WO2022142785A1 - 天线组件及电子设备 - Google Patents

天线组件及电子设备 Download PDF

Info

Publication number
WO2022142785A1
WO2022142785A1 PCT/CN2021/130698 CN2021130698W WO2022142785A1 WO 2022142785 A1 WO2022142785 A1 WO 2022142785A1 CN 2021130698 W CN2021130698 W CN 2021130698W WO 2022142785 A1 WO2022142785 A1 WO 2022142785A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
slot
antenna assembly
assembly
ultra
Prior art date
Application number
PCT/CN2021/130698
Other languages
English (en)
French (fr)
Inventor
雍征东
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022142785A1 publication Critical patent/WO2022142785A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an antenna assembly and an electronic device.
  • electronic devices can use UWB (Ultra Wide Band) positioning technology to achieve indoor positioning, but with the development of communication technology, electronic devices need to support more and more types of radio frequency signals, such as 4G, 5G, WiFi, etc. Therefore, more antennas are installed inside the electronic device, which further makes the space inside the electronic device smaller and smaller, and it is not enough to install UWB antennas to achieve positioning. Therefore, on a small-sized electronic device, setting up a UWB antenna to achieve positioning has become an urgent problem to be solved.
  • UWB Ultra Wide Band
  • Embodiments of the present application provide an antenna assembly and an electronic device.
  • the size of the antenna assembly is small, and the antenna assembly can be arranged in an electronic device with a small internal space, so as to realize the positioning of the communication object by the electronic device.
  • an embodiment of the present application provides an antenna assembly, and the antenna assembly includes:
  • a first antenna the first antenna includes adjacent first sides and second sides, the first side of the first antenna is grounded, and the second side of the first antenna is provided with a first feeder an electrical point, the first antenna is provided with at least one first slot parallel to the first side;
  • the second antenna includes adjacent fourth and fifth sides, the fourth side of the second antenna is parallel to the first side of the first antenna and is grounded, the The fifth side of the second antenna is provided with a second feeding point, and the second antenna is provided with at least one second slot parallel to the fourth side;
  • the feeding structure is connected to the first feeding point and the second feeding point, and is used for feeding excitation signals to the first antenna and the second antenna to excite the
  • the first antenna generates resonance in the first frequency band, and excites the second antenna to generate resonance in the second frequency band.
  • an embodiment of the present application further provides an electronic device, where the electronic device includes the antenna assembly provided by the embodiment of the present application, where the antenna assembly is configured to receive an ultra-wideband radio frequency signal sent by a communication object, and the electronic device Also includes:
  • the processor is electrically connected with the antenna assembly, and the processor is configured to process the ultra-wideband radio frequency signal received by the antenna assembly to determine the position of the communication object.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a first structure of an antenna assembly provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a second structure of an antenna assembly provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a third structure of an antenna assembly provided by an embodiment of the present application.
  • FIG. 5 is a fourth schematic structural diagram of an antenna assembly provided by an embodiment of the present application.
  • FIG. 6 is a fifth structural schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • FIG. 7 is a sixth schematic structural diagram of an antenna assembly provided by an embodiment of the present application.
  • FIG. 8 is a seventh schematic structural diagram of an antenna assembly provided by an embodiment of the present application.
  • FIG. 9 is a schematic circuit diagram of an antenna assembly provided by an embodiment of the present application.
  • FIG. 10 is a first working current diagram of the antenna assembly provided by the embodiment of the present application.
  • FIG. 11 is a second working current diagram of the antenna assembly provided by the embodiment of the present application.
  • FIG. 12 is a reflection parameter diagram of an antenna assembly provided by an embodiment of the present application.
  • FIG. 13 is a system efficiency diagram of the antenna assembly provided by the embodiment of the present application.
  • Embodiments of the present application provide an electronic device.
  • the electronic device may be a smartphone, a tablet computer, etc., or a game device, an AR (Augmented Reality, augmented reality) device, a car, a data storage device, an audio playback device, a video playback device, a notebook, a desktop computing device, etc. .
  • AR Augmented Reality, augmented reality
  • FIG. 1 is a schematic diagram of a first structure of an electronic device according to an embodiment of the present application.
  • the electronic device 100 includes a display screen 10 , a housing 20 , a circuit board 30 and a battery 40 .
  • the display screen 10 is disposed on the casing 20 to form a display surface of the electronic device 100 for displaying information such as images and texts.
  • the display screen 10 may include a liquid crystal display (Liquid Crystal Display, LCD) or an organic light-emitting diode (Organic Light-Emitting Diode, OLED) type display screen.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • the display screen 10 may include a display surface and a non-display surface opposite to the display surface.
  • the display surface is the surface of the display screen 10 facing the user, that is, the surface of the display screen 10 that is visible to the user on the electronic device 100 .
  • the non-display surface is the surface of the display screen 10 facing the interior of the electronic device 100 .
  • the display surface is used for displaying information, and the non-display surface does not display information.
  • a cover plate may also be provided on the display screen 10 to protect the display screen 10 and prevent the display screen 10 from being scratched or damaged by water.
  • the cover plate may be a transparent glass cover plate, so that the user can observe the content displayed on the display screen 10 through the cover plate. It can be understood that the cover plate may be a glass cover plate made of sapphire.
  • the casing 20 is used to form the outer contour of the electronic device 100 so as to accommodate the electronic devices, functional components, etc. of the electronic device 100 , and at the same time form a seal and protect the electronic devices and functional components inside the electronic device.
  • functional components such as a camera, a circuit board, and a vibration motor of the electronic device 100 may be arranged inside the housing 20 .
  • the housing 20 may include a middle frame and a back cover.
  • the middle frame may be a thin plate-like or flake-like structure, and may also be a hollow frame structure.
  • the middle frame is used to provide support for the electronic devices or functional components in the electronic device 100 so as to mount the electronic devices and functional components of the electronic device 100 together.
  • structures such as grooves and protrusions may be provided on the middle frame, so as to facilitate the installation of electronic devices or functional components of the electronic device 100 .
  • the material of the middle frame may include metal or plastic.
  • the back cover is connected with the middle frame.
  • the back cover can be attached to the middle frame by an adhesive such as double-sided tape to realize the connection with the middle frame.
  • the back cover is used to seal the electronic devices and functional components of the electronic device 100 together with the middle frame and the display screen 10 inside the electronic device 100 to form a protective effect on the electronic devices and functional components of the electronic device 100 .
  • the back cover can be integrally formed.
  • structures such as a rear camera mounting hole may be formed on the back cover.
  • the material of the back cover may also include metal or plastic.
  • the circuit board 30 is arranged inside the casing 20 .
  • the circuit board 30 may be mounted on the middle frame of the housing 20 for fixing, and the circuit board 30 may be sealed inside the electronic device through the back cover.
  • the circuit board may be mounted on one side of the carrier board, and the display screen may be mounted on the other side of the carrier board.
  • the circuit board 30 may be the main board of the electronic device 100 .
  • the circuit board 30 may also integrate one or more functional components such as a processor, a camera, an earphone interface, an acceleration sensor, a gyroscope, and a motor.
  • the display screen 10 may be electrically connected to the circuit board 30 to control the display of the display screen 10 by a processor on the circuit board 30 .
  • the battery 40 is provided inside the case 20 .
  • the battery 40 may be mounted on the middle frame of the case 20 for fixing, and the battery 40 may be sealed inside the electronic device through the back cover.
  • the battery 40 is electrically connected to the circuit board 30 , so that the battery 40 can supply power to the electronic device 100 .
  • the circuit board 30 may be provided with a power management circuit.
  • the power management circuit is used to distribute the voltage provided by the battery 40 to the various electronic devices in the electronic device 100 .
  • the electronic device 100 is further provided with an antenna assembly, the antenna assembly is used to radiate radio frequency signals to the outside world and receive radio frequency signals from the outside world, so as to realize the wireless communication function of the electronic device 100 .
