WO2022143305A1 - 混动车辆扭矩控制方法、装置、存储介质及电子设备 - Google Patents

混动车辆扭矩控制方法、装置、存储介质及电子设备 Download PDF

Info

Publication number
WO2022143305A1
WO2022143305A1 PCT/CN2021/140115 CN2021140115W WO2022143305A1 WO 2022143305 A1 WO2022143305 A1 WO 2022143305A1 CN 2021140115 W CN2021140115 W CN 2021140115W WO 2022143305 A1 WO2022143305 A1 WO 2022143305A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
gradient
dct
request
front axle
Prior art date
Application number
PCT/CN2021/140115
Other languages
English (en)
French (fr)
Inventor
王肖
张磊
张�杰
王海澜
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to US18/011,209 priority Critical patent/US20230303055A1/en
Priority to EP21914044.9A priority patent/EP4159563A4/en
Publication of WO2022143305A1 publication Critical patent/WO2022143305A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • B60W2510/0661Torque change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/105Output torque
    • B60W2510/1055Output torque change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • B60W2710/0672Torque change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • B60W2710/085Torque change rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present disclosure relates to the technical field of vehicles, and in particular, to a torque control method, device, storage medium and electronic device for a hybrid vehicle.
  • a hybrid vehicle with a P2 architecture refers to adding an electric motor and a K0 clutch on the basis of a conventional vehicle.
  • the engine is installed before the K0 clutch
  • the motor is installed after the K0 clutch, which is generally referred to as the P2 motor
  • the architecture composed of them is called the P2 architecture.
  • a hybrid vehicle with a P2 architecture there are two power sources, namely an engine and a motor, both of which need to transmit torque to the outside through a DCT (Dual Clutch Transmission).
  • DCT Direct Clutch Transmission
  • the purpose of the present disclosure is to provide a torque control method, device, storage medium and electronic device for a hybrid vehicle, which solves the problem that the actual total torque response of the motor and the engine exceeds the limit requirement of the engine torque variation gradient caused by the difference between the actual response torque of the engine and the gradient of the engine torque.
  • the problem of DCT torque change gradient limit requirement improves the drivability of the whole vehicle.
  • the present disclosure provides a torque control method for a hybrid vehicle, the method comprising:
  • the motor torque request is filtered according to the torque gradient of the motor.
  • the method further includes:
  • the front axle total torque request filter gradient is determined to be the target total torque gradient.
  • the limit request based on the DCT torque variation gradient is sent by the automatic transmission control unit when the hybrid vehicle is in a preset operating condition.
  • determining the target total torque change gradient includes:
  • the DCT torque gradient is determined as a target total torque gradient.
  • the present disclosure provides a torque control device for a hybrid vehicle, the device comprising:
  • the first determination module is configured to determine a target total torque change gradient in the case of receiving a limit request based on the DCT torque change gradient, wherein the target total torque change gradient is the DCT torque change gradient and the front axle total torque change gradient. the lesser of the torque request filter gradients; and,
  • a second determining module configured to determine the torque variation gradient of the electric motor according to the target total torque variation gradient and the actual torque response variation gradient of the engine
  • a filtering module configured to filter the motor torque request according to the torque variation gradient of the motor.
  • the apparatus further includes a third determination module configured to determine the front axle total torque request filter gradient as the target total torque change gradient in the event that the DCT torque change gradient limit request is not received .
  • the limit request based on the DCT torque variation gradient is sent by the automatic transmission control unit when the hybrid vehicle is in a preset operating condition.
  • the first determining module includes:
  • an acquisition submodule configured to acquire the DCT torque variation gradient and the front axle total torque request filter gradient
  • a difference determination submodule configured to determine a difference between the DCT torque change gradient and the front axle total torque request filtered gradient based on the DCT torque change gradient and the front axle total torque request filtered gradient value
  • a first determination submodule configured to determine the front axle total torque request filter gradient as a target total torque variation gradient when the difference is greater than zero;
  • the second determination sub-module is configured to determine the DCT torque gradient as a target total torque gradient when the difference is less than or equal to zero.
  • an embodiment of the present disclosure provides a computing processing device, including:
  • One or more processors when the computer readable code is executed by the one or more processors, the computing processing device executes the method for controlling the heating of the battery pack provided by the embodiment of the first aspect of the present disclosure.
  • an embodiment of the present disclosure provides a computer program, including computer-readable code, which, when the computer-readable code is executed on a computing and processing device, causes the computing and processing device to execute the embodiment of the first aspect of the present disclosure
  • the proposed control method for battery pack heating is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to battery pack heating.
  • an embodiment of the present disclosure provides a computer-readable storage medium, in which the computer program provided by the embodiment of the sixth aspect of the present disclosure is stored.
  • the target total torque change gradient is determined, wherein the target total torque change gradient is the higher of the DCT torque change gradient and the front axle total torque request filter gradient. and determine the torque request of the motor and the gradient of the actual torque response of the engine; determine the gradient of the torque of the motor according to the gradient of the target total torque and the gradient of the actual torque response of the engine; determine the gradient of the torque of the motor according to the gradient of the torque of the motor.
  • the torque request is filtered, and considering the limitation of the DCT torque gradient change, the torque change gradient of the motor is obtained according to the target total torque change gradient and the actual torque response change gradient of the engine, which effectively solves the difference between the engine actual response torque and the engine torque change gradient.
  • the problem that the actual total torque response of the motor and engine exceeds the DCT torque gradient limit requirement caused by the non-compliance with the limit requirements improves the drivability of the whole vehicle.
  • FIG. 1 is a flowchart illustrating a torque control method for a hybrid vehicle according to an exemplary embodiment.
  • FIG. 2 is another flowchart of a torque control method for a hybrid vehicle according to an exemplary embodiment.
  • FIG. 3 is a block diagram of a hybrid vehicle torque control device according to an exemplary embodiment.
  • Fig. 4 is a block diagram of an electronic device according to an exemplary embodiment.
  • Fig. 5 is a schematic structural diagram of a computing and processing device according to an exemplary embodiment.
  • Fig. 6 is a schematic diagram of a portable or fixed storage unit according to an exemplary embodiment.
  • the actual torque response of the engine is not linear.
  • the engine torque request cannot be changed according to the engine torque change gradient, resulting in the fact that the torque change gradient of the actual engine response does not match the corresponding engine torque gradient change.
