction ( For example, see Patent Document 3). According to Patent Document 3, the heat shield plate is formed of a reflective film and a transparent quartz layer covering the surface of the reflective film. As one method of forming this heat shield plate, a pair of circular transparent quartz plates for forming a transparent quartz layer are used, a reflective film is provided on one side of one of the transparent quartz plates, and the reflective film is used. There is a method of sandwiching it between one transparent quartz plate and welding the peripheral portions of both transparent quartz plates to seal and integrate them.
特開2001‐102319号公報Japanese Unexamined Patent Publication No. 2001-102319 特開平9‐148315号公報Japanese Unexamined Patent Publication No. 9-148315 特開平11‐97360号公報Japanese Unexamined Patent Publication No. 11-97360 特開2019‐217530号公報JP-A-2019-217530 特許4172806号公報Japanese Patent No. 4172806 特許6032667号公報Japanese Patent No. 6032667
 特許文献1では反射膜として金薄膜が用いられているが、金の融点は1064℃であり、1500℃以上の熱処理時に、溶融したり、膜がめくれあがったり、縮小したりする問題があり、実用上耐熱性に問題があった。 In Patent Document 1, a gold thin film is used as a reflective film, but the melting point of gold is 1064 ° C., and there is a problem that it melts, the film is turned up or shrunk during heat treatment at 1500 ° C. or higher. There was a problem with heat resistance in practice.
 特許文献2では、反射板兼ヒーターとしての利用のため、中央に石英管でヒーター導通箇所を設けているが、当構造によって一部輻射熱を遮蔽しきれない箇所が発生する。より高い省エネルギー化のためには、反射面積率を多く取り、尚且つ反射板をより薄くし、熱容量を下げる必要がある。 In Patent Document 2, a heater conduction portion is provided in the center with a quartz tube for use as a reflector and a heater, but there are some locations where the radiant heat cannot be completely shielded due to this structure. In order to save more energy, it is necessary to take a large reflection area ratio, make the reflector thinner, and reduce the heat capacity.
 特許文献3では、石英板で挟み込み、溶接を行う手法がとられているが、熱の影響を受けるため、薄膜で実施する際には膜が剥がれてしまう問題が生じる。さらに内部を真空に保つことは難しく、高温使用時の内圧上昇によって薄膜が破損するリスクは避けられない。また透明石英を流し込み作製する手法においても、金属薄膜に実施する場合は熱的、物理的ダメージを避けることはできない。 In Patent Document 3, a method of sandwiching between quartz plates and welding is adopted, but since it is affected by heat, there is a problem that the film is peeled off when it is carried out with a thin film. Furthermore, it is difficult to keep the inside in a vacuum, and the risk of damaging the thin film due to an increase in internal pressure during high-temperature use is unavoidable. Further, even in the method of casting transparent quartz, thermal and physical damage cannot be avoided when it is applied to a metal thin film.
 本開示は、従来手法よりも反射面積率をより多く確保することができ、熱容量が小さく省エネルギー化が可能で、高反射率を有し、炉内の汚染が抑制され、長寿命のシリカ熱反射板を提供することを目的とする。 The present disclosure can secure a larger reflection area ratio than the conventional method, has a small heat capacity, can save energy, has a high reflectance, suppresses contamination in the furnace, and has a long life of silica heat reflection. The purpose is to provide a board.
 本発明者らは、鋭意検討した結果、Ir、Pt、Rh、Ru、Re、Hf又はMoを含む表面層を反射面とする反射体を、シリカ板の内部に配置することによって上記課題が解決されることを見出し、本発明を完成させた。すなわち、本発明に係るシリカ熱反射板は、シリカ板と、該シリカ板の内部に配置されて該シリカ板によって外周囲が完全に覆われてなり、かつ、該シリカ板の一方の表面に入射した赤外線を反射する反射体と、を有するシリカ熱反射板であって、前記反射体は、薄膜、板又は箔であり、前記反射体の少なくとも反射面を含む表面層は、Ir、Pt、Rh、Ru、Re、Hf又はMoからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf及びMoから選ばれる少なくともいずれか1種を含む合金からなることを特徴とする。 As a result of diligent studies, the present inventors have solved the above-mentioned problems by arranging a reflector having a surface layer containing Ir, Pt, Rh, Ru, Re, Hf or Mo as a reflecting surface inside the silica plate. It was found that the present invention was completed. That is, the silica heat-reflecting plate according to the present invention is arranged inside the silica plate and the outer periphery is completely covered by the silica plate, and is incident on one surface of the silica plate. A silica thermal reflector having a reflector that reflects the infrared rays, wherein the reflector is a thin film, a plate, or a foil, and the surface layer including at least the reflecting surface of the reflector is Ir, Pt, Rh. , Ru, Re, Hf or Mo, or an alloy comprising at least one selected from Ir, Pt, Rh, Ru, Re, Hf and Mo.
 本発明に係るシリカ熱反射板では、前記シリカ板は、第1シリカ板と第2シリカ板とが対向して配置されて周縁部同士が周縁に沿って環状に連続して接合された合わせ板の構造を有することが好ましい。シリカ板及び反射体を薄くできるので、熱容量を小さくすることができる。 In the silica heat reflecting plate according to the present invention, the silica plate is a laminated plate in which a first silica plate and a second silica plate are arranged facing each other and peripheral portions are continuously joined in an annular shape along the peripheral edge. It is preferable to have the structure of. Since the silica plate and the reflector can be made thin, the heat capacity can be reduced.
 本発明に係るシリカ熱反射板では、前記合わせ板の構造は、前記第1シリカ板及び前記第2シリカ板の対向し合う面の間に設けられ、かつ、前記第1シリカ板側及び前記第2シリカ板側の少なくとも一方に前記周縁部同士の接合部によって密閉されているキャビティを有し、該キャビティ内に前記反射体が配置されていることが好ましい。反射体が密閉空間であるキャビティ内にあるため、周縁部同士の接合部に、反射体に起因する剥がす方向の応力がかかりにくく、反射体の破損による炉内の汚染を抑制することができる。さらにシリカ板と反射体の熱膨張差による破損を回避できる。 In the silica heat reflecting plate according to the present invention, the structure of the laminated plate is provided between the facing surfaces of the first silica plate and the second silica plate, and is provided on the first silica plate side and the first silica plate. 2 It is preferable that at least one of the silica plates has a cavity sealed by a joint portion between the peripheral portions, and the reflector is arranged in the cavity. Since the reflector is in a cavity which is a closed space, stress in the peeling direction due to the reflector is less likely to be applied to the joint between the peripheral edges, and contamination in the furnace due to breakage of the reflector can be suppressed. Further, damage due to the difference in thermal expansion between the silica plate and the reflector can be avoided.
 本発明に係るシリカ熱反射板では、前記キャビティを少なくとも前記第1シリカ板側に有し、前記第1シリカ板の前記キャビティ内の表面上に前記反射体として形成した薄膜を有し、該薄膜は、前記第1シリカ板の前記キャビティ内の表面側から順に、下地膜と、前記反射面を含む表面層としての反射膜と、を有する積層膜であり、前記下地膜は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co又はNiからなるか、又は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiから選ばれる少なくともいずれか1種を含む合金からなり、前記反射膜は、Ir、Pt、Rh、Ru、Re、Hf又はMoからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf及びMoから選ばれる少なくともいずれか1種を含む合金からなり、前記下地膜と前記反射膜とが異なる組成を有していることが好ましい。第1シリカ板のキャビティ内の表面上に反射体を形成しているため、周縁部同士の接合部に、反射体に起因する剥がす方向の応力がかかりにくく、反射体の破損による炉内の汚染を抑制することができる。さらにシリカ板と反射体の熱膨張差による破損を回避できる。 The silica heat reflecting plate according to the present invention has the cavity at least on the first silica plate side, and has a thin film formed as the reflector on the surface of the first silica plate in the cavity, and the thin film. Is a laminated film having a base film and a reflective film as a surface layer including the reflective surface in this order from the surface side in the cavity of the first silica plate, and the base film is Ta, Mo, It consists of Ti, Zr, Nb, Cr, W, Co or Ni, or an alloy containing at least one selected from Ta, Mo, Ti, Zr, Nb, Cr, W, Co and Ni. The reflective film is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or an alloy containing at least one selected from Ir, Pt, Rh, Ru, Re, Hf and Mo. It is preferable that the base film and the reflective film have different compositions. Since the reflector is formed on the surface inside the cavity of the first silica plate, stress in the peeling direction due to the reflector is less likely to be applied to the joint between the peripheral edges, and the inside of the furnace is contaminated due to damage to the reflector. Can be suppressed. Further, damage due to the difference in thermal expansion between the silica plate and the reflector can be avoided.
 本発明に係るシリカ熱反射板では、前記第1シリカ板が平板であり、前記キャビティを前記第2シリカ板側に有し、前記第1シリカ板の表面上に前記反射体として形成した薄膜を有し、該薄膜は、前記第1シリカ板の表面側から順に、下地膜と、前記反射面を含む表面層としての反射膜と、を有する積層膜であり、前記下地膜は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co又はNiからなるか、又は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiから選ばれる少なくともいずれか1種を含む合金からなり、前記反射膜は、Ir、Pt、Rh、Ru、Re、Hf又はMoからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf及びMoから選ばれる少なくともいずれか1種を含む合金からなり、前記下地膜と前記反射膜とが異なる組成を有していることが好ましい。平板である第1シリカ板に反射体としての薄膜を形成するため、生産性に優れたシリカ熱反射板とすることができる。 In the silica heat reflecting plate according to the present invention, the first silica plate is a flat plate, the cavity is provided on the side of the second silica plate, and a thin film formed as the reflector on the surface of the first silica plate is formed. The thin film is a laminated film having a base film and a reflective film as a surface layer including the reflective surface in order from the surface side of the first silica plate, and the base film is Ta, Mo. , Ti, Zr, Nb, Cr, W, Co or Ni, or an alloy containing at least one selected from Ta, Mo, Ti, Zr, Nb, Cr, W, Co and Ni. The reflective film is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or an alloy containing at least one selected from Ir, Pt, Rh, Ru, Re, Hf and Mo. Therefore, it is preferable that the base film and the reflective film have different compositions. Since a thin film as a reflector is formed on the first silica plate which is a flat plate, a silica heat reflector having excellent productivity can be obtained.
 本発明に係るシリカ熱反射板では、前記反射体が、板又は箔であり、かつ、Ir、Pt、Rh、Ru、Re、Hf又はMoからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf及びMoから選ばれる少なくともいずれか1種を含む合金からなることが好ましい。キャビティ内に反射体としての板又は箔が収容された状態となっており、板又は箔の腐食が生じにくい。さらに、周縁部同士の接合部に、板又は箔に起因する剥がす方向の応力がかかりにくい。 In the silica thermal reflector according to the present invention, the reflector is a plate or foil and is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or Ir, Pt, Rh, Ru, It is preferably made of an alloy containing at least one selected from Re, Hf and Mo. A plate or foil as a reflector is housed in the cavity, and corrosion of the plate or foil is unlikely to occur. Further, it is difficult to apply stress in the peeling direction due to the plate or foil to the joints between the peripheral edges.
 本発明に係るシリカ熱反射板では、前記キャビティ内の圧力は、大気圧未満の減圧となっていることが好ましい。熱処理時にキャビティの内圧が高まることを抑制することができ、炉内の汚染をより抑制することができる。 In the silica heat reflector according to the present invention, the pressure in the cavity is preferably reduced to less than atmospheric pressure. It is possible to suppress the increase in the internal pressure of the cavity during the heat treatment, and it is possible to further suppress the contamination in the furnace.
 本発明に係るシリカ熱反射板では、(1)前記第1シリカ板は、前記周縁部に設けられた土手部と該土手部で取り囲まれて前記キャビティを構成する凹部とを有し、前記第2シリカ板は、平板状であるか、又は、(2)前記第1シリカ板は、平板状であり、前記第2シリカ板は、前記周縁部に設けられた土手部と該土手部で取り囲まれて前記キャビティを構成する凹部とを有することが好ましい。第1シリカ板に凹部を設けることで、シリカ板内にキャビティを簡易な構造で設けることができる。あるいは、第2シリカ板に凹部を設けることで、シリカ板内にキャビティを簡易な構造で設けることができる。 In the silica heat reflecting plate according to the present invention, (1) the first silica plate has a bank portion provided on the peripheral portion and a recess surrounded by the bank portion to form the cavity. 2 The silica plate has a flat plate shape, or (2) the first silica plate has a flat plate shape, and the second silica plate is surrounded by a bank portion provided on the peripheral portion and the bank portion. It is preferable to have a recess constituting the cavity. By providing the recess in the first silica plate, the cavity can be provided in the silica plate with a simple structure. Alternatively, by providing the recess in the second silica plate, the cavity can be provided in the silica plate with a simple structure.
 本発明に係るシリカ熱反射板では、前記シリカ熱反射板は、前記キャビティ内で前記合わせ板の構造の対向する面同士の間を立設する少なくとも1本の支柱部を有することが好ましい。支柱部によって合わせ板構造の接合強度を高めることができる。 In the silica heat reflector according to the present invention, it is preferable that the silica heat reflector has at least one support column portion that stands between the facing surfaces of the structure of the laminated plate in the cavity. The joint strength of the laminated plate structure can be increased by the support column portion.
 本発明に係るシリカ熱反射板では、前記支柱部が、柱状又は筒状である形態を含む。柱状又は筒状とすることで、接合強度を高めつつ、反射体の面積を広くとることが出来る。 The silica heat reflector according to the present invention includes a form in which the support column portion is columnar or tubular. By making it columnar or tubular, it is possible to increase the area of the reflector while increasing the bonding strength.
 本発明に係るシリカ熱反射板では、前記シリカ熱反射板は、前記支柱部を複数有し、該支柱部は筒状であり、かつ、各支柱部は互いに筒壁の一部を共有した3次元空間充填構造を有することが好ましい。3次元空間充填構造とすることで接合強度を高めつつ、反射体の面積を広くとることが出来、さらに反射板そのものの強度を高めることができる。 In the silica heat reflecting plate according to the present invention, the silica heat reflecting plate has a plurality of the strut portions, the strut portions are tubular, and each strut portion shares a part of the tubular wall with each other. It is preferable to have a dimensional space filling structure. By adopting a three-dimensional space filling structure, it is possible to increase the area of the reflector while increasing the joint strength, and further increase the strength of the reflector itself.
 本発明に係るシリカ熱反射板では、前記3次元空間充填構造は、ハニカム構造、矩形格子構造、方形格子構造又はひし形格子構造である形態を包含する。 In the silica heat reflecting plate according to the present invention, the three-dimensional space-filling structure includes a form of a honeycomb structure, a rectangular lattice structure, a square lattice structure, or a diamond lattice structure.
 本発明に係るシリカ熱反射板では、前記第1シリカ板及び前記第2シリカ板の対向し合う面は互いに平坦面であり、前記反射体は、前記第2シリカ板側の前記第1シリカ板の表面のうち前記周縁部同士の環状の接合部の内側の領域に形成された薄膜であり、該薄膜は、前記第1シリカ板の表面側から順に、下地膜と、前記反射面を含む表面層としての反射膜と、を有する積層膜であり、前記下地膜は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co又はNiからなるか、又は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiから選ばれる少なくともいずれか1種を含む合金からなり、前記反射膜は、Ir、Pt、Rh、Ru、Re、Hf又はMoからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf及びMoから選ばれる少なくともいずれか1種を含む合金からなり、前記下地膜と前記反射膜とが異なる組成を有していることが好ましい。反射体と第2シリカ板の部分接触により生じる干渉縞をより抑制することができる。 In the silica heat reflecting plate according to the present invention, the facing surfaces of the first silica plate and the second silica plate are flat surfaces, and the reflector is the first silica plate on the second silica plate side. It is a thin film formed in the inner region of the annular joint portion between the peripheral portions of the surface of the above, and the thin film is a surface including the base film and the reflective surface in order from the surface side of the first silica plate. It is a laminated film having a reflective film as a layer, and the underlying film is made of Ta, Mo, Ti, Zr, Nb, Cr, W, Co or Ni, or Ta, Mo, Ti, Zr, It is made of an alloy containing at least one selected from Nb, Cr, W, Co and Ni, and the reflective film is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or Ir, Pt. , Rh, Ru, Re, Hf and Mo, and preferably an alloy containing at least one of them, and the undercoat film and the reflective film have different compositions. Interference fringes caused by partial contact between the reflector and the second silica plate can be further suppressed.
