WO2022143351A1 - 电磁加热设备及其功率控制方法、功率控制装置 - Google Patents

电磁加热设备及其功率控制方法、功率控制装置 Download PDF

Info

Publication number
WO2022143351A1
WO2022143351A1 PCT/CN2021/140570 CN2021140570W WO2022143351A1 WO 2022143351 A1 WO2022143351 A1 WO 2022143351A1 CN 2021140570 W CN2021140570 W CN 2021140570W WO 2022143351 A1 WO2022143351 A1 WO 2022143351A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
heating
heating module
module
modules
Prior art date
Application number
PCT/CN2021/140570
Other languages
English (en)
French (fr)
Inventor
雷俊
曾露添
朱成彬
王云峰
江德勇
刘文华
Original Assignee
佛山市顺德区美的电热电器制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市顺德区美的电热电器制造有限公司 filed Critical 佛山市顺德区美的电热电器制造有限公司
Publication of WO2022143351A1 publication Critical patent/WO2022143351A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J27/00Cooking-vessels
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J27/00Cooking-vessels
    • A47J27/08Pressure-cookers; Lids or locking devices specially adapted therefor
    • A47J27/086Pressure-cookers; Lids or locking devices specially adapted therefor with built-in heating means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/08Control, e.g. of temperature, of power using compensating or balancing arrangements