  • the radio frequency signal may include one of a cellular network signal, a wireless fidelity (Wireless Fidelity, Wi-Fi) signal, a positioning signal, and the like.
  • FIG. 2 is a schematic diagram of a first structure of an antenna assembly provided by an embodiment of the present application.
  • the antenna assembly may be a UWB (Ultra Wideband) antenna.
  • UWB antennas can achieve accurate indoor positioning. For example, electronic devices equipped with UWB antennas can identify other nearby UWB tag antennas through the UWB antenna, so as to determine the location of other electronic devices according to the UWB tag antennas of other electronic devices. s position.
  • UWB wireless communication is a way of using pulses with very short time interval (less than 1ns) to communicate without carrier.
  • UWB can achieve data transfer rates from hundreds of Mbit/s to several Gbit/s within a range of around 10 meters. Its anti-interference performance is strong, the transmission rate is high, the system capacity is large, and the transmission power is very small.
  • the transmit power of the UWB antenna is very small, and the communication device can communicate with less than 1mW of transmit power.
  • the low transmit power greatly prolongs the working time of the system power supply.
  • the emission power is small, and its electromagnetic wave radiation has little influence on the human body.
  • the traditional antenna design method can no longer set the UWB antenna inside the electronic device, and the antenna assembly needs to be reduced in size, thereby reducing the length, width and height of the antenna assembly.
  • the size of the antenna assembly is reduced, the frequency of the radio frequency signal that can be transmitted by the UWB antenna will change, thereby affecting the radiation performance of the antenna assembly and the positioning effect of the electronic device.
  • an antenna assembly in an embodiment of the present application, includes an antenna 50 , a dielectric substrate 60 and a metal floor 70 , wherein the antenna 50 is disposed on the dielectric substrate 60 , and the metal floor 70 is disposed on the dielectric substrate 60 away from the antenna 50 on the other side. That is, the dielectric substrate 60 is provided between the metal floor 70 and the antenna 50 .
  • the antenna assembly has a thin thickness.
  • the thickness from the antenna 50 to the metal floor 70 can reach the order of millimeters.
  • the antenna assembly is very thin and light, and can be arranged in an electronic device with a relatively small internal space.
  • the antenna 50 is connected with a corresponding feeder, and the feeder may also be provided on the dielectric substrate 60 .
  • the dielectric substrate 60 is provided with a through hole through which the feed line can pass, and the feed line can be connected to a feed source corresponding to the antenna assembly through the through hole.
  • the metal floor 70 is provided with corresponding through holes, the through holes on the dielectric substrate 60 and the through holes on the metal floor 70 are aligned, and the feed line of the antenna 50 can be connected to the antenna assembly through the two aligned through holes Corresponding feed connection. In this way, the antenna assembly can be fed, and the antenna assembly can radiate ultra-wideband radio frequency signals.
  • FIG. 3 is a schematic diagram of a second structure of an antenna assembly provided by an embodiment of the present application.
  • the antenna assembly includes a first antenna 510 and a second antenna 520 .
  • the first antenna 510 includes at least one first slot 514
  • the second antenna 520 also includes at least one second slot 524 .
  • the first antenna 510 includes a first side 511 , a second side 512 and a third side 513 , wherein the first side 511 and the second side 512 are adjacent.
  • the second antenna 520 includes a fourth side 521 , a fifth side 522 and a sixth side 523 , and the fourth side 521 and the fifth side 522 are adjacent to each other.
  • the fourth side 521 is parallel to the first side 511 .
  • a plurality of first ground points 515 are provided on the first side 511 of the first antenna 510 , a system of the plurality of first ground points 515 and the antenna assembly For ground connection, the first ground point 515 is arranged on the first side 511 to realize grounding, which can improve the radiation performance of the first antenna 510 .
  • a plurality of second ground points 524 are provided on the fourth side 521 of the second antenna 520, and the plurality of second ground points 524 are connected to the system ground of the antenna assembly.
  • the grounding point 524 is disposed on the fourth side 521 to realize grounding, which can improve the radiation performance of the second antenna 520 .
  • the system ground of the antenna assembly may be the metal floor 70 .
  • the shape of the radiator of the first antenna 510 is a rectangle, and the first ground point 515 may be located on the first side 511 of the first antenna 510 .
  • the first antenna 510 includes a first slot 514.
  • the first slot 514 is disposed on either side except the first ground point 515, and a first opening is formed on the side. That is, the first slit 514 is communicated with the external space through the first opening.
  • the first slot 514 may be disposed on the third side 513 of the first antenna 510 and a first opening may be formed.
  • the shape of the radiator of the second antenna 520 is a rectangle, and the second ground point 524 may be located on the fourth side 521 of the second antenna 520 .
  • the second antenna 520 includes a second slot 524.
  • the second slot 524 is disposed on either side except the second ground point 524, and a second opening is formed on the side. That is, the second slit 524 is communicated with the external space through the second opening.
  • the second slot 524 forms a second opening on the sixth side 523 of the second antenna 520 .
  • the first antenna 510 and the second antenna 520 are each a separate entity, and the first antenna 510 and the second antenna 520 are not connected.
  • the first side 511 of the first antenna 510 may face away from the second antenna 520 or the second side 511 may face the second antenna 520 .
  • the fourth side 521 of the second antenna 520 may face the first antenna 510 or be away from the first antenna 510 .
  • the first feeding point of the first antenna 510 may be set on the second side 512
  • the second feeding point of the second antenna 520 may be set on the fifth side 522 .
  • the first feed point and the second feed point may be connected to the feed structure.
  • the feeding structure is used to output an excitation signal, to excite the first antenna 510 to generate resonance in the first frequency band, and to excite the second antenna 520 to generate resonance in the second frequency band.
  • the first antenna 510 and the second antenna 520 may share a signal source, and the signal source may provide ultra-wideband radio frequency signals of at least two frequency bands.
  • the first antenna 510 is used for transmitting the first ultra-wideband radio frequency signal
  • the second antenna 520 is used for transmitting the second ultra-wideband radio frequency signal.
  • the first ultra-wideband radio frequency signal may be an ultra-wideband radio frequency signal in the frequency band of 6.5 GHz
  • the second ultra-wideband radio frequency signal may be an ultra-wideband radio frequency signal in the frequency band of 8 GHz.
  • FIG. 4 is a third schematic structural diagram of the antenna assembly provided by the embodiment of the present application.
  • the size of the first slit 514 and the size of the second slit 524 are different, the slit length of the first slit 514 is D1, and the slit length of the second slit 524 is D2.
  • the slot length D1 of the first slot 514 is longer than the slot length D2 of the second slot 524, and the first antenna 510 can be used to generate resonance in the first frequency band, so as to transmit the first ultra-wideband radio frequency signal, the second The antenna 520 is used to generate resonance of the second frequency band, so as to transmit the second ultra-wideband radio frequency signal.
  • the highest frequency of the first frequency band is lower than the lowest frequency of the second frequency band.
  • the frequency of the ultra-wideband radio frequency signal transmitted by the first antenna 510 or the second antenna 520 is higher.
  • the frequency of the ultra-wideband radio frequency signal transmitted by the first antenna 510 or the second antenna 520 is lower. Therefore, the frequency of the ultra-wideband radio frequency signal transmitted by the first antenna 510 or the second antenna 520 can be adjusted by adjusting the slot size on the first antenna 510 or the second antenna 520.
  • the radiation frequency of the antenna can also be adjusted by adjusting the size of the radiator of the antenna.
  • the dimension of the first antenna 510 in the direction perpendicular to the first slot 511 is larger than the dimension of the second antenna 520 in the direction perpendicular to the second slot 521 . That is, the length of the first slit 514 may be greater than the length of the second slit 524 , and the width of the first slit 514 may be greater than the width of the second slit 524 .
  • the length and/or width of the first slot 514 and the second slot 524 may both be the same.
  • the size of the first antenna 510 is larger than the size of the second antenna 520.
  • the first antenna 510 is used for transmitting the ultra-wideband radio frequency signal with a lower frequency
  • the second antenna 520 is used for transmitting the ultra-wideband radio frequency signal with a higher frequency.
  • the first antenna 510 and the second antenna 520 may share the same radiator. As shown in FIG. 4 , the first antenna 510 and the second antenna 520 share the same metal patch, the first side 511 and the fourth The sides 521 are connected, and a plurality of radiator grounding points 530 are arranged on the metal patch, and the plurality of radiator grounding points 530 are arranged on the first side 511 and the fourth side 521 through the radiator grounding points 530