  • the torque change gradient of the motor is calculated according to the torque change gradient of the engine, and the torque request of the motor can be well changed according to the torque change gradient of the motor, which further leads to the actual torque response of the motor and the actual torque of the engine.
  • the sum of the responses (the actual torque response of the front axle) will exceed the limit of the DCT torque gradient, affecting the DCT control and the drivability of the entire vehicle.
  • the present disclosure provides a hybrid vehicle control method, device, storage medium and electronic device, the method calculates the torque change gradient of the motor according to the actual torque response change gradient of the engine and the target total torque change gradient, and considers the DCT at the same time.
  • the torque change gradient ensures that the actual torque change gradient of the front axle can meet the DCT torque change gradient, which ensures the drivability of the vehicle and the accuracy of DCT control.
  • FIG. 1 is a flowchart illustrating a torque control method for a hybrid vehicle according to an exemplary embodiment.
  • the hybrid vehicle torque control method can be applied to, for example, a vehicle controller, and the hybrid vehicle torque control method includes the following steps:
  • step S101 in order to consider the limitation of the DCT torque variation gradient, when the vehicle controller receives the limitation request based on the DCT torque variation gradient, the target total torque variation gradient is the DCT torque variation gradient and the front axle total torque request filter gradient A torque gradient is determined as the target total torque change gradient.
  • the DCT torque change gradient and the front axle total torque request filter gradient are both obtained by analyzing the actual working conditions of the vehicle. And the analysis method can be obtained from the related art, which is not repeated in this embodiment.
  • the target total torque variation gradient is the smaller of the DCT torque variation gradient and the front axle total torque request filter gradient.
  • the target total torque variation gradient is the smaller of the DCT torque variation gradient and the front axle total torque request filter gradient.
  • the electric machine torque request needs to be calculated from the total front axle torque request and the engine torque request.
  • the total front axle torque request is determined by the driver's power intent. It can be understood that the power intention can be reacted by the gas pedal, and the driver's pedaling force characterizes the driver's total torque request of the front axle.
  • the vehicle controller may perform a distribution calculation between the engine torque request and the motor torque request according to the total torque request of the front axle. During the allocation process, the vehicle controller needs to fully consider the performance of the engine, and allocate an optimal engine torque request to the engine; after determining the engine torque request, the vehicle controller will then determine the engine torque request and The total axle torque request calculates the motor torque request.
  • the total front axle torque request is equal to the sum of the engine torque request and the motor torque request.
  • the torque actually responded by the engine will jump due to functions such as turbocharging, the torque actually responded by the engine is inconsistent with the response torque obtained by the engine torque request according to the gradient of the engine torque change. Therefore, the engine response There is a difference between the gradient and the engine torque change gradient, wherein the engine torque change gradient is calculated by the vehicle controller. Therefore, it is necessary to determine the actual torque response gradient of the engine, so as to further determine the torque gradient of the motor.
  • variation gradient of the actual torque response of the engine can be calculated according to the actual response torque of the engine.
  • S102 Determine the torque change gradient of the motor according to the target total torque change gradient and the actual torque response change gradient of the engine.
  • the target total torque gradient is the sum of the engine torque gradient limit and the motor torque gradient limit. Therefore, after determining the actual torque response variation gradient of the engine and the target total torque variation gradient, the difference between the target total torque variation gradient and the engine's actual torque response variation gradient is used as the motor torque variation gradient.
  • the vehicle controller selects the smallest of the DCT torque change gradient and the front axle total torque request filter gradient to meet the limit requirements for the DCT torque change gradient, and the vehicle control
  • the controller determines the torque variation gradient of the motor according to the target total torque variation gradient and the actual torque response variation gradient of the engine, so as to ensure that the actual torque gradient of the front axle (the sum of the actual torque variation gradient of the engine and the actual torque variation gradient of the motor) satisfies the DCT requirements.
  • the limit requirements of the torque change gradient ensure the power and drivability of the whole vehicle.
  • FIG. 2 is another flowchart of a torque control method for a hybrid vehicle according to an exemplary embodiment. As shown in Figure 2, it includes the following steps:
  • the implementation process of S204 is similar to the implementation process of S102 shown in FIG. 1 , which is not repeated in this embodiment.
  • the implementation process of S205 is similar to the implementation process of S104 shown in FIG. 1 , which is not repeated in this embodiment.
  • the limit request based on the DCT torque change gradient is issued by the automatic transmission control unit when the hybrid vehicle is in a preset operating condition.
  • the preset operating conditions are determined by the automatic transmission control unit.
  • determining the target total torque variation gradient may include:
  • a difference between the DCT torque change gradient and the front axle total torque request filter gradient is determined.
  • the magnitude of the difference and zero to determine the change gradient of the target total torque determines the magnitude of the difference and zero to determine the change gradient of the target total torque. Specifically, when the difference is greater than zero, the front axle total torque request filtering gradient is determined as the target total torque change gradient; when the difference is less than or equal to zero, the DCT torque change gradient is determined as the target total torque change gradient .
  • the change gradient of the target total torque is determined by means of a simple size comparison.
  • the DCT torque change gradient and the front axle total torque request filter gradient are both obtained by analyzing the actual working conditions of the vehicle.
  • the present disclosure provides a torque control device for a hybrid vehicle.
  • the device 300 includes:
  • the first determination module 301 is configured to determine a target total torque change gradient in the case of receiving a limit request based on the DCT torque change gradient, wherein the target total torque change gradient is the DCT torque change gradient and the front axle the lesser of the total torque request filter gradients; and,
  • the second determination module 302 is configured to determine the torque variation gradient of the electric motor according to the target total torque variation gradient and the actual torque response variation gradient of the engine;
  • the filtering module 303 is configured to perform filtering processing on the motor torque request according to the torque variation gradient of the motor.
  • the apparatus 300 further includes a third determination module configured to determine the front axle total torque request filter gradient as the target total torque change when the DCT torque change gradient limit request is not received. gradient.
  • the limit request based on the DCT torque variation gradient is sent by the automatic transmission control unit when the hybrid vehicle is in a preset operating condition.
  • the first determining module 301 includes:
  • an acquisition submodule configured to acquire the DCT torque variation gradient and the front axle total torque request filter gradient