Definitions

  • the present application relates to the technical field of electromagnetic heating equipment, and more particularly, to an electromagnetic heating equipment, a power control method thereof, and a power control device.
  • multiple heating areas of an electromagnetic heating appliance are heated in combination with multiple coils.
  • the power tube has a hard turn-on (high voltage conduction), which leads to a large switching loss of the power tube, an increase in temperature, and a decrease in reliability.
  • the present application aims to solve at least one of the technical problems existing in the prior art. To this end, the present application proposes a power control method for an electromagnetic heating device, which avoids the power tube from working in a hard-on state and reduces conduction loss and temperature rise.
  • the present application also proposes a computer-readable storage medium.
  • the present application also proposes an electromagnetic heating device capable of implementing the above power control method.
  • the present application also proposes a power control device for an electromagnetic heating device.
  • an embodiment of the present application proposes a power control method for an electromagnetic heating device, comprising the following steps: when it is determined that a plurality of adjacent heating modules of the electromagnetic heating device are working at the same time, obtain the power of each heating module. target power; determine the power regulation ratio of each heating module according to the target power of the plurality of adjacent heating modules, and control the output power of the corresponding heating module according to the power regulation ratio of each heating module, so that the plurality of heating modules Work at intervals between adjacent heating modules.
  • the output power of the corresponding heating module is controlled according to the power regulation ratio of each heating module, so that a plurality of adjacent heating modules are operated at intervals, so that a plurality of phase
  • the operating frequency of the adjacent heating module is greater than the resonant frequency, and the power tube will not work in a hard-on state, which reduces the conduction loss of the power tube, reduces the temperature rise, and improves product reliability.
  • the power control method of the electromagnetic heating device according to the above-mentioned embodiments of the present application may also have the following additional technical features:
  • the power adjustment of each heating module is determined according to the target power of the plurality of adjacent heating modules ratio, including: determining when the sum of the target power of the first heating module and the target power of the second heating module is greater than or equal to the minimum output power of the electromagnetic heating device and less than or equal to the rated output power of the electromagnetic heating device , determine the first calculation power and the second calculation power according to the sum of the target power of the first heating module and the target power of the second heating module, and the rated output power of the electromagnetic heating device;
  • the target power of the heating module is divided by the first calculation power to obtain the power regulation ratio of the first heating module, and the target power of the second heating module is divided by the second calculation power to obtain the first heating module.
  • the power adjustment ratio of the second heating module is determined according to the target power of the plurality of adjacent heating modules ratio, including: determining when the sum of the target power of the first heating module and the target power of the second heating module is greater than or equal to the minimum output power of the electromagnetic heating device and less than or equal to the
  • the first computing power is equal to the second computing power, and is equal to the sum of the target power of the first heating module and the target power of the second heating module.
  • the power adjustment ratio of the first heating module is the same as the power adjustment ratio of the second heating module.
  • the power adjustment of each heating module is determined according to the target power of the plurality of adjacent heating modules
  • the ratio includes: when it is determined that the sum of the target power of the first heating module and the target power of the second heating module is less than the minimum output power of the electromagnetic heating device, according to the minimum output power of the electromagnetic heating device, and The rated output power of the electromagnetic heating device determines the third calculation power and the fourth calculation power; the target power of the first heating module is divided by the third calculation power to obtain the power regulation ratio of the first heating module , and divide the target power of the second heating module by the fourth calculated power to obtain the power adjustment ratio of the second heating module.
  • the third computing power is equal to the fourth computing power, and is equal to half of the rated output power of the electromagnetic heating device.
  • the power adjustment ratio of the first heating module is greater than the power adjustment ratio of the second heating module.
  • the plurality of adjacent heating modules are adjacent first heating modules and second heating modules, if the interval time between the first heating module and the second heating module is determined If it is longer than the preset time length, the power adjustment ratio of the first heating module and the power adjustment ratio of the second heating module are divided respectively.
  • an embodiment of the present application proposes a computer-readable storage medium on which a power control program of an electromagnetic heating device is stored.
  • the described power control method of electromagnetic heating equipment is stored.
  • an embodiment of the present application proposes an electromagnetic heating device, which includes a memory, a processor, and a power control program for the electromagnetic heating device that is stored in the memory and can be run on the processor, and the processor executes the power control program.
  • the power control method of the electromagnetic heating device as described in the embodiments of the present application is implemented.
  • an embodiment of the present application proposes a power control device for an electromagnetic heating device, comprising: an acquisition module for acquiring each heating module when a plurality of adjacent heating modules of the electromagnetic heating device are working at the same time the target power; the determining module is used to determine the power regulation ratio of each heating module according to the target power of the plurality of adjacent heating modules; the control module is used to compare the power regulation ratio of the corresponding heating module according to the power regulation ratio of each heating module The output power is controlled so that the plurality of adjacent heating modules operate at intervals.
  • the power control device of the electromagnetic heating device by controlling the output power of the corresponding heating module according to the power regulation ratio of each heating module, a plurality of adjacent heating modules are operated at intervals, so that a plurality of phase
  • the operating frequency of the adjacent heating module is greater than the resonant frequency, and the power tube will not work in a hard-on state, which reduces the conduction loss of the power tube, reduces the temperature rise, and improves product reliability.
  • FIG. 1 is a schematic flowchart of a power control method for an electromagnetic heating device according to an embodiment of the present application
  • FIG. 3 is a waveform diagram according to a second embodiment of the present application.
  • FIG. 4 is a waveform diagram according to a third embodiment of the present application.
  • FIG. 5 is a schematic diagram of a power control apparatus according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a power control device and a heating module according to a specific embodiment of the present application.
  • control device 10 acquisition module 11; determination module 12; control module 13;
  • Zero-crossing detection module 50
  • Multiple heating modules (two or more heating modules) of the electromagnetic heating device may correspond to multiple heating zones, and multiple heating zones may be used for heating multiple appliances to simultaneously perform multiple cooking processes.
  • the electromagnetic heating device here may be a multi-head induction cooker, etc., and the heating module may include a heating coil and the like.
  • the power control method of the electromagnetic heating device includes step S1 and step S2.
  • Step S1 When it is determined that a plurality of adjacent heating modules of the electromagnetic heating device are working at the same time, obtain the target power of each heating module.
  • the target power is the power required by each heating module to perform the corresponding cooking process, for example, the power input manually by the user, or the power corresponding to the cooking function selected by the user.
  • Step S2 Determine the power regulation ratio of each heating module according to the target power of the plurality of adjacent heating modules, and control the output power of the corresponding heating module according to the power regulation ratio of each heating module, so that the Work at intervals between adjacent heating modules.
  • the power tube has low loss and low temperature rise in the soft-on state, which is an ideal working state.
  • the loss is large and the temperature rises. If the actual operating frequency of some heating modules is lower than the corresponding power resonance parameters of the heating module and the output of the cookware, the power tube will work in a hard-on state, that is, in a high-voltage conduction state, resulting in a large switching loss of the power tube and a temperature rise. high, reliability is reduced.
  • the output power of the corresponding heating module is controlled according to the power adjustment ratio of each heating module, so that a plurality of adjacent heating modules are operated at intervals.