  • the metal patch is divided into a first part and a second part, the first part is the first antenna 510 and the second part is the second antenna 520 .
  • FIG. 5 is a fourth schematic structural diagram of the antenna assembly provided by the embodiment of the present application.
  • the first slot 514 may be disposed in the middle of the first antenna 510 , that is to say, the first slot 514 is far away from any side of the first antenna 510 , and the first slot 514 is not on the side of the first antenna 510 . Openings are formed on the sides.
  • the second slot 524 may be disposed in the middle of the second antenna 520 , that is, the second slot 524 is away from any side of the second antenna 520 , and the second slot 524 does not form an opening on the side of the second antenna 520 .
  • Insulating material may be filled in the first slot 514 and the second slot 524, and the antenna assembly may have stronger stability through the insulating material.
  • the connection with other components of the electronic device can also be achieved through insulating materials.
  • glue can be provided in the first gap 514 and the second gap 524, and the connection with the housing of the electronic device can be realized through the glue.
  • FIG. 6 is a fifth structural schematic diagram of the antenna assembly provided by the embodiment of the present application.
  • the first antenna 510 includes two first slits 514 , one of the first slits 514 is formed with a third opening on the second side 512 of the first antenna 510 , and the other first slit 514 is formed on the second side 512 of the first antenna 510 .
  • a first opening is formed on the three sides 513 , the first opening and the third opening are opposite, and the second side 512 and the third side 513 are also opposite. Since a plurality of first ground points 515 are disposed on the first side 511 of the first antenna 510 , the first slot 514 is far away from the first side 511 .
  • the second antenna 520 includes two second slots 524 , one second slot 524 has a fourth opening formed on the fifth side 522 of the second antenna 520 , and the other second slot 524 is formed on the sixth side 523 There is a second opening, and the fifth side 522 and the sixth side 523 are opposite sides. Since a plurality of second ground points 524 are disposed on the fourth side 521 of the second antenna 520 , the second slot 524 and the second slot 524 are far away from the fourth side 521 .
  • the specific positions of the first grounding point 515 and the second grounding point 524 may be specifically set according to the setting manner of the first antenna 510 and the second antenna 520 .
  • the directions of the first side edge 511 and the fourth side edge 521 are opposite to each other.
  • first slit 514 and the first side 511 are parallel, and the second slit 524 and the fourth side 521 are parallel.
  • FIG. 7 is a sixth schematic structural diagram of an antenna assembly provided by an embodiment of the present application.
  • the first antenna 510 and the second antenna 520 may share the same metal patch, thereby reducing the volume of the antenna assembly.
  • the first opening and the second opening may be on the same side of the metal patch, and the third opening and the fourth opening may be on the same side of the metal patch.
  • the size of the first slot 514 and the second slot 524 may be the same. In this case, by adjusting the ground point 530 of the radiator on the metal patch, the size of the first antenna 510 and the second antenna 520 can be changed, thereby changing the Resonance frequencies corresponding to the first antenna 510 and the second antenna 520 .
  • the first antenna 510 and the second antenna 520 are both rectangular in shape and have the same side length, and the resonant frequency of the first antenna 510 can be changed by adjusting the size of the first slot 514 .
  • the resonant frequency of the second antenna 520 can be changed by adjusting the size of the second slot 524 . Therefore, the resonant frequency of the antenna assembly can be changed without increasing the volume of the antenna assembly, so that the antenna assembly can transmit ultra-wideband radio frequency signals of different frequencies.
  • FIG. 8 is a seventh schematic structural diagram of an antenna assembly provided by an embodiment of the present application.
  • the size of the slot on the first antenna 510 and the second antenna 520 is the same, the depth of the slot is L3, and the value of L3 may be 2 mm.
  • the sizes of the first antenna 510 and the second antenna 520 can be adjusted to the resonant frequency of the antenna assembly without changing the size of the entire metal patch.
  • the width of the metal patch may be L1, the value of L1 is 10.5 mm, the width of the radiator of the first antenna 510 is L2, and the value of L2 is 4.73 mm.
  • FIG. 9 is a schematic circuit diagram of an antenna assembly provided by an embodiment of the present application.
  • the first antenna 510 and the second antenna 520 share a signal source S1, and the signal source S1 can provide ultra-wideband radio frequency signals in at least two frequency ranges.
  • the first matching circuit M1 matches the first ultra-wideband radio frequency signal, and then radiates the first ultra-wideband radio frequency signal through the first antenna 510 .
  • the second matching circuit M2 matches the second ultra-wideband radio frequency signal, and then radiates the second ultra-wideband radio frequency signal through the second antenna 520 .
  • the first antenna 510 can also receive the first ultra-wideband radio frequency signal
  • the second antenna 520 can also receive the second ultra-wideband radio frequency signal.
  • the processor in the electronic device can process the ultra-wideband radio frequency signal received by the antenna assembly, so as to determine the specific position of the communication object transmitting the ultra-wideband radio frequency signal, so as to realize the positioning of the communication object by the electronic device.
  • FIG. 10 is a first working current diagram of the antenna assembly provided by the embodiment of the present application.
  • the first antenna 510 when the first antenna 510 is working, there is a current distribution on the antenna assembly, and the first antenna 510 radiates a first ultra-wideband radio frequency signal through the current, and the first ultra-wideband radio frequency signal is a 6.5GHz frequency radio frequency signal.
  • the current intensity at the first slot 514 and the first slot 514 is the strongest, and the first antenna 510 can radiate the first ultra-wideband radio frequency signal to the outside through the first slot 514 .
  • FIG. 11 is a second working current diagram of the antenna assembly provided by the embodiment of the present application.
  • the second antenna 520 when the second antenna 520 is working, there is a current distribution on the antenna assembly, and the second antenna 520 radiates a second ultra-wideband radio frequency signal through the current, and the second ultra-wideband radio frequency signal is a radio frequency of 8 GHz frequency Signal.
  • the current intensity at the second slot 524 and the second slot 524 is the strongest, and the second antenna 520 can radiate the second ultra-wideband radio frequency signal to the outside through the second slot 524 and the second slot 524 .
  • FIG. 12 is a reflection parameter diagram of an antenna assembly provided by an embodiment of the present application.
  • the horizontal axis of the coordinate system in FIG. 12 is the frequency, and the vertical axis is the reflection coefficient. It can be seen from FIG. 12 that when the first antenna 510 radiates an ultra-wideband radio frequency signal of 6.48 GHz, the reflection coefficient of the antenna radiator is less than -12 dB, and the antenna The components have good radiation performance. When the second antenna 520 is radiating an ultra-wideband radio frequency signal of 7.98 GHz, the reflection coefficient of the antenna radiator is less than -10 dB, and the antenna assembly has good radiation performance.
  • FIG. 13 is a system efficiency diagram of the antenna assembly provided by the embodiment of the present application.
  • the horizontal axis of the coordinate system in FIG. 13 is the frequency, and the vertical axis is the system efficiency. It can be seen from FIG. 13 that when the first antenna 510 radiates an ultra-wideband radio frequency signal of 6.48 GHz, the reflection coefficient of the antenna radiator is greater than -5dB, and the antenna The components have good radiation performance. When the second antenna 520 is radiating an ultra-wideband radio frequency signal of 8 GHz, the reflection coefficient of the antenna radiator is greater than -5 dB, and the antenna assembly has good radiation efficiency.
  • the antenna assembly includes a first antenna 510 , a second antenna 520 and a feeding structure.
  • the first antenna 510 includes adjacent first sides 511 and second sides 512 .
  • the side 511 is grounded, the second side 512 of the first antenna 510 is provided with a first feeding point, and the first antenna 510 is provided with at least one first slot 514 parallel to the first side 511;
  • the second antenna 520 includes Adjacent to the fourth side 521 and the fifth side 522, the fourth side 521 of the second antenna 520 is parallel to the first side 511 of the first antenna 510 and grounded, and the fifth side 522 of the second antenna 520
  • a second feeding point is arranged, and at least one second slot 524 parallel to the fourth side 521 is arranged on the second antenna 520;
  • the first antenna 510 and the second antenna 520 are fed with excitation signals to excite the first antenna 510 to generate resonance in the first frequency band, and excite the second antenna 520 to generate resonance in the second frequency band.
  • the antenna assembly