 本発明に係るシリカ熱反射板では、前記キャビティを少なくとも前記第1シリカ板側に有し、前記第1シリカ板の前記キャビティ内の表面上に前記反射体として形成した薄膜を有し、該薄膜は、Mo膜又はMoを50質量%以上含む合金膜であることが好ましい。Mo膜又はMoを50質量%以上含む合金膜であるときは、反射体として形成した薄膜が単層膜であってもよい。 The silica heat reflecting plate according to the present invention has the cavity at least on the first silica plate side, and has a thin film formed as the reflector on the surface of the first silica plate in the cavity, and the thin film. Is preferably a Mo film or an alloy film containing 50% by mass or more of Mo. When the Mo film or the alloy film containing 50% by mass or more of Mo is used, the thin film formed as a reflector may be a single-layer film.
 本発明に係るシリカ熱反射板では、前記第1シリカ板が平板であり、前記キャビティを前記第2シリカ板側に有し、前記第1シリカ板の表面上に前記反射体として形成した薄膜を有し、該薄膜は、Mo膜又はMoを50質量%以上含む合金膜であることが好ましい。Mo膜又はMoを50質量%以上含む合金膜であるときは、反射体として形成した薄膜が単層膜であってもよい。 In the silica heat reflecting plate according to the present invention, the first silica plate is a flat plate, the cavity is provided on the side of the second silica plate, and a thin film formed as the reflector on the surface of the first silica plate is formed. The thin film preferably has a Mo film or an alloy film containing 50% by mass or more of Mo. When the Mo film or the alloy film containing 50% by mass or more of Mo is used, the thin film formed as a reflector may be a single-layer film.
 本発明に係るシリカ熱反射板では、前記第1シリカ板及び前記第2シリカ板の対向し合う面は互いに平坦面であり、前記反射体は、前記第2シリカ板側の前記第1シリカ板の表面のうち前記周縁部同士の環状の接合部の内側の領域に形成された薄膜であり、該薄膜は、Mo膜又はMoを50質量%以上含む合金膜であることが好ましい。Mo膜又はMoを50質量%以上含む合金膜であるときは、反射体として形成した薄膜が単層膜であってもよい。 In the silica heat reflecting plate according to the present invention, the facing surfaces of the first silica plate and the second silica plate are flat surfaces, and the reflector is the first silica plate on the second silica plate side. It is a thin film formed in the inner region of the annular joint portion between the peripheral portions of the surface thereof, and the thin film is preferably a Mo film or an alloy film containing 50% by mass or more of Mo. When the Mo film or the alloy film containing 50% by mass or more of Mo is used, the thin film formed as a reflector may be a single-layer film.
 本発明に係るシリカ熱反射板では、前記キャビティを前記第1シリカ板側及び前記第2シリカ板側に有し、前記第1シリカ板の前記キャビティ内の表面上に前記反射体として形成した薄膜を有し、該薄膜は、Mo膜又はMoを50質量%以上含む合金膜であることが好ましい。Mo膜又はMoを50質量%以上含む合金膜であるときは、反射体として形成した薄膜が単層膜であってもよい。 In the silica heat reflecting plate according to the present invention, the thin film having the cavity on the first silica plate side and the second silica plate side and formed as the reflector on the surface of the first silica plate in the cavity. The thin film is preferably a Mo film or an alloy film containing 50% by mass or more of Mo. When the Mo film or the alloy film containing 50% by mass or more of Mo is used, the thin film formed as a reflector may be a single-layer film.
 本発明に係るシリカ熱反射板では、前記反射体の厚さは、0.01μm以上5mm以下であることが好ましい。反射体による輻射熱の反射効率を保持しつつ、シリカ熱反射板の熱容量を小さくすることができる。 In the silica heat reflector according to the present invention, the thickness of the reflector is preferably 0.01 μm or more and 5 mm or less. The heat capacity of the silica heat reflector can be reduced while maintaining the reflection efficiency of radiant heat by the reflector.
 本発明に係るシリカ熱反射板では、前記周縁部同士の接合部は、表面活性化接合部であることが好ましい。一般的な溶接手法よりも接合幅を短くすることで、より輻射熱を炉内へ反射させることができる。また、反射体である薄膜が接合プロセスによる熱的、物理的ダメージを受けにくい。また、接合部における接合強度が高められており、シリカ熱反射板はより長寿命となり、また耐食性が高まり、炉内の汚染が抑制される。 In the silica heat reflector according to the present invention, it is preferable that the joint portion between the peripheral portions is a surface activated joint portion. By shortening the joint width as compared with the general welding method, radiant heat can be reflected more into the furnace. In addition, the thin film, which is a reflector, is less susceptible to thermal and physical damage due to the bonding process. In addition, the joint strength at the joint is increased, the silica heat reflector has a longer life, corrosion resistance is increased, and contamination in the furnace is suppressed.
 本開示によれば、従来手法よりも反射面積率をより多く確保することで高反射率を有し、熱容量が小さく省エネルギー化が可能で、炉内への汚染が抑制されており、長寿命のシリカ熱反射板を提供することができる。 According to the present disclosure, it has a high reflectance by securing a larger reflecting area ratio than the conventional method, has a small heat capacity, can save energy, suppresses contamination in the furnace, and has a long life. A silica heat reflector can be provided.
本実施形態に係るシリカ熱反射板の一例を示す平面概略図である。It is a plane schematic diagram which shows an example of the silica heat reflector which concerns on this embodiment. A-A断面の第1例を示す概略図である。It is a schematic diagram which shows the 1st example of the AA cross section. A-A断面の第2例を示す概略図である。It is a schematic diagram which shows the 2nd example of the AA cross section. A-A断面の第3例を示す概略図である。It is a schematic diagram which shows the 3rd example of the AA cross section. A-A断面の第4例を示す概略図である。It is a schematic diagram which shows the 4th example of the AA cross section. A-A断面の第5例を示す概略図である。It is a schematic diagram which shows the 5th example of the AA cross section. A-A断面の第6例を示す概略図である。It is a schematic diagram which shows the 6th example of the AA cross section. A-A断面の第7例を示す概略図である。It is a schematic diagram which shows the 7th example of the AA cross section. 支柱部がハニカム構造を有する形態の例を示す図である。It is a figure which shows the example of the form which a support | support part has a honeycomb structure. A-A断面の第8例を示す概略図である。It is a schematic diagram which shows the 8th example of the AA cross section. A-A断面の第9例を示す概略図である。It is a schematic diagram which shows the 9th example of the AA cross section. A-A断面の第10例を示す概略図である。It is a schematic diagram which shows the tenth example of the AA cross section. A-A断面の第11例を示す概略図である。It is a schematic diagram which shows the eleventh example of the AA cross section. A-A断面の第12例を示す概略図である。It is a schematic diagram which shows the twelfth example of the AA cross section. A-A断面の第13例を示す概略図である。It is a schematic diagram which shows the thirteenth example of the AA cross section. 実施例1の反射体の反射率を示すグラフである。It is a graph which shows the reflectance of the reflector of Example 1. FIG. 1000℃における物質が放射する黒体放射の波長と放射量との関係を示すグラフである。It is a graph which shows the relationship between the wavelength of blackbody radiation emitted by a substance at 1000 degreeC, and the amount of radiation. 実施例5の反射体の反射率を示すグラフである。It is a graph which shows the reflectance of the reflector of Example 5. 実施例6の反射体の反射率を示すグラフである。It is a graph which shows the reflectance of the reflector of Example 6. A-A断面の第14例を示す概略図である。It is a schematic diagram which shows the 14th example of the AA cross section.
 以降、本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。 Hereinafter, the present invention will be described in detail by showing embodiments, but the present invention is not construed as being limited to these descriptions. The embodiments may be modified in various ways as long as the effects of the present invention are exhibited.
(反射体が薄膜である形態)
 図1及び図2を参照して、本実施形態に係るシリカ熱反射板について説明する。本実施形態に係るシリカ熱反射板100は、シリカ板1と、シリカ板1の内部に配置されてシリカ板1によって外周囲が完全に覆われてなり、かつ、シリカ板1の一方の表面に入射した赤外線を反射する反射体5と、を有する。図1においては、紙面に向かう方向が赤外線の入射方向である。図2においては、上から下に向かう方向が赤外線の入射方向である。反射体5は薄膜であり、反射体5の少なくとも反射面を含む表面層は、Ir、Pt、Rh、Ru、Re、Hf又はMoからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf及びMoから選ばれる少なくともいずれか1種を含む合金からなる。図2では、反射体5が積層膜である形態が示されており、下地膜3の上に反射面を含む表面層としての反射膜4が形成されている。このとき、反射体5は貫通孔や凹凸などを設けずに該反射体の周縁に囲まれる全面が反射面であることが好ましい。
(The form in which the reflector is a thin film)
The silica heat reflector according to the present embodiment will be described with reference to FIGS. 1 and 2. The silica heat reflecting plate 100 according to the present embodiment is arranged inside the silica plate 1 and the silica plate 1 so that the outer periphery is completely covered by the silica plate 1 and is on one surface of the silica plate 1. It has a reflector 5 that reflects incident infrared rays. In FIG. 1, the direction toward the paper surface is the incident direction of infrared rays. In FIG. 2, the direction from top to bottom is the incident direction of infrared rays. The reflector 5 is a thin film, and the surface layer including at least the reflective surface of the reflector 5 is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or Ir, Pt, Rh, Ru, Re, It consists of an alloy containing at least one selected from Hf and Mo. FIG. 2 shows a form in which the reflector 5 is a laminated film, and a reflective film 4 as a surface layer including a reflective surface is formed on the base film 3. At this time, it is preferable that the entire surface of the reflector 5 surrounded by the peripheral edge of the reflector is a reflecting surface without providing through holes or irregularities.
 シリカ熱反射板100では、シリカ板1は、第1シリカ板1aと第2シリカ板1bとが対向して配置されて周縁部同士が周縁に沿って環状に連続して接合された合わせ板の構造を有することが好ましい。図2において、第1シリカ板1aと第2シリカ板1bとは、周縁部同士の接合部2によって、合わせ板の構造を形成している。周縁部同士の接合部2は、図1に示すように、シリカ板1の周縁に沿って環状に連続している。図1では、周縁部同士の接合部2は、第2シリカ板1bを透視して第1シリカ板1aと第2シリカ板1bとの境界部としてみることができ、グレーの領域として図示した。合わせ板の構造とすることで、シリカ板を薄くできるので、熱容量を小さくすることができる。 In the silica heat reflector 100, the silica plate 1 is a laminated plate in which the first silica plate 1a and the second silica plate 1b are arranged facing each other and the peripheral edges are continuously joined in an annular shape along the peripheral edge. It is preferable to have a structure. In FIG. 2, the first silica plate 1a and the second silica plate 1b form a laminated plate structure by a joint portion 2 between peripheral portions. As shown in FIG. 1, the joint portion 2 between the peripheral portions is continuous in an annular shape along the peripheral edge of the silica plate 1. In FIG. 1, the joint portion 2 between the peripheral portions can be seen as a boundary portion between the first silica plate 1a and the second silica plate 1b by seeing through the second silica plate 1b, and is shown as a gray area. By adopting the structure of the laminated plate, the silica plate can be made thin, so that the heat capacity can be reduced.
 反射体5を正面に見たシリカ板1の形状は、例えば、円形、楕円形、長方形又は正方形であり、円形が好ましい。また、反射体5を正面に見たシリカ板1の外側板面は、貫通孔や凹凸などを設けずに平坦面であることが好ましい。円形の直径は、例えば、5~50cmである。周縁部同士の接合部2の環状形状の幅は、例えば0.5~20mmである。シリカ板1の肉厚は0.1~20mmであることが好ましく、0.2~10mmであることがより好ましい。第1シリカ板1aの肉厚は0.05~10mmであることが好ましく、0.5~1.5mmであることがより好ましい。第2シリカ板1bの肉厚は0.05~10mmであることが好ましく、0.5~1.5mmであることがより好ましい。 The shape of the silica plate 1 with the reflector 5 viewed from the front is, for example, a circle, an ellipse, a rectangle, or a square, and a circle is preferable. Further, it is preferable that the outer plate surface of the silica plate 1 with the reflector 5 viewed from the front is a flat surface without providing through holes or irregularities. The circular diameter is, for example, 5 to 50 cm. The width of the annular shape of the joint portion 2 between the peripheral portions is, for example, 0.5 to 20 mm. The wall thickness of the silica plate 1 is preferably 0.1 to 20 mm, more preferably 0.2 to 10 mm. The wall thickness of the first silica plate 1a is preferably 0.05 to 10 mm, more preferably 0.5 to 1.5 mm. The wall thickness of the second silica plate 1b is preferably 0.05 to 10 mm, more preferably 0.5 to 1.5 mm.
 シリカ板1は、結晶性シリカ板又は非晶質シリカ板である形態を包含する。シリカ板1の不純物濃度は、100ppm以下、好ましくは90ppm以下である。 The silica plate 1 includes a form of a crystalline silica plate or an amorphous silica plate. The impurity concentration of the silica plate 1 is 100 ppm or less, preferably 90 ppm or less.
 シリカ熱反射板100では、合わせ板の構造は、第1シリカ板1a及び第2シリカ板1bの対向し合う面の間に設けられ、かつ、第1シリカ板1a側及び第2シリカ板1b側の少なくとも一方に周縁部同士の接合部2によって密閉されているキャビティ12を有し、キャビティ12内に反射体5が配置されていることが好ましい。キャビティ12は、第1シリカ板1a側に設けられた形態、第1シリカ板1a側及び第2シリカ板1b側の両側に設けられた形態及び第2シリカ板1b側に設けられた形態がある。図2ではキャビティ12が、第1シリカ板1a側に設けられた形態を示している。この形態では、第1シリカ板1aの一方の表面に凹部が設けられており、第2シリカ板1bは凹部がない平板であり、第1シリカ板1a及び第2シリカ板1bの合わせ板の構造とすることで、キャビティ12は、第1シリカ板1a側に設けられる。その結果、キャビティ12は、第1シリカ板1a及び第2シリカ板1bの対向し合う面の第1シリカ板1a側のみに設けられ、かつ、周縁部同士の接合部2によって密閉されている。反射体5が密閉空間であるキャビティ12内にあるため、周縁部同士の接合部に、反射体に起因する剥がす方向の応力がかかりにくく、反射体の破損による炉内の汚染を抑制することができる。さらにシリカ板と反射体の熱膨張差による破損を回避できる。 In the silica heat reflecting plate 100, the structure of the laminated plate is provided between the facing surfaces of the first silica plate 1a and the second silica plate 1b, and the first silica plate 1a side and the second silica plate 1b side. It is preferable that at least one of the cavities 12 is sealed by a joint portion 2 between peripheral portions, and the reflector 5 is arranged in the cavity 12. The cavity 12 has a form provided on the first silica plate 1a side, a form provided on both sides of the first silica plate 1a side and the second silica plate 1b side, and a form provided on the second silica plate 1b side. .. FIG. 2 shows a form in which the cavity 12 is provided on the side of the first silica plate 1a. In this embodiment, a recess is provided on one surface of the first silica plate 1a, the second silica plate 1b is a flat plate having no recess, and the structure of the laminated plate of the first silica plate 1a and the second silica plate 1b. Therefore, the cavity 12 is provided on the side of the first silica plate 1a. As a result, the cavity 12 is provided only on the first silica plate 1a side of the facing surfaces of the first silica plate 1a and the second silica plate 1b, and is sealed by the joint portion 2 between the peripheral portions. Since the reflector 5 is located in the cavity 12 which is a closed space, it is difficult to apply stress in the peeling direction due to the reflector to the joint between the peripheral edges, and it is possible to suppress contamination in the furnace due to damage to the reflector. can. Further, damage due to the difference in thermal expansion between the silica plate and the reflector can be avoided.