  • a difference determination submodule configured to determine a difference between the DCT torque change gradient and the front axle total torque request filtered gradient based on the DCT torque change gradient and the front axle total torque request filtered gradient value
  • a first determination submodule configured to determine the front axle total torque request filter gradient as a target total torque variation gradient when the difference is greater than zero;
  • the second determination sub-module is configured to determine the DCT torque gradient as a target total torque gradient when the difference is less than or equal to zero.
  • the present disclosure also discloses a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the steps of the hybrid vehicle torque control method described in the above method embodiments.
  • the present disclosure also discloses an electronic device, comprising:
  • the processor is configured to execute the computer program in the memory to implement the steps of implementing the hybrid vehicle torque control method in the above method embodiments.
  • Fig. 4 is a block diagram of an electronic device according to an exemplary embodiment.
  • the electronic device 400 may include: a processor 401 and a memory 402 .
  • the electronic device 400 may also include one or more of a multimedia component 403 , an input/output (I/O) interface 404 , and a communication component 405 .
  • I/O input/output
  • the processor 401 is configured to control the overall operation of the electronic device 400 to complete all or part of the steps in the above-mentioned torque control method for a hybrid vehicle.
  • the memory 402 is used to store various types of data to support operations on the electronic device 400, such data may include, for example, instructions for any application or method operating on the electronic device 400, and application-related data, Such as contact data, messages sent and received, pictures, audio, video, and so on.
  • the memory 402 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as Static Random Access Memory (SRAM for short), Electrically Erasable Programmable Read-Only Memory ( Electrically Erasable Programmable Read-Only Memory (EEPROM for short), Erasable Programmable Read-Only Memory (EPROM), Programmable Read-Only Memory (PROM), Read-Only Memory (Read-Only Memory, ROM for short), magnetic memory, flash memory, magnetic disk or optical disk.
  • Multimedia components 403 may include screen and audio components. Wherein the screen can be, for example, a touch screen, and the audio component is used for outputting and/or inputting audio signals.
  • the audio component may include a microphone for receiving external audio signals.
  • the received audio signal may be further stored in memory 402 or transmitted through communication component 405 .
  • the audio assembly also includes at least one speaker for outputting audio signals.
  • the I/O interface 404 provides an interface between the processor 401 and other interface modules, and the above-mentioned other interface modules may be a keyboard, a mouse, a button, and the like. These buttons can be virtual buttons or physical buttons.
  • the communication component 405 is used for wired or wireless communication between the electronic device 400 and other devices. Wireless communication, such as Wi-Fi, Bluetooth, Near Field Communication (NFC for short), 2G, 3G or 4G, or one or a combination of them, so the corresponding communication component 405 may include: Wi-Fi module, Bluetooth module, NFC module.
  • the electronic device 400 may be implemented by one or more application-specific integrated circuits (Application Specific Integrated Circuit, ASIC for short), digital signal processor (Digital Signal Processor, DSP for short), digital signal processing equipment (Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array (FPGA), controller, microcontroller, microprocessor or other electronic components
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSP digital signal processing equipment
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components
  • microcontroller microprocessor or other electronic components
  • a computer-readable storage medium comprising program instructions, the program instructions implementing the steps of the above-described hybrid vehicle torque control method when executed by a processor.
  • the computer-readable storage medium can be the above-mentioned memory 402 including program instructions, and the above-mentioned program instructions can be executed by the processor 401 of the electronic device 400 to implement the above-mentioned hybrid vehicle torque control method.
  • the present disclosure also proposes a computing processing device, including:
  • One or more processors when the computer readable code is executed by the one or more processors, the computing processing device executes the aforementioned method for controlling the heating of the battery pack.
  • the present disclosure also proposes a computer program, including computer-readable codes, which, when the computer-readable codes are executed on a computing processing device, cause the computing processing device to perform the aforementioned battery pack heating process. Control Method.
  • the present disclosure also proposes a computer-readable storage medium in which the aforementioned computer program is stored.
  • FIG. 5 provides a schematic structural diagram of a computing processing device according to an embodiment of the present disclosure.
  • the computing processing device typically includes a processor 510 and a computer program product or computer readable medium in the form of a memory 530 .
  • the memory 530 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 530 has storage space 550 for program code 551 for performing any of the method steps in the above-described methods.
  • storage space 550 for program code may include various program codes 551 for implementing various steps in the above methods, respectively. These program codes can be read from or written to one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks. Such computer program products are typically portable or fixed storage units as shown in FIG. 6 .
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the storage 530 in the server of FIG. 5 .
  • the program code may, for example, be compressed in a suitable form.
  • the storage unit includes computer readable code 551', i.e. code readable by a processor such as 510 for example, which when executed by a server, causes the server to perform the various steps in the methods described above.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transport the program for use by or in connection with an instruction execution system, apparatus, or apparatus.
  • computer readable media include the following: electrical connections with one or more wiring (electronic devices), portable computer disk cartridges (magnetic devices), random access memory (RAM), Read Only Memory (ROM), Erasable Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
  • the computer readable medium may even be paper or other suitable medium on which the program may be printed, as the paper or other medium may be optically scanned, for example, followed by editing, interpretation, or other suitable medium as necessary process to obtain the program electronically and then store it in computer memory.
  • portions of the present disclosure may be implemented in hardware, software, firmware, or a combination thereof.
  • various steps or methods may be implemented in software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware as in another embodiment, it can be implemented by any one of the following techniques known in the art, or a combination thereof: discrete with logic gates for implementing logic functions on data signals Logic circuits, application specific integrated circuits with suitable combinational logic gates, Programmable Gate Arrays (PGA), Field Programmable Gate Arrays (FPGA), etc.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing module, or each unit may exist physically alone, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. If the integrated modules are implemented in the form of software functional modules and sold or used as independent products, they may also be stored in a computer-readable storage medium.
  • the above-mentioned storage medium may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