Landscapes

  • Waveguide Aerials (AREA)

Abstract

一种天线组件及电子设备。其中,第一天线包括相邻的第一侧边及第二侧边,第一侧边接地,第二侧边有第一馈电点,第一天线上有至少一条平行于第一侧边的第一缝隙。第二天线包括相邻的第四侧边及第五侧边,第四侧边与第一侧边平行且接地,第五侧边有第二馈电点,第二天线上有至少一条平行于第四侧边的第二缝隙。

Description

天线组件及电子设备
本申请要求于2020年12月31日提交中国专利局、申请号202011626164.7、发明名称为“天线组件及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种天线组件及电子设备。
背景技术
在相关技术中,电子设备可以采用UWB(Ultra Wide Band)定位技术来实现室内定位,但是随着通信技术的发展,电子设备需要支持的射频信号类型越来越多,例如4G、5G、WiFi等射频信号,从而使得在电子设备内部设置较多的天线,也进一步使得电子设备内部的空间越来越小,根本不足以设置UWB天线来实现定位。因此,在体积小的电子设备上,设置UWB天线实现定位,成为了亟待解决的问题。
发明内容
本申请实施例提供一种天线组件及电子设备。该天线组件的体积较小,能够在内部空间较小的电子设备中设置该天线组件,实现电子设备对通信对象的定位。
第一方面,本申请实施例提供一种天线组件,该天线组件包括:
第一天线,所述第一天线包括相邻的第一侧边及第二侧边,所述第一天线的第一侧边接地,所述第一天线的第二侧边设置有第一馈电点,所述第一天线上设置有至少一条平行于所述第一侧边的第一缝隙;
第二天线,所述第二天线包括相邻的第四侧边及第五侧边,所述第二天线的第四侧边与所述第一天线的第一侧边平行且接地,所述第二天线的第五侧边设置有第二馈电点,所述第二天线上设置有至少一条平行于所述第四侧边的第二缝隙;
馈电结构,所述馈电结构与所述第一馈电点及所述第二馈电点连接,用于向所述第一天线及所述第二天线馈入激励信号,以激励所述第一天线产生第一频段的谐振,并激励所述第二天线产生第二频段的谐振。
第二方面,本申请实施例还提供了一种电子设备,所述电子设备包括本申请实施例提供的天线组件,所述天线组件用于接收通信对象发送的超宽带射频信号,所述电子设备还包括:
处理器,所述处理器与所述天线组件电连接,所述处理器用于对所述天线组件接收的超宽带射频信号进行处理,以确定所述通信对象所处的位置。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的电子设备的结构示意图。
图2是本申请实施例提供的天线组件的第一结构示意图。
图3是本申请实施例提供的天线组件的第二结构示意图。
图4是本申请实施例提供的天线组件的第三结构示意图。
图5是本申请实施例提供的天线组件的第四结构示意图。
图6是本申请实施例提供的天线组件的第五结构示意图。
图7是本申请实施例提供的天线组件的第六结构示意图。
图8是本申请实施例提供的天线组件的第七结构示意图。
图9是本申请实施例提供的天线组件的电路示意图。
图10是本申请实施例提供的天线组件的第一工作电流图。
图11是本申请实施例提供的天线组件的第二工作电流图
图12是本申请实施例提供的天线组件的反射参数图。
图13是本申请实施例提供的天线组件的系统效率图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,诸如术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等术语的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
本申请实施例提供一种电子设备。所述电子设备可以是智能手机、平板电脑等设备,还可以是游戏设备、AR(Augmented Reality,增强现实)设备、汽车、数据存储装置、音频播放装置、视频播放装置、笔记本、桌面计算设备等。
请参阅图1,图1为本申请实施例提供的电子设备的第一结构示意图。
电子设备100包括显示屏10、壳体20、电路板30以及电池40。
其中,显示屏10设置在壳体20上,以形成电子设备100的显示面,用于显示图像、文本等信息。其中,显示屏10可以包括液晶显示屏(Liquid Crystal Display,LCD)或有机发光二极管显示屏(Organic Light-Emitting Diode,OLED)等类型的显示屏。
可以理解的,显示屏10可以包括显示面以及与所述显示面相对的非显示面。所述显示面为所述显示屏10朝向用户的表面,也即所述显示屏10在电子设备100上用户可见的表面。所述非显示面为所述显示屏10朝向电子设备100内部的表面。其中,所述显示面用于显示信息,所述非显示面不显示信息。
可以理解的,显示屏10上还可以设置盖板,以对显示屏10进行保护,防止显示屏10被刮伤或者被水损坏。其中,所述盖板可以为透明玻璃盖板,从而用户可以透过盖板观察到显示屏10显示的内容。可以理解的,所述盖板可以为蓝宝石材质的玻璃盖板。
壳体20用于形成电子设备100的外部轮廓,以便于容纳电子设备100的电子器件、功能组件等,同时对电子设备内部的电子器件和功能组件形成密封和保护作用。例如,电子设备100的摄像头、电路板、振动马达等功能组件都可以设置在壳体20内部。可以理解的,所述壳体20可以包括中框和后盖。
其中,所述中框可以为薄板状或薄片状的结构,也可以为中空的框体结构。中框用于为电子设备100中的电子器件或功能组件提供支撑作用,以将电子设备100的电子器件、功能组件安装到一起。例如,所述中框上可以设置凹槽、凸起等结构,以便于安装电子设备100的电子器件或功能组件。可以理解的,中框的材质可以包括金属或塑胶等。
所述后盖与所述中框连接。例如,所述后盖可以通过诸如双面胶等粘接剂贴合到中框上以实现与中框的连接。其中,后盖用于与所述中框、所述显示屏10共同将电子设备100的电子器件和功能组件密封在电子设备100内部,以对电子设备100的电子器件和功能组件形成保护作用。可以理解的,后盖可以一体成型。在后盖的成型过程中,可以在后盖上形成后置摄像头安装孔等结构。可以理解的,后盖的材质也可以包括金属或塑胶等。
电路板30设置在所述壳体20内部。例如,电路板30可以安装在壳体20的中框上,以进行固定,并通过后盖将电路板30密封在电子设备内部。具体的,所述电路板可以安装在承载板的一侧,以及所述显示屏安装在所述承载板的另一侧。其中,电路板30可以为电子设备100的主板。其中,所述电路板30上还可以集成有处理器、摄像头、耳机接口、加速度传感器、陀螺仪、马达等功能组件中的一个或多个。同时,显示屏10可以电连接至电路板30,以通过电路板30上的处理器对显示屏10的显示进行控制。