  • a plurality of adjacent heating modules may include a first heating module and a second heating module, the second heating module stops working when the first heating module is working, and the first heating module stops working when the second heating module is working, thereby The interval operation of the first heating module and the second heating module is realized.
  • the average power of each heating module reaches the corresponding target power, and the actual operating frequency of the heating module can be greater than the resonant frequency, thereby preventing the power tube from working in a hard-on state. , The switching loss of the power tube is small, the temperature rise is low, and the reliability is improved.
  • the time ratio of the operation of each heating module in the entire cycle is the power adjustment ratio of the heating module.
  • the AC power cycle is T.
  • the cycle period between the first heating module and the second heating module is 2T, and the working time of the first heating module in each cycle is T And the power adjustment ratio is 0.5, the working time of the second heating module in each cycle is T and the power adjustment ratio is 0.5; in the example shown in Figure 3, the first heating module and the second heating module work at intervals
  • the cycle period is 2T, the working time of the first heating module in each cycle is T and the power adjustment ratio is 0.5, the working time of the second heating module in each cycle is 0.5T and the power adjustment ratio is 0.25 ;
  • the cycle period of the first heating module and the second heating module working at intervals is 4T, and the working time of the first heating module in each cycle is 2.5T and the power adjustment ratio is 0.625 ,
  • the output power of the corresponding heating module is controlled according to the power regulation ratio of each heating module, so that a plurality of adjacent heating modules are operated at intervals, so that a plurality of phase
  • the operating frequency of the adjacent heating module is greater than the resonant frequency, and the power tube will not work in a hard-on state, which reduces the conduction loss of the power tube, reduces the temperature rise, and improves product reliability.
  • step S2 when the plurality of adjacent heating modules are adjacent first heating modules and second heating modules, in step S2, the power adjustment of each heating module is determined according to the target power of the plurality of adjacent heating modules ratio, which can include:
  • Step S21 When it is determined that the sum of the target power of the first heating module and the target power of the second heating module is greater than or equal to the minimum output power of the electromagnetic heating device and less than or equal to the rated output power of the electromagnetic heating device, according to the target power of the first heating module Determine the first calculation power and the second calculation power with the sum of the target power of the second heating module and the rated output power of the electromagnetic heating device;
  • Step S22 Divide the target power of the first heating module by the first calculation power to obtain the power regulation ratio of the first heating module, and divide the target power of the second heating module by the second calculation power to obtain the power of the second heating module. power ratio.
  • the target power of the first heating module is P1
  • the first calculated power is Pa
  • the power adjustment ratio is K1
  • the target power of the second heating module is P2
  • the second calculated power is Pb
  • the adjustment ratio is K1.
  • the power ratio is K2
  • the minimum output power of the electromagnetic heating device is Pmin
  • the rated output power of the electromagnetic heating device is P0.
  • Pmin ⁇ P1+P2 ⁇ P0 Pa and Pb are determined according to P1+P2 and P0, wherein P1+P2 ⁇ Pa ⁇ P0, and P1+P2 ⁇ Pb ⁇ P0.
  • Power adjustment ratio of the first heating module The power adjustment ratio of the second heating module In the process of controlling the first heating module and the second heating module to work at intervals, in each cycle, the first heating module works at Pa power for the time corresponding to the power adjustment ratio K1 and does not work at other times, so that the cycle
  • the average power of the first heating module in the cycle is K1 ⁇ Pa, which is the target power P1; the second heating module works at the time corresponding to the Pb power adjustment ratio K2 and does not work at other times, so that the first heating module in the cycle
  • the average power of the heating module is K2 ⁇ Pb, which is the target power P2. Therefore, Pa is greater than P1 and Pb is greater than P2.
  • the target power is small, it can not only meet the output power demand, but also make
  • the working frequencies of the first heating module and the second heating module are equal, so as to avoid the mixing of multiple frequencies during the working process to generate a composite frequency, and to avoid the sharp and harsh noise generated by the composite difference frequency signal, which is beneficial to improve the user experience.
  • K1 and K2 are both 0.5, the first heating module and the second heating module respectively heat the cookware with better uniformity, and the power control method is simpler.
  • step S2 when the plurality of adjacent heating modules are adjacent first heating modules and second heating modules, in step S2, the power adjustment of each heating module is determined according to the target power of the plurality of adjacent heating modules ratio, which can include:
  • Step S23 When it is determined that the sum of the target power of the first heating module and the target power of the second heating module is less than the minimum output power of the electromagnetic heating device, determine the first power according to the minimum output power of the electromagnetic heating device and the rated output power of the electromagnetic heating device.
  • Step S24 Divide the target power of the first heating module by the third calculation power to obtain the power regulation ratio of the first heating module, and divide the target power of the second heating module by the fourth calculation power to obtain the power of the second heating module. power ratio.
  • the target power of the first heating module is P1
  • the third calculation power is Pc
  • the power adjustment ratio is K1
  • the target power of the second heating module is P2
  • the fourth calculation power is Pd
  • the adjustment ratio is K1.
  • the power ratio is K2
  • the minimum output power of the electromagnetic heating device is Pmin
  • the rated output power of the electromagnetic heating device is P0.
  • Pc and Pd are determined according to Pmin and P0, wherein Pmin ⁇ Pc ⁇ P0, and Pmin ⁇ Pd ⁇ P0.
  • Power adjustment ratio of the first heating module The power adjustment ratio of the second heating module In the process of controlling the first heating module and the second heating module to work at intervals, in each cycle, the first heating module works at the time corresponding to the Pc power adjustment ratio K1 and does not work at other times, so that the cycle
  • the average power of the first heating module in the cycle is K1 ⁇ Pc, which is the target power P1;
  • the second heating module works at the time corresponding to the Pd power adjustment ratio K2 and does not work at other times, so that the first heating module in the cycle
  • the average power of the heating module is K2 ⁇ Pd, which is the target power P2.
  • Pc is greater than P1
  • Pd is greater than P2.
  • the third computing power is equal to the fourth computing power and is equal to one-half the rated output power of the electromagnetic heating device. which is, Therefore, a lower target power can be achieved, and the operating frequencies of the first heating module and the second heating module are equal, so as to avoid multiple frequencies being mixed together to generate a composite frequency during the working process, and to avoid the sharp and harsh sound caused by the composite difference frequency signal
  • the noise is beneficial to improve the user experience.
  • the power adjustment ratio of the first heating module is greater than the power adjustment ratio of the second heating module. That is, K1>K2.
  • K1 is 0.75
  • K2 is 0.25, so that the average power of the second heating module is smaller, and a lower target power demand can be met.
  • the applicant has found through research that when the alternating interval of a plurality of adjacent heating modules is relatively large, that is, when each heating module stops working for a relatively long time, poor heating uniformity is likely to occur. Therefore, according to some embodiments of the present application, when the plurality of adjacent heating modules are adjacent to the first heating module and the second heating module, if it is determined that the interval between the first heating module and the second heating module is greater than a preset time time length, the power adjustment ratio of the first heating module and the power adjustment ratio of the second heating module are respectively divided. In other words, in each cycle, the first heating module works in multiple times, the second heating module works in multiple times, and the first heating module and the second heating module do not work at the same time.
  • the preset duration can be flexibly set according to the actual situation, for example, the preset duration can be 2T.
  • the period of the AC power supply is T
  • the cycle period of the interval operation between the first heating module and the second heating module is 4T
  • the working time of the first heating module in each cycle period is 2.5T and the power adjustment ratio is 0.625
  • the working time of the second heating module in each cycle is 1.5T and the power adjustment ratio is 0.375.
  • the power adjustment ratio of the first heating module is divided into 0.375 and 0.25, corresponding to the working time of 1.5T and T respectively; the power adjustment ratio of the second heating module is divided into 0.125 and 0.25, respectively corresponding to
  • the working time is 0.5T and T; in the 0-1.5T time period, the first heating module works and the second heating module does not work; in the 1.5T-2T time period, the second heating module works and the first heating module does not work.
  • a heating module does not work; in the 2T-3T time period, the first heating module works and the second heating module does not work; in the 3T-4T time period, the second heating module works and the first heating module does not work. Therefore, in each cycle period, the first heating module and the second heating module stop working for a shorter duration each time, thereby improving the uniformity of heating.