本公开涉及一种混动车辆扭矩控制方法、装置、存储介质及电子设备,方法包括:在接收到基于DCT扭矩变化梯度的限制请求的情况下,确定目标总扭矩变化梯度,其中,目标总扭矩变化梯度为DCT扭矩变化梯度和前桥总扭矩请求滤波梯度中的较小者;并确定电机扭矩请求和发动机的实际扭矩响应变化梯度;根据目标总扭矩变化梯度和发动机的实际扭矩响应变化梯度,确定电机的扭矩变化梯度;根据电机的扭矩变化梯度,对所述电机扭矩请求进行滤波处理,考虑DCT扭矩梯度变化的限制,有效地解决了因发动机实际响应扭矩与发动机扭矩变化梯度的限制要求不符导致的电机和发动机的实际总扭矩响应超过DCT扭矩变化梯度限制要求的问题,提升了整车的驾驶性。

Description

混动车辆扭矩控制方法、装置、存储介质及电子设备
相关申请的交叉引用
本公开要求在2020年12月28日提交中国专利局、申请号为202011582147.8、名称为“混动车辆扭矩控制方法、装置、存储介质及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及车辆技术领域,具体地,涉及一种混动车辆扭矩控制方法、装置、存储介质及电子设备。
背景技术
相关技术中,P2架构的混合动力车辆是指在传统车的基础上增加一个电机和一个K0离合器。其中,发动机安装在K0离合器之前,电机安装在K0离合器之后,一般简称为P2电机,由它们组成的架构就称为P2架构。对于P2架构的混合动力车辆来说,存在两个动力源,即发动机和电机,两个动力源均需要通过DCT(Dual Clutch Transmission,双离合变速器)向外传递扭矩。
当存在两个动力源混合驱动时,如何限制两个动力源的扭矩变化梯度是个难点。目前,由于发动机的扭矩请求满足发动机梯度变化限制以及电机满足电机梯度变化限制,但发动机的实际扭矩响应会存在突变,导致电机和发动机两者的实际的扭矩响应超过DCT扭矩变化梯度的限制,影响了整车的驾驶性。
发明内容
本公开的目的是提供一种混动车辆扭矩控制方法、装置、存储介质及电子设备,解决了因发动机实际响应扭矩与发动机扭矩变化梯度的限制要求不符导致的电机和发动机的实际总扭矩响应超过DCT扭矩变化梯度限制要求的问题,提升了整车的驾驶性。
为了实现上述目的,第一方面,本公开提供一种混动车辆扭矩控制方法,所述方法包括:
在接收到基于DCT扭矩变化梯度的限制请求的情况下,确定目标总扭矩变化梯度,其中,所述目标总扭矩变化梯度为DCT扭矩变化梯度和前桥总扭矩请求滤波梯度中的较 小者;并,
确定电机扭矩请求和发动机的实际扭矩响应变化梯度;
根据所述目标总扭矩变化梯度和所述发动机的实际扭矩响应变化梯度,确定电机的扭矩变化梯度;
根据所述电机的扭矩变化梯度,对所述电机扭矩请求进行滤波处理。
可选地,所述方法还包括:
在未接收到所述DCT扭矩变化梯度的限制请求的情况下,确定前桥总扭矩请求滤波梯度为目标总扭矩变化梯度。
可选地,所述基于DCT扭矩变化梯度的限制请求是自动变速箱控制单元在混动车辆处于预设工况下发出的。
可选地,所述在接收到基于DCT扭矩变化梯度的限制请求的情况下,确定目标总扭矩变化梯度,包括:
获取DCT扭矩变化梯度和前桥总扭矩请求滤波梯度;
根据所述DCT扭矩变化梯度和所述前桥总扭矩请求滤波梯度,确定所述DCT扭矩变化梯度与所述前桥总扭矩请求滤波梯度之间的差值;
在所述差值大于零的情况下,将所述前桥总扭矩请求滤波梯度确定为目标总扭矩变化梯度;
在所述差值小于或等于零的情况下,将所述DCT扭矩变化梯度确定为目标总扭矩变化梯度。
第二方面,本公开提供一种混动车辆扭矩控制装置,所述装置包括:
第一确定模块,被配置为用于在接收到基于DCT扭矩变化梯度的限制请求的情况下,确定目标总扭矩变化梯度,其中,所述目标总扭矩变化梯度为DCT扭矩变化梯度和前桥总扭矩请求滤波梯度中的较小者;并,
确定电机扭矩请求和发动机的实际扭矩响应变化梯度;
第二确定模块,被配置为用于根据所述目标总扭矩变化梯度和所述发动机的实际扭矩响应变化梯度,确定电机的扭矩变化梯度;
滤波模块,被配置为用于根据所述电机的扭矩变化梯度,对所述电机扭矩请求进行滤波处理。
可选地,所述装置还包括第三确定模块,被配置为用于在未接收到所述DCT扭矩变 化梯度的限制请求的情况下,确定前桥总扭矩请求滤波梯度为目标总扭矩变化梯度。
可选地,所述基于DCT扭矩变化梯度的限制请求是自动变速箱控制单元在混动车辆处于预设工况下发出的。可选地,所述第一确定模块包括:
获取子模块,被配置为用于获取DCT扭矩变化梯度和前桥总扭矩请求滤波梯度;
差值确定子模块,被配置为用于根据所述DCT扭矩变化梯度和所述前桥总扭矩请求滤波梯度,确定所述DCT扭矩变化梯度与所述前桥总扭矩请求滤波梯度之间的差值;
第一确定子模块,被配置为用于在所述差值大于零的情况下,将所述前桥总扭矩请求滤波梯度确定为目标总扭矩变化梯度;
第二确定子模块,被配置为用于在所述差值小于或等于零的情况下,将所述DCT扭矩变化梯度确定为目标总扭矩变化梯度。
第三方面,本公开实施例提出了一种计算处理设备,包括:
存储器,其中存储有计算机可读代码;以及
一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行本公开第一方面实施例所提出的电池包加热的控制方法。
第四方面,本公开实施例提出了一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行本公开第一方面实施例所提出的电池包加热的控制方法。
第五方面,本公开实施例提出了一种计算机可读存储介质,其中存储了本公开第六方面实施例所提出的计算机程序。
通过上述技术方案,在接收到基于DCT扭矩变化梯度的限制请求的情况下,确定目标总扭矩变化梯度,其中,目标总扭矩变化梯度为DCT扭矩变化梯度和前桥总扭矩请求滤波梯度中的较小者;并确定电机扭矩请求和发动机的实际扭矩响应变化梯度;根据目标总扭矩变化梯度和发动机的实际扭矩响应变化梯度,确定电机的扭矩变化梯度;根据电机的扭矩变化梯度,对所述电机扭矩请求进行滤波处理,考虑DCT扭矩梯度变化的限制,根据目标总扭矩变化梯度和发动机的实际扭矩响应变化梯度得到电机的扭矩变化梯度,有效地解决了因发动机实际响应扭矩与发动机扭矩变化梯度的限制要求不符导致的电机和发动机的实际总扭矩响应超过DCT扭矩变化梯度限制要求的问题,提升了整车的驾驶性。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是根据一示例性实施例示出的一种混动车辆扭矩控制方法的流程图。