电池40设置在壳体20内部。例如,电池40可以安装在壳体20的中框上,以进行固定,并通过后盖将电池40密封在电子设备内部。同时,电池40电连接至所述电路板30,以实现电池40为电子设备100供电。其中,电路板30上可以设置有电源管理电路。所述电源管理电路用于将电池40提供的电压分配到电子设备100中的各个电子器件。
其中,电子设备100中还设置有天线组件,所述天线组件用于向外界辐射射频信号和接收外界的射频信号,以实现电子设备100的无线通信功能。其中,射频信号可以包括蜂窝网络信号、无线保真(Wireless Fidelity,Wi-Fi)信号、定位信号等信号中的一种。
请参阅图2,图2是本申请实施例提供的天线组件的第一结构示意图。
该天线组件可以是UWB(Ultra Wideband)天线。UWB天线可以实现在室内的精确定位,例如,搭载UWB天线的电子设备,可以通过UWB天线来实现对附近其他的UWB标签天线进行识别,从而根据其他电子设备的UWB标签天线确定出其他电子设备所在的位置。
UWB无线通信是一种不用载波,而采用时间间隔极短(小于1ns)的脉冲进行通信的方式,是一种无载波通信技术,利用纳秒至微秒级的非正弦波窄脉冲传输数据。通过在较宽的频谱上传送极低功率的信号,UWB能在10米左右的范围内实现数百Mbit/s至数Gbit/s的数据传输速率。其抗干扰性能强,传输速率高,系统容量大发送功率非常小。UWB天线发射功率非常小,通信设备可以用小于1mW的发射功率就能实现通信。低发射功率大大延长系统电源工作时间。而且,发射功率小,其电磁波辐射对人体的影响也很小。
但是,在电子设备内部空间非常狭小时,传统的天线设计方式已经不能将UWB天线设置到电子设备内部,需要对天线组件进行体积缩小,从而使得天线组件的长度、宽度、高度都进行缩小。但是在天线组件体积缩小的情况下,会导致UWB天线能够传输的射频信号的频率发生改变,从而影响天线组件的辐射性能和电子设备的定位效果。
在本申请实施例中,提供了一种天线组件,天线组件包括天线50、介质基板60以及金属地板70,其中天线50设置在介质基板60上,而金属地板70设置在介质基板60背离天线50的另一侧。即介质基板60设置在金属地板70和天线50之间。
该天线组件拥有较薄的厚度。例如,从天线50的到金属地板70的厚度可以达到毫米级别,此时的天线组件非常轻薄,可以设置在内部空间较为狭小的电子设备中。
同时,天线50连接有对应的馈线,馈线也可以设置在介质基板60上。介质基板60上设置有馈线可以穿过的穿孔,通过穿孔馈线可以和天线组件对应的馈源连接。
在一些实施方式中,在金属地板70上设置有对应的穿孔,介质基板60上的穿孔和金属地板70上的穿孔是对齐的,天线50的馈线可以通过这两个对齐的穿孔来与天线组件对应的馈源连接。从而实现对天线组件进行馈电,是的天线组件能够辐射超宽带射频信号。
请参阅图3,图3是本申请实施例提供的天线组件的第二结构示意图。
如图3所示,天线组件包括第一天线510和第二天线520。其中,第一天线510包括至少一条第一缝隙514,第二天线520也至少包括一条第二缝隙524。
第一天线510包括第一侧边511、第二侧边512和第三侧边513,其中第一侧边511和第二侧边512相邻。第二天线520包括第四侧边521、第五侧边522和第六侧边523,第四侧边521和第五侧边522相邻。第四侧边521与第一侧边511平行。
在一些实施方式中,为了提升第一天线510的辐射性能,在第一天线510的第一侧边511上设置有多个第一接地点515,多个第一接地点515和天线组件的系统地连接,通过将第一接地点515设置在第一侧边511上来实现接地,能够提升第一天线510的辐射性能。
为了提升第二天线520的辐射性能,在第二天线520的第四侧边521设置有多个第二接地点524,多个第二接地点524和天线组件的系统地连接,通过将第二接地点524设置在第四侧边521上来实现接地,能够提升第二天线520的辐射性能。其中,天线组件的系统地可以是金属地板70。
在一些实施方式中,第一天线510的辐射体形状为矩形,第一接地点515可以处在第一天线510的第一侧边511。第一天线510包括第一缝隙514,第一缝隙514设置在除第一接地点515所在的任一侧边,且在该侧边上形成有第一开口。也就是说,第一缝隙514通过第一开口和外界空间是连通的。例如,可以将第一缝隙514设置在第一天线510的第三侧边513上可以形成有第一开口。
第二天线520的辐射体形状为矩形,第二接地点524可以处在第二天线520的第四侧边521。第二天线520包括第二缝隙524,第二缝隙524设置在除第二接地点524所在的任一侧边,且在该侧边上形成有第二开口。也就是说,第二缝隙524通过第二开口和外界空间是连通的。例如,第二缝隙524在第二天线520的第六侧边523上形成第二开口。
在一些实施方式中,第一天线510和第二天线520分别是一个单独的个体,第一天线510和第二天线520不连接。第一天线510的第一侧边511可以背离第二天线520或者第二侧边511可以朝向第二天线520。第二天线520的第四侧边521可以朝向第一天线510或者背离第一天线510。
在一些实施方式中,第一天线510的第一馈电点可以设置在第二侧边512,第二天线520的第二馈电点可以设置在第五侧边522。第一馈电点和第二馈电点可以连接馈电结构。馈电结构用于输出激励信号,激励第一天线510产生第一频段的谐振,并激励第二天线520产生第二频段的谐振。
例如,第一天线510和第二天线520可以共用一个信号源,信号源可以提供至少两种频段的超宽带射频信号。第一天线510用于传输第一超宽带射频信号,第二天线520用于传输第二超宽带射频信号。第一超宽带射频信号可以是6.5GHz频段范围的超宽带射频信号,第二超宽带射信号可以是8GHz频段范围的超宽带射频信号。
请继续参阅图4,图4是本申请实施例提供的天线组件的第三结构示意图。
其中,第一缝隙514的尺寸和第二缝隙524的尺寸有所不同,第一缝隙514的缝隙长度为D1,第二缝隙524的缝隙长度为D2。
在一些实施方式中,第一缝隙514的缝隙长度D1长度大于第二缝隙524的缝隙长度D2,第一天线510可以用于产生第一频段的谐振,从而传输第一超宽带射频信号,第二天线520用于产生第二频段的谐振,从而传输第二超宽带射频信号。其中,第一频段的最高频率低于第二频段的最低频率。
当第一天线510或者第二天线520上的缝隙尺寸越小时,第一天线510或第二天线520传输的超宽带射频信号的频率越高。当第一天线510或者第二天线520上的缝隙尺寸越大时,第一天线510或第二天线520传输的超宽带射频信号的频率越低。因此,可以通过调节第一天线510或第二天线520上的缝隙尺寸来调节第一天线510或第二天线520传输的 超宽带射频信号的频率。