 図3では、キャビティ12が、第1シリカ板1a側及び第2シリカ板1b側の両側にわたって設けられた形態を示している。この形態では、第1シリカ板1aの一方の表面に凹部が設けられており、第2シリカ板1bの一方の表面に凹部が設けられており、凹部同士が合わさるように、第1シリカ板1a及び第2シリカ板1bの合わせ板の構造とする。その結果、キャビティ12は、第1シリカ板1a及び第2シリカ板1bの対向し合う面の第1シリカ板1a側及び第2シリカ板1b側の両方に設けられる。 FIG. 3 shows a form in which the cavity 12 is provided on both sides of the first silica plate 1a side and the second silica plate 1b side. In this embodiment, a recess is provided on one surface of the first silica plate 1a, and a recess is provided on one surface of the second silica plate 1b so that the recesses fit together. And the structure of the laminated plate of the second silica plate 1b. As a result, the cavities 12 are provided on both the first silica plate 1a side and the second silica plate 1b side of the facing surfaces of the first silica plate 1a and the second silica plate 1b.
 図4では、キャビティ12が、第2シリカ板1b側に設けられた形態を示している。この形態では、第1シリカ板1aは凹部がない平板であり、第2シリカ板1bの一方の表面に凹部が設けられており、第1シリカ板1a及び第2シリカ板1bの合わせ板の構造とすることで、キャビティ12は、第2シリカ板1b側に設けられる。その結果、キャビティ12は、第1シリカ板1a及び第2シリカ板1bの対向し合う面の第2シリカ板1b側のみに設けられる。 FIG. 4 shows a form in which the cavity 12 is provided on the second silica plate 1b side. In this embodiment, the first silica plate 1a is a flat plate having no recess, and the recess is provided on one surface of the second silica plate 1b, and the structure of the laminated plate of the first silica plate 1a and the second silica plate 1b is provided. Therefore, the cavity 12 is provided on the second silica plate 1b side. As a result, the cavity 12 is provided only on the second silica plate 1b side of the facing surfaces of the first silica plate 1a and the second silica plate 1b.
 キャビティ12の高さ(図2では、上下方向の長さ)は、0.1μm~5mmであることが好ましく、0.1μm~1mmであることがより好ましい。キャビティ12は、第1シリカ板1a側にのみ凹部を設ける形態、第1シリカ板1a側及び第2シリカ板1b側の両方に凹部を設ける形態及び第2シリカ板1b側にのみ凹部を設ける形態の3態様があるが、いずれの形態でも、凹部によって、第1シリカ板1aの周縁部及び/又は第2シリカ板1bの周縁部に土手部11が形成される。図2の形態では、第1シリカ板1aに形成された土手部11の天面は、向い合せに配置される第2シリカ板1bの平板部分と接合され、周縁部同士の接合部2が形成される。図3の形態では、第1シリカ板1aと第2シリカ板1bの土手部11の天面同士が接合され、周縁部同士の接合部2が形成される。また、図4の形態では、第2シリカ板1bに形成された土手部11の天面は、向い合せに配置される第1シリカ板1aの平板部分と接合され、周縁部同士の接合部2が形成される。凹部は、例えばエッチング法などによって形成することができる。 The height of the cavity 12 (length in the vertical direction in FIG. 2) is preferably 0.1 μm to 5 mm, more preferably 0.1 μm to 1 mm. The cavity 12 has a recess provided only on the first silica plate 1a side, a recess provided on both the first silica plate 1a side and the second silica plate 1b side, and a recess provided only on the second silica plate 1b side. In any of the three embodiments, the recesses form a bank portion 11 on the peripheral edge of the first silica plate 1a and / or on the peripheral edge of the second silica plate 1b. In the form of FIG. 2, the top surface of the bank portion 11 formed on the first silica plate 1a is joined to the flat plate portion of the second silica plate 1b arranged to face each other, and the joint portion 2 between the peripheral portions is formed. Will be done. In the form of FIG. 3, the top surfaces of the bank portions 11 of the first silica plate 1a and the second silica plate 1b are joined to each other, and the joining portion 2 between the peripheral portions is formed. Further, in the form of FIG. 4, the top surface of the bank portion 11 formed on the second silica plate 1b is joined to the flat plate portion of the first silica plate 1a arranged to face each other, and the joint portion 2 between the peripheral portions is joined. Is formed. The recess can be formed by, for example, an etching method.
 本実施形態に係るシリカ熱反射板100では、図2に示すように、第1シリカ板1aは、周縁部に設けられた土手部11と土手部11で取り囲まれてキャビティ12を構成する凹部とを有し、第2シリカ板1bは、平板状であることが好ましい。第1シリカ板1aのみに凹部を設けることで、シリカ板内にキャビティ12を簡易な構造で設けることができる。このような形態を有するシリカ熱反射板は、図2の他、図5、図8、図12又は図15に例示されたシリカ熱反射板103,106,109,112がある。 In the silica heat reflecting plate 100 according to the present embodiment, as shown in FIG. 2, the first silica plate 1a has a bank portion 11 provided on the peripheral portion and a recess surrounded by the bank portion 11 to form a cavity 12. The second silica plate 1b preferably has a flat plate shape. By providing the recess only in the first silica plate 1a, the cavity 12 can be provided in the silica plate with a simple structure. In addition to FIG. 2, silica heat reflectors having such a form include silica heat reflectors 103, 106, 109, 112 exemplified in FIGS. 5, 8, 12, or 15.
 本実施形態に係るシリカ熱反射板102では、図4に示すように、第1シリカ板1aは、平板状であり、第2シリカ板1bは、周縁部に設けられた土手部11と土手部11で取り囲まれてキャビティ12を構成する凹部とを有することが好ましい。第2シリカ板1bのみに凹部を設けることで、シリカ板内にキャビティ12を簡易な構造で設けることができる。このような形態を有するシリカ熱反射板は、図4の他、図7、図11又は図14に例示されたシリカ熱反射板105,108,111がある。 In the silica heat reflecting plate 102 according to the present embodiment, as shown in FIG. 4, the first silica plate 1a has a flat plate shape, and the second silica plate 1b has a bank portion 11 and a bank portion provided on the peripheral portion. It is preferable to have a recess surrounded by 11 and constituting the cavity 12. By providing the recess only in the second silica plate 1b, the cavity 12 can be provided in the silica plate with a simple structure. As the silica heat reflector having such a form, in addition to FIG. 4, there are silica heat reflectors 105, 108, 111 exemplified in FIG. 7, FIG. 11 or FIG.
 図2又は図3に示すように、本実施形態に係るシリカ熱反射板100,101では、キャビティ12を少なくとも第1シリカ板1a側に有し、第1シリカ板1aのキャビティ12内の表面上に反射体5として形成した薄膜を有し、薄膜は、第1シリカ板1aのキャビティ12内の表面側から順に、下地膜3と、反射面を含む表面層としての反射膜4と、を有する積層膜であり、下地膜3は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co又はNiからなるか、又は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiから選ばれる少なくともいずれか1種を含む合金からなり、反射膜4は、Ir、Pt、Rh、Ru、Re、Hf又はMoからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf及びMoから選ばれる少なくともいずれか1種を含む合金からなり、下地膜3と反射膜4とが異なる組成を有していることが好ましい。第1シリカ板のキャビティ内の表面上に反射体を形成しているため、周縁部同士の接合部に、反射体に起因する剥がす方向の応力がかかりにくく、反射体の破損による炉内の汚染を抑制することができる。さらにシリカ板と反射体の熱膨張差による破損を回避できる。反射体5が薄膜であり、薄膜が積層膜である場合は、反射体5の少なくとも反射面を含む表面層は、反射膜4に対応する。積層膜である反射体5は、第1シリカ板1aのキャビティ12内の表面、すなわち、凹部の底面に形成されている。積層膜である反射体5は、凹部の底面の全面積に対して50~100%の面積で形成されていることが好ましく、80~100%の面積で形成されていることがより好ましい。反射体5の膜厚は、10~1500nmであることが好ましく、20~400nmであることがより好ましい。 As shown in FIGS. 2 or 3, in the silica heat reflecting plates 100 and 101 according to the present embodiment, the cavity 12 is provided at least on the first silica plate 1a side, and is on the surface of the first silica plate 1a in the cavity 12. The thin film has a thin film formed as a reflector 5, and the thin film has a base film 3 and a reflective film 4 as a surface layer including a reflective surface in this order from the surface side in the cavity 12 of the first silica plate 1a. It is a laminated film, and the base film 3 is made of Ta, Mo, Ti, Zr, Nb, Cr, W, Co or Ni, or Ta, Mo, Ti, Zr, Nb, Cr, W, Co and Ni. The reflective film 4 is made of an alloy containing at least one selected from Ir, Pt, Rh, Ru, Re, Hf or Mo, or Ir, Pt, Rh, Ru, Re, Hf and It is preferably made of an alloy containing at least one selected from Mo, and the base film 3 and the reflective film 4 have different compositions. Since the reflector is formed on the surface inside the cavity of the first silica plate, stress in the peeling direction due to the reflector is less likely to be applied to the joint between the peripheral edges, and the inside of the furnace is contaminated due to damage to the reflector. Can be suppressed. Further, damage due to the difference in thermal expansion between the silica plate and the reflector can be avoided. When the reflector 5 is a thin film and the thin film is a laminated film, the surface layer including at least the reflective surface of the reflector 5 corresponds to the reflective film 4. The reflector 5, which is a laminated film, is formed on the surface of the first silica plate 1a in the cavity 12, that is, on the bottom surface of the recess. The reflector 5 which is a laminated film is preferably formed in an area of 50 to 100% with respect to the total area of the bottom surface of the recess, and more preferably formed in an area of 80 to 100%. The film thickness of the reflector 5 is preferably 10 to 1500 nm, more preferably 20 to 400 nm.
 下地膜3は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co又はNiからなるか、又は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiから選ばれる少なくともいずれか1種を含む合金からなることが好ましい。このような金属又は合金は、融点が高く、かつ、シリカ板との密着性に優れている。下地膜3は、例えば、スパッタ膜、塗布膜、CVD、蒸着等で得られる薄膜であることが好ましい。Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiから選ばれる少なくともいずれか1種を含む合金としては、これらの元素のいずれか一種を最多質量にて含む合金であることが好ましく、より好ましくはTa、Mo、Ti、Zr、Nb、Cr、W、Co又はNiを50質量%以上含有する合金、さらに好ましくは60質量%以上含有する合金、最も好ましくは70質量%以上含有する合金であり、例えば、Ta‐Mo系合金、Ta‐Cr系合金又はCr‐Co系合金である。下地膜3の膜厚は、5~500nmであることが好ましく、10~100nmであることがより好ましい。下地膜3は反射膜4の密着性を向上させる。 The undercoat 3 is made of Ta, Mo, Ti, Zr, Nb, Cr, W, Co or Ni, or at least one selected from Ta, Mo, Ti, Zr, Nb, Cr, W, Co and Ni. It is preferably made of an alloy containing one or more. Such a metal or alloy has a high melting point and is excellent in adhesion to a silica plate. The undercoat film 3 is preferably a thin film obtained by, for example, a sputtering film, a coating film, CVD, vapor deposition, or the like. As the alloy containing at least one selected from Ta, Mo, Ti, Zr, Nb, Cr, W, Co and Ni, it is preferable that the alloy contains any one of these elements in the largest mass. , More preferably an alloy containing 50% by mass or more of Ta, Mo, Ti, Zr, Nb, Cr, W, Co or Ni, still more preferably an alloy containing 60% by mass or more, and most preferably 70% by mass or more. It is an alloy, for example, a Ta-Mo-based alloy, a Ta-Cr-based alloy, or a Cr-Co-based alloy. The film thickness of the base film 3 is preferably 5 to 500 nm, more preferably 10 to 100 nm. The base film 3 improves the adhesion of the reflective film 4.
 反射膜4は下地膜3の表面に堆積していることが好ましい。反射膜4は、Ir、Pt、Rh、Ru、Re、Hf又はMoからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf及びMoから選ばれる少なくともいずれか1種を含む合金からなることが好ましい。このような金属又は合金は、融点が高く、かつ、赤外線の反射率が高い。また下地膜との反応性が少ない。反射膜4は、例えば、スパッタ膜、塗布膜、CVD、蒸着等で得られる薄膜であることが好ましい。Ir、Pt、Rh、Ru、Re、Hf及びMoから選ばれる少なくともいずれか1種を含む合金としては、これらの元素のいずれか一種を最多質量にて含む合金であることが好ましく、より好ましくはIr、Pt、Rh、Ru、Re、Hf又はMoを50質量%以上含有する合金、さらに好ましくは60質量%以上含有する合金、最も好ましくは70質量%以上含有する合金であり、例えば、Ir‐Pt系合金、Ir‐Rh系合金又はPt‐Ru系合金である。反射膜4の膜厚は、5~1000nmであることが好ましく、10~300nmであることがより好ましい。 It is preferable that the reflective film 4 is deposited on the surface of the base film 3. The reflective film 4 is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or an alloy containing at least one selected from Ir, Pt, Rh, Ru, Re, Hf and Mo. Is preferable. Such metals or alloys have a high melting point and high infrared reflectance. In addition, the reactivity with the base film is low. The reflective film 4 is preferably a thin film obtained by, for example, a sputtering film, a coating film, CVD, vapor deposition, or the like. As the alloy containing at least one selected from Ir, Pt, Rh, Ru, Re, Hf and Mo, it is preferable that the alloy contains any one of these elements in the largest mass, and more preferably. An alloy containing 50% by mass or more of Ir, Pt, Rh, Ru, Re, Hf or Mo, more preferably an alloy containing 60% by mass or more, and most preferably an alloy containing 70% by mass or more, for example, Ir-. It is a Pt-based alloy, an Ir-Rh-based alloy, or a Pt-Ru-based alloy. The film thickness of the reflective film 4 is preferably 5 to 1000 nm, more preferably 10 to 300 nm.
 積層膜としたときの下地膜3と反射膜4の好適な組み合わせとしては、下地膜3/反射膜4は、Ta膜/Ir膜、Mo膜/Ir膜などである。積層膜の膜厚は、10~1500nmであることが好ましく、20~400nmであることがより好ましい。 As a suitable combination of the base film 3 and the reflective film 4 when formed as a laminated film, the base film 3 / reflective film 4 is a Ta film / Ir film, a Mo film / Ir film, or the like. The film thickness of the laminated film is preferably 10 to 1500 nm, more preferably 20 to 400 nm.
 図5又は図6に示すように、反射体5の厚さがキャビティ12の高さと等しい、すなわち、反射膜4が第2シリカ板1bの表面に接触している形態であってもよい。反射膜4と第2シリカ板が部分的に接触することで発生する干渉縞が低減される。下地膜3は、第1シリカ板1aのキャビティ12内の表面(凹部の底面)に堆積していることが好ましく、反射膜4は下地膜3の表面に堆積していることが好ましい。反射膜4は第2シリカ板1bの表面に接触しているが、第2シリカ板1bの表面に形成されていない、すなわち堆積したものではないことが好ましい。 As shown in FIG. 5 or 6, the thickness of the reflector 5 may be equal to the height of the cavity 12, that is, the reflective film 4 may be in contact with the surface of the second silica plate 1b. The interference fringes generated by the partial contact between the reflective film 4 and the second silica plate are reduced. The base film 3 is preferably deposited on the surface (bottom surface of the recess) in the cavity 12 of the first silica plate 1a, and the reflective film 4 is preferably deposited on the surface of the base film 3. It is preferable that the reflective film 4 is in contact with the surface of the second silica plate 1b, but is not formed on the surface of the second silica plate 1b, that is, it is not deposited.
 図4に示すように、本実施形態に係るシリカ熱反射板102では、第1シリカ板1aが平板であり、キャビティ12を第2シリカ板1b側に有し、第1シリカ板1aの表面上に反射体5として形成した薄膜を有し、薄膜は、第1シリカ板1aの表面側から順に、下地膜3と、反射面を含む表面層としての反射膜4と、を有する積層膜であり、下地膜3は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co又はNiからなるか、又は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiから選ばれる少なくともいずれか1種を含む合金からなり、反射膜4は、Ir、Pt、Rh、Ru、Re、Hf又はMoからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf及びMoから選ばれる少なくともいずれか1種を含む合金からなることが好ましい。図4に示した形態は、第1シリカ板1aが平板であり、キャビティ12を第2シリカ板1b側に有する点が、図2又は図3に示した形態と異なるが、他は同様である。平板である第1シリカ板1aに反射体としての薄膜を形成するため、生産性に優れたシリカ熱反射板とすることができる。 As shown in FIG. 4, in the silica heat reflecting plate 102 according to the present embodiment, the first silica plate 1a is a flat plate, the cavity 12 is provided on the second silica plate 1b side, and the cavity 12 is on the surface of the first silica plate 1a. The thin film has a thin film formed as a reflector 5, and the thin film is a laminated film having a base film 3 and a reflective film 4 as a surface layer including a reflective surface in this order from the surface side of the first silica plate 1a. , The undercoat 3 is made of Ta, Mo, Ti, Zr, Nb, Cr, W, Co or Ni, or at least selected from Ta, Mo, Ti, Zr, Nb, Cr, W, Co and Ni. The reflective film 4 is made of an alloy containing any one of them, and the reflective film 4 is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or is selected from Ir, Pt, Rh, Ru, Re, Hf and Mo. It is preferably made of an alloy containing at least one of them. The form shown in FIG. 4 is different from the form shown in FIG. 2 or 3 in that the first silica plate 1a is a flat plate and the cavity 12 is on the second silica plate 1b side, but the other aspects are the same. .. Since a thin film as a reflector is formed on the first silica plate 1a which is a flat plate, a silica heat reflector having excellent productivity can be obtained.
