WO2024066679A1 - 天线组件及电子设备 - Google Patents

天线组件及电子设备 Download PDF

Info

Publication number
WO2024066679A1
WO2024066679A1 PCT/CN2023/107738 CN2023107738W WO2024066679A1 WO 2024066679 A1 WO2024066679 A1 WO 2024066679A1 CN 2023107738 W CN2023107738 W CN 2023107738W WO 2024066679 A1 WO2024066679 A1 WO 2024066679A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
antenna radiator
antenna
free end
antenna assembly
Prior art date
Application number
PCT/CN2023/107738
Other languages
English (en)
French (fr)
Inventor
雍征东
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024066679A1 publication Critical patent/WO2024066679A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array

Definitions

  • the present application relates to the field of communication technology, and in particular to an antenna assembly and an electronic device.
  • the present application provides an antenna assembly and an electronic device capable of improving angle measurement accuracy.
  • an antenna assembly comprising:
  • a first antenna radiator comprising a first branch and a second branch and a third branch respectively located on opposite sides of the first branch
  • the first branch comprises a first ground terminal, a first feeding point and a first free end
  • the first ground terminal is used to electrically connect to a reference ground
  • the first feeding point is used to electrically connect to a radio frequency signal source
  • the first free end is respectively connected to the second branch and the third branch
  • a first gap is formed between the second branch and the first branch
  • a second gap is formed between the third branch and the first branch
  • a second antenna radiator wherein the second antenna radiator and the first antenna radiator are arranged at intervals along a first target direction, and the second antenna radiator is used to be electrically connected to the radio frequency signal source.
  • the present application also provides an electronic device, including a device body and the antenna assembly, wherein the device body is used to carry the antenna assembly.
  • FIG1 is a schematic diagram of the structure of dual receiving antenna angle measurement in the related art
  • FIG2 is a schematic diagram of the structure of an electronic device provided in an embodiment of the present application.
  • FIG3 is an exploded schematic diagram of the electronic device shown in FIG2 ;
  • FIG4 is a schematic diagram of a planar structure of an antenna assembly provided in an embodiment of the present application, wherein the antenna assembly includes a first antenna radiator and a second antenna radiator, and the first antenna radiator includes a first branch and a second branch and a third branch located on opposite sides of the first branch;
  • FIG5 is a schematic diagram of the planar structure of the first antenna radiator in the antenna assembly shown in FIG4 ;
  • FIG6 is a schematic diagram of current distribution of the first antenna radiator in the antenna assembly shown in FIG4 ;
  • FIG7 is a schematic diagram of a planar structure of the antenna assembly shown in FIG5 further including a first feeder line, the first feeder line being electrically connected to the first antenna radiator;
  • FIG8 is a schematic diagram of another planar structure of the antenna assembly shown in FIG5 further including a first feeder line, the first feeder line being electrically connected to the first antenna radiator;
  • FIG9 is a schematic diagram of a planar structure in which the second antenna radiator of the antenna assembly shown in FIG4 is a patch antenna radiator;
  • FIG10 is a schematic diagram of a planar structure of the second antenna radiator of the antenna assembly shown in FIG4 being an IPFA antenna radiator;
  • FIG11 is a schematic diagram of a planar structure in which the second antenna radiator of the antenna assembly shown in FIG4 includes a fourth branch and a fifth branch and a sixth branch located on opposite sides of the fourth branch;
  • FIG12 is a schematic diagram of the planar structure of the second antenna radiator in the antenna assembly shown in FIG11;
  • FIG13 is a schematic diagram of a planar structure in which the antenna assembly shown in FIG11 further includes a second feeder, and the second feeder is electrically connected to the second antenna radiator;
  • FIG14 is a schematic diagram of another planar structure of the antenna assembly shown in FIG11 further including a second feeder line, the second feeder line being electrically connected to the second antenna radiator;
  • FIG15 is a schematic diagram of a planar structure in which the second antenna radiator and the first antenna radiator shown in FIG11 are arranged in a spaced relationship along the first target direction;
  • FIG16 is a schematic diagram of another planar structure in which the second antenna radiator and the first antenna radiator shown in FIG11 are arranged at intervals along the first target direction;
  • FIG17 is a schematic diagram of another planar structure in which the second antenna radiator and the first antenna radiator shown in FIG11 are arranged at intervals along the first target direction;
  • FIG18 is a schematic diagram of another planar structure in which the second antenna radiator and the first antenna radiator shown in FIG11 are arranged at intervals along the first target direction;
  • FIG19 is a schematic diagram of a planar structure in which the antenna assembly shown in FIG11 further includes a third antenna radiator, and the third antenna radiator is a patch antenna radiator;
  • FIG20 is a schematic diagram of a planar structure in which the antenna assembly shown in FIG11 further includes a third antenna radiator, and the third antenna radiator is an IPFA antenna radiator;
  • FIG21 is a schematic diagram of a planar structure in which the antenna assembly shown in FIG11 further includes a third antenna radiator, and the third antenna radiator includes a seventh branch and an eighth branch and a ninth branch located on opposite sides of the seventh branch;
  • FIG22 is a schematic diagram of a planar structure in which the antenna assembly shown in FIG21 further includes a third feeder, and the third feeder is electrically connected to a third antenna radiator;
  • FIG23 is a schematic diagram of another planar structure of the antenna assembly shown in FIG21 further including a third feeder, the third feeder being electrically connected to a third antenna radiator;
  • FIG24 is a schematic diagram of a planar structure in which the third antenna radiator and the first antenna radiator shown in FIG21 are arranged in a spaced relationship along the second target direction;
  • FIG25 is a schematic diagram of another planar structure in which the third antenna radiator and the first antenna radiator shown in FIG21 are arranged at intervals along the second target direction;
  • FIG26 is a schematic diagram of another planar structure in which the third antenna radiator and the first antenna radiator shown in FIG21 are arranged at intervals along the second target direction;
  • FIG27 is a schematic diagram of another planar structure in which the third antenna radiator and the first antenna radiator shown in FIG21 are arranged at intervals along the second target direction;
  • FIG28 is a return loss curve diagram of an antenna assembly provided in an embodiment of the present application.