图2是根据一示例性实施例示出的一种混动车辆扭矩控制方法的另一流程图。
图3是根据一示例性实施例示出的一种混动车辆扭矩控制装置的框图。
图4是根据一示例性实施例示出的一种电子设备的框图。
图5是根据一示例性实施例示出的一种计算处理设备的结构示意图。
图6是根据一示例性实施例示出的一种便携式或者固定存储单元的示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
相关技术中,在P2架构的混动车辆来说,两个动力源的扭矩变化梯度若超过总扭矩变化梯度的限制,则会影响车辆的平顺性和驾驶性;而若两个动力源的扭矩变化梯度若低于总扭矩变化梯度的限制,则又会影响车辆的动力性。因此,如何在两个动力源中对扭矩变化梯度的限制显得尤为重要。
在车辆的实际运行过程中,发动机实际扭矩响应不线性,换而言之就是发动机扭矩请求不能按照发动机扭矩变化梯度进行相应的变化,导致发动机实际响应的扭矩变化梯度与对应的发动机扭矩梯度变化不符。而电机的扭矩变化梯度又是根据发动机的扭矩变化梯度计算的,且电机的扭矩请求能很好的按照电机的扭矩变化梯度进行变化,这就进一步导致电机的实际的扭矩响应和发动机实际的扭矩响应之和(前桥实际扭矩响应)会超过DCT扭矩变化梯度的限制,影响DCT控制和整车的驾驶性。
有鉴于此,本公开提供一种混动车辆控制方法、装置、存储介质及电子设备,该方法根据发动机的实际扭矩响应变化梯度和目标总扭矩变化梯度计算电机的扭矩变化梯度,且同时考虑DCT扭矩变化梯度,以此保证前桥实际扭矩变化梯度能够满足DCT扭矩变化梯度,保证的整车的驾驶性和DCT控制的准确性。
图1是根据一示例性实施例示出的一种混动车辆扭矩控制方法的流程图。如图1所示,所述混动车辆扭矩控制方法例如可以应用于整车控制器,所述混动车辆扭矩控制方法包括以下步骤:
S101,在接收到基于DCT扭矩变化梯度的限制请求的情况下,确定目标总扭矩变化梯度,并确定电机扭矩请求和发动机的实际扭矩响应变化梯度。
在步骤S101中,为了考虑DCT扭矩变化梯度的限制,整车控制器在接收到基于DCT扭矩变化梯度的限制请求时,在目标总扭矩变化梯度为DCT扭矩变化梯度和前桥总扭矩请求滤波梯度中确定一个扭矩梯度作为目标总扭矩变化梯度。
其中,DCT扭矩变化梯度和前桥总扭矩请求滤波梯度均是根据车辆的实际工况进行分析得到的。且分析方法可以从相关技术中获取,本实施例在此不做赘述。
需要说明的是,目标总扭矩变化梯度为DCT扭矩变化梯度和前桥总扭矩请求滤波梯度中的较小者。为了车辆的平顺性和驾驶性,需要在DCT扭矩变化梯度和前桥总扭矩请求滤波梯度中选取两者之间的较小者作为目标总扭矩变化梯度,用于限制发动机和电机前后的扭矩变化,以避免车辆超出最小的变化梯度限制引起车辆平顺性差和驾驶性低的问题。
在一种实施方式中,电机扭矩请求需要根据前桥总扭矩请求和发动机扭矩请求进行计算。可以理解的是,前桥总扭矩请求通过驾驶员的动力意图进行确定。可以理解的是,动力意图可以通过加油踏板反应,驾驶员的踩踏力度表征驾驶员的前桥总扭矩请求。所述整车控制器可以根据前桥总扭矩请求,对发动机扭矩请求和电机扭矩请求进行分配计算。在分配的过程中,所述整车控制器需要充分考虑发动机的性能,为发动机分配一个最优的发动机扭矩请求;在确定发动机扭矩请求之后,整车控制器再根据该发动机扭矩请求和该前桥总扭矩请求计算电机扭矩请求。
值得说明的是,前桥总扭矩请求等于发动机扭矩请求和电机扭矩请求之和。
在本公开中,由于发动机实际响应的扭矩会因为涡轮增压等功能有所跳变,因此发动机实际响应的扭矩与发动机扭矩请求按照发动机扭矩变化梯度得到的响应扭矩是不一致的,因此,发动机响应梯度与发动机扭矩变化梯度是存在差异的,其中,发动机扭矩变化梯度由整车控制器计算。因此,需要确定发动机的实际扭矩响应变化梯度,以此来进一步确定电机的扭矩变化梯度。
可以理解的是,发动机的实际扭矩响应变化梯度可以根据发动机实际响应扭矩计算 得到。
S102,根据目标总扭矩变化梯度和发动机的实际扭矩响应变化梯度,确定电机的扭矩变化梯度。
在步骤S102中,目标总扭矩变化梯度是对发动机扭矩变化梯度限制和电机的扭矩变化梯度限制之和。因此,在确定发动机的实际扭矩响应变化梯度和目标总扭矩变化梯度后,将目标总扭矩变化梯度与发动机的实际扭矩响应变化梯度之差作为电机的扭矩变化梯度。
S103,根据电机的扭矩变化梯度,对电机扭矩请求进行滤波处理。
采用上述技术方案,考虑DCT扭矩变化梯度的限制,整车控制器在DCT扭矩变化梯度和前桥总扭矩请求滤波梯度中选取最小者,以满足对DCT扭矩变化梯度的限制要求,且整车控制器根据目标总扭矩变化梯度和发动机的实际扭矩响应变化梯度确定电机的扭矩变化梯度,以此来确保前桥实际的扭矩梯度(发动机实际扭矩变化梯度和电机实际扭矩变化梯度之和)满足DCT的扭矩变化梯度的限制要求,保证整车动力性和驾驶性。
图2是根据一示例性实施例示出的一种混动车辆扭矩控制方法的另一流程图。如图2所示,包括以下步骤:
S201,在接收到基于DCT扭矩变化梯度的限制请求的情况下,在DCT扭矩变化梯度和前桥总扭矩请求滤波梯度中确定目标总扭矩变化梯度。
S202,在未接收到DCT扭矩变化梯度的限制请求的情况下,确定前桥总扭矩请求滤波梯度为目标总扭矩变化梯度。
S203,确定电机扭矩请求和发动机的实际扭矩响应变化梯度。
S204,根据目标总扭矩变化梯度和发动机的实际扭矩响应变化梯度,确定电机的扭矩变化梯度。
S205,根据电机的扭矩变化梯度,对电机扭矩请求进行滤波处理。
采用上述技术方案,在接收到基于DCT扭矩变化梯度的限制请求的情况下,考虑是否需要基于DCT扭矩变化梯度确定发动机变化梯度和电机变化梯度,以满足DCT的扭矩变化梯度限制;在未接收到DCT扭矩变化梯度的限制请求的情况下,根据前桥总扭矩请求滤波梯度确定发动机变化梯度和电机变化梯度,满足前桥总扭矩请求滤波梯度的限制。
需要说明的是,S201和S203的实施过程与图1所示的S101的实施过程类似,本实 施例对此不做赘述。
S204的实施过程与图1所示的S102的实施过程类似,本实施例对此不做赘述。
S205的实施过程与图1所示的S104的实施过程类似,本实施例对此不做赘述。
在一种可能的实施方式中,所述基于DCT扭矩变化梯度的限制请求是自动变速箱控制单元在混动车辆处于预设工况下发出的。
可以理解的是,在某些特定工况下,扭矩的变化不能过快,需要平缓的过渡。因此需要对该类工况下的扭矩请求进行限制。
需要说明的是,预设工况是由自动变速箱控制单元确定的。