 図7に示すように、反射体5の厚さがキャビティ12の高さと等しい、すなわち、反射膜4が第2シリカ板1bの表面(凹部の底面)に接触している形態であってもよい。反射膜4と第2シリカ板が部分的に接触することで発生する干渉縞が低減される。下地膜3は、第1シリカ板1aの表面に堆積していることが好ましく、反射膜4は下地膜3の表面に堆積していることが好ましい。図7に示した形態は、第1シリカ板1aが平板であり、キャビティ12を第2シリカ板1b側に有する点が、図5又は図6に示した形態と異なるが、他は同様である。平板である第1シリカ板1aに反射体としての薄膜を形成するため、生産性に優れたシリカ熱反射板とすることができる。 As shown in FIG. 7, the thickness of the reflector 5 may be equal to the height of the cavity 12, that is, the reflective film 4 may be in contact with the surface of the second silica plate 1b (bottom surface of the recess). .. The interference fringes generated by the partial contact between the reflective film 4 and the second silica plate are reduced. The base film 3 is preferably deposited on the surface of the first silica plate 1a, and the reflective film 4 is preferably deposited on the surface of the base film 3. The form shown in FIG. 7 is different from the form shown in FIG. 5 or 6 in that the first silica plate 1a is a flat plate and the cavity 12 is on the second silica plate 1b side, but the other aspects are the same. .. Since a thin film as a reflector is formed on the first silica plate 1a which is a flat plate, a silica heat reflector having excellent productivity can be obtained.
 図8、図10~図14に示すように、本実施形態に係るシリカ熱反射板106~111は、キャビティ12内で合わせ板の構造の対向する面同士の間を立設する少なくとも1本の支柱部6を有することが好ましい。支柱部6によって合わせ板の構造の接合強度を高めることができる。支柱部6としては、例えば、図8又は図12に示すように、第1シリカ板1aの凹部の底面から延び、支柱部6の天面が平板状の第2シリカ板1bの表面と接合された形態がある。支柱部6が第1シリカ板1aの凹部の底面のみから延びる形態とするためには、例えば、第1シリカ板1aのみについてエッチングによって凹部を形成することで土手部11を形成するが、このとき、土手部11を非エッチング箇所とするのと同様に支柱部6を非エッチング箇所とすることによって形成することができる。また支柱部6としては、例えば、図10又は図13に示すように、第1シリカ板1aの凹部の底面から延び、かつ、第2シリカ板1bの凹部の底面から延び、支柱部6の天面同士が接合された形態がある。支柱部6が第1シリカ板1aの凹部の底面及び第2シリカ板1bの凹部の底面の両方から延びる形態とするためには、例えば、第1シリカ板1a及び第2シリカ板1bについてエッチングによって凹部を形成することで土手部11を形成するが、このとき、土手部11を非エッチング箇所とするのと同様に支柱部6を非エッチング箇所とすることによって形成することができる。さらに支柱部6としては、例えば、図11又は図14に示すように、第2シリカ板1bの凹部の底面から延び、支柱部6の天面が平板状の第1シリカ板1aの表面と接合された形態がある。支柱部6が第2シリカ板1bの凹部の底面のみから延びる形態とするためには、例えば、第2シリカ板1bのみについてエッチングによって凹部を形成することで土手部11を形成し、このとき支柱部6を非エッチング箇所とすることによって形成することができる。図中、支柱部6と第1シリカ板1a若しくは第2シリカ板1bとの接合部、又は支柱部6同士の接合部を接合部7で示した。 As shown in FIGS. 8 and 10 to 14, the silica heat reflectors 106 to 111 according to the present embodiment have at least one silica heat reflector plate 106 to 111 standing between facing surfaces of the laminated plate structure in the cavity 12. It is preferable to have the support column 6. The strut portion 6 can increase the joint strength of the structure of the laminated plate. As shown in FIG. 8 or 12, for example, the support column 6 extends from the bottom surface of the recess of the first silica plate 1a, and the top surface of the support column 6 is joined to the surface of the flat plate-shaped second silica plate 1b. There are various forms. In order for the support column 6 to extend only from the bottom surface of the recess of the first silica plate 1a, for example, the bank portion 11 is formed by forming the recess by etching only the first silica plate 1a. , It can be formed by making the support column 6 a non-etched part in the same way as making the bank part 11 a non-etched part. Further, the support column 6 extends from the bottom surface of the recess of the first silica plate 1a and extends from the bottom surface of the recess of the second silica plate 1b, as shown in FIG. 10 or 13, for example, and extends from the bottom surface of the recess of the second silica plate 1b. There is a form in which the faces are joined together. In order for the support column 6 to extend from both the bottom surface of the recess of the first silica plate 1a and the bottom surface of the recess of the second silica plate 1b, for example, the first silica plate 1a and the second silica plate 1b are etched. The bank portion 11 is formed by forming the concave portion, and at this time, it can be formed by making the strut portion 6 a non-etched portion in the same manner as the bank portion 11 being a non-etched portion. Further, as the support column 6, for example, as shown in FIG. 11 or FIG. 14, the support column 6 extends from the bottom surface of the recess of the second silica plate 1b, and the top surface of the support column 6 is joined to the surface of the flat plate-shaped first silica plate 1a. There is a form that has been made. In order for the support column 6 to extend only from the bottom surface of the recess of the second silica plate 1b, for example, the bank portion 11 is formed by forming the recess by etching only the second silica plate 1b, and at this time, the support column is formed. It can be formed by making the portion 6 a non-etched portion. In the figure, the joint portion between the strut portion 6 and the first silica plate 1a or the second silica plate 1b, or the joint portion between the strut portions 6 is shown by the joint portion 7.
 図8、図10~図14に示したシリカ熱反射板106~111について、反射体5については、図2~図7に示したシリカ熱反射板100~105と同様である。このとき、支柱部6の外側に形成された反射体5には貫通孔や凹凸などを設けずに支柱部6の外側にある該反射体の内周及び該反射体の周縁に囲まれる全面が反射面であることが好ましい。 Regarding the silica heat reflectors 106 to 111 shown in FIGS. 8 and 10 to 14, the reflector 5 is the same as the silica heat reflectors 100 to 105 shown in FIGS. 2 to 7. At this time, the reflector 5 formed on the outside of the support 6 is not provided with through holes or irregularities, and the inner circumference of the reflector on the outside of the support 6 and the entire surface surrounded by the peripheral edge of the reflector are covered. It is preferably a reflective surface.
 次に支柱部6の形状について説明する。本実施形態に係るシリカ熱反射板106~111では、支柱部6が、柱状又は筒状である形態を含む。支柱部6の主軸の横断面の形状は、円形、楕円形又は三角形以上の多角形であることが好ましい。三角形以上の多角形では正方形又は正六角形であることが好ましい。さらに、シリカ熱反射板は、図9に示すように、支柱部6を複数有し、支柱部6は筒状であり、かつ、各支柱部6は互いに筒壁の一部を共有した3次元空間充填構造を有することが好ましい。3次元空間充填構造とすることで接合強度を高めつつ、反射体の面積を広くとることが出来、さらに反射板そのものの強度を高めることが可能である。3次元空間充填構造は、ハニカム構造、矩形格子構造、方形格子構造又はひし形格子構造である形態を包含する。図9では、ハニカム構造の支柱部を有するシリカ熱反射板100を図示している。ハニカム構造は、六角筒形を隙間なく並べた構造、好ましくは正六角筒形を隙間なく並べた構造である。矩形格子構造は断面長方形の角筒形を隙間なく並べた構造である。方形格子構造は断面正方形の角筒形を隙間なく並べた構造である。ひし形格子構造は断面ひし形の角筒形を隙間なく並べた構造である。ここで、3次元空間充填構造の支柱部6の筒状の内側に反射体5を形成するときは、形成後の反射体5には貫通孔や凹凸などを設けずに支柱部6の筒状の内側にある該反射体の周縁に囲まれる全面が反射面であることが好ましい。 Next, the shape of the support column 6 will be described. The silica heat reflectors 106 to 111 according to the present embodiment include a form in which the support column 6 is columnar or tubular. The shape of the cross section of the main shaft of the support column 6 is preferably a circle, an ellipse, or a polygon having a triangle or more. For polygons of triangle or more, it is preferably a square or a regular hexagon. Further, as shown in FIG. 9, the silica heat reflector has a plurality of support columns 6, the support columns 6 are tubular, and each support column 6 shares a part of the cylinder wall with each other in three dimensions. It is preferable to have a space filling structure. By adopting a three-dimensional space filling structure, it is possible to increase the area of the reflector while increasing the joint strength, and further increase the strength of the reflector itself. The three-dimensional space-filling structure includes a form such as a honeycomb structure, a rectangular lattice structure, a square lattice structure, or a diamond lattice structure. FIG. 9 illustrates a silica heat reflector 100 having a strut portion having a honeycomb structure. The honeycomb structure is a structure in which hexagonal cylinders are arranged without gaps, preferably a structure in which regular hexagonal cylinders are arranged without gaps. The rectangular lattice structure is a structure in which square cylinders having a rectangular cross section are arranged without gaps. The cubic lattice structure is a structure in which square cylinders with a square cross section are arranged without gaps. The rhombic lattice structure is a structure in which square cylinders with a rhombic cross section are arranged without gaps. Here, when the reflector 5 is formed inside the tubular shape of the support column 6 having the three-dimensional space filling structure, the tubular shape of the support column 6 is not provided with through holes or irregularities in the formed reflector 5. It is preferable that the entire surface surrounded by the peripheral edge of the reflector inside the reflector is a reflecting surface.
 本実施形態に係るシリカ熱反射板では、図20に示すように、第1シリカ板1a及び第2シリカ板1bの対向し合う面は互いに平坦面であり、反射体5は、第2シリカ板1b側の第1シリカ板1aの表面のうち周縁部同士の環状の接合部2の内側の領域に形成された薄膜であり、薄膜は、第1シリカ板1aの表面側から順に、下地膜と、反射面を含む表面層としての反射膜と、を有する積層膜であり、下地膜は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co又はNiからなるか、又は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiから選ばれる少なくともいずれか1種を含む合金からなり、反射膜は、Ir、Pt、Rh、Ru、Re、Hf又はMoからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf及びMoから選ばれる少なくともいずれか1種を含む合金からなり、下地膜と反射膜とが異なる組成を有していることが好ましい。なお、図20において、反射体5が積層膜である形態の図示は省略した。下地膜は、第1シリカ板の表面に堆積していることが好ましく、反射膜は下地膜の表面に堆積していることが好ましい。反射膜は第2シリカ板の表面に接触しているが、第2シリカ板の表面に形成されていない、すなわち堆積したものではないことが好ましい。このような構造とすることで、生産性に優れたシリカ熱反射板とすることができる。また、反射体を第2シリカ板により密着させることができ、干渉縞をより抑制することができる。積層膜の膜厚は10~500nmであることが好ましい。積層膜の膜厚を小さくすることで、キャビティ12を設けていなくても、第1シリカ板及び第2シリカ板の応力変形によって周縁部同士の環状の接合部を設けることができ、積層膜がシリカ板内によって外周囲が完全に覆われることが可能となる。反射体5の金属又は合金の選定理由は、図2~図7に示したシリカ熱反射板100~105と同様である。 In the silica heat reflecting plate according to the present embodiment, as shown in FIG. 20, the facing surfaces of the first silica plate 1a and the second silica plate 1b are flat surfaces, and the reflector 5 is a second silica plate. It is a thin film formed in the inner region of the annular junction 2 between the peripheral edges of the surface of the first silica plate 1a on the 1b side, and the thin films are sequentially formed with the base film from the surface side of the first silica plate 1a. , A laminated film having a reflective film as a surface layer including a reflective surface, and the underlying film is made of Ta, Mo, Ti, Zr, Nb, Cr, W, Co or Ni, or Ta, Mo. , Ti, Zr, Nb, Cr, W, Co and an alloy containing at least one selected from Ni, and the reflective film is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or , Ir, Pt, Rh, Ru, Re, Hf and Mo, and preferably an alloy containing at least one of them, and the undercoat film and the reflective film have different compositions. In FIG. 20, the form in which the reflector 5 is a laminated film is not shown. The base film is preferably deposited on the surface of the first silica plate, and the reflective film is preferably deposited on the surface of the base film. It is preferable that the reflective film is in contact with the surface of the second silica plate, but is not formed on the surface of the second silica plate, that is, is not deposited. With such a structure, a silica heat reflector having excellent productivity can be obtained. In addition, the reflector can be brought into close contact with the second silica plate, and interference fringes can be further suppressed. The film thickness of the laminated film is preferably 10 to 500 nm. By reducing the thickness of the laminated film, even if the cavity 12 is not provided, it is possible to provide an annular joint between the peripheral edges due to stress deformation of the first silica plate and the second silica plate, and the laminated film can be formed. The inside of the silica plate makes it possible to completely cover the outer circumference. The reason for selecting the metal or alloy of the reflector 5 is the same as that of the silica heat reflectors 100 to 105 shown in FIGS. 2 to 7.
(反射体として形成した薄膜がMo膜又はMoを含む合金膜である形態1)
 本実施形態に係るシリカ熱反射板では、キャビティを少なくとも第1シリカ板側に有し、第1シリカ板のキャビティ内の表面上に反射体として形成した薄膜を有し、薄膜は、Mo膜又はMoを50質量%以上含む合金膜であることが好ましい。Mo膜又はMoを50質量%以上含む合金膜であるときは、反射体として形成した薄膜が単層膜であってもよい。本実施形態に係るシリカ熱反射板は、図2、図5、図8又は図12において、積層膜である反射体5をMo膜又はMoを50質量%以上含む合金膜に置換した構造を有する。また、図3、図6、図10又は図13のシリカ板1のように、キャビティ12が、第1シリカ板1a側及び第2シリカ板1b側の両側にわたって設けられた形態であってもよい。この形態では、第1シリカ板1aの一方の表面に凹部が設けられており、第2シリカ板1bの一方の表面に凹部が設けられており、凹部同士が合わさるように、第1シリカ板1a及び第2シリカ板1bの合わせ板の構造とする。その結果、キャビティ12は、第1シリカ板1a及び第2シリカ板1bの対向し合う面の第1シリカ板1a側及び第2シリカ板1b側の両方に設けられる。なお、本実施形態に係るシリカ熱反射板の赤外線の入射方向は、上から下に向かう方向又は下から上に向かう方向のいずれでもよい。
(Form 1 in which the thin film formed as a reflector is a Mo film or an alloy film containing Mo)
The silica heat reflecting plate according to the present embodiment has a cavity at least on the first silica plate side, and has a thin film formed as a reflector on the surface of the cavity of the first silica plate, and the thin film is a Mo film or a Mo film or a thin film. It is preferable that the alloy film contains 50% by mass or more of Mo. When the Mo film or the alloy film containing 50% by mass or more of Mo is used, the thin film formed as a reflector may be a single-layer film. The silica heat reflector according to the present embodiment has a structure in which the reflector 5 which is a laminated film is replaced with a Mo film or an alloy film containing 50% by mass or more of Mo in FIGS. 2, 5, 8 or 12. .. Further, as in the silica plate 1 of FIGS. 3, 6, 10 or 13, the cavity 12 may be provided on both sides of the first silica plate 1a side and the second silica plate 1b side. .. In this embodiment, a recess is provided on one surface of the first silica plate 1a, and a recess is provided on one surface of the second silica plate 1b so that the recesses fit together. And the structure of the laminated plate of the second silica plate 1b. As a result, the cavities 12 are provided on both the first silica plate 1a side and the second silica plate 1b side of the facing surfaces of the first silica plate 1a and the second silica plate 1b. The direction of incident infrared rays of the silica heat reflector according to the present embodiment may be either a direction from top to bottom or a direction from bottom to top.