  • FIG29 is a radiation efficiency curve diagram of an antenna assembly provided in an embodiment of the present application.
  • FIG30 is a polarization ratio pattern of an antenna assembly provided in an embodiment of the present application.
  • Figure 31 is a polarization ratio curve diagram of an antenna assembly provided in an embodiment of the present application.
  • Figure 1 is a schematic diagram of the structure of dual receiving antenna angle measurement in the related art.
  • the specific principle of dual receiving antennas to achieve angle measurement is: electromagnetic wave signals in different directions reach the two receiving antennas through different paths, introducing an additional path difference, thereby introducing an additional time difference, and the additional time difference corresponds to an additional phase difference.
  • the angle measurement is achieved through the relationship between the phase difference and the arrival angle of the electromagnetic wave signals received by the two receiving antennas.
  • the spacing between the two receiving antennas is d.
  • the electric field expressions of the transmitting antenna and the receiving antenna are as follows:
  • Rn is used to represent the product of the cross-polarization ratio of the transmitting antenna and the receiving antenna; ⁇ is used to represent the dielectric constant; ⁇ 2 - ⁇ 1 is used to represent the feeding phase difference of the two receiving antennas; Used to indicate the consistency of the phase patterns of two receiving antennas; Used to represent the transmitting antenna phase pattern.
  • the factors that affect PDOA are: the polarization ratio of the transmitting and receiving antennas, the phase center spacing of the receiving antenna, the phase pattern of the receiving antenna, the phase pattern of the transmitting antenna, the medium environment in which the antenna is located, and the receiving antenna feed phase difference.
  • the polarization inconsistency will also introduce additional phase differences.
  • the present application provides an antenna component and electronic device with less cross-polarization and higher angle measurement accuracy.
  • the antenna assembly provided in the present application includes a first antenna radiator and a second antenna radiator.
  • the first antenna radiator includes a first branch and a second branch and a third branch respectively located on opposite sides of the first branch, the first branch includes a first ground terminal, a first feeding point and a first free end, the first ground terminal is used to electrically connect to a reference ground, the first feeding point is used to electrically connect to a radio frequency signal source, the first free end is respectively connected to the second branch and the third branch, a first gap portion is formed between the second branch and the first branch, and a second gap portion is formed between the third branch and the first branch.
  • the second antenna radiator and the first antenna radiator are arranged at intervals along the first target direction, and the second antenna radiator is used to electrically connect to the radio frequency signal source.
  • the antenna assembly also includes a first feed line, one end of the first feed line is electrically connected to the first feed point, the other end of the first feed line is electrically connected to the RF signal source, and the orthographic projection of the first feed line on the plane where the first antenna radiator is located extends from the first feed point toward the side where the first ground end is located, or the orthographic projection of the first feed line on the plane where the first antenna radiator is located extends from the first feed point toward the side where the first free end is located.
  • the size of the first gap portion is greater than or equal to 0.2 mm and less than or equal to 1.5 mm, and the size of the second gap portion is greater than or equal to 0.2 mm and less than or equal to 1.5 mm.
  • the end of the second branch node close to the first free end is connected to the first free end
  • the end of the second branch node away from the first free end is spaced apart from the first branch node
  • the end of the third branch node close to the first free end is connected to the first free end
  • the end of the third branch node away from the first free end is spaced apart from the first branch node.
  • the first grounding end includes at least one first grounding point.
  • a size of the first gap portion and a size of the second gap portion are smaller than or equal to a spacing distance between the first antenna radiator and the second antenna radiator along the first target direction.
  • the second antenna radiator is a patch antenna radiator, and the second antenna radiator is not directly grounded.
  • the second antenna radiator is a planar inverted F-shaped antenna radiator, and the second antenna radiator includes a second feeding point and at least one second grounding point.
  • the second antenna radiator includes a fourth branch and a fifth branch and a sixth branch respectively located on opposite sides of the fourth branch
  • the fifth branch includes a second grounding terminal, a second feeding point and a second free end
  • the second grounding terminal is used to electrically connect to the reference ground
  • the second feeding point is used to electrically connect to the RF signal source
  • the second free end is respectively connected to the fifth branch and the sixth branch
  • a third gap portion is formed between the fifth branch and the fourth branch
  • a fourth gap portion is formed between the sixth branch and the fourth branch.