在一种可能的实施方式中,图1所示的步骤S101中的在接收到基于DCT扭矩变化梯度的限制请求的情况下,确定目标总扭矩变化梯度可以包括:
首先,获取DCT扭矩变化梯度和前桥总扭矩请求滤波梯度。
然后,根据DCT扭矩变化梯度和前桥总扭矩请求滤波梯度,确定DCT扭矩变化梯度与前桥总扭矩请求滤波梯度之间的差值。
接着,判断差值和零的大小情况,以此来确定目标总扭矩变化梯度。具体的,在差值大于零的情况下,将前桥总扭矩请求滤波梯度确定为目标总扭矩变化梯度;在差值小于或等于零的情况下,将DCT扭矩变化梯度确定为目标总扭矩变化梯度。
采用上述技术方案,通过简单的大小对比的方式确定目标总扭矩变化梯度。其中,DCT扭矩变化梯度和前桥总扭矩请求滤波梯度均是根据车辆的实际工况进行分析得到的。
本公开提供一种混动车辆扭矩控制装置,所述装置300包括:
第一确定模块301,被配置为用于在接收到基于DCT扭矩变化梯度的限制请求的情况下,确定目标总扭矩变化梯度,其中,所述目标总扭矩变化梯度为DCT扭矩变化梯度和前桥总扭矩请求滤波梯度中的较小者;并,
确定电机扭矩请求和发动机的实际扭矩响应变化梯度;
第二确定模块302,被配置为用于根据所述目标总扭矩变化梯度和所述发动机的实际扭矩响应变化梯度,确定电机的扭矩变化梯度;
滤波模块303,被配置为用于根据所述电机的扭矩变化梯度,对所述电机扭矩请求进行滤波处理。
可选地,所述装置300还包括第三确定模块,被配置为用于在未接收到所述DCT扭矩变化梯度的限制请求的情况下,确定前桥总扭矩请求滤波梯度为目标总扭矩变化梯度。
可选地,所述基于DCT扭矩变化梯度的限制请求是自动变速箱控制单元在混动车辆处于预设工况下发出的。
可选地,所述第一确定模块301包括:
获取子模块,被配置为用于获取DCT扭矩变化梯度和前桥总扭矩请求滤波梯度;
差值确定子模块,被配置为用于根据所述DCT扭矩变化梯度和所述前桥总扭矩请求滤波梯度,确定所述DCT扭矩变化梯度与所述前桥总扭矩请求滤波梯度之间的差值;
第一确定子模块,被配置为用于在所述差值大于零的情况下,将所述前桥总扭矩请求滤波梯度确定为目标总扭矩变化梯度;
第二确定子模块,被配置为用于在所述差值小于或等于零的情况下,将所述DCT扭矩变化梯度确定为目标总扭矩变化梯度。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开还公开一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述方法实施例中所述混动车辆扭矩控制方法的步骤。
本公开还公开一种电子设备,包括:
存储器,其上存储有计算机程序;
处理器,用于执行所述存储器中的所述计算机程序,以实现实现上述方法实施例中所述混动车辆扭矩控制方法的步骤。
图4是根据一示例性实施例示出的一种电子设备的框图。如图4所示,该电子设备400可以包括:处理器401,存储器402。该电子设备400还可以包括多媒体组件403,输入/输出(I/O)接口404,以及通信组件405中的一者或多者。
其中,处理器401用于控制该电子设备400的整体操作,以完成上述的混动车辆扭矩控制方法中的全部或部分步骤。存储器402用于存储各种类型的数据以支持在该电子设备400的操作,这些数据例如可以包括用于在该电子设备400上操作的任何应用程序或方法的指令,以及应用程序相关的数据,例如联系人数据、收发的消息、图片、音频、视频等等。该存储器402可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,例如静态随机存取存储器(Static Random Access Memory,简称SRAM),电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM),可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,简 称EPROM),可编程只读存储器(Programmable Read-Only Memory,简称PROM),只读存储器(Read-Only Memory,简称ROM),磁存储器,快闪存储器,磁盘或光盘。多媒体组件403可以包括屏幕和音频组件。其中屏幕例如可以是触摸屏,音频组件用于输出和/或输入音频信号。例如,音频组件可以包括一个麦克风,麦克风用于接收外部音频信号。所接收的音频信号可以被进一步存储在存储器402或通过通信组件405发送。音频组件还包括至少一个扬声器,用于输出音频信号。I/O接口404为处理器401和其他接口模块之间提供接口,上述其他接口模块可以是键盘,鼠标,按钮等。这些按钮可以是虚拟按钮或者实体按钮。通信组件405用于该电子设备400与其他设备之间进行有线或无线通信。无线通信,例如Wi-Fi,蓝牙,近场通信(Near Field Communication,简称NFC),2G、3G或4G,或它们中的一种或几种的组合,因此相应的该通信组件405可以包括:Wi-Fi模块,蓝牙模块,NFC模块。
在一示例性实施例中,电子设备400可以被一个或多个应用专用集成电路(Application Specific Integrated Circuit,简称ASIC)、数字信号处理器(Digital Signal Processor,简称DSP)、数字信号处理设备(Digital Signal Processing Device,简称DSPD)、可编程逻辑器件(Programmable Logic Device,简称PLD)、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述的混动车辆扭矩控制方法。
在另一示例性实施例中,还提供了一种包括程序指令的计算机可读存储介质,该程序指令被处理器执行时实现上述的混动车辆扭矩控制方法的步骤。例如,该计算机可读存储介质可以为上述包括程序指令的存储器402,上述程序指令可由电子设备400的处理器401执行以完成上述的混动车辆扭矩控制方法。
为了实现上述实施例,本公开还提出了一种计算处理设备,包括:
存储器,其中存储有计算机可读代码;以及
一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行前述的电池包加热的控制方法。
为了实现上述实施例,本公开还提出了一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行前述的电池包加热的控制方法。