在一些实施方式中,还可以通过调节天线的辐射体尺寸来调节天线的辐射频率。例如,第一天线510在垂直于第一缝隙511方向上的尺寸大于第二天线520在垂直于第二缝隙521方向上的尺寸。也就是说,第一缝隙514的长度可以大于第二缝隙524的长度,第一缝隙514的宽度可以大于第二缝隙524的宽度。第一缝隙514和第二缝隙524的长度和/或宽度可以都是相同的。
第一天线510的尺寸大于第二天线520的尺寸,第一天线510用于传输频率较低的超宽带射频信号,第二天线520用于传输频率较高的超宽带射频信号。
在一些实施方式中,第一天线510和第二天线520可以共用同一辐射体,如图4所示,第一天线510和第二天线520共用同一金属贴片,第一侧边511和第四侧边521是相连的,在金属贴片上设置有多个辐射体接地点530,多个辐射体接地点530设置在第一侧边511和第四侧边521上,通过辐射体接地点530将金属贴片分为第一部分和第二部分,第一部分为第一天线510,第二部分为第二天线520。通过将第一天线510和第二天线520共用同一金属贴片的方式,减小了天线组件的体积,更利于天线组件设置在较小空间的电子设备内。
请继续参阅图5,图5是本申请实施例提供的天线组件的第四结构示意图。
在一些实施方式中,第一缝隙514可以设置在第一天线510的中部,也就是说第一缝隙514远离第一天线510的任一侧边,第一缝隙514没有在第一天线510的侧边上形成开口。第二缝隙524可以设置在第二天线520的中部,也就是说第二缝隙524远离第二天线520的任一侧边,第二缝隙524没有在第二天线520的侧边上形成开口。
在第一缝隙514和第二缝隙524中可以填充设置绝缘材料,通过绝缘材料可以使得天线组件拥有更强的稳固性。还可以通过绝缘材料来实现和电子设备的其他部件连接,例如,在第一缝隙514和第二缝隙524内可以设置胶水,通过胶水实现和电子设备的壳体连接。
请继续参阅图6,图6是本申请实施例提供的天线组件的第五结构示意图。
在一些实施方式中,第一天线510包括两条第一缝隙514,一条第一缝隙514在第一天线510上的第二侧边512上形成有第三开口,另一条第一缝隙514在第三侧边513上形成有第一开口,第一开口和第三开口是相对的,第二侧边512和第三侧边513也是相对的。由于在第一天线510的第一侧边511上设置有多个第一接地点515,第一缝隙514远离第一侧边511。
第二天线520包括两条第二缝隙524,一条第二缝隙524在第二天线520上的第五侧边522上形成有第四开口,另一条第二缝隙524在第六侧边523上形成有第二开口,第五侧边522和第六侧边523是相对的两个侧边。由于在第二天线520的第四侧边521上设置有多个第二接地点524,第二缝隙524和第二缝隙524远离第四侧边521。
在一些实施方式中,可以根据第一天线510和第二天线520的设置方式,来具体设置第一接地点515和第二接地点524的具体位置。例如,第一侧边511和第四侧边521朝向的方向是相背离的。
在一些实施方式中,第一缝隙514和第一侧边511是平行的,第二缝隙524和第四侧边521是平行的。
请参阅图7,图7是本申请实施例提供的天线组件的第六结构示意图。
在一些实施方式中,第一天线510和第二天线520可以共用同一个金属贴片,从而减小天线组件的体积。其中,第一开口和第二开口可以在金属贴片相同的侧边,第三开口和第四开口可以在金属贴片相同的侧边。
第一缝隙514和第二缝隙524的尺寸可以是相同的,此时可以通过调节金属贴片上的辐射体接地点530,就能够改变第一天线510和第二天线520的尺寸大小,从而改变第一 天线510、第二天线520对应的谐振频率。
另外,第一天线510和第二天线520的形状都是矩形且侧边长度都是相同的,可以通过调节第一缝隙514的尺寸大小来改变第一天线510的谐振频率。通过调节第二缝隙524的尺寸大小来改变第二天线520的谐振频率。从而实现在不增加天线组件的体积情况下,实现对天线组件的谐振频率的改变,从而实现天线组件传输不同频率的超宽带射频信号。
请继续参阅图8,图8是本申请实施例提供的天线组件的第七结构示意图。
在一些实施方式中,第一天线510和第二天线520上的缝隙尺寸是相同的,缝隙的深度均为L3,L3的数值可以是2mm。
由于第一天线510和第二天线520是共用同一金属贴片来做为辐射体,通过在矩形的金属贴片上设置辐射体接地点530,可以通过调节辐射体接地点530的位置来调节第一天线510和第二天线520的尺寸,从而在不改变整个金属贴片体积大小的情况下,实现对天线组件的谐振频率进行调节。其中,金属贴片的宽度可以是L1,L1的数值为10.5mm,第一天线510的辐射体宽度为L2,L2的数值为4.73mm。
请参阅图9,图9是本申请实施例提供的天线组件的电路示意图。
在一些实施方式中,第一天线510和第二天线520共用一个信号源S1,信号源S1可以提供至少两种频率范围的超宽带射频信号。第一匹配电路M1对第一超宽带射频信号进行匹配,然后通过第一天线510将第一超宽带射频信号辐射出去。第二匹配电路M2对第二超宽带射频信号进行匹配,然后通过第二天线520将第二超宽带射频信号辐射出去。通过设置一个信号源S1的方式,能够进一步减少天线组件的体积。
需要说明的是,第一天线510还可以接收第一超宽带射频信号,第二天线520还可以接收第二超宽带射频信号。电子设备内的处理器可以对天线组件接收到的超宽带射频信号进行处理,从而确定出发射超宽带射频信号的通信对象的具体位置,从而实现电子设备对通信对象的定位。
图10是本申请实施例提供的天线组件的第一工作电流图。
如图10所示,当第一天线510工作时,在天线组件上有电流分布,通过电流来实现第一天线510辐射出第一超宽带射频信号,第一超宽带射频信号为6.5GHz频率的射频信号。其中,在第一缝隙514和第一缝隙514处的电流强度最强,第一天线510可以通过第一缝隙514向外界辐射出第一超宽带射频信号。
请参阅图11,图11是本申请实施例提供的天线组件的第二工作电流图。
如图11所示,当第二天线520工作时,在天线组件上有电流分布,通过电流来实现第二天线520辐射出第二超宽带射频信号,第二超宽带射频信号为8GHz频率的射频信号。其中,在第二缝隙524和第二缝隙524处的电流强度最强,第二天线520可以通过第二缝隙524和第二缝隙524向外界辐射出第二超宽带射频信号。
图12是本申请实施例提供的天线组件的反射参数图。
其中,图12中的坐标系横轴为频率,纵轴为反射系数,由图12可知,第一天线510在辐射6.48GHz的超宽带射频信号时,天线辐射体的反射系数小于-12dB,天线组件拥有良好的辐射性能。当第二天线520在辐射7.98GHz的超宽带射频信号时,天线辐射体的反射系数小于-10dB,天线组件拥有良好的辐射性能。
图13是本申请实施例提供的天线组件的系统效率图。