  • the antenna assembly also includes a second feed line, one end of the second feed line is electrically connected to the second feeding point, the other end of the second feed line is used to electrically connect to the RF signal source, and the orthographic projection of the second feed line on the surface where the second antenna radiator is located extends from the second feeding point toward the second ground end or the side where the second free end is located.
  • the size of the third gap portion is greater than or equal to 0.2 mm and less than or equal to 1.5 mm, and the size of the fourth gap portion is greater than or equal to 0.2 mm and less than or equal to 1.5 mm.
  • the end of the fifth branch close to the second free end is connected to the second free end
  • the end of the fifth branch away from the second free end is spaced apart from the fourth branch
  • the end of the sixth branch close to the second free end is connected to the second free end
  • the end of the sixth branch away from the second free end is spaced apart from the fourth branch.
  • the second grounding terminal includes at least one second grounding point.
  • the first free end, the first feeding point, the first ground end, the second ground end, the second feeding point and the second free end are arranged in sequence along the first target direction.
  • the first free end, the first feeding point, the first ground end, the second free end, the second feeding point and the second ground end are arranged in sequence along the first target direction.
  • the second branch, the first branch, the third branch, the fifth branch, the fourth branch and the sixth branch are arranged in sequence along the first target direction.
  • the antenna assembly further includes a third antenna radiator, and the third antenna radiator and the first antenna radiator are arranged at intervals along a second target direction, or the third antenna radiator and the second antenna radiator are arranged at intervals along a second target direction, wherein the second target direction intersects with the first target direction, and the third antenna radiator is used to electrically connect to the RF signal source.
  • the third antenna radiator includes a seventh branch and an eighth branch and a ninth branch respectively located on opposite sides of the seventh branch
  • the seventh branch includes a third ground terminal, a third feeding point and a third free end
  • the third ground terminal is used to electrically connect to the reference ground
  • the third feeding point is used to electrically connect to the radio frequency signal source
  • the third free end is respectively connected to the eighth branch and the ninth branch
  • a fifth gap portion is formed between the eighth branch and the seventh branch
  • a sixth gap portion is formed between the ninth branch and the seventh branch.
  • the antenna assembly further includes a dielectric layer, and the first antenna radiator and the second antenna radiator are arranged on a surface of the dielectric layer.
  • the electronic device provided in the present application comprises a device body and the antenna assembly, wherein the device body is used to carry the antenna assembly.
  • FIG2 is a schematic diagram of the structure of an electronic device 100 provided in an embodiment of the present application.
  • the electronic device 100 may be a mobile phone, a tablet computer, a laptop computer, a computer, a watch, a drone, a robot, a base station, a radar, a customer premise equipment (Customer Premise Equipment, CPE), a vehicle-mounted device, a home appliance, or other device with a wireless communication function.
  • the present application embodiment takes a mobile phone as an example.
  • the electronic device 100 includes a device body 2 and an antenna assembly 1.
  • the device body 2 can be It includes components such as a display screen 20, a housing 21 (a middle frame 210 and a back cover 211), a circuit board 22, and a camera module 23.
  • the display screen 20 and the housing 21 are connected to each other.
  • the circuit board 22 and the camera module 23 are located in the space between the display screen 20 and the housing 21.
  • the device body 2 is used to carry the antenna assembly 1.
  • the antenna assembly 1 can be directly carried on one or more components of the device body 2 (for example, a circuit board 22 or a housing 21), or it can be carried on one or more components of the device body 2 through other supporting structures.
  • the antenna assembly 1 can be carried in the device body 2 (that is, in the space between the display screen 20 and the housing 21), or it can be partially integrated in the housing 21 of the device body 2.
  • the housing 21 of the electronic device 100 can form a reference ground, or the grounding layer of the circuit board 22 of the electronic device 100 can form a reference ground.
  • the antenna assembly 1 is used to realize the wireless communication function of the electronic device 100.
  • the antenna assembly 1 provided in the present application is a UWB antenna assembly, that is, an antenna assembly for short-range wireless communication.
  • the transmission distance of the antenna assembly 1 can be within 10m, using a bandwidth of more than 1GHz. Since UWB does not use a carrier, but uses nanosecond to microsecond non-sinusoidal narrow pulses to transmit data, the spectrum range occupied by the UWB antenna assembly is very wide, which is suitable for high-speed, short-range wireless personal communications.
  • the FCC stipulates that the operating frequency band of UWB ranges from 3.1GHz to 10.6GHz, and the minimum operating bandwidth is 500MHz.
  • the current mainstream UWB frequency band center frequencies are 6.5GHz and 8GHz.
  • the operating frequency band range of the antenna assembly 1 provided in the present application can be between 3.1GHz and 10.6GHz, the minimum operating bandwidth can be 500MHz, and the center frequency of the antenna assembly 1 can include 6.5GHz or 8GHz.
  • the center frequency of the antenna assembly 1 includes 8GHz as an example.