为了实现上述实施例,本公开还提出了一种计算机可读存储介质,其中存储了前述 的计算机程序。
图5为本公开实施例提供了一种计算处理设备的结构示意图。该计算处理设备通常包括处理器510和以存储器530形式的计算机程序产品或者计算机可读介质。存储器530可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器530具有用于执行上述方法中的任何方法步骤的程序代码551的存储空间550。例如,用于程序代码的存储空间550可以包括分别用于实现上面的方法中的各种步骤的各个程序代码551。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如图6所示的便携式或者固定存储单元。该存储单元可以具有与图5的服务器中的存储器530类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码551’,即可以由例如诸如510之类的处理器读取的代码,这些代码当由服务器运行时,导致该服务器执行上面所描述的方法中的各个步骤。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限 制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 一种混动车辆扭矩控制方法,其特征在于,所述方法包括:
    在接收到基于DCT扭矩变化梯度的限制请求的情况下,确定目标总扭矩变化梯度,其中,所述目标总扭矩变化梯度为DCT扭矩变化梯度和前桥总扭矩请求滤波梯度中的较小者;并,
    确定电机扭矩请求和发动机的实际扭矩响应变化梯度;
    根据所述目标总扭矩变化梯度和所述发动机的实际扭矩响应变化梯度,确定电机的扭矩变化梯度;
    根据所述电机的扭矩变化梯度,对所述电机扭矩请求进行滤波处理。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在未接收到所述DCT扭矩变化梯度的限制请求的情况下,确定前桥总扭矩请求滤波梯度为目标总扭矩变化梯度。
  3. 根据权利要求1所述的方法,其特征在于,所述基于DCT扭矩变化梯度的限制请求是自动变速箱控制单元在混动车辆处于预设工况下发出的。
  4. 根据权利要求1至3中任一所述的方法,其特征在于,所述在接收到基于DCT扭矩变化梯度的限制请求的情况下,确定目标总扭矩变化梯度,包括:
    获取DCT扭矩变化梯度和前桥总扭矩请求滤波梯度;
    根据所述DCT扭矩变化梯度和所述前桥总扭矩请求滤波梯度,确定所述DCT扭矩变化梯度与所述前桥总扭矩请求滤波梯度之间的差值;
    在所述差值大于零的情况下,将所述前桥总扭矩请求滤波梯度确定为目标总扭矩变化梯度;
    在所述差值小于或等于零的情况下,将所述DCT扭矩变化梯度确定为目标总扭矩变化梯度。
  5. 一种混动车辆扭矩控制装置,其特征在于,所述装置包括:
    第一确定模块,被配置为用于在接收到基于DCT扭矩变化梯度的限制请求的情况下,确定目标总扭矩变化梯度,其中,所述目标总扭矩变化梯度为DCT扭矩变化梯度和前桥总扭矩请求滤波梯度中的较小者;并,
    确定电机扭矩请求和发动机的实际扭矩响应变化梯度;
    第二确定模块,被配置为用于根据所述目标总扭矩变化梯度和所述发动机的实际扭 矩响应变化梯度,确定电机的扭矩变化梯度;
    滤波模块,被配置为用于根据所述电机的扭矩变化梯度,对所述电机扭矩请求进行滤波处理。
  6. 根据权利要求5所述的装置,其特征在于,所述装置还包括第三确定模块,被配置为用于在未接收到所述DCT扭矩变化梯度的限制请求的情况下,确定前桥总扭矩请求滤波梯度为目标总扭矩变化梯度。
  7. 根据权利要求5所述的装置,其特征在于,所述基于DCT扭矩变化梯度的限制请求是自动变速箱控制单元在混动车辆处于预设工况下发出的。
  8. 根据权利要求5至7中任一所述的装置,其特征在于,所述第一确定模块包括:
    获取子模块,被配置为用于获取DCT扭矩变化梯度和前桥总扭矩请求滤波梯度;
    差值确定子模块,被配置为用于根据所述DCT扭矩变化梯度和所述前桥总扭矩请求滤波梯度,确定所述DCT扭矩变化梯度与所述前桥总扭矩请求滤波梯度之间的差值;
    第一确定子模块,被配置为用于在所述差值大于零的情况下,将所述前桥总扭矩请求滤波梯度确定为目标总扭矩变化梯度;
    第二确定子模块,被配置为用于在所述差值小于或等于零的情况下,将所述DCT扭矩变化梯度确定为目标总扭矩变化梯度。
  9. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;以及
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如权利要求1-4中任一项所述的混动车辆扭矩控制方法。
  10. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-4中任一项所述的混动车辆扭矩控制方法。
  11. 一种计算机可读存储介质,其中存储了如权利要求10所述的计算机程序。
PCT/CN2021/140115 2020-12-28 2021-12-21 混动车辆扭矩控制方法、装置、存储介质及电子设备 WO2022143305A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/011,209 US20230303055A1 (en) 2020-12-28 2021-12-21 Method for torque control of hybrid vehicle, storage medium and electronic device
EP21914044.9A EP4159563A4 (en) 2020-12-28 2021-12-21 HYBRID VEHICLE TORQUE CONTROL METHOD AND APPARATUS, STORAGE MEDIUM AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011582147.8 2020-12-28
CN202011582147.8A CN112644453B (zh) 2020-12-28 2020-12-28 混动车辆扭矩控制方法、装置、存储介质及电子设备