(反射体として形成した薄膜がMo膜又はMoを含む合金膜である形態2)
 本実施形態に係るシリカ熱反射板では、第1シリカ板が平板であり、キャビティを第2シリカ板側に有し、第1シリカ板の表面上に反射体として形成した薄膜を有し、薄膜は、Mo膜又はMoを50質量%以上含む合金膜であることが好ましい。Mo膜又はMoを50質量%以上含む合金膜であるときは、反射体として形成した薄膜が単層膜であってもよい。本実施形態に係るシリカ熱反射板は、図4、図7、図11又は図14において、積層膜である反射体5をMo膜又はMoを50質量%以上含む合金膜に置換した構造を有する。なお、本実施形態に係るシリカ熱反射板の赤外線の入射方向は、上から下に向かう方向又は下から上に向かう方向のいずれでもよい。
(Form 2 in which the thin film formed as a reflector is a Mo film or an alloy film containing Mo)
In the silica heat reflecting plate according to the present embodiment, the first silica plate is a flat plate, the cavity is on the second silica plate side, and the thin film formed as a reflector on the surface of the first silica plate is formed. Is preferably a Mo film or an alloy film containing 50% by mass or more of Mo. When the Mo film or the alloy film containing 50% by mass or more of Mo is used, the thin film formed as a reflector may be a single-layer film. The silica heat reflector according to the present embodiment has a structure in which the reflector 5 which is a laminated film is replaced with a Mo film or an alloy film containing 50% by mass or more of Mo in FIGS. 4, 7, 11 or 14. .. The direction of incident infrared rays of the silica heat reflector according to the present embodiment may be either a direction from top to bottom or a direction from bottom to top.
(反射体として形成した薄膜がMo膜又はMoを含む合金膜である形態3)
 本実施形態に係るシリカ熱反射板では、第1シリカ板及び第2シリカ板の対向し合う面は互いに平坦面であり、反射体は、第2シリカ板側の第1シリカ板の表面のうち周縁部同士の環状の接合部の内側の領域に形成された薄膜であり、薄膜は、Mo膜又はMoを50質量%以上含む合金膜であることが好ましい。Mo膜又はMoを50質量%以上含む合金膜であるときは、反射体として形成した薄膜が単層膜であってもよい。本実施形態に係るシリカ熱反射板は、図20において、反射体5をMo膜又はMoを50質量%以上含む合金膜に置換した構造を有する。なお、本実施形態に係るシリカ熱反射板の赤外線の入射方向は、上から下に向かう方向又は下から上に向かう方向のいずれでもよい。
(Form 3 in which the thin film formed as a reflector is a Mo film or an alloy film containing Mo)
In the silica heat reflecting plate according to the present embodiment, the facing surfaces of the first silica plate and the second silica plate are flat surfaces, and the reflector is the surface of the first silica plate on the second silica plate side. It is a thin film formed in the inner region of the annular junction between the peripheral portions, and the thin film is preferably a Mo film or an alloy film containing 50% by mass or more of Mo. When the Mo film or the alloy film containing 50% by mass or more of Mo is used, the thin film formed as a reflector may be a single-layer film. In FIG. 20, the silica heat reflector according to the present embodiment has a structure in which the reflector 5 is replaced with a Mo film or an alloy film containing 50% by mass or more of Mo. The direction of incident infrared rays of the silica heat reflector according to the present embodiment may be either a direction from top to bottom or a direction from bottom to top.
(反射体として形成した薄膜がMo膜又はMoを含む合金膜である形態4)
 本実施形態に係るシリカ熱反射板では、キャビティを第1シリカ板側及び第2シリカ板側に有し、第1シリカ板のキャビティ内の表面上に反射体として形成した薄膜を有し、薄膜は、Mo膜又はMoを50質量%以上含む合金膜であることが好ましい。Mo膜又はMoを50質量%以上含む合金膜であるときは、反射体として形成した薄膜が単層膜であってもよい。本実施形態に係るシリカ熱反射板は、図3、図6、図10又は図13において、積層膜である反射体5をMo膜又はMoを50質量%以上含む合金膜に置換した構造を有する。なお、本実施形態に係るシリカ熱反射板の赤外線の入射方向は、上から下に向かう方向又は下から上に向かう方向のいずれでもよい。
(Form 4 in which the thin film formed as a reflector is a Mo film or an alloy film containing Mo)
The silica heat reflecting plate according to the present embodiment has a cavity on the first silica plate side and the second silica plate side, and has a thin film formed as a reflector on the surface inside the cavity of the first silica plate, and is a thin film. Is preferably a Mo film or an alloy film containing 50% by mass or more of Mo. When the Mo film or the alloy film containing 50% by mass or more of Mo is used, the thin film formed as a reflector may be a single-layer film. The silica heat reflector according to the present embodiment has a structure in which the reflector 5 which is a laminated film is replaced with a Mo film or an alloy film containing 50% by mass or more of Mo in FIGS. 3, 6, 10 or 13. .. The direction of incident infrared rays of the silica heat reflector according to the present embodiment may be either a direction from top to bottom or a direction from bottom to top.
 形態1~4において、Moを含む合金膜のMoの含有率は、50質量%以上であることが好ましいが、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。Mo膜又はMoを50質量%以上含む合金膜は、積層膜である反射体5と同様の膜厚で形成されることが好ましく、また、凹部の底面への薄膜の形成の面積比率は、積層膜である反射体5と同様の範囲で形成されることが好ましい。 In the first to fourth forms, the Mo content of the alloy film containing Mo is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more. .. The Mo film or the alloy film containing 50% by mass or more of Mo is preferably formed with the same film thickness as the reflector 5 which is a laminated film, and the area ratio of the thin film formed on the bottom surface of the recess is the laminated film. It is preferable that the film is formed in the same range as the reflector 5.
 本実施形態に係るシリカ熱反射板では、周縁部同士の接合部2は、表面活性化接合部であることが好ましい。さらに支柱部6を含む接合部7は表面活性化接合部であることが好ましい。比較的低温での接合が可能な為、反射膜に熱的、物理的ダメージが無く接合することが可能であり、また、内部を真空に保ったまま接合することで接合部における接合強度が高められており、シリカ熱反射板はより長寿命となり、また耐食性が高まり、炉内の汚染が抑制される。表面活性化接合部とは、接合し合う部位の少なくとも一方を表面活性化状態とした後、接合部位同士を、押圧をかけて合わせることにより原子レベルで表面組織を一体化して接合した部位をいう。接合し合う部位の両方を表面活性化状態とした後、接合部位同士を、押圧をかけて合わせることがより好ましい。シリカ板同士の接合では、シリコン皮膜を製膜した後、表面活性化状態とし、その後、接合部位同士を、押圧をかけて合わせることとしてもよい。表面活性化接合部には、常温活性化接合部とプラズマ活性化接合部とがある。常温活性化接合部には、例えば、高速原子ビームを用いて表面活性化して接合した接合部、Si等の活性金属を用いてナノ密着層を形成して表面活性化して接合した接合部、イオンビームを用いて表面活性化して接合した接合部がある。プラズマ活性化接合部には、例えば、酸素プラズマを用いて表面活性化して接合した接合部、窒素プラズマを用いて表面活性化して接合した接合部がある。周縁部同士の接合部2を表面活性化接合部とすることで、接合部におけるリークを低減でき、例えば、キャビティ内を真空に保つことで高温時の内圧上昇によるシリカ板の破損を防ぐことができる。表面活性化接合部を形成する方法については、例えば、特許文献4~6を参照できる。 In the silica heat reflector according to the present embodiment, it is preferable that the joint portion 2 between the peripheral portions is a surface activated joint portion. Further, the joint portion 7 including the support portion 6 is preferably a surface-activated joint portion. Since it is possible to join at a relatively low temperature, it is possible to join without thermal or physical damage to the reflective film, and by joining while keeping the inside vacuum, the joining strength at the joint is increased. The silica heat reflector has a longer life, has higher corrosion resistance, and suppresses contamination in the furnace. The surface-activated joint portion refers to a portion where at least one of the parts to be joined is brought into a surface-activated state, and then the joint parts are combined by applying pressure to integrate and join the surface structures at the atomic level. .. It is more preferable that after both of the parts to be joined are brought into a surface-activated state, the parts to be joined are pressed against each other. In the bonding between silica plates, after forming a silicon film, the surface may be activated, and then the bonding portions may be pressed against each other. The surface-activated joint portion includes a room temperature-activated joint portion and a plasma-activated joint portion. The room temperature activated joints include, for example, a joint that is surface-activated using a high-speed atomic beam and bonded, a joint that forms a nano-adhesive layer using an active metal such as Si and is surface-activated and bonded, and ions. There are joints that are surface activated and joined using a beam. The plasma-activated junction includes, for example, a junction that is surface-activated and bonded using oxygen plasma, and a junction that is surface-activated and bonded using nitrogen plasma. By using the joint portion 2 between the peripheral portions as a surface-activated joint portion, leakage at the joint portion can be reduced. For example, by keeping the inside of the cavity in a vacuum, damage to the silica plate due to an increase in internal pressure at high temperature can be prevented. can. For a method of forming a surface-activated joint, for example, Patent Documents 4 to 6 can be referred to.
 本実施形態に係るシリカ熱反射板では、キャビティ12内の圧力は、大気圧未満の減圧となっていることが好ましい。キャビティ12内の圧力は、10-2Pa以下であることがより好ましい。熱処理時にキャビティ12の内圧が高まることを抑制することができ、炉内の汚染をより抑制することができる。また、高温時の反射膜の劣化を抑制できる。 In the silica heat reflector according to the present embodiment, the pressure in the cavity 12 is preferably reduced to less than atmospheric pressure. The pressure in the cavity 12 is more preferably 10-2 Pa or less. It is possible to suppress the increase in the internal pressure of the cavity 12 during the heat treatment, and it is possible to further suppress the contamination in the furnace. In addition, deterioration of the reflective film at high temperatures can be suppressed.
(反射体が板である形態)
 本実施形態に係るシリカ熱反射板112では、図15に示すように、反射体8が板であり、かつ、Ir、Pt、Rh、Ru、Re、Hf又はMoからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf及びMoから選ばれる少なくともいずれか1種を含む合金からなることが好ましい。Ir、Pt、Rh、Ru、Re、Hf及びMoから選ばれる少なくともいずれか1種を含む合金としては、これらの元素のいずれか一種を最多質量にて含む合金であることが好ましく、より好ましくはIr、Pt、Rh、Ru、Re、Hf又はMoを50質量%以上含有する合金、さらに好ましくは60質量%以上含有する合金、最も好ましくは70質量%以上含有する合金であり、例えば、Ir‐Pt系合金、Ir‐Rh系合金又はPt‐Ru系合金である。キャビティ12内に反射体としての板が収容された状態となっており、板の腐食が生じにくい。さらに、周縁部同士の接合部に、板に起因する剥がす方向の応力がかかりにくい。板である反射体8は、凹部の底面の全面積に対して50~100%の面積で形成されていることが好ましく、80~100%の面積で形成されていることがより好ましい。
(The form in which the reflector is a plate)
In the silica heat reflector 112 according to the present embodiment, as shown in FIG. 15, the reflector 8 is a plate and is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or Ir. It is preferably made of an alloy containing at least one selected from Pt, Rh, Ru, Re, Hf and Mo. As the alloy containing at least one selected from Ir, Pt, Rh, Ru, Re, Hf and Mo, it is preferable that the alloy contains any one of these elements in the largest mass, and more preferably. An alloy containing 50% by mass or more of Ir, Pt, Rh, Ru, Re, Hf or Mo, more preferably an alloy containing 60% by mass or more, and most preferably an alloy containing 70% by mass or more, for example, Ir-. It is a Pt-based alloy, an Ir-Rh-based alloy, or a Pt-Ru-based alloy. A plate as a reflector is housed in the cavity 12, and corrosion of the plate is unlikely to occur. Further, it is difficult to apply stress in the peeling direction due to the plate to the joint portion between the peripheral portions. The reflector 8 which is a plate is preferably formed in an area of 50 to 100% with respect to the total area of the bottom surface of the recess, and more preferably formed in an area of 80 to 100%.
(反射体が箔である形態)
 本実施形態に係るシリカ熱反射板では、反射体が箔であり、かつ、Ir、Pt、Rh、Ru、Re、Hf又はMoからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf及びMoから選ばれる少なくともいずれか1種を含む合金からなることが好ましい(不図示)。Ir、Pt、Rh、Ru、Re、Hf及びMoから選ばれる少なくともいずれか1種を含む合金としては、これらの元素のいずれか一種を最多質量にて含む合金であることが好ましく、より好ましくはIr、Pt、Rh、Ru、Re、Hf又はMoを50質量%以上含有する合金、より好ましくは60質量%以上含有する合金、最も好ましくは70質量%以上含有する合金であり、例えば、Ir‐Pt系合金、Ir‐Rh系合金又はPt‐Ru系合金である。図15において、反射体8が板である代わりに箔がキャビティ12内に収容された状態となっており、箔の腐食が生じにくい。さらに、周縁部同士の接合部に、箔に起因する剥がす方向の応力がかかりにくい。箔である反射体は、凹部の底面の全面積に対して50~100%の面積で形成されていることが好ましく、80~100%の面積で形成されていることがより好ましい。
(The form in which the reflector is a foil)
In the silica thermal reflector according to the present embodiment, the reflector is a foil and is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or Ir, Pt, Rh, Ru, Re, Hf. And preferably an alloy containing at least one selected from Mo (not shown). As the alloy containing at least one selected from Ir, Pt, Rh, Ru, Re, Hf and Mo, it is preferable that the alloy contains any one of these elements in the largest mass, and more preferably. An alloy containing 50% by mass or more of Ir, Pt, Rh, Ru, Re, Hf or Mo, more preferably an alloy containing 60% by mass or more, and most preferably an alloy containing 70% by mass or more, for example, Ir-. It is a Pt-based alloy, an Ir-Rh-based alloy, or a Pt-Ru-based alloy. In FIG. 15, instead of the reflector 8 being a plate, the foil is housed in the cavity 12, and corrosion of the foil is unlikely to occur. Further, it is difficult to apply stress in the peeling direction due to the foil to the joints between the peripheral edges. The reflector, which is a foil, is preferably formed in an area of 50 to 100% with respect to the total area of the bottom surface of the recess, and more preferably formed in an area of 80 to 100%.
 本実施形態に係るシリカ熱反射板では、反射体の厚さは0.01μm~5mmであることが好ましく、0.02μm~2mmであることがより好ましい。反射体による高い反射効率を保持しつつ、シリカ熱反射板の熱容量を小さくすることができる。反射体の厚さが0.01μm未満であると反射効率の保持が難しくなり、5mmを超えると反射体の熱量が大きくなりすぎる場合がある。そして、反射体が薄膜である場合、積層膜の膜厚は10nm以上1500nm以下であることが好ましく、20nm以上400nm以下であることがより好ましい。反射体が板である場合、板厚は0.5mm以上5.0mm以下であることが好ましく、0.5mm以上2.0mm以下であることがより好ましい。反射体が箔である場合、箔の厚さは3μm以上2.0mm以下であることが好ましく、8μm以上1.0mm以下であることがより好ましい。 In the silica heat reflector according to the present embodiment, the thickness of the reflector is preferably 0.01 μm to 5 mm, more preferably 0.02 μm to 2 mm. The heat capacity of the silica heat reflector can be reduced while maintaining high reflection efficiency by the reflector. If the thickness of the reflector is less than 0.01 μm, it becomes difficult to maintain the reflection efficiency, and if it exceeds 5 mm, the amount of heat of the reflector may become too large. When the reflector is a thin film, the film thickness of the laminated film is preferably 10 nm or more and 1500 nm or less, and more preferably 20 nm or more and 400 nm or less. When the reflector is a plate, the plate thickness is preferably 0.5 mm or more and 5.0 mm or less, and more preferably 0.5 mm or more and 2.0 mm or less. When the reflector is a foil, the thickness of the foil is preferably 3 μm or more and 2.0 mm or less, and more preferably 8 μm or more and 1.0 mm or less.