  • Figure 4 is a schematic diagram of the structure of an antenna assembly 1 provided in an embodiment of the present application
  • Figure 5 is a schematic diagram of the structure of the first antenna radiator 11 in the antenna assembly 1 shown in Figure 4.
  • the antenna assembly 1 includes a first antenna radiator 11 and a second antenna radiator 12 arranged at intervals along a first target direction.
  • the antenna assembly 1 may also include a dielectric layer 10.
  • the first antenna radiator 11 and the second antenna radiator 12 may be arranged on the surface of the dielectric layer 10.
  • the first antenna radiator 11 of the antenna assembly 1 includes a first branch 110 and a second branch 112 and a third branch 113 respectively located on opposite sides of the first branch 110.
  • the second branch 112, the first branch 110 and the third branch 113 are arranged in sequence.
  • the material of the first branch 110, the material of the second branch 112 and the material of the third branch 113 are all conductive materials.
  • the material of the first branch 110, the material of the second branch 112 and the material of the third branch 113 can be metal, alloy, etc.
  • the material of the first branch 110, the material of the second branch 112 and the material of the third branch 113 can be the same or different.
  • the first antenna radiator 11 can be used to generate a quarter-wavelength resonant mode or a half-wavelength resonant mode.
  • the first branch 110 includes a first grounding terminal 1101, a first feeding point 1102 and a first free end 1103.
  • the first grounding terminal 1101 is used to electrically connect to the reference ground.
  • the first grounding terminal 1101 includes at least one first grounding point 110a, and the at least one first grounding point 110a is used to electrically connect to the reference ground.
  • At least one first grounding point 110a is electrically connected to the housing 21 of the electronic device 100 (refer to Figure 2); or, at least one first grounding point 110a is electrically connected to the grounding layer of the circuit board 22 of the electronic device 100; or, the back of the dielectric layer 10 is provided with a grounding metal electrically connected to the housing 21 of the electronic device 100 or electrically connected to the grounding layer of the circuit board 22 of the electronic device 100, and at least one first grounding point 110a can be electrically connected to the grounding metal to achieve electrical connection to the reference ground. At least one first grounding point 110a can be electrically connected to the reference ground through a microstrip line, a coaxial line, a probe, a spring, etc.
  • the RF signal source can be an RF chip, an RF module, etc., and the RF signal source is used to generate a high-frequency current signal.
  • the first feeding point 1102 can be electrically connected to the RF signal source through a microstrip line, a coaxial line, a probe, a spring, etc. The first feeding point 1102 is used to obtain the current signal generated by the RF signal source.
  • the first free end 1103 is arranged opposite to the first grounding end 1101, and the first free end 1103 is not directly grounded, nor is it directly electrically connected to the RF signal source. Among them, the first free end 1103 can form an electric field strength point of the first branch 110, and the first grounding end 1101 can form a current strength point of the first branch 110.
  • the first free end 1103 is connected to the second branch 112 and the third branch 113 respectively.
  • a first gap L1 is formed between the second branch 112 and the first branch 110
  • a second gap L2 is formed between the third branch 113 and the first branch 110 .
  • one end of the second branch 112 close to the first free end 1103 is connected to the first free end 1103, and one end of the second branch 112 away from the first free end 1103 is spaced from the first branch 110, so that a first gap is formed between the second branch 112 and the first branch 110.
  • One end of the third branch 113 close to the first free end 1103 is connected to the first free end 1103, and one end of the third branch 113 away from the first free end 1103 is spaced from the first branch 110, so that a second gap is formed between the third branch 113 and the first branch 110.
  • the end of the second branch 112 away from the first free end 1103 may be close to the first grounding end 1101 of the first branch 110, or the end of the second branch 112 away from the first free end 1103 may be opposite to and spaced from the first grounding end 1101 of the first branch 110.
  • An end of the third branch 113 away from the first free end 1103 may be close to the first grounding end 1101 of the first branch 110, or the third branch 113 away from the first free end
  • One end of 1103 can be opposite to and spaced from the first grounding end 1101 of the first branch 110.
  • the size of the first gap portion can be the same as or different from the size of the second gap portion.
  • the size of the first gap portion can refer to L1 in FIG.
  • the size of the second gap portion can refer to L2 in FIG. 5.
  • the first gap portion is directly described as the first gap portion L1
  • the second gap portion is directly described as the second gap portion L2.
  • the first gap portion L1 and the second gap portion L2 can be less than or equal to the spacing distance between the first antenna radiator 11 and the second antenna radiator 12 along the first target direction. It can be understood that the current signal of the first branch 110 can be transmitted to the second branch 112 and the third branch 113.
  • the second branch 112 and the third branch 113 arranged in this way can be used to adjust the high-order resonant current distribution of the first branch 110 and reduce the cross-polarization of the first antenna radiator 11.
  • the second antenna radiator 12 and the first antenna radiator 11 are arranged at intervals along the first target direction.
  • the first target direction can refer to the X-axis direction in FIG. 4, and is directly described as the first target direction X in the following embodiments.
  • the first target direction X can be the width direction of the electronic device 100.