  • the computer-readable storage medium stores thereon a power control program of the electromagnetic heating device, and when the power control program of the electromagnetic heating device is executed by the processor, realizes the power control of the electromagnetic heating device according to the embodiment of the present application method. Since the power control method for an electromagnetic heating device according to the embodiment of the present application has the above-mentioned beneficial technical effects, the power control program stored in the computer-readable storage medium according to the embodiment of the present application realizes the description of the above-mentioned embodiment when the stored power control program is executed by the processor.
  • the output power of the corresponding heating module is controlled according to the power regulation ratio of each heating module, so that a plurality of adjacent heating modules are operated at intervals, so that the operating frequency of the plurality of adjacent heating modules is greater than the resonant frequency.
  • the electromagnetic heating device includes a memory, a processor, and a power control program of the electromagnetic heating device that is stored in the memory and can be run on the processor.
  • Power control method for electromagnetic heating equipment Since the power control method of the electromagnetic heating device according to the embodiment of the present application has the above-mentioned beneficial technical effects, the electromagnetic heating device according to the embodiment of the present application performs the output power control of the corresponding heating module according to the power adjustment ratio of each heating module. Control, make multiple adjacent heating modules work at intervals, so that the operating frequency of multiple adjacent heating modules is greater than the resonant frequency, the power tube will not work in the hard-on state, and the conduction loss of the power tube will be reduced. Reduce temperature rise and improve product reliability.
  • the power control device 10 of the electromagnetic heating device includes: an acquisition module 11 , a determination module 12 and a control module 13 .
  • the obtaining module 11 is used to obtain the target power of each heating module when a plurality of adjacent heating modules of the electromagnetic heating device are working at the same time.
  • the determining module 12 is configured to determine the power regulation ratio of each heating module according to the target power of the plurality of adjacent heating modules.
  • the control module 13 is used to control the output power of the corresponding heating module according to the power regulation ratio of each heating module, so that a plurality of adjacent heating modules can work at intervals.
  • the control module 13 controls the output power of the corresponding heating module according to the power adjustment ratio of each heating module, so that a plurality of adjacent heating modules work at intervals.
  • a plurality of adjacent heating modules may include a first heating module 31 and a second heating module 32, the control module 13 controls the first heating module 31 to work when the second heating module 32 stops working, and the control module 13 controls the second heating module.
  • the first heating module 31 stops working, thereby realizing the interval operation of the first heating module 31 and the second heating module 32 .
  • the average power of each heating module reaches the corresponding target power, and the actual operating frequency of the heating module can be greater than the resonant frequency, thereby preventing the power tube from working in a hard-on state. , The switching loss of the power tube is small, the temperature rise is low, and the reliability is improved.
  • the time ratio of the operation of each heating module to the entire cycle is the power adjustment ratio of the heating module.
  • the cycle of the AC power supply 20 is T.
  • the cycle cycle between the first heating module 31 and the second heating module 32 is 2T, and the first heating module 31 works in each cycle cycle.
  • the time is T and the power adjustment ratio is 0.5
  • the working time of the second heating module 32 in each cycle is T and the power adjustment ratio is 0.5; in the example shown in FIG.
  • the first heating module 31 and The cycle period of the second heating module 32 working at intervals is 2T
  • the working time of the first heating module 31 in each cycle is T and the power adjustment ratio is 0.5
  • the working time of the second heating module 32 in each cycle is 0.5T and the power adjustment ratio is 0.25
  • the cycle period of the first heating module 31 and the second heating module 32 working at intervals is 4T
  • the first heating module 31 in each cycle The working time is 2.5T and the power adjustment ratio is 0.625.
  • the working time of the second heating module 32 in each cycle is 1.5T and the power adjustment ratio is 0.375.
  • the power control device 10 of the electromagnetic heating device by controlling the output power of the corresponding heating module according to the power adjustment ratio of each heating module, a plurality of adjacent heating modules are operated at intervals, so that a plurality of adjacent heating modules are operated at intervals.
  • the operating frequency of the adjacent heating modules is greater than the resonant frequency, and the power tube will not work in the hard-on state, which reduces the conduction loss of the power tube, reduces the temperature rise, and improves the reliability of the electromagnetic heating equipment.
  • the method for determining the power adjustment ratio of each heating module by the determination module 12 and the method for the control module 13 to control the output power of the corresponding heating module may refer to the power of the electromagnetic heating device in the embodiment of the present application. The control method will not be repeated here.
  • the power control device 10 of the electromagnetic heating device is connected to the first heating module 31 through the first driving module 41 , and is connected to the second heating module through the second driving module 42 .
  • 32 is connected to control the first heating module 31 and the second heating module 32 by outputting a PWM (Pulse Width Modulation, pulse width modulation) signal.
  • the first heating module 31 includes a first upper bridge power tube, a first lower bridge power tube, a first heating coil and a first resonant capacitor pair;
  • the second heating module 32 includes a second upper bridge power tube and a second lower bridge power tube , a second heating coil and a second resonant capacitor pair.
  • the power control device 10 of the electromagnetic heating equipment outputs a PWM signal to the drive module, and the drive module outputs a complementary PWM signal to control the upper bridge power tube and the lower bridge power tube to be turned on alternately, and to control the heating coil to output an alternating current to generate an alternating magnetic field.
  • the changing magnetic field induces alternating eddy currents in the metal pots placed on the heating coil, and the alternating eddy currents make the pots heat up, thereby heating food.
  • the zero-crossing detection module 50 generates a zero-volt signal when the AC power source 20 is at the zero-crossing point (zero volts) and inputs it to the power control device 10 for control. After detecting the zero-volt signal, the power control device 10 can count the zero-crossing points to It is determined whether the first heating module 31 and the second heating module 32 switch the working state according to the number of zero-crossing points. For example, in the example shown in FIG. 2 , at the beginning of each cycle, the zero-crossing points are cleared and the first heating module 31 is controlled to work and the second heating module 32 is not working. Each time a zero-volt signal is detected, the zero-crossing points are increased.
  • the first heating module 31 is controlled to stop working and the second heating module 32 is working; when the number of zero-crossing points is 4, the first heating module 31 is controlled to work, the second heating module 32 is stopped and Zero-crossing points are cleared.
  • references to the terms “one embodiment,” “some embodiments,” “example,” “specific example,” or “some examples”, etc. means a specific feature described in connection with the embodiment or example, A structure, material, or feature is included in at least one embodiment or example of the present application.
  • schematic representations of the above terms are not necessarily directed to the same embodiment or example.
  • the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
  • those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transport the program for use by or in connection with an instruction execution system, apparatus, or apparatus.
  • computer readable media include the following: electrical connections with one or more wiring (electronic devices), portable computer disk cartridges (magnetic devices), random access memory (RAM), Read Only Memory (ROM), Erasable Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
  • the computer readable medium may even be paper or other suitable medium on which the program may be printed, as the paper or other medium may be optically scanned, for example, followed by editing, interpretation, or other suitable medium as necessary process to obtain the program electronically and then store it in computer memory.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist physically alone, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. If the integrated modules are implemented in the form of software functional modules and sold or used as independent products, they may also be stored in a computer-readable storage medium.
  • the above-mentioned storage medium may be a read-only memory, a magnetic disk or an optical disk, and the like.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of the two elements or the interaction relationship between the two elements.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of the two elements or the interaction relationship between the two elements.
  • a first feature "on” or “under” a second feature may be in direct contact with the first and second features, or the first and second features indirectly through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • General Induction Heating (AREA)