 本実施形態では、キャビティを有するとき、キャビティの高さ(図2では、上下方向の長さ)から反射体の厚さを差し引いた値、すなわちキャビティ内の高さ方向の隙間が200μm以下であることが好ましく、100μm以下であることがより好ましい。キャビティ内の高さ方向の隙間が200μmを超えると、大気圧によるシリカ板の変形が大きくなり、その結果、接合部付近に掛かる応力が大きくなり、結合部の割れが生じるおそれがある。 In the present embodiment, when the cavity is provided, the value obtained by subtracting the thickness of the reflector from the height of the cavity (length in the vertical direction in FIG. 2), that is, the gap in the height direction in the cavity is 200 μm or less. It is preferably 100 μm or less, and more preferably 100 μm or less. If the gap in the height direction in the cavity exceeds 200 μm, the deformation of the silica plate due to atmospheric pressure becomes large, and as a result, the stress applied in the vicinity of the joint portion becomes large, and the joint portion may be cracked.
 図2~図8、図10~図14においては、赤外線の入射方向は上から下に向かう方向である。図15においては、赤外線の入射方向は上から下に向かう方向又は下から上に向かう方向のいずれでもよい。 In FIGS. 2 to 8 and 10 to 14, the infrared incident direction is from top to bottom. In FIG. 15, the incident direction of infrared rays may be either a direction from top to bottom or a direction from bottom to top.
 以下、実施例を示しながら本発明についてさらに詳細に説明するが、本発明は実施例に限定して解釈されない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not construed as being limited to the examples.
(実施例1)
(反射体が積層膜である形態)
 図2に示したシリカ熱反射板を作製する。まず、外周300mm、厚み1.2mmのシリカ板2枚を準備し、それぞれ第1シリカ板、第2シリカ板とした。次に、第1シリカ板の外周から幅10mmを第2シリカ板との接合部として残し、それ以外の箇所についてはエッチングを行い、深さ1μmのキャビティのための凹部を設けた。次に、第1シリカ板の凹部の底面に下地膜としてTaをスパッタリング法によって50nm成膜し、下地膜の上に反射膜としてIrをスパッタリング法によって150nm成膜し、反射体を形成した。次に、紫外可視分光光度計((株)島津製作所製 型式:UV-3100PC)を用いて反射体の反射率を測定した。測定した反射率の結果を図16に示す。測定は、反射体の表面に測定のための光を直接当てて行った。また、(数1)を用いて1000℃における物質が放射する黒体放射の波長と放射量の関係を算出した。算出結果を図17に示す。
Figure JPOXMLDOC01-appb-M000001
但し、hはプランク定数(6.62607015×10-34J・s)、kはボルツマン定数(1.380649×10-23J/K)、cは光速度(299792458m/s)、λは波長(nm)である。図17の結果、1000℃において輻射熱を反射することが必要であり、波長が2000nm~2600nmで放射量が多いことが確認できる。また、図16の結果、1000℃のときに本実施例における反射体では2000nm以上の波長において90%以上の反射率を有することが確認できた。次に、反射体を形成した第1シリカ板と平板状の第2シリカ板を接合するために、真空度10-2Pa以下の真空中で、高速原子ビームを第1シリカ板の接合部に照射して表面活性化し、第1シリカ板に第2シリカ板を押し付けることでシリカ熱反射板を作製した。
(Example 1)
(The form in which the reflector is a laminated film)
The silica heat reflector shown in FIG. 2 is manufactured. First, two silica plates having an outer circumference of 300 mm and a thickness of 1.2 mm were prepared and used as a first silica plate and a second silica plate, respectively. Next, a width of 10 mm from the outer periphery of the first silica plate was left as a joint with the second silica plate, and etching was performed on the other parts to provide a recess for a cavity having a depth of 1 μm. Next, Ta was formed on the bottom surface of the recess of the first silica plate as a base film by a sputtering method at 50 nm, and Ir was formed on the base film by a sputtering method at 150 nm to form a reflector. Next, the reflectance of the reflector was measured using an ultraviolet visible spectrophotometer (model: UV-3100PC manufactured by Shimadzu Corporation). The result of the measured reflectance is shown in FIG. The measurement was performed by shining light for measurement directly on the surface of the reflector. In addition, (Equation 1) was used to calculate the relationship between the wavelength of blackbody radiation emitted by a substance at 1000 ° C. and the amount of radiation. The calculation result is shown in FIG.
Figure JPOXMLDOC01-appb-M000001
However, h is Planck's constant (6.626070115 × 10 −34 J · s), k B is Boltzmann constant (1.380649 × 10-23 J / K), c is optical velocity (299792458 m / s), and λ is wavelength. (Nm). As a result of FIG. 17, it is necessary to reflect radiant heat at 1000 ° C., and it can be confirmed that the wavelength is 2000 nm to 2600 nm and the amount of radiation is large. Further, as a result of FIG. 16, it was confirmed that the reflector in this example had a reflectance of 90% or more at a wavelength of 2000 nm or more at 1000 ° C. Next, in order to join the first silica plate on which the reflector was formed and the flat plate-shaped second silica plate, a high-speed atomic beam was applied to the joint of the first silica plate in a vacuum with a vacuum degree of 10-2 Pa or less. A silica heat-reflecting plate was produced by irradiating and activating the surface and pressing the second silica plate against the first silica plate.
(実施例2)
(反射体が積層膜である形態)
 まず、外周300mm、厚み1.2mmのシリカ板2枚を準備し、それぞれ第1シリカ板、第2シリカ板とした。次に、第1シリカ板の外周から幅5mm分を第2シリカ板との接合部としてマスキングした。次に、マスキングした第1シリカ板の面に下地膜としてTaをスパッタリング法によって50nm成膜し、下地膜の上に反射膜としてIrをスパッタリング法によって150nm成膜し、反射体を形成した。次に、マスキングを除去した。反射体は実施例1の反射体と同じであり、図16に示した反射特性と同じ特性を有していた。次に、反射体を形成した平板状の第1シリカ板と平板状の第2シリカ板を接合するために、真空度10-2Pa以下の真空中で、高速原子ビームを第1シリカ板の接合部に照射して表面活性化し、第1シリカ板に第2シリカ板を押し付けることでシリカ熱反射板を作製した。
(Example 2)
(The form in which the reflector is a laminated film)
First, two silica plates having an outer circumference of 300 mm and a thickness of 1.2 mm were prepared and used as a first silica plate and a second silica plate, respectively. Next, a width of 5 mm from the outer periphery of the first silica plate was masked as a joint with the second silica plate. Next, Ta was formed into a film of 50 nm as a base film on the surface of the masked first silica plate by a sputtering method, and Ir was formed into a film of 150 nm as a reflective film on the surface of the base film by a sputtering method to form a reflector. Next, the masking was removed. The reflector was the same as the reflector of Example 1, and had the same characteristics as the reflection characteristics shown in FIG. Next, in order to join the flat plate-shaped first silica plate on which the reflector was formed and the flat plate-shaped second silica plate, a high-speed atomic beam was applied to the first silica plate in a vacuum with a vacuum degree of 10-2 Pa or less. A silica heat reflecting plate was produced by irradiating the joint portion to activate the surface and pressing the second silica plate against the first silica plate.
(実施例3)
(反射体が積層膜である形態)
 まず、外周300mm、厚み1.2mmのシリカ板2枚を準備し、それぞれ第1シリカ板、第2シリカ板とした。次に、第1シリカ板の外周から幅5mm分を第2シリカ板との接合部としてマスキングした。次に、マスキングした第1シリカ板の面に下地膜としてTaをスパッタリング法によって50nm成膜し、前記下地膜の上に反射膜としてIrをスパッタリング法によって150nm成膜し、反射体を形成した。次に、マスキングを除去した。反射体は実施例1の反射体と同じであり、図16に示した反射特性と同じ特性を有していた。次に、反射体を形成した平板状の第1シリカ板と平板状の第2シリカ板を接合するために、酸素プラズマを第1シリカ板の接合部に接触させて表面活性化し、第1シリカ板に第2シリカ板を押し付けることでシリカ熱反射板を作製した。
(Example 3)
(The form in which the reflector is a laminated film)
First, two silica plates having an outer circumference of 300 mm and a thickness of 1.2 mm were prepared and used as a first silica plate and a second silica plate, respectively. Next, a width of 5 mm from the outer periphery of the first silica plate was masked as a joint with the second silica plate. Next, Ta was formed into a film of 50 nm as a base film on the surface of the masked first silica plate by a sputtering method, and Ir was formed into a film of 150 nm as a reflective film on the surface of the base film by a sputtering method to form a reflector. Next, the masking was removed. The reflector was the same as the reflector of Example 1, and had the same characteristics as the reflection characteristics shown in FIG. Next, in order to join the flat plate-shaped first silica plate on which the reflector is formed and the flat plate-shaped second silica plate, oxygen plasma is brought into contact with the joint portion of the first silica plate to activate the surface, and the first silica is used. A silica heat reflecting plate was produced by pressing a second silica plate against the plate.
(実施例4)
(反射体が積層膜であり、ハニカム形状の支柱部がある形態)
 図12に示したシリカ熱反射板を作製する。まず、外周300mm、厚み1.2mmのシリカ板2枚を準備し、それぞれ第1シリカ板、第2シリカ板とした。次に、第1シリカ板の外周から幅10mm分をマスキングし、その後、それ以外の箇所で、正六角形の幅10mm(1辺の長さは5.77mm)、壁柱厚み0.3mmのハニカム形状の支柱部に相当する箇所にマスキングをした後、エッチングを行い、深さ1μmのキャビティのための凹部を設けた。次に、マスキングした第1シリカ板の凹部の底面に下地膜としてTaをスパッタリング法によって50nm成膜し、下地膜の上に反射膜としてIrをスパッタリング法によって150nm成膜し、反射体を形成した。次に、マスキングを除去した。本実施例の反射体は実施例1の反射体に対してハニカム構造を持たせたものである。図16に示した反射率は、全面が反射膜である形態の値を示しているところ、本実施例のハニカム構造を有する反射膜は、全面に対して反射膜部分の面積比率が94.34%であるため、本実施例の反射特性は図16に示す反射率に対して、0.9434を乗じた反射率を有するものと考えられる。次に、反射体を形成した第1シリカ板と平板状の第2シリカ板を接合するために、真空度10-2Pa以下の真空中で、高速原子ビームを第1シリカ板の接合部2及び支柱部に照射して表面活性化し、第1シリカ板に第2シリカ板を押し付けることで接合し、シリカ熱反射板を作製した。
(Example 4)
(The reflector is a laminated film, and there is a honeycomb-shaped strut.)
The silica heat reflector shown in FIG. 12 is manufactured. First, two silica plates having an outer circumference of 300 mm and a thickness of 1.2 mm were prepared and used as a first silica plate and a second silica plate, respectively. Next, mask the width of 10 mm from the outer circumference of the first silica plate, and then, in other places, a honeycomb with a regular hexagonal width of 10 mm (one side length is 5.77 mm) and a wall pillar thickness of 0.3 mm. After masking the portion corresponding to the pillar portion of the shape, etching was performed to provide a recess for a cavity having a depth of 1 μm. Next, Ta was formed into a film of 50 nm as a base film on the bottom surface of the recess of the masked first silica plate by a sputtering method, and Ir was formed into a film of 150 nm as a reflective film on the base film by a sputtering method to form a reflector. .. Next, the masking was removed. The reflector of this embodiment has a honeycomb structure with respect to the reflector of Example 1. The reflectance shown in FIG. 16 shows the value of the form in which the entire surface is a reflective film. In the reflective film having the honeycomb structure of this embodiment, the area ratio of the reflective film portion to the entire surface is 94.34. Therefore, it is considered that the reflectance characteristic of this example has a reflectance obtained by multiplying the reflectance shown in FIG. 16 by 0.9434. Next, in order to join the first silica plate on which the reflector is formed and the flat plate-shaped second silica plate, a high-speed atomic beam is applied to the joining portion 2 of the first silica plate in a vacuum having a vacuum degree of 10-2 Pa or less. And the support column was irradiated to activate the surface, and the second silica plate was pressed against the first silica plate to join them to prepare a silica heat reflecting plate.
(実施例5)
(反射体がPt箔である形態)
 図15に示したシリカ熱反射板を作製する。まず、外周300mm、厚み1.2mmのシリカ板2枚を準備し、それぞれ第1シリカ板、第2シリカ板とした。次に、第1シリカ板の外周から幅7mmを第2シリカ板との接合部として残し、それ以外の箇所については切削加工を行い、深さ0.2mmのキャビティのための凹部を設けた。次に、第1シリカ板の凹部の底面に、外周284mm、厚み100μmのPt箔を配置し、反射体を形成した。次に、紫外可視分光光度計((株)島津製作所製 型式:UV-3100PC)を用いて前記反射体の反射率を測定した。測定した反射率を図18に示す。測定は、反射体の表面に測定のための光を直接当てて行った。図18の結果、1000℃のときに本実施例における反射体では2000nm以上の波長において80%以上の反射率を有することが確認できた。次に、反射体を配置した第1シリカ板と平板状の第2シリカ板を接合するために、真空度10-2Pa以下の真空中で、高速原子ビームを第1シリカ板の接合部に照射して表面活性化し、第1シリカ板に第2シリカ板を押し付けることで接合し、シリカ熱反射板を作製した。
(Example 5)
(The form in which the reflector is a Pt foil)
The silica heat reflector shown in FIG. 15 is manufactured. First, two silica plates having an outer circumference of 300 mm and a thickness of 1.2 mm were prepared and used as a first silica plate and a second silica plate, respectively. Next, a width of 7 mm from the outer periphery of the first silica plate was left as a joint with the second silica plate, and cutting was performed on the other parts to provide a recess for a cavity having a depth of 0.2 mm. Next, a Pt foil having an outer circumference of 284 mm and a thickness of 100 μm was placed on the bottom surface of the recess of the first silica plate to form a reflector. Next, the reflectance of the reflector was measured using an ultraviolet visible spectrophotometer (model: UV-3100PC manufactured by Shimadzu Corporation). The measured reflectance is shown in FIG. The measurement was performed by shining light for measurement directly on the surface of the reflector. As a result of FIG. 18, it was confirmed that the reflector in this example had a reflectance of 80% or more at a wavelength of 2000 nm or more at 1000 ° C. Next, in order to join the first silica plate on which the reflector is placed and the flat plate-shaped second silica plate, a high-speed atomic beam is applied to the joint of the first silica plate in a vacuum with a vacuum degree of 10-2 Pa or less. The surface was activated by irradiation, and the second silica plate was pressed against the first silica plate to join them to prepare a silica heat reflecting plate.
(実施例6)
(反射体がMo膜である形態)
 まず、外周300mm、厚み1.2mmのシリカ板2枚を準備し、それぞれ第1シリカ板、第2シリカ板とした。次に、第1シリカ板の外周から幅5mm分を第2シリカ板との接合部としてマスキングした。次に、マスキングした第1シリカ板の面に反射体としてMoをスパッタリング法によって200nm成膜した。次に、マスキングを除去した。次に、紫外可視分光光度計((株))島津製作所製 型式:UV-3100PC)を用いて反射体の反射率を測定した。測定した反射率の結果を図19に示す。測定は、反射体の表面に測定のための光を直接当てて行った。また、図19の結果、1000℃のときに本実施例における反射体では2000nm以上の波長において80%以上の反射率を有することが確認できた。次に、反射体を形成した第1シリカ板と平板状の第2シリカ板を接合するために、真空度10‐2Pa以下の真空中で、高速原子ビームを第1シリカ板の接合部に照射して表面活性化し、第1シリカ板に第2シリカ板を押し付けることでシリカ熱反射板を作製した。
(Example 6)
(The form in which the reflector is a Mo film)
First, two silica plates having an outer circumference of 300 mm and a thickness of 1.2 mm were prepared and used as a first silica plate and a second silica plate, respectively. Next, a width of 5 mm from the outer periphery of the first silica plate was masked as a joint with the second silica plate. Next, Mo was formed into a film of 200 nm as a reflector on the surface of the masked first silica plate by a sputtering method. Next, the masking was removed. Next, the reflectance of the reflector was measured using an ultraviolet visible spectrophotometer (manufactured by Shimadzu Corporation, model: UV-3100PC). The result of the measured reflectance is shown in FIG. The measurement was performed by shining light for measurement directly on the surface of the reflector. Further, as a result of FIG. 19, it was confirmed that the reflector in this example had a reflectance of 80% or more at a wavelength of 2000 nm or more at 1000 ° C. Next, in order to join the first silica plate on which the reflector was formed and the flat plate-shaped second silica plate, a high-speed atomic beam was applied to the joint of the first silica plate in a vacuum with a vacuum degree of 10-2 Pa or less. A silica heat-reflecting plate was produced by irradiating and activating the surface and pressing the second silica plate against the first silica plate.
100~112 シリカ熱反射板
1 シリカ板
1a 第1シリカ板
1b 第2シリカ板
2 周縁部同士の接合部
3 下地膜
4 反射膜
5 反射体
6 支柱部
7 支柱部を含む接合部
8 反射体
11 土手部
12 キャビティ