  • the first antenna radiator 11 and the second antenna radiator 12 are arranged at intervals along the first target direction X to form a horizontal angle measurement antenna group, which can be used to measure the azimuth angle in the arrival angle of the electromagnetic wave signal.
  • the first target direction X can also be the length direction of the electronic device 100.
  • the first antenna radiator 11 and the second antenna radiator 12 are arranged at intervals along the first target direction X to form a vertical angle measurement antenna group, which can be used to measure the elevation angle in the arrival angle of the electromagnetic wave signal.
  • the material of the second antenna radiator 12 is a conductive material.
  • the material of the second antenna radiator 12 can be metal, alloy, etc.
  • the second antenna radiator 12 is used to electrically connect to the radio frequency signal source.
  • the electrical connection method between the second antenna radiator 12 and the radio frequency signal source can include one or more of direct electrical connection, indirect electrical connection, and coupled connection.
  • the second antenna radiator 12 is used to obtain the current signal generated by the radio frequency signal source.
  • the second antenna radiator 12 may generate a quarter-wavelength resonance mode or a half-wavelength resonance mode.
  • the antenna assembly 1 includes a first antenna radiator 11 and a second antenna radiator 12 arranged at intervals along a first target direction.
  • the first antenna radiator 11 and the second antenna radiator 12 form a two-dimensional angle measurement antenna group, which can measure the arrival angle according to the phase difference between the electromagnetic wave signals received by the first antenna radiator 11 and the second antenna radiator 12.
  • the first antenna radiator 11 includes a first branch 110, a second branch 112 and a third branch 113.
  • the second branch 112 and the third branch 113 are respectively located on opposite sides of the first branch 110, and the second branch 112 and the third branch 113 are respectively connected to the first free end 1103 of the first branch 110.
  • a first gap portion L1 is formed between the second branch 112 and the first branch 110, and a second gap portion L2 is formed between the third branch 113 and the first branch 110, as shown in Figure 6.
  • the second branch 112 and the third branch 113 can be used to adjust the high-order resonant current distribution of the first branch 110, improve the cross-polarization of the first antenna radiator 11, and improve the convergence of the phase difference curve of the antenna component 1, which is beneficial to improve the accuracy of measuring the arrival angle.
  • the antenna assembly 1 also includes a first feed line 14.
  • One end of the first feed line 14 is electrically connected to the first feed point 1102, and the other end of the first feed line 14 is electrically connected to the RF signal source.
  • the orthographic projection of the first feed line 14 on the surface where the first antenna radiator 11 is located extends from the first feed point 1102 toward the side where the first ground end 1101 is located, or the orthographic projection of the first feed line 14 on the surface where the first antenna radiator 11 is located extends from the first feed point 1102 toward the side where the first free end 1103 is located.
  • the first feed line 14 can be arranged on the same surface of the dielectric layer 10 as the first antenna radiator 11, or can be arranged on the front and back sides of the dielectric layer 10 respectively.
  • one end of the first feed line 14 electrically connected to the first feed point 1102 of the first antenna radiator 11 can be a conductive via.
  • the other end of the first feed line 14 may include a microstrip line, a coaxial line, a conductive via, a conductive probe, a conductive spring, and the like.
  • the high-order resonant current of the first antenna radiator 11 on the side close to the first gap portion L1 can be reduced
  • the high-order resonant current of the first antenna radiator 11 on the side close to the second gap portion L2 can be reduced
  • the cross-polarization of the first branch 110 itself can be reduced
  • the angular measurement accuracy of the antenna component 1 can be improved.
  • the size of the first gap portion L1 is greater than or equal to 0.2 mm and less than or equal to 1.5 mm.
  • the size of the second gap portion L2 is greater than or equal to 0.2 mm and less than or equal to 1.5 mm.
  • the smaller the size of the second gap portion L2 the stronger the magnetic current of the first branch 110 on the side where the second gap portion L2 is located, and the smaller the cross-polarization of the first branch 110, further improving the angular measurement accuracy of the antenna component 1.
  • the second antenna radiator 12 is a patch antenna radiator.
  • the shape of the second antenna radiator 12 can be circular, elliptical, triangular, square, rectangular, other polygonal and various special shapes.
  • the rectangular second antenna radiator 12 is taken as an example.
  • the second antenna radiator 12 is not directly grounded, and the cross polarization of the second antenna radiator 12 itself is small.
  • the cross polarization of the entire antenna assembly 1 can be improved. The cross polarization is smaller, thereby improving the convergence of the phase difference curve of the antenna component 1, which is beneficial to improving the accuracy of the angle measurement of the antenna component 1.
  • the second antenna radiator 12 is a planar inverted F-type antenna radiator.
  • the second antenna radiator 12 includes a second feeding point 1202 and at least one second grounding point 120a.
  • the second feeding point 1202 is used to electrically connect to the RF signal source.
  • the second feeding point 1202 and the RF signal source can be electrically connected through a microstrip line, a coaxial line, a probe, a spring, etc.
  • At least one second grounding point 120a is used to electrically connect to the reference ground.
  • the present application does not specifically limit the number of second grounding points 120a.
  • the number of second grounding points 120a can be one, two, three, five, eight, ten, etc.
  • the multiple second grounding points 120a can be arranged in sequence along a specific direction.