其中,图13中的坐标系横轴为频率,纵轴为系统效率,由图13可知,第一天线510在辐射6.48GHz的超宽带射频信号时,天线辐射体的反射系数大于-5dB,天线组件拥有良好的辐射性能。当第二天线520在辐射8GHz的超宽带射频信号时,天线辐射体的反射系数大于-5dB,天线组件拥有良好的辐射效率。
本申请实施例中,天线组件包括第一天线510、第二天线520及馈电结构,第一天线 510包括相邻的第一侧边511及第二侧边512,第一天线510的第一侧边511接地,第一天线510的第二侧边512设置有第一馈电点,第一天线510上设置有至少一条平行于第一侧边511的第一缝隙514;第二天线520包括相邻的第四侧边521及第五侧边522,第二天线520的第四侧边521与第一天线510的第一侧边511平行且接地,第二天线520的第五侧边522设置有第二馈电点,第二天线520上设置有至少一条平行于第四侧边521的第二缝隙524;馈电结构与第一馈电点及第二馈电点连接,用于向第一天线510及第二天线520馈入激励信号,以激励第一天线510产生第一频段的谐振,并激励第二天线520产生第二频段的谐振。该天线组件拥有较小的体积。
以上对本申请实施例所提供的一种天线组件及电子设备进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种天线组件,其中,包括:
    第一天线,所述第一天线包括相邻的第一侧边及第二侧边,所述第一天线的第一侧边接地,所述第一天线的第二侧边设置有第一馈电点,所述第一天线上设置有至少一条平行于所述第一侧边的第一缝隙;
    第二天线,所述第二天线包括相邻的第四侧边及第五侧边,所述第二天线的第四侧边与所述第一天线的第一侧边平行且接地,所述第二天线的第五侧边设置有第二馈电点,所述第二天线上设置有至少一条平行于所述第四侧边的第二缝隙;
    馈电结构,所述馈电结构与所述第一馈电点及所述第二馈电点连接,用于向所述第一天线及所述第二天线馈入激励信号,以激励所述第一天线产生第一频段的谐振,并激励所述第二天线产生第二频段的谐振。
  2. 根据权利要求1所述的天线组件,其中,所述至少一个第一缝隙设置于所述第一馈电点背离所述第一天线的第一侧边的一侧,所述至少一个第二缝隙设置于所述第二馈电点背离所述第二天线的第四侧边的一侧。
  3. 根据权利要求2所述的天线组件,其中,所述第一天线与所述第二天线为一体式天线,所述第一天线的第一侧边与所述第二天线的第四侧边连接。
  4. 根据权利要求3所述的天线组件,其中,所述第一天线和所述第二天线在所述第一天线的第一侧边与所述第二天线的第四侧边的连接处共用接地结构。
  5. 根据权利于要求4所述的天线组件,其中,所述第一天线与所述第二天线由一块金属贴片形成,所述金属贴片的宽度为10.5毫米。
  6. 根据权利要求5所述的天线组件,其中,所述金属贴片上设置有多个辐射体接地点,所述第一侧边和所述第四侧边与所述多个辐射体接地点连接。
  7. 根据权利要求5所述的天线组件,其中,所述第一天线在所述金属贴片上对应的宽度为4.73毫米。
  8. 根据权利要求2所述的天线组件,其中,所述第一天线与所述第二天线间隔设置,所述第一天线的第一侧边背离所述第二天线,所述第二天线的第四侧边朝向所述第一天线或背离所述第一天线。
  9. 根据权利要求1-8任一项所述的天线组件,其中,所述第一频段低于所述第二频段,所述第一天线在垂直于所述第一缝隙方向上的尺寸大于所述第二天线在垂直于所述第二缝隙方向上的尺寸。
  10. 根据权利要求9所述的天线组件,其中,所述第一缝隙的长度大于和/或所述第一缝隙的宽度大于所述第二缝隙的宽度。
  11. 根据权利要求10所述的天线组件,其中,所述至少一个第一缝隙及所述至少一个第二缝隙均为封闭式缝隙。
  12. 根据权利要求10所述的天线组件,其中,所述第一天线还包括与所述第一天线的第二侧边相对的第三侧边,所述第二天线还包括与所述第二天线的第五侧边相对的第六侧边,所述至少一个第一缝隙及所述至少一个第二缝隙均为半开放式缝隙,所述第一缝隙在所述第一天线的第二侧边或第三侧边上形成有开口,所述第二缝隙在所述第二天线的第五侧边或第六侧边上形成有开口。
  13. 根据权利要求12所述的天线组件,其中,所述第一天线设置有两个第一缝隙,两个所述第一缝隙在平行于所述第一天线的第一侧边的方向上间隔设置,其中一个第一缝隙在所述第一天线的第二侧边上形成有开口,另一个第一缝隙在所述第一天线的第三侧边上形成有开口。
  14. 根据权利要求12所述的天线组件,其中,所述第二天线设置有两个第二缝隙,两个所述第二缝隙在平行于所述第二天线的第四侧边的方向上间隔设置,其中一个第二缝隙在所述第二天线的第五侧边上形成有开口,另一个第二缝隙在所述第二天线的第六侧边上形成有开口。
  15. 根据权利要求1-8任一项所述的天线组件,其中,所述第一缝隙的尺寸和所述第二缝隙的尺寸相同。
  16. 根据权利要求15所述的天线组件,其中,所述第一缝隙的缝隙深度和所述第二缝隙的缝隙深度均为2毫米。
  17. 根据权利要求1所述的天线组件,其中,所述天线组件还包括:
    金属地板;
    所述第一侧边上设置有多个第一接地点,所述多个第一接地点与所述金属地板连接;
    所述第四侧边上设置有多个第二接地点,所述多个第二接地点与所述金属地板连接。
  18. 根据权利要求1所述的天线组件,其中,所述天线组件还包括:
    信号源,所述信号源用于提供至少两种频率范围的超宽带射频信号;
    第一匹配电路,所述第一匹配电路一端和所述信号源连接,所述第一匹配电路的另一端和所述第一天线连接;
    第二匹配电路,所述第二匹配电路一端和所述信号源连接,所述第二匹配电路的另一端和所述第二天线连接。
  19. 根据权利要求18所述的天线组件,其中,当所述第一匹配电路向所述第一天线组件发送第一超宽带射频信号,所述第一天线通过所述第一缝隙向外界辐射所述第一超宽带射频信号;
    当所述第二匹配电路向所述第二天线组件发送第二超宽带射频信号,所述第二天线通过所述第二缝隙向外界辐射所述第二超宽带射频信号。
  20. 一种电子设备,其中,所述电子设备包括权利要求1-19任一项所述的天线组件,所述天线组件用于接收通信对象发送的超宽带射频信号,所述电子设备还包括:
    处理器,所述处理器与所述天线组件电连接,所述处理器用于对所述天线组件接收的超宽带射频信号进行处理,以确定所述通信对象所处的位置。
PCT/CN2021/130698 2020-12-31 2021-11-15 天线组件及电子设备 WO2022142785A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011626164.7 2020-12-31
CN202011626164.7A CN112821064A (zh) 2020-12-31 2020-12-31 天线组件及电子设备