Abstract

一种电磁加热设备及其功率控制方法、功率控制装置,电磁加热设备的功率控制方法包括以下步骤:在确定电磁加热设备的多个相邻加热模块同时进行工作时,获取每个加热模块的目标功率;根据多个相邻加热模块的目标功率确定每个加热模块的调功比,并根据每个加热模块的调功比对相应加热模块的输出功率进行控制,以便多个相邻加热模块间隔进行工作。

Description

电磁加热设备及其功率控制方法、功率控制装置
相关申请的交叉引用
本申请要求佛山市顺德区美的电热电器制造有限公司于2020年12月29日提交的、中国专利申请号为“202011589019.6”的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电磁加热设备技术领域,更具体地,涉及一种电磁加热设备及其功率控制方法、功率控制装置。
背景技术
在相关技术中,电磁加热器具的多个加热区域对应多个线盘组合加热,两个或以上的相邻加热区域同时加热时,当某些加热区域的实际工作频率低于线盘与锅具输出相应功率谐振参数时,功率管存在硬开(高压导通),导致功率管开关损耗大,温升高,可靠性降低。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种电磁加热设备的功率控制方法,避免功率管在硬开通状态下工作,降低了导通损耗和温升。
本申请还提出一种计算机可读存储介质。
本申请还提出一种能够实现上述功率控制方法的电磁加热设备。
本申请还提出一种电磁加热设备的功率控制装置。
为达到上述目的,本申请实施例提出了一种电磁加热设备的功率控制方法,包括以下步骤:在确定所述电磁加热设备的多个相邻加热模块同时进行工作时,获取每个加热模块的目标功率;根据所述多个相邻加热模块的目标功率确定每个加热模块的调功比,并根据每个加热模块的调功比对相应加热模块的输出功率进行控制,以便所述多个相邻加热模块间隔进行工作。
根据本申请实施例的电磁加热设备的功率控制方法,通过根据每个加热模块的调功比对相应加热模块的输出功率进行控制,使多个相邻加热模块间隔进行工作,从而使多个相邻加热模块的工作频率大于谐振频率,不会出现功率管在硬开通状态下工作的情况,降低了功率管导通损耗,降低温升,提高了产品可靠性。
另外,根据本申请上述实施例的电磁加热设备的功率控制方法还可以具有如下附加的技 术特征:
根据本申请一些实施例,所述多个相邻加热模块为相邻的第一加热模块和第二加热模块时,根据所述多个相邻加热模块的目标功率确定每个加热模块的调功比,包括:确定所述第一加热模块的目标功率与所述第二加热模块的目标功率之和大于等于所述电磁加热设备的最小输出功率且小于等于所述电磁加热设备的额定输出功率时,根据所述第一加热模块的目标功率与所述第二加热模块的目标功率之和、以及所述电磁加热设备的额定输出功率确定第一计算功率和第二计算功率;将所述第一加热模块的目标功率除以所述第一计算功率以获得所述第一加热模块的调功比,并将所述第二加热模块的目标功率除以所述第二计算功率以获得所述第二加热模块的调功比。
根据本申请一些实施例,所述第一计算功率与所述第二计算功率相等,且等于所述第一加热模块的目标功率与所述第二加热模块的目标功率之和。
根据本申请一些实施例,所述第一加热模块的调功比与所述第二加热模块的调功比相同。
根据本申请一些实施例,所述多个相邻加热模块为相邻的第一加热模块和第二加热模块时,根据所述多个相邻加热模块的目标功率确定每个加热模块的调功比,包括:确定所述第一加热模块的目标功率与所述第二加热模块的目标功率之和小于所述电磁加热设备的最小输出功率时,根据所述电磁加热设备的最小输出功率、以及所述电磁加热设备的额定输出功率确定第三计算功率和第四计算功率;将所述第一加热模块的目标功率除以所述第三计算功率以获得所述第一加热模块的调功比,并将所述第二加热模块的目标功率除以所述第四计算功率以获得所述第二加热模块的调功比。
根据本申请一些实施例,所述第三计算功率与所述第四计算功率相等,且等于所述电磁加热设备的额定输出功率的二分之一。
根据本申请一些实施例,所述第一加热模块的调功比大于所述第二加热模块的调功比。
根据本申请一些实施例,所述多个相邻加热模块为相邻的第一加热模块和第二加热模块时,如果确定所述第一加热模块与所述第二加热模块之间的间隔时间大于预设时长,则分别对所述第一加热模块的调功比与所述第二加热模块的调功比进行分割。
为达到上述目的,本申请实施例提出一种计算机可读存储介质,其上存储有电磁加热设备的功率控制程序,该电磁加热设备的功率控制程序被处理器执行时实现如本申请实施例所述的电磁加热设备的功率控制方法。
为达到上述目的,本申请实施例提出一种电磁加热设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的电磁加热设备的功率控制程序,所述处理器执行所述功率控制程序时,实现如本申请实施例所述的电磁加热设备的功率控制方法。
为达到上述目的,本申请实施例提出一种电磁加热设备的功率控制装置,包括:获取模块,用于在所述电磁加热设备的多个相邻加热模块同时进行工作时,获取每个加热模块的目标功率;确定模块,用于根据所述多个相邻加热模块的目标功率确定每个加热模块的调功比;控制模块,用于根据每个加热模块的调功比对相应加热模块的输出功率进行控制,以便所述多个相邻加热模块间隔进行工作。
根据本申请实施例的电磁加热设备的功率控制装置,通过根据每个加热模块的调功比对相应加热模块的输出功率进行控制,使多个相邻加热模块间隔进行工作,从而使多个相邻加热模块的工作频率大于谐振频率,不会出现功率管在硬开通状态下工作的情况,降低了功率管导通损耗,降低温升,提高了产品可靠性。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的电磁加热设备的功率控制方法的流程示意图;
图2是根据本申请第一实施例的波形图;
图3是根据本申请第二实施例的波形图;
图4是根据本申请第三实施例的波形图;
图5是根据本申请实施例的功率控制装置的示意图;
图6是根据本申请一个具体实施例的功率控制装置和加热模块的示意图。
附图说明:
功率控制装置10;获取模块11;确定模块12;控制模块13;
交流电源20;
第一加热模块31;第二加热模块32;
第一驱动模块41;第二驱动模块42;
过零检测模块50。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面结合附图来描述本申请实施例的电磁加热设备及其功率控制方法、功率控制装置10。
电磁加热设备的多个加热模块(加热模块的数量为两个或两个以上)可以对应多个加热区,多个加热区可以用于多个器具的加热,以同时执行多个烹饪过程。这里的电磁加热设备可以是多头电磁炉等,加热模块可以包括加热线圈等。
下面参考图1-图4描述根据本申请第一方面实施例的电磁加热设备的功率控制方法。
如图1所示,该电磁加热设备的功率控制方法包括步骤S1和步骤S2。
步骤S1:在确定所述电磁加热设备的多个相邻加热模块同时进行工作时,获取每个加热模块的目标功率。换言之,在同时通过多个相邻加热模块分别对多个器具进行加热,以执行多个烹饪过程时,获取多个加热模块的目标功率。目标功率为每个加热模块执行相应烹饪过程所需的功率,例如可以为用户手动输入的功率,或者为用户选择的烹饪功能所对应的功率。
步骤S2:根据所述多个相邻加热模块的目标功率确定每个加热模块的调功比,并根据每个加热模块的调功比对相应加热模块的输出功率进行控制,以便所述多个相邻加热模块间隔进行工作。
功率管在软开通状态下损耗小,温升低,是理想的工作状态。功率管处于硬开通状态下损耗大,温升高。而若某些加热模块的实际工作频率低于加热模块与锅具输出相应功率谐振参数时,功率管会在硬开通状态下工作,即处于高压导通状态,导致功率管开关损耗大,温升高,可靠性降低。
因此,在本申请的实施例中,根据每个加热模块的调功比对相应加热模块的输出功率进行控制,使多个相邻加热模块间隔进行工作。例如,多个相邻加热模块可以包括第一加热模块和第二加热模块,第一加热模块进行工作时第二加热模块停止工作,第二加热模块进行工作时第一加热模块停止工作,由此实现第一加热模块和第二加热模块的间隔工作。
由于多个相邻加热模块间隔进行工作,使每个加热模块的平均功率达到对应的目标功率,而加热模块进行工作时的实际工作频率能够大于谐振频率,从而防止功率管在硬开通状态下工作,功率管的开关损耗小,温升低,可靠性提高。