  • at least one second grounding point 120a is electrically connected to the housing 21 of the electronic device 100, or at least one second grounding point 120a is electrically connected to the ground layer of the circuit board 22 of the electronic device 100.
  • At least one second grounding point 120a can be electrically connected to the reference ground via a microstrip line, a coaxial line, a probe, a spring, etc.
  • the second antenna radiator 12 has a wide bandwidth and a small volume, which is beneficial to widening the bandwidth of the antenna assembly 1 and realizing the miniaturization of the antenna assembly 1 while realizing angle measurement.
  • the second antenna radiator 12 includes a fourth branch 120 and a fifth branch 121 and a sixth branch 122 respectively located on opposite sides of the fourth branch 120.
  • the fifth branch 121, the fourth branch 120 and the sixth branch 122 are arranged in sequence.
  • the material of the fourth branch 120, the material of the fifth branch 121 and the material of the sixth branch 122 are all conductive materials.
  • the material of the fourth branch 120, the material of the fifth branch 121 and the material of the sixth branch 122 can be metal, alloy, etc.
  • the material of the fourth branch 120, the material of the fifth branch 121 and the material of the sixth branch 122 can be the same or different.
  • the fourth branch 120 includes a second grounding terminal 1201, a second feeding point 1202, and a second free end 1203.
  • the second grounding terminal 1201 is used to electrically connect to the reference ground.
  • the second grounding terminal 1201 includes at least one second grounding point 120a, and the at least one second grounding point 120a is used to electrically connect to the reference ground.
  • At least one second grounding point 120a is electrically connected to the housing 21 of the electronic device 100; or, at least one second grounding point 120a is electrically connected to the grounding layer of the circuit board 22 of the electronic device 100; or, the back of the dielectric layer 10 is provided with a grounding metal electrically connected to the housing 21 of the electronic device 100 or the grounding layer of the circuit board 22 of the electronic device 100, and at least one second grounding point 120a can be electrically connected to the grounding metal to achieve electrical connection to the reference ground. At least one second grounding point 120a can be electrically connected to the reference ground through a microstrip line, a coaxial line, a probe, a spring, etc.
  • the second feeding point 1202 can be electrically connected to the RF signal source through a microstrip line, a coaxial line, a probe, a spring, etc.
  • the second feeding point 1202 is used to obtain the current signal generated by the RF signal source.
  • the second free end 1203 is arranged opposite to the second grounding end 1201, and the second free end 1203 is not directly grounded, nor is it directly electrically connected to the RF signal source. Among them, the second free end 1203 can form an electric field strength point of the fourth branch 120, and the second grounding end 1201 can form a current strength point of the fourth branch 120.
  • the second free end 1203 is connected to the fifth branch 121 and the sixth branch 122 respectively.
  • a third gap is formed between the fifth branch 121 and the fourth branch 120
  • a fourth gap is formed between the sixth branch 122 and the fourth branch 120 .
  • one end of the fifth branch 121 close to the second free end 1203 is connected to the second free end 1203, and one end of the fifth branch 121 away from the second free end 1203 is spaced apart from the fourth branch 120, so that a third gap is formed between the fifth branch 121 and the fourth branch 120.
  • One end of the sixth branch 122 close to the second free end 1203 is connected to the second free end 1203, and one end of the sixth branch 122 away from the second free end 1203 is spaced apart from the fourth branch 120, so that a fourth gap is formed between the sixth branch 122 and the fourth branch 120.
  • the end of the fifth branch 121 away from the second free end 1203 may be close to the second grounding end 1201 of the fourth branch 120, or the end of the fifth branch 121 away from the second free end 1203 may be opposite to and spaced apart from the second grounding end 1201 of the fourth branch 120.
  • One end of the sixth branch 122 away from the second free end 1203 may be close to the second grounding end 1201 of the fourth branch 120, or one end of the sixth branch 122 away from the second free end 1203 may be opposite to and spaced from the second grounding end 1201 of the fourth branch 120.
  • the size of the third gap portion may be the same as or different from the size of the fourth gap portion.
  • the size of the third gap portion may refer to L3 in FIG.
  • the size of the fourth gap portion may refer to L4 in FIG. 12.
  • the third gap portion is directly described as the third gap portion L3
  • the fourth gap portion is directly described as the fourth gap portion L4.
  • the third gap portion L3 and the fourth gap portion L4 may be less than or equal to the spacing distance between the first antenna radiator 11 and the second antenna radiator 12 along the first target direction. It can be understood that the current signal of the fourth branch 120 can be transmitted to the fifth branch 121 and the sixth branch 122.
  • the fifth branch 121 and the sixth branch 122 arranged in this way can be used to adjust the high-order resonant current distribution of the fourth branch 120 and reduce the cross-polarization of the second antenna radiator 12.
  • the first antenna radiator 11 of the antenna assembly 1 includes a first branch 110, a second branch 112 and a There are three branches 113, the second branch 112 and the third branch 113 are respectively located on opposite sides of the first branch 110, and the second branch 112 and the third branch 113 are respectively connected to the first free end 1103 of the first branch 110, a first gap portion L1 is formed between the second branch 112 and the first branch 110, and a second gap portion L2 is formed between the third branch 113 and the first branch 110, so that the second branch 112 and the third branch 113 can be used to adjust the high-order resonant current distribution of the first branch 110 and improve the cross-polarization of the first antenna radiator 11.