Publications (1)

Publication Number Publication Date
WO2022143305A1 true WO2022143305A1 (zh) 2022-07-07

Family

ID=75363494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140115 WO2022143305A1 (zh) 2020-12-28 2021-12-21 混动车辆扭矩控制方法、装置、存储介质及电子设备

Country Status (4)

Country Link
US (1) US20230303055A1 (zh)
EP (1) EP4159563A4 (zh)
CN (1) CN112644453B (zh)
WO (1) WO2022143305A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112644453B (zh) * 2020-12-28 2021-12-10 长城汽车股份有限公司 混动车辆扭矩控制方法、装置、存储介质及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013067352A (ja) * 2011-09-26 2013-04-18 Mitsubishi Motors Corp 車両の変速制御装置
CN103183024A (zh) * 2011-12-31 2013-07-03 上海汽车集团股份有限公司 一种混合动力车辆模式切换扭矩控制方法
CN106740824A (zh) * 2015-11-20 2017-05-31 北汽福田汽车股份有限公司 需求扭矩滤波方法、系统及混合动力汽车
CN109484390A (zh) * 2018-12-19 2019-03-19 安徽江淮汽车集团股份有限公司 一种混合动力汽车整车控制器控制电动机扭矩的方法
CN109720331A (zh) * 2017-10-31 2019-05-07 长城汽车股份有限公司 一种混合动力汽车的扭矩调节方法及装置
CN109955726A (zh) * 2017-12-26 2019-07-02 长城汽车股份有限公司 一种电机扭矩滤波方法、装置及车辆
CN111114520A (zh) * 2018-10-31 2020-05-08 上海汽车集团股份有限公司 一种加速踏板扭矩识别方法及装置
CN112644453A (zh) * 2020-12-28 2021-04-13 长城汽车股份有限公司 混动车辆扭矩控制方法、装置、存储介质及电子设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3454226B2 (ja) * 2000-05-11 2003-10-06 トヨタ自動車株式会社 ハイブリッド車両の制御装置
DE102008041897A1 (de) * 2008-09-09 2010-03-11 Robert Bosch Gmbh Verfahren zum Betreiben eines Antriebs eines Kraftfahrzeugs sowie Antriebsvorrichtung und elektronisches Steuergerät
FR2955548B1 (fr) * 2010-01-28 2012-04-13 Peugeot Citroen Automobiles Sa Procede de motricite curative pour vehicule hybride
US9637108B2 (en) * 2012-12-12 2017-05-02 Nissan Motor Co., Ltd. Vehicle driving-torque control device
US8731762B1 (en) * 2013-04-24 2014-05-20 GM Global Technology Operations LLC Method and system of controlling a powertrain system to reduce turbo lag in a hybrid vehicle
CN106427979B (zh) * 2015-08-04 2018-11-09 北京宝沃汽车有限公司 获取滤波系数的方法及混合动力车的扭矩滤波方法和系统
DE102018212926B4 (de) * 2018-08-02 2020-07-09 Audi Ag Verfahren zum Betreiben einer Hybridantriebseinrichtung eines Kraftfahrzeugs sowie entsprechende Hybridantriebseinrichtung
US20200039503A1 (en) * 2018-08-02 2020-02-06 GM Global Technology Operations LLC Vehicle and method of coordinated lash management
CN110509912A (zh) * 2019-09-24 2019-11-29 安徽江淮汽车集团股份有限公司 一种混合动力汽车扭矩控制方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013067352A (ja) * 2011-09-26 2013-04-18 Mitsubishi Motors Corp 車両の変速制御装置
CN103183024A (zh) * 2011-12-31 2013-07-03 上海汽车集团股份有限公司 一种混合动力车辆模式切换扭矩控制方法
CN106740824A (zh) * 2015-11-20 2017-05-31 北汽福田汽车股份有限公司 需求扭矩滤波方法、系统及混合动力汽车
CN109720331A (zh) * 2017-10-31 2019-05-07 长城汽车股份有限公司 一种混合动力汽车的扭矩调节方法及装置
CN109955726A (zh) * 2017-12-26 2019-07-02 长城汽车股份有限公司 一种电机扭矩滤波方法、装置及车辆
CN111114520A (zh) * 2018-10-31 2020-05-08 上海汽车集团股份有限公司 一种加速踏板扭矩识别方法及装置
CN109484390A (zh) * 2018-12-19 2019-03-19 安徽江淮汽车集团股份有限公司 一种混合动力汽车整车控制器控制电动机扭矩的方法
CN112644453A (zh) * 2020-12-28 2021-04-13 长城汽车股份有限公司 混动车辆扭矩控制方法、装置、存储介质及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4159563A4

Also Published As

Publication number Publication date
CN112644453A (zh) 2021-04-13
CN112644453B (zh) 2021-12-10
EP4159563A1 (en) 2023-04-05
EP4159563A4 (en) 2024-02-21
US20230303055A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
JP6309690B2 (ja) アクセル応答方法、装置、プログラムおよび記録媒体
US7689304B2 (en) Audio playback apparatus, audio playback method, and program
JP5743245B2 (ja) 性能スケーリングアルゴリズムのセットを公開して管理するためのモバイルデバイスおよび方法
CN103699372B (zh) 从中央存储装置引导计算机系统
US20080091974A1 (en) Device for controlling a multi-core CPU for mobile body, and operating system for the same
CN103853535B (zh) 修改中间件的方法和装置
WO2022143305A1 (zh) 混动车辆扭矩控制方法、装置、存储介质及电子设备
US20080244619A1 (en) External storage device and method of automatically operating the same
US8601200B2 (en) Controller for solid state disk which controls access to memory bank
WO2019205018A1 (zh) 界面切换方法、系统、设备及计算机可读存储介质
JPH10232824A (ja) 可搬形記録媒体アクセス方法
KR20080021072A (ko) 디바이스에 저장된 컨텐트의 재생을 원격으로 제어하는시스템, 방법 및 컴퓨터 판독가능 매체
CN112579208A (zh) 车辆的音频播放方法、装置、电子设备及存储介质
EP1748369A1 (en) Information processing apparatus, method, and computer program product for storing files on removable storage media
JPH11232204A (ja) ドライバファイルインストール装置、その方法、及びそのためのコンピュータプログラムを記録した記録媒体
KR102060023B1 (ko) 디스플레이 장치 및 그 화면 처리 방법
US20080209082A1 (en) Semiconductor device, reproduction device, and method for controlling the same
WO2018110169A1 (ja) 出力処理装置および出力処理方法
CN1849576A (zh) 从信息载体中检索数据
CN112149127B (zh) 安全策略的配置方法、装置、系统、计算机设备和介质
CN101365086A (zh) 记录再现装置及记录再现装置的记录模式设定方法
CN116634056A (zh) 一种终端及基于耳机的外部终端控制方法
US8406097B2 (en) Reproduction device of recording medium and method for operating the same
JP4765479B2 (ja) 車両用ネットワークシステム及びその制御方法
JP2001282400A (ja) バッテリ容量の測定および表示が可能な情報処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021914044

Country of ref document: EP

Effective date: 20221229

NENP Non-entry into the national phase

Ref country code: DE