其中,多个相邻加热模块间隔进行工作的每个循环周期内,每个加热模块进行工作占整个循环周期的时间比即为该加热模块的调功比。例如,交流电源周期为T,在如图2所示的示例中,第一加热模块和第二加热模块间隔工作的循环周期为2T,每个循环周期内第一加热模块进行工作的时间为T且调功比为0.5,每个循环周期内第二加热模块进行工作的时间为T且调功比为0.5;在如图3所示的示例中,第一加热模块和第二加热模块间隔工作的循环周期为2T,每个循环周期内第一加热模块进行工作的时间为T且调功比为0.5,每个循环周期内第二加热模块进行工作的时间为0.5T且调功比为0.25;在如图4所示的示例中,第 一加热模块和第二加热模块间隔工作的循环周期为4T,每个循环周期内第一加热模块进行工作的时间为2.5T且调功比为0.625,每个循环周期内第二加热模块进行工作的时间为1.5T且调功比为0.375。
根据本申请实施例的电磁加热设备的功率控制方法,通过根据每个加热模块的调功比对相应加热模块的输出功率进行控制,使多个相邻加热模块间隔进行工作,从而使多个相邻加热模块的工作频率大于谐振频率,不会出现功率管在硬开通状态下工作的情况,降低了功率管导通损耗,降低温升,提高了产品可靠性。
根据本申请的一些实施例,多个相邻加热模块为相邻的第一加热模块和第二加热模块时,步骤S2中根据多个相邻加热模块的目标功率确定每个加热模块的调功比,可以包括:
步骤S21:确定第一加热模块的目标功率与第二加热模块的目标功率之和大于等于电磁加热设备的最小输出功率且小于等于电磁加热设备的额定输出功率时,根据第一加热模块的目标功率与第二加热模块的目标功率之和、以及电磁加热设备的额定输出功率确定第一计算功率和第二计算功率;
步骤S22:将第一加热模块的目标功率除以第一计算功率以获得第一加热模块的调功比,并将第二加热模块的目标功率除以第二计算功率以获得第二加热模块的调功比。
具体地,如图2所示,第一加热模块的目标功率为P1、第一计算功率为Pa、调功比为K1,第二加热模块的目标功率为P2、第二计算功率为Pb、调功比为K2,电磁加热设备的最小输出功率为Pmin,电磁加热设备的额定输出功率为P0。
确定Pmin<P1+P2≤P0时,根据P1+P2和P0确定Pa和Pb,其中,P1+P2≤Pa≤P0,P1+P2≤Pb≤P0。第一加热模块的调功比
Figure PCTCN2021140570-appb-000001
第二加热模块的调功比
Figure PCTCN2021140570-appb-000002
在控制第一加热模块和第二加热模块间隔进行工作的过程中,每个循环周期内,第一加热模块以Pa功率工作调功比K1所对应的时间而其他时间不工作,以使该循环周期内第一加热模块的平均功率为K1×Pa,即为目标功率P1;第二加热模块以Pb功率工作调功比K2所对应的时间而其他时间不工作,以使该循环周期内第一加热模块的平均功率为K2×Pb,即为目标功率P2。由此,Pa大于P1,Pb大于P2,在目标功率较小时,既能满足输出功率需求,又能使实际工作频率大于谐振频率,防止功率管在硬开通状态工作。
在一些实施例中,第一计算功率与第二计算功率相等,且等于第一加热模块的目标功率与第二加热模块的目标功率之和。即,Pa=Pb=P1+P2。由此第一加热模块和第二加热模块的工作频率相等,从而避免工作过程中多种频率混合在一起产生合成频率,避免合成差频信号而产生尖锐刺耳的噪音,有利于提高用户的使用体验。
在一些实施例中,第一加热模块的调功比与第二加热模块的调功比相同。即,K1=K2。例如在如图2所示的示例中,K1和K2均为0.5,第一加热模块和第二加热模块分别对锅具进行加热的均匀性更好,且功率控制方法更简单。
根据本申请的一些实施例,多个相邻加热模块为相邻的第一加热模块和第二加热模块时,步骤S2中根据多个相邻加热模块的目标功率确定每个加热模块的调功比,可以包括:
步骤S23:确定第一加热模块的目标功率与第二加热模块的目标功率之和小于电磁加热设备的最小输出功率时,根据电磁加热设备的最小输出功率、以及电磁加热设备的额定输出功率确定第三计算功率和第四计算功率;
步骤S24:将第一加热模块的目标功率除以第三计算功率以获得第一加热模块的调功比,并将第二加热模块的目标功率除以第四计算功率以获得第二加热模块的调功比。
具体地,如图3所示,第一加热模块的目标功率为P1、第三计算功率为Pc、调功比为K1,第二加热模块的目标功率为P2、第四计算功率为Pd、调功比为K2,电磁加热设备的最小输出功率为Pmin,电磁加热设备的额定输出功率为P0。
确定P1+P2<Pmin时,根据Pmin和P0确定Pc和Pd,其中,Pmin≤Pc≤P0,Pmin≤Pd≤P0。第一加热模块的调功比
Figure PCTCN2021140570-appb-000003
第二加热模块的调功比
Figure PCTCN2021140570-appb-000004
在控制第一加热模块和第二加热模块间隔进行工作的过程中,每个循环周期内,第一加热模块以Pc功率工作调功比K1所对应的时间而其他时间不工作,以使该循环周期内第一加热模块的平均功率为K1×Pc,即为目标功率P1;第二加热模块以Pd功率工作调功比K2所对应的时间而其他时间不工作,以使该循环周期内第一加热模块的平均功率为K2×Pd,即为目标功率P2。由此,Pc大于P1,Pd大于P2,在目标功率较小时,既能满足输出功率需求,又能使实际工作频率大于谐振频率,防止功率管在硬开通状态工作。
在一些实施例中,第三计算功率与第四计算功率相等,且等于电磁加热设备的额定输出功率的二分之一。即,
Figure PCTCN2021140570-appb-000005
由此,能够实现更低的目标功率,并且第一加热模块和第二加热模块的工作频率相等,从而避免工作过程中多种频率混合在一起产生合成频率,避免合成差频信号而产生尖锐刺耳的噪音,有利于提高用户的使用体验。
在一些实施例中,如图3所示,第一加热模块的调功比大于第二加热模块的调功比。即,K1>K2。例如在如图3所示的示例中,K1为0.75,K2为0.25,从而使第二加热模块的平均功率更小,能够满足更低的目标功率需求。
此外,申请人研究发现,多个相邻加热模块交替间隔时间较大时,即每个加热模块停止 工作的时间较长时,容易出现加热均匀性差的情况。因此,根据本申请的一些实施例,多个相邻加热模块为相邻的第一加热模块和第二加热模块时,如果确定第一加热模块与第二加热模块之间的间隔时间大于预设时长,则分别对第一加热模块的调功比与第二加热模块的调功比进行分割。换言之,在每个循环周期内,第一加热模块分多次进行工作,第二加热模块分多次进行工作,且第一加热模块和第二加热模块不同时工作。这里,预设时长可以根据实际情况灵活设置,例如预设时长可以为2T。
例如,在如图4所示的示例中,交流电源的周期为T,第一加热模块和第二加热模块间隔工作的循环周期为4T,每个循环周期内第一加热模块进行工作的时间为2.5T且调功比为0.625,每个循环周期内第二加热模块进行工作的时间为1.5T且调功比为0.375。其中,每个循环周期内,第一加热模块的调功比分割为0.375和0.25,分别对应进行工作的时间为1.5T和T;第二加热模块的调功比分割为0.125和0.25,分别对应进行工作的时间为0.5T和T;在0-1.5T时间段内,第一加热模块进行工作而第二加热模块不工作;在1.5T-2T时间段内,第二加热模块进行工作而第一加热模块不工作;在2T-3T时间段内,第一加热模块进行工作而第二加热模块不工作;在3T-4T时间段内,第二加热模块进行工作而第一加热模块不工作。由此,每个循环周期内,第一加热模块和第二加热模块每次停止工作的持续时间较短,从而提高加热的均匀性。
根据本申请实施例的计算机可读存储介质,其上存储有电磁加热设备的功率控制程序,该电磁加热设备的功率控制程序被处理器执行时实现如本申请实施例的电磁加热设备的功率控制方法。由于根据本申请实施例的电磁加热设备的功率控制方法具有上述有益的技术效果,因此根据本申请实施例的计算机可读存储介质,其存储的功率控制程序被处理器执行时实现上述实施例描述的功率控制方法,通过根据每个加热模块的调功比对相应加热模块的输出功率进行控制,使多个相邻加热模块间隔进行工作,从而使多个相邻加热模块的工作频率大于谐振频率,不会出现功率管在硬开通状态下工作的情况,降低了功率管导通损耗,降低温升,提高了产品可靠性。
根据本申请实施例的电磁加热设备包括存储器、处理器及存储在存储器上并可在处理器上运行的电磁加热设备的功率控制程序,处理器执行功率控制程序时,实现如本申请实施例的电磁加热设备的功率控制方法。由于根据本申请实施例的电磁加热设备的功率控制方法具有上述有益的技术效果,因此根据本申请实施例的电磁加热设备,通过根据每个加热模块的调功比对相应加热模块的输出功率进行控制,使多个相邻加热模块间隔进行工作,从而使多个相邻加热模块的工作频率大于谐振频率,不会出现功率管在硬开通状态下工作的情况,降低了功率管导通损耗,降低温升,提高了产品可靠性。
如图5所示,根据本申请实施例的电磁加热设备的功率控制装置10,包括:获取模块 11、确定模块12和控制模块13。