Publications (1)

Publication Number Publication Date
WO2022142785A1 true WO2022142785A1 (zh) 2022-07-07

Family

ID=75854860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130698 WO2022142785A1 (zh) 2020-12-31 2021-11-15 天线组件及电子设备

Country Status (2)

Country Link
CN (1) CN112821064A (zh)
WO (1) WO2022142785A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024066679A1 (zh) * 2022-09-30 2024-04-04 Oppo广东移动通信有限公司 天线组件及电子设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112821064A (zh) * 2020-12-31 2021-05-18 Oppo广东移动通信有限公司 天线组件及电子设备
CN113555679B (zh) * 2021-07-14 2023-11-10 Oppo广东移动通信有限公司 天线单元和电子设备
CN114094324A (zh) * 2021-10-29 2022-02-25 西安理工大学 一种应用于rfid的集成波导天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101170221A (zh) * 2006-10-25 2008-04-30 鸿富锦精密工业(深圳)有限公司 多输入输出天线
US20100238084A1 (en) * 2009-03-17 2010-09-23 Wei-Kung Deng Dual-band Planar Micro-Strip Antenna
WO2019194805A1 (en) * 2018-04-05 2019-10-10 Hewlett-Packard Development Company, L.P. Patch antennas with excitation radiator feeds
CN112821064A (zh) * 2020-12-31 2021-05-18 Oppo广东移动通信有限公司 天线组件及电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1649206A (zh) * 2004-03-29 2005-08-03 北京邮电大学 多波段宽频带微带贴片天线
CN205811057U (zh) * 2016-06-27 2016-12-14 成都信息工程大学 微带天线
US10819029B2 (en) * 2019-02-08 2020-10-27 Apple Inc. Electronic device having multi-frequency ultra-wideband antennas
CN111834731B (zh) * 2019-04-19 2022-03-01 Oppo广东移动通信有限公司 天线模组及电子设备
US10957978B2 (en) * 2019-06-28 2021-03-23 Apple Inc. Electronic devices having multi-frequency ultra-wideband antennas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101170221A (zh) * 2006-10-25 2008-04-30 鸿富锦精密工业(深圳)有限公司 多输入输出天线
US20100238084A1 (en) * 2009-03-17 2010-09-23 Wei-Kung Deng Dual-band Planar Micro-Strip Antenna
WO2019194805A1 (en) * 2018-04-05 2019-10-10 Hewlett-Packard Development Company, L.P. Patch antennas with excitation radiator feeds
CN112821064A (zh) * 2020-12-31 2021-05-18 Oppo广东移动通信有限公司 天线组件及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024066679A1 (zh) * 2022-09-30 2024-04-04 Oppo广东移动通信有限公司 天线组件及电子设备

Also Published As

Publication number Publication date
CN112821064A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2022142785A1 (zh) 天线组件及电子设备
CN112736432B (zh) 天线装置及电子设备
WO2022166525A1 (zh) 天线装置及电子设备
CN112467387B (zh) 天线装置及电子设备
CN108923119A (zh) 电子设备
EP4277027A1 (en) Millimeter wave antenna, apparatus and electronic device
CN112736461B (zh) 天线装置及电子设备
CN112821042B (zh) 电子设备
CN112736448B (zh) 电子设备
WO2021088712A1 (zh) 天线辐射体、天线组件及电子设备
CN112103624B (zh) 天线装置及电子设备
WO2020001186A1 (zh) 电子设备
WO2021036986A1 (zh) 天线装置及电子设备
WO2023236494A1 (zh) 电子设备
US11949152B2 (en) Antenna device and electronic device
TWI769878B (zh) 天線結構及具有該天線結構之電子設備
CN112821043B (zh) 天线组件及电子设备
CN108965516B (zh) 电子设备
WO2020010912A1 (zh) 电子设备
CN113013616A (zh) 天线组件及电子设备
WO2021136052A1 (zh) 天线装置及电子设备
WO2024007996A1 (zh) 天线单元及电子设备
EP4224630A1 (en) Antenna apparatus and electronic device
CN112751182A (zh) 天线组件及电子设备
CN113471702B (zh) 天线装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913528

Country of ref document: EP

Kind code of ref document: A1