 
100-112 Silica heat reflector 1 Silica plate 1a 1st silica plate 1b 2nd silica plate 2 Bonding part between peripheral parts 3 Undercoat film 4 Reflective film 5 Reflector 6 Strut part 7 Joining part 8 including strut part 8 Reflector 11 Bank 12 Cavity

Claims (19)

  1.  シリカ板と、
     該シリカ板の内部に配置されて該シリカ板によって外周囲が完全に覆われてなり、かつ、該シリカ板の一方の表面に入射した赤外線を反射する反射体と、を有するシリカ熱反射板であって、
     前記反射体は、薄膜、板又は箔であり、
     前記反射体の少なくとも反射面を含む表面層は、Ir、Pt、Rh、Ru、Re、Hf又はMoからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf及びMoから選ばれる少なくともいずれか1種を含む合金からなることを特徴とするシリカ熱反射板。
    Silica plate and
    A silica thermal reflector having a reflector disposed inside the silica plate, the outer periphery of which is completely covered by the silica plate, and a reflector that reflects infrared rays incident on one surface of the silica plate. There,
    The reflector is a thin film, plate or foil.
    The surface layer including at least the reflective surface of the reflector is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or at least one selected from Ir, Pt, Rh, Ru, Re, Hf and Mo. A silica heat reflector characterized by being made of an alloy containing one of the above.
  2.  前記シリカ板は、第1シリカ板と第2シリカ板とが対向して配置されて周縁部同士が周縁に沿って環状に連続して接合された合わせ板の構造を有することを特徴とする請求項1に記載のシリカ熱反射板。 The silica plate is characterized by having a structure of a laminated plate in which a first silica plate and a second silica plate are arranged so as to face each other and peripheral portions are continuously joined in an annular shape along the peripheral edge. Item 1. The silica heat reflecting plate according to Item 1.
  3.  前記合わせ板の構造は、前記第1シリカ板及び前記第2シリカ板の対向し合う面の間に設けられ、かつ、前記第1シリカ板側及び前記第2シリカ板側の少なくとも一方に前記周縁部同士の接合部によって密閉されているキャビティを有し、
     該キャビティ内に前記反射体が配置されていることを特徴とする請求項2に記載のシリカ熱反射板。
    The structure of the laminated plate is provided between the facing surfaces of the first silica plate and the second silica plate, and the peripheral edge is provided on at least one of the first silica plate side and the second silica plate side. It has a cavity that is sealed by a joint between the parts and has a cavity.
    The silica heat reflector according to claim 2, wherein the reflector is arranged in the cavity.
  4.  前記キャビティを少なくとも前記第1シリカ板側に有し、
     前記第1シリカ板の前記キャビティ内の表面上に前記反射体として形成した薄膜を有し、
     該薄膜は、前記第1シリカ板の前記キャビティ内の表面側から順に、下地膜と、前記反射面を含む表面層としての反射膜と、を有する積層膜であり、
     前記下地膜は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co又はNiからなるか、又は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiから選ばれる少なくともいずれか1種を含む合金からなり、
     前記反射膜は、Ir、Pt、Rh、Ru、Re、Hf又はMoからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf及びMoから選ばれる少なくともいずれか1種を含む合金からなり、
     前記下地膜と前記反射膜とが異なる組成を有していることを特徴とする請求項3に記載のシリカ熱反射板。
    The cavity is at least on the side of the first silica plate, and the cavity is provided.
    It has a thin film formed as the reflector on the surface of the first silica plate in the cavity.
    The thin film is a laminated film having a base film and a reflective film as a surface layer including the reflective surface in order from the surface side in the cavity of the first silica plate.
    The undercoat is made of Ta, Mo, Ti, Zr, Nb, Cr, W, Co or Ni, or at least one selected from Ta, Mo, Ti, Zr, Nb, Cr, W, Co and Ni. It consists of an alloy containing one kind
    The reflective film is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or an alloy containing at least one selected from Ir, Pt, Rh, Ru, Re, Hf and Mo. ,
    The silica heat reflector according to claim 3, wherein the base film and the reflective film have different compositions.
  5.  前記第1シリカ板が平板であり、
     前記キャビティを前記第2シリカ板側に有し、
     前記第1シリカ板の表面上に前記反射体として形成した薄膜を有し、
     該薄膜は、前記第1シリカ板の表面側から順に、下地膜と、前記反射面を含む表面層としての反射膜と、を有する積層膜であり、
     前記下地膜は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co又はNiからなるか、又は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiから選ばれる少なくともいずれか1種を含む合金からなり、
     前記反射膜は、Ir、Pt、Rh、Ru、Re、Hf又はMoからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf及びMoから選ばれる少なくともいずれか1種を含む合金からなり、
     前記下地膜と前記反射膜とが異なる組成を有していることを特徴とする請求項3に記載のシリカ熱反射板。
    The first silica plate is a flat plate,
    The cavity is provided on the side of the second silica plate.
    It has a thin film formed as the reflector on the surface of the first silica plate, and has.
    The thin film is a laminated film having a base film and a reflective film as a surface layer including the reflective surface in order from the surface side of the first silica plate.
    The undercoat is made of Ta, Mo, Ti, Zr, Nb, Cr, W, Co or Ni, or at least one selected from Ta, Mo, Ti, Zr, Nb, Cr, W, Co and Ni. It consists of an alloy containing one kind
    The reflective film is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or an alloy containing at least one selected from Ir, Pt, Rh, Ru, Re, Hf and Mo. ,
    The silica heat reflector according to claim 3, wherein the base film and the reflective film have different compositions.
  6.  前記反射体が、板又は箔であり、かつ、Ir、Pt、Rh、Ru、Re、Hf又はMoからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf及びMoから選ばれる少なくともいずれか1種を含む合金からなることを特徴とする請求項3に記載のシリカ熱反射板。 The reflector is a plate or foil and is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or at least one selected from Ir, Pt, Rh, Ru, Re, Hf and Mo. The silica heat reflecting plate according to claim 3, wherein the silica heat reflecting plate is made of an alloy containing one or more.
  7.  前記キャビティ内の圧力は、大気圧未満の減圧となっていることを特徴とする請求項3~6のいずれか一つに記載のシリカ熱反射板。 The silica heat reflector according to any one of claims 3 to 6, wherein the pressure in the cavity is reduced to less than atmospheric pressure.
  8.  (1)前記第1シリカ板は、前記周縁部に設けられた土手部と該土手部で取り囲まれて前記キャビティを構成する凹部とを有し、前記第2シリカ板は、平板状であるか、又は、
     (2)前記第1シリカ板は、平板状であり、前記第2シリカ板は、前記周縁部に設けられた土手部と該土手部で取り囲まれて前記キャビティを構成する凹部とを有することを特徴とする請求項3~7のいずれか一つに記載のシリカ熱反射板。
    (1) The first silica plate has a bank portion provided on the peripheral portion and a recess surrounded by the bank portion to form the cavity, and is the second silica plate flat? Or,
    (2) The first silica plate has a flat plate shape, and the second silica plate has a bank portion provided on the peripheral portion and a recess surrounded by the bank portion to form the cavity. The silica heat reflector according to any one of claims 3 to 7.
  9.  前記シリカ熱反射板は、前記キャビティ内で前記合わせ板の構造の対向する面同士の間を立設する少なくとも1本の支柱部を有することを特徴とする請求項3~8の少なくとも1つに記載のシリカ熱反射板。 The silica heat reflector is at least one of claims 3 to 8, wherein the silica heat reflector has at least one strut portion that stands between the facing surfaces of the structure of the laminated plate in the cavity. The silica heat reflector of the description.
  10.  前記支柱部が、柱状又は筒状であることを特徴とする請求項9に記載のシリカ熱反射板。 The silica heat reflector according to claim 9, wherein the support column is columnar or tubular.
  11.  前記シリカ熱反射板は、前記支柱部を複数有し、
     該支柱部は筒状であり、かつ、各支柱部は互いに筒壁の一部を共有した3次元空間充填構造を有することを特徴とする請求項10に記載のシリカ熱反射板。
    The silica heat reflector has a plurality of the support columns and has a plurality of columns.
    The silica heat reflector according to claim 10, wherein the strut portion has a tubular shape, and each strut portion has a three-dimensional space filling structure that shares a part of the tubular wall with each other.
  12.  前記3次元空間充填構造は、ハニカム構造、矩形格子構造、方形格子構造又はひし形格子構造であることを特徴とする請求項11に記載のシリカ熱反射板。 The silica heat reflecting plate according to claim 11, wherein the three-dimensional space filling structure is a honeycomb structure, a rectangular lattice structure, a square lattice structure, or a diamond lattice structure.
  13.  前記第1シリカ板及び前記第2シリカ板の対向し合う面は互いに平坦面であり、
     前記反射体は、前記第2シリカ板側の前記第1シリカ板の表面のうち前記周縁部同士の環状の接合部の内側の領域に形成された薄膜であり、
     該薄膜は、前記第1シリカ板の表面側から順に、下地膜と、前記反射面を含む表面層としての反射膜と、を有する積層膜であり、
     前記下地膜は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co又はNiからなるか、又は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiから選ばれる少なくともいずれか1種を含む合金からなり、
     前記反射膜は、Ir、Pt、Rh、Ru、Re、Hf又はMoからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf及びMoから選ばれる少なくともいずれか1種を含む合金からなり、
     前記下地膜と前記反射膜とが異なる組成を有していることを特徴とする請求項2に記載のシリカ熱反射板。
    The facing surfaces of the first silica plate and the second silica plate are flat surfaces with each other.
    The reflector is a thin film formed in the inner region of the annular junction between the peripheral portions of the surface of the first silica plate on the second silica plate side.
    The thin film is a laminated film having a base film and a reflective film as a surface layer including the reflective surface in order from the surface side of the first silica plate.
    The undercoat is made of Ta, Mo, Ti, Zr, Nb, Cr, W, Co or Ni, or at least one selected from Ta, Mo, Ti, Zr, Nb, Cr, W, Co and Ni. It consists of an alloy containing one kind
    The reflective film is made of Ir, Pt, Rh, Ru, Re, Hf or Mo, or an alloy containing at least one selected from Ir, Pt, Rh, Ru, Re, Hf and Mo. ,
    The silica heat reflector according to claim 2, wherein the base film and the reflective film have different compositions.
  14.  前記キャビティを少なくとも前記第1シリカ板側に有し、
     前記第1シリカ板の前記キャビティ内の表面上に前記反射体として形成した薄膜を有し、
     該薄膜は、Mo膜又はMoを50質量%以上含む合金膜であることを特徴とする請求項3に記載のシリカ熱反射板。
    The cavity is at least on the side of the first silica plate, and the cavity is provided.
    It has a thin film formed as the reflector on the surface of the first silica plate in the cavity.
    The silica heat reflector according to claim 3, wherein the thin film is a Mo film or an alloy film containing 50% by mass or more of Mo.
  15.  前記第1シリカ板が平板であり、
     前記キャビティを前記第2シリカ板側に有し、
     前記第1シリカ板の表面上に前記反射体として形成した薄膜を有し、
     該薄膜は、Mo膜又はMoを50質量%以上含む合金膜であることを特徴とする請求項3に記載のシリカ熱反射板。
    The first silica plate is a flat plate,
    The cavity is provided on the side of the second silica plate.
    It has a thin film formed as the reflector on the surface of the first silica plate, and has.
    The silica heat reflector according to claim 3, wherein the thin film is a Mo film or an alloy film containing 50% by mass or more of Mo.
  16.  前記第1シリカ板及び前記第2シリカ板の対向し合う面は互いに平坦面であり、
     前記反射体は、前記第2シリカ板側の前記第1シリカ板の表面のうち前記周縁部同士の環状の接合部の内側の領域に形成された薄膜であり、
     該薄膜は、Mo膜又はMoを50質量%以上含む合金膜であることを特徴とする請求項2に記載のシリカ熱反射板。
    The facing surfaces of the first silica plate and the second silica plate are flat surfaces with each other.
    The reflector is a thin film formed in the inner region of the annular junction between the peripheral portions of the surface of the first silica plate on the second silica plate side.
    The silica heat reflector according to claim 2, wherein the thin film is a Mo film or an alloy film containing 50% by mass or more of Mo.
  17.  前記キャビティを前記第1シリカ板側及び前記第2シリカ板側に有し、
     前記第1シリカ板の前記キャビティ内の表面上に前記反射体として形成した薄膜を有し、
     該薄膜は、Mo膜又はMoを50質量%以上含む合金膜であることを特徴とする請求項3に記載のシリカ熱反射板。
    The cavity is provided on the first silica plate side and the second silica plate side.
    It has a thin film formed as the reflector on the surface of the first silica plate in the cavity.
    The silica heat reflector according to claim 3, wherein the thin film is a Mo film or an alloy film containing 50% by mass or more of Mo.
  18.  前記反射体の厚さは、0.01μm以上5mm以下であることを特徴とする請求項1~17のいずれか一つに記載のシリカ熱反射板。 The silica heat reflector according to any one of claims 1 to 17, wherein the reflector has a thickness of 0.01 μm or more and 5 mm or less.
  19.  前記周縁部同士の接合部は、表面活性化接合部であることを特徴とする請求項3~18のいずれか一つに記載のシリカ熱反射板。 The silica heat reflector according to any one of claims 3 to 18, wherein the joint portion between the peripheral portions is a surface activated joint portion.
PCT/JP2021/046703 2020-12-28 2021-12-17 Silica heat reflection plate WO2022145255A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237012567A KR20230069174A (en) 2020-12-28 2021-12-17 silica heat reflector
CN202180077002.9A CN116457920A (en) 2020-12-28 2021-12-17 Silicon oxide heat reflecting plate
TW110148379A TW202225625A (en) 2020-12-28 2021-12-23 Silica heat reflection plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020218598 2020-12-28
JP2020-218598 2020-12-28
JP2021098989A JP7096409B1 (en) 2020-12-28 2021-06-14 Silica heat reflector
JP2021-098989 2021-06-14