其中,获取模块11用于在电磁加热设备的多个相邻加热模块同时进行工作时,获取每个加热模块的目标功率。确定模块12用于根据多个相邻加热模块的目标功率确定每个加热模块的调功比。控制模块13用于根据每个加热模块的调功比对相应加热模块的输出功率进行控制,以便多个相邻加热模块间隔进行工作。
控制模块13根据每个加热模块的调功比对相应加热模块的输出功率进行控制,使多个相邻加热模块间隔进行工作。例如,多个相邻加热模块可以包括第一加热模块31和第二加热模块32,控制模块13控制第一加热模块31进行工作时第二加热模块32停止工作,控制模块13控制第二加热模块32进行工作时第一加热模块31停止工作,由此实现第一加热模块31和第二加热模块32的间隔工作。
由于多个相邻加热模块间隔进行工作,使每个加热模块的平均功率达到对应的目标功率,而加热模块进行工作时的实际工作频率能够大于谐振频率,从而防止功率管在硬开通状态下工作,功率管的开关损耗小,温升低,可靠性提高。
其中,控制模块13控制多个相邻加热模块间隔进行工作的每个循环周期内,每个加热模块进行工作占整个循环周期的时间比即为该加热模块的调功比。例如,交流电源20周期为T,在如图2所示的示例中,第一加热模块31和第二加热模块32间隔工作的循环周期为2T,每个循环周期内第一加热模块31进行工作的时间为T且调功比为0.5,每个循环周期内第二加热模块32进行工作的时间为T且调功比为0.5;在如图3所示的示例中,第一加热模块31和第二加热模块32间隔工作的循环周期为2T,每个循环周期内第一加热模块31进行工作的时间为T且调功比为0.5,每个循环周期内第二加热模块32进行工作的时间为0.5T且调功比为0.25;在如图4所示的示例中,第一加热模块31和第二加热模块32间隔工作的循环周期为4T,每个循环周期内第一加热模块31进行工作的时间为2.5T且调功比为0.625,每个循环周期内第二加热模块32进行工作的时间为1.5T且调功比为0.375。
根据本申请实施例的电磁加热设备的功率控制装置10,通过根据每个加热模块的调功比对相应加热模块的输出功率进行控制,使多个相邻加热模块间隔进行工作,从而使多个相邻加热模块的工作频率大于谐振频率,不会出现功率管在硬开通状态下工作的情况,降低了功率管导通损耗,降低温升,提高了电磁加热设备的可靠性。
在本申请的实施例中,确定模块12确定每个加热模块的调功比的方法、以及控制模块13对相应加热模块的输出功率进行控制的方法可以参照本申请实施例的电磁加热设备的功率控制方法,在此不再赘述。
下面参考附图详细描述根据本申请的一个具体实施例的电磁加热设备的功率控制装置10和功率控制方法,值得理解的是,下述描述只是示例性说明,而不能理解为对申请的限 制。
在本申请的一个具体实施例中,如图6所示,电磁加热设备的功率控制装置10通过第一驱动模块41与第一加热模块31相连,且通过第二驱动模块42与第二加热模块32相连,以输出PWM(Pulse Width Modulation,脉冲宽度调制)信号控制第一加热模块31和第二加热模块32。第一加热模块31包括第一上桥功率管、第一下桥功率管、第一加热线圈和第一谐振电容对;第二加热模块32包括第二上桥功率管、第二下桥功率管、第二加热线圈和第二谐振电容对。电磁加热设备的功率控制装置10输出PWM信号至驱动模块,驱动模块输互补PWM信号控制上桥功率管和下桥功率管交替轮流导通,控制加热线圈输出交变电流,产生交变磁场,交变磁场使放在加热线圈上面的金属锅具感应出交变涡流,交变涡流使锅具发热,从而实现加热食物。
通过过零检测模块50在交流电源20处于过零点(为零伏)时刻产生零伏信号并输入控制至功率控制装置10,功率控制装置10可以检测到零伏信号后对过零点进行计数,以根据过零点数判断第一加热模块31和第二加热模块32是否切换工作状态。例如在图2所示的示例中,每个循环周期开始时过零点数清零并控制第一加热模块31进行工作且第二加热模块32不工作,每检测到一个零伏信号过零点数加一,当过零点数为2时控制第一加热模块31停止工作且第二加热模块32进行工作,当过零点数为4时控制第一加热模块31进行工作、第二加热模块32停止工作且过零点数清零。
根据本申请实施例的电磁加热设备的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根 据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、 “宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 一种电磁加热设备的功率控制方法,其中,包括以下步骤:
    在确定所述电磁加热设备的多个相邻加热模块同时进行工作时,获取每个加热模块的目标功率;
    根据所述多个相邻加热模块的目标功率确定每个加热模块的调功比,并根据每个加热模块的调功比对相应加热模块的输出功率进行控制,以便所述多个相邻加热模块间隔进行工作。
  2. 如权利要求1所述电磁加热设备的功率控制方法,其中,所述多个相邻加热模块为相邻的第一加热模块和第二加热模块时,根据所述多个相邻加热模块的目标功率确定每个加热模块的调功比,包括:
    确定所述第一加热模块的目标功率与所述第二加热模块的目标功率之和大于等于所述电磁加热设备的最小输出功率且小于等于所述电磁加热设备的额定输出功率时,根据所述第一加热模块的目标功率与所述第二加热模块的目标功率之和、以及所述电磁加热设备的额定输出功率确定第一计算功率和第二计算功率;
    将所述第一加热模块的目标功率除以所述第一计算功率以获得所述第一加热模块的调功比,并将所述第二加热模块的目标功率除以所述第二计算功率以获得所述第二加热模块的调功比。
  3. 如权利要求2所述电磁加热设备的功率控制方法,其中,所述第一计算功率与所述第二计算功率相等,且等于所述第一加热模块的目标功率与所述第二加热模块的目标功率之和。
  4. 如权利要求2或3所述电磁加热设备的功率控制方法,其中,所述第一加热模块的调功比与所述第二加热模块的调功比相同。
  5. 如权利要求1-4中任一项所述电磁加热设备的功率控制方法,其中,所述多个相邻加热模块为相邻的第一加热模块和第二加热模块时,根据所述多个相邻加热模块的目标功率确定每个加热模块的调功比,包括:
    确定所述第一加热模块的目标功率与所述第二加热模块的目标功率之和小于所述电磁加热设备的最小输出功率时,根据所述电磁加热设备的最小输出功率、以及所述电磁加热设备的额定输出功率确定第三计算功率和第四计算功率;
    将所述第一加热模块的目标功率除以所述第三计算功率以获得所述第一加热模块的调功比,并将所述第二加热模块的目标功率除以所述第四计算功率以获得所述第二加热模块的调功比。
  6. 如权利要求5所述电磁加热设备的功率控制方法,其中,所述第三计算功率与所述第四计算功率相等,且等于所述电磁加热设备的额定输出功率的二分之一。
  7. 如权利要求5或6所述电磁加热设备的功率控制方法,其中,所述第一加热模块的调功比大于所述第二加热模块的调功比。
  8. 如权利要求1-7中任一项所述电磁加热设备的功率控制方法,其中,所述多个相邻加热模块为相邻的第一加热模块和第二加热模块时,如果确定所述第一加热模块与所述第二加热模块之间的间隔时间大于预设时长,则分别对所述第一加热模块的调功比与所述第二加热模块的调功比进行分割。
  9. 一种计算机可读存储介质,其中,其上存储有电磁加热设备的功率控制程序,该电磁加热设备的功率控制程序被处理器执行时实现如权利要求1-8中任一项所述的电磁加热设备的功率控制方法。
  10. 一种电磁加热设备,其中,包括存储器、处理器及存储在存储器上并可在处理器上运行的电磁加热设备的功率控制程序,所述处理器执行所述功率控制程序时,实现如权利要求1-8中任一项所述的电磁加热设备的功率控制方法。
  11. 一种电磁加热设备的功率控制装置,其中,包括:
    获取模块,用于在所述电磁加热设备的多个相邻加热模块同时进行工作时,获取每个加热模块的目标功率;
    确定模块,用于根据所述多个相邻加热模块的目标功率确定每个加热模块的调功比;
    控制模块,用于根据每个加热模块的调功比对相应加热模块的输出功率进行控制,以便所述多个相邻加热模块间隔进行工作。
PCT/CN2021/140570 2020-12-29 2021-12-22 电磁加热设备及其功率控制方法、功率控制装置 WO2022143351A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011589019.6 2020-12-29
CN202011589019.6A CN114698168B (zh) 2020-12-29 2020-12-29 电磁加热设备及其功率控制方法、功率控制装置