  • the second antenna radiator 12 of the antenna assembly 1 includes a fourth branch 120, a fifth branch 121 and a sixth branch 122, the fifth branch 121 and the sixth branch 122 are respectively located on opposite sides of the fourth branch 120, and the fifth branch 121 and the sixth branch 122 are respectively connected to the second free end 1203 of the fourth branch 120, a third gap L3 is formed between the fifth branch 121 and the fourth branch 120, and a fourth gap L4 is formed between the sixth branch 122 and the fourth branch 120, so that the fifth branch 121 and the sixth branch 122 can be used to adjust the high-order resonant current distribution of the fourth branch 120 and improve the cross-polarization of the second antenna radiator 12. Therefore, the convergence of the phase difference curve of the antenna assembly 1 is high, and high-precision angle measurement can be achieved.
  • the antenna assembly 1 further includes a second feed line 15.
  • One end of the second feed line 15 is electrically connected to the second feed point 1202, and the other end of the second feed line 15 is electrically connected to the RF signal source.
  • the orthographic projection of the second feed line 15 on the surface where the second antenna radiator 12 is located extends from the second feed point 1202 toward the side where the second ground end 1201 is located, or the orthographic projection of the second feed line 15 on the surface where the second antenna radiator 12 is located extends from the second feed point 1202 toward the side where the second free end 1203 is located.
  • the second feed line 15 can be arranged on the same surface of the dielectric layer 10 as the second antenna radiator 12, or can be arranged on the front and back sides of the dielectric layer 10 respectively.
  • one end of the second feed line 15 electrically connected to the second feed point 1202 of the second antenna radiator 12 can be a conductive via.
  • the other end of the second feed line 15 may include a microstrip line, a coaxial line, a conductive via, a conductive probe, a conductive spring, and the like.
  • the orthographic projection of the second feed line 15 on the surface where the second antenna radiator 12 is located from the second feeding point 1202 toward the side where the second ground end 1201 is located or by extending the orthographic projection of the second feed line 15 on the surface where the second antenna radiator 12 is located from the second feeding point 1202 toward the side where the second free end 1203 is located, the high-order resonant current of the second antenna radiator 12 on the side close to the third gap portion L3 can be reduced, the high-order resonant current of the second antenna radiator 12 on the side close to the fourth gap portion L4 can be reduced, the cross-polarization of the fourth branch 120 itself can be reduced, and the angular measurement accuracy of the antenna assembly 1 can be improved.
  • the size of the third gap portion L3 is greater than or equal to 0.2 mm and less than or equal to 1.5 mm.
  • the size of the fourth gap portion L4 is greater than or equal to 0.2 mm and less than or equal to 1.5 mm.
  • the smaller the size of the fourth gap portion L4 the stronger the magnetic current of the fourth branch 120 on the side where the fourth gap portion L4 is located, and the smaller the cross-polarization of the fourth branch 120, further improving the angular measurement accuracy of the antenna assembly 1.
  • the first free end 1103, the first feeding point 1102, the first grounding end 1101, the second grounding end 1201, the second feeding point 1202 and the second free end 1203 are sequentially arranged along the first target direction.
  • the electromagnetic interference between the first antenna radiator 11 and the second antenna radiator 12 can be reduced, and the accuracy of the first antenna radiator 11 and the second antenna radiator 12 in receiving electromagnetic wave signals can be improved.
  • the first free end 1103, the first feeding point 1102, the first grounding end 1101, the second free end 1203, the second feeding point 1202 and the second grounding end 1201 are arranged in sequence along the first target direction.
  • the electromagnetic interference between the first antenna radiator 11 and the second antenna radiator 12 can be reduced, and the accuracy of the first antenna radiator 11 and the second antenna radiator 12 in receiving electromagnetic wave signals can be improved.
  • the second branch 112 the first branch 110, the third branch 113, the fifth branch 121, the fourth branch 120 and the sixth branch 122 are sequentially arranged along the first target direction.
  • the first grounding end 1101 of the first antenna radiator 11 and the second grounding end 1201 of the second antenna radiator 12 are arranged opposite to each other along the first target direction X
  • the first free end 1103 of the first antenna radiator 11 and the second free end 1203 of the second antenna radiator 12 are arranged opposite to each other along the first target direction X; or, as shown in FIG.
  • the first grounding end 1101 of the first antenna radiator 11 and the second free end 1203 of the second antenna radiator 12 are arranged opposite to each other along the first target direction X, and the first free end 1103 of the first antenna radiator 11 and the second grounding end 1201 of the second antenna radiator 12 are arranged opposite to each other along the first target direction X.
  • the second branch 112, the first branch 110, the third branch 113, the fifth branch 121, the fourth branch 120 And the sixth branch 122 are arranged in sequence along the first target direction, which can also prevent the first free end 1103 of the first antenna radiator 11 from directly approaching the second free end 1203 of the second antenna radiator 12, reduce the electromagnetic interference between the first antenna radiator 11 and the second antenna radiator 12, and improve the accuracy of the first antenna radiator 11 and the second antenna radiator 12 in receiving electromagnetic wave signals.