Publications (1)

Publication Number Publication Date
WO2022145255A1 true WO2022145255A1 (en) 2022-07-07

Family

ID=82259230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046703 WO2022145255A1 (en) 2020-12-28 2021-12-17 Silica heat reflection plate

Country Status (4)

Country Link
JP (1) JP2022104640A (en)
KR (1) KR20230069174A (en)
TW (1) TW202225625A (en)
WO (1) WO2022145255A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778779A (en) * 1993-09-07 1995-03-20 Fuji Electric Co Ltd Radiation heat preventing plate and use thereof
JPH09148315A (en) * 1995-11-20 1997-06-06 Tokyo Electron Ltd Thermal treatment apparatus and treatment apparatus
JPH11340157A (en) * 1998-05-29 1999-12-10 Sony Corp Apparatus and method for optical irradiation heat treatment
JP2000150396A (en) * 1998-11-16 2000-05-30 Sakaguchi Dennetsu Kk Thermal radiation reflector
JP2001102319A (en) * 1999-09-29 2001-04-13 Toshiba Ceramics Co Ltd Heat treatment apparatus
JP2004031846A (en) * 2002-06-28 2004-01-29 Shin Etsu Handotai Co Ltd Vertical type heat treatment apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032667B2 (en) 1980-03-28 1985-07-29 日本原子力研究所 Method of liquefying coal by radiation
JPH1197360A (en) 1997-09-22 1999-04-09 Tokyo Electron Ltd Vertical heat-treating device
JP4172806B2 (en) 2006-09-06 2008-10-29 三菱重工業株式会社 Room temperature bonding method and room temperature bonding apparatus
JP7152711B2 (en) 2018-06-20 2022-10-13 日本電産マシンツール株式会社 Bonded substrate manufacturing method and bonded substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778779A (en) * 1993-09-07 1995-03-20 Fuji Electric Co Ltd Radiation heat preventing plate and use thereof
JPH09148315A (en) * 1995-11-20 1997-06-06 Tokyo Electron Ltd Thermal treatment apparatus and treatment apparatus
JPH11340157A (en) * 1998-05-29 1999-12-10 Sony Corp Apparatus and method for optical irradiation heat treatment
JP2000150396A (en) * 1998-11-16 2000-05-30 Sakaguchi Dennetsu Kk Thermal radiation reflector
JP2001102319A (en) * 1999-09-29 2001-04-13 Toshiba Ceramics Co Ltd Heat treatment apparatus
JP2004031846A (en) * 2002-06-28 2004-01-29 Shin Etsu Handotai Co Ltd Vertical type heat treatment apparatus

Also Published As

Publication number Publication date
KR20230069174A (en) 2023-05-18
TW202225625A (en) 2022-07-01
JP2022104640A (en) 2022-07-08

Similar Documents

Publication Publication Date Title
JP3724848B2 (en) Optical window
US10330941B2 (en) Method for producing window elements that can be soldered into a housing in a hermetically sealed manner and free-form window elements produced in accordance with said method
WO2019131730A1 (en) Color wheel and projector
WO2022145255A1 (en) Silica heat reflection plate
JP7096409B1 (en) Silica heat reflector
JP7029567B1 (en) Silica heat reflector
WO2023106132A1 (en) Heat reflection plate
JP2018095488A (en) Heat radiation element for space and design method thereof and manufacturing method thereof
US20210045195A1 (en) Infrared radiation device
JP4962256B2 (en) Excimer lamp light irradiation device
WO2013172080A1 (en) Optical device and method for manufacturing same
JP2023085792A5 (en)
KR20240091098A (en) heat reflector
TW201021145A (en) Electron beam welding of large vacuum chamber body having a high emissivity coating
CN116457920A (en) Silicon oxide heat reflecting plate
WO2021065556A1 (en) Heat-reflecting member, and method for manufacturing glass member having heat-reflecting layer included therein
JP2019168174A (en) Radiation cooling device
JPH09148056A (en) Quartz plate heater and its manufacture
JPH04196364A (en) Manufacture of photovoltage device
JP2002179439A (en) Method for manufacturing low pressure double layered glass
JP2022530366A (en) Reflective diffraction grating that is resistant to the luminous flux of ultrashort pulses with high peak power and its manufacturing method
JPH0253001A (en) Production of multilayer film for soft x-rays and vacuum ultraviolet rays
US20220324740A1 (en) Reflective member and glass layered member production method
JPH06129898A (en) Infrared ray sensor
EP2606289B1 (en) Heat receiver tube, method for manufacturing the heat receiver tube, parabolic trough collector with the receiver tube and use of the parabolic trough collector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237012567

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180077002.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915116

Country of ref document: EP

Kind code of ref document: A1