Publications (1)

Publication Number Publication Date
WO2022143351A1 true WO2022143351A1 (zh) 2022-07-07

Family

ID=82133262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140570 WO2022143351A1 (zh) 2020-12-29 2021-12-22 电磁加热设备及其功率控制方法、功率控制装置

Country Status (2)

Country Link
CN (1) CN114698168B (zh)
WO (1) WO2022143351A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09164054A (ja) * 1995-12-13 1997-06-24 Tiger Vacuum Bottle Co Ltd 電磁誘導炊飯器
CN105982510A (zh) * 2015-02-06 2016-10-05 飞利浦(嘉兴)健康科技有限公司 电磁加热厨具及其控制器与控制方法
CN108567312A (zh) * 2018-02-09 2018-09-25 浙江苏泊尔家电制造有限公司 用于烹饪器具的煮粥控制方法及烹饪器具
CN109938616A (zh) * 2017-12-21 2019-06-28 佛山市顺德区美的电热电器制造有限公司 电磁烹饪器具及其输出功率计算方法
CN110200472A (zh) * 2018-02-28 2019-09-06 浙江苏泊尔家电制造有限公司 用于烹饪器具的煮饭控制方法及烹饪器具

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077000A1 (de) * 2003-02-25 2004-09-10 Hubert Eric Walter Anordnung und verfahren zur bestimmung von temperaturen
JP4854567B2 (ja) * 2007-03-30 2012-01-18 三井造船株式会社 誘導加熱方法および誘導加熱装置
JP5089490B2 (ja) * 2008-05-29 2012-12-05 三菱電機株式会社 誘導加熱調理器
CN103105875B (zh) * 2011-11-15 2016-08-17 美的集团股份有限公司 一种电压力锅烹制烙饼的控制方法
CN106175403B (zh) * 2015-05-05 2018-10-16 佛山市顺德区美的电热电器制造有限公司 加热控制方法、加热控制装置和烹饪器具
CN105125052B (zh) * 2015-07-28 2017-06-16 小米科技有限责任公司 功率调节方法及装置
JP6480083B2 (ja) * 2016-02-02 2019-03-06 佛山市▲順▼▲徳▼区美的▲電▼▲熱▼▲電▼器制造有限公司Foshan Shunde Midea Electrical Heating Appliances Manufacturing Co.,Limited 電磁加熱装置及びその加熱制御回路、並びに低電力加熱制御方法
CN108347794B (zh) * 2017-01-22 2020-11-24 佛山市顺德区美的电热电器制造有限公司 双线圈加热盘加热控制方法及控制系统
EP3492816B1 (en) * 2017-12-04 2021-02-03 LG Electronics Inc. Cooking device
CN109936883B (zh) * 2017-12-15 2021-10-26 佛山市顺德区美的电热电器制造有限公司 加热控制方法、装置、加热器具和计算机可读存储介质
CN109945247B (zh) * 2017-12-21 2020-05-05 佛山市顺德区美的电热电器制造有限公司 电磁烹饪器具及其功率控制方法
CN110925813B (zh) * 2019-11-06 2021-07-06 珠海格力电器股份有限公司 加热功率控制方法、装置、存储介质及烹饪设备
CN111163543B (zh) * 2019-12-30 2022-04-08 亿夫曼(北京)科技有限公司 一种基于负载特性的感应加热控制方法及装置
CN112032978A (zh) * 2020-08-24 2020-12-04 青岛海尔空调电子有限公司 一种绕组感应加热方法、系统及空调设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09164054A (ja) * 1995-12-13 1997-06-24 Tiger Vacuum Bottle Co Ltd 電磁誘導炊飯器
CN105982510A (zh) * 2015-02-06 2016-10-05 飞利浦(嘉兴)健康科技有限公司 电磁加热厨具及其控制器与控制方法
CN109938616A (zh) * 2017-12-21 2019-06-28 佛山市顺德区美的电热电器制造有限公司 电磁烹饪器具及其输出功率计算方法
CN108567312A (zh) * 2018-02-09 2018-09-25 浙江苏泊尔家电制造有限公司 用于烹饪器具的煮粥控制方法及烹饪器具
CN110200472A (zh) * 2018-02-28 2019-09-06 浙江苏泊尔家电制造有限公司 用于烹饪器具的煮饭控制方法及烹饪器具

Also Published As

Publication number Publication date
CN114698168B (zh) 2023-06-09
CN114698168A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
US9060389B2 (en) Induction heating cooker
JP4509061B2 (ja) 誘導加熱装置
WO2019119641A1 (zh) 电磁烹饪器具及其功率控制方法
JP2006202705A (ja) 誘導加熱調理器及び誘導加熱調理方法
JP2003151751A (ja) 誘導加熱調理器
JP2007335274A (ja) 誘導加熱調理器
JP3969497B2 (ja) 誘導加熱装置及び誘導加熱調理器
WO2022143351A1 (zh) 电磁加热设备及其功率控制方法、功率控制装置
WO2022143642A1 (zh) 电磁加热设备及其功率控制方法、功率控制装置
CN110351913A (zh) 电磁加热烹饪器具及其中igbt管的驱动控制方法和装置
WO2019119640A1 (zh) 电磁烹饪器具及其功率控制方法
CN205430655U (zh) 混合加热控制电路及电磁加热设备
JP2012146599A (ja) 誘導加熱調理器
CN112219448B (zh) 用于控制感应烹饪灶具的两个烹饪区的方法
JP2006114320A (ja) 誘導加熱装置及び誘導加熱調理器
JP5058296B2 (ja) 誘導加熱調理器
JP6151149B2 (ja) 誘導加熱調理器
JP4193154B2 (ja) 誘導加熱調理器
CN113131761A (zh) 烹饪器具、驱动控制电路和控制方法
JP2010003706A (ja) 誘導加熱装置
JP5031005B2 (ja) 誘導加熱装置及び誘導加熱調理器
JP4431346B2 (ja) 誘導加熱調理器
CN114698171B (zh) 电磁加热设备及其功率控制方法、功率控制装置
JP5895123B2 (ja) 誘導加熱装置
JP5456096B2 (ja) 誘導加熱調理器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/11/2023)