  • the antenna assembly 1 also includes a third antenna radiator 13.
  • the third antenna radiator 13 and the first antenna radiator 11 are arranged at intervals along the second target direction, or the third antenna radiator 13 and the second antenna radiator 12 are arranged at intervals along the second target direction.
  • the second target direction intersects with the first target direction.
  • the third antenna radiator 13 and the first antenna radiator 11 are arranged at intervals along the second target direction, and the second target direction is perpendicular to the first target direction.
  • the second target direction is directly described as the second target direction Y in the following embodiments with reference to the Y-axis direction in Figure 19.
  • the third antenna radiator 13 is used to electrically connect to the RF signal source.
  • the electrical connection method between the third antenna radiator 13 and the RF signal source may include one or more of direct electrical connection, indirect electrical connection, and coupled connection.
  • the third antenna radiator 13 is used to obtain the current signal generated by the RF signal source.
  • the third antenna radiator 13 can generate a quarter-wavelength resonant mode or a half-wavelength resonant mode.
  • the third antenna radiator 13 is a patch antenna radiator.
  • the shape of the third antenna radiator 13 can be circular, elliptical, triangular, square, rectangular, other polygonal and various special shapes, etc.
  • a rectangular third antenna radiator 13 is taken as an example.
  • the third antenna radiator 13 is not directly grounded, and the cross-polarization of the third antenna radiator 13 itself is small.
  • the cross-polarization of the antenna component 1 as a whole can be small, thereby improving the convergence of the phase difference curve of the antenna component 1, which is conducive to improving the accuracy of the antenna component 1 in three-dimensional angle measurement.
  • the third antenna radiator 13 is a planar inverted F-type antenna radiator.
  • the third antenna radiator 13 includes a third feeding point 1302 and at least one third grounding point 130a.
  • the third feeding point 1302 is used to electrically connect to the RF signal source.
  • the third feeding point 1302 and the RF signal source can be electrically connected through a microstrip line, a coaxial line, a probe, a spring, etc.
  • At least one third grounding point 130a is used to electrically connect to the reference ground.
  • the present application does not specifically limit the number of the third grounding points 130a.
  • the number of the third grounding points 130a can be one, two, three, five, eight, ten, etc.
  • the multiple third grounding points 130a can be arranged in sequence along a specific direction.
  • at least one third grounding point 130a is electrically connected to the housing 21 of the electronic device 100, or at least one third grounding point 130a is electrically connected to the ground layer of the circuit board 22 of the electronic device 100.
  • At least one third grounding point 130a can be electrically connected to the reference ground via a microstrip line, a coaxial line, a probe, a spring, etc.
  • the third antenna radiator 13 has a wide bandwidth and a small volume, which is beneficial to broadening the bandwidth of the antenna assembly 1 and realizing the miniaturization of the antenna assembly 1 while realizing three-dimensional angle measurement.
  • the third antenna radiator 13 includes a seventh branch 130 and an eighth branch 131 and a ninth branch 132 respectively located on opposite sides of the seventh branch 130.
  • the eighth branch 131, the seventh branch 130 and the ninth branch 132 are arranged in sequence.
  • the material of the seventh branch 130, the material of the eighth branch 131 and the material of the ninth branch 132 are all conductive materials.
  • the material of the seventh branch 130, the material of the eighth branch 131 and the material of the ninth branch 132 can be metal, alloy, etc.
  • the material of the seventh branch 130, the material of the eighth branch 131 and the material of the ninth branch 132 can be the same or different.
  • the seventh branch 130 includes a third ground terminal 1301, a third feeding point 1302 and a third free end 1303.
  • the third ground terminal 1301 is used to electrically connect to the reference ground.
  • the third ground terminal 1301 includes at least one third ground point 130a, and the at least one third ground point 130a is used to electrically connect to the reference ground.
  • At least one third ground point 130a is electrically connected to the housing 21 of the electronic device 100; or, at least one third ground point 130a is electrically connected to the ground layer of the circuit board 22 of the electronic device 100; or, the back of the dielectric layer 10 is provided with a grounding metal electrically connected to the housing 21 of the electronic device 100 or electrically connected to the ground layer of the circuit board 22 of the electronic device 100, and at least one third ground point 130a can be electrically connected to the grounding metal to achieve electrical connection to the reference ground.
  • At least one third ground point 130a can be electrically connected to the reference ground through a microstrip line, a coaxial line, a probe, a shrapnel, etc.
  • the third feeding point 1302 can be electrically connected to the RF signal source through a microstrip line, a coaxial line, a probe, a shrapnel, etc.
  • the third feeding point 1302 is used to obtain the current signal generated by the RF signal source.
  • the third free end 1303 is arranged opposite to the third grounding end 1301.
  • the third free end 1303 is not directly grounded, nor is it directly electrically connected to the RF signal source.
  • the third free end 1303 can form the electric field strength point of the seventh branch 130, and the third grounding end 1301 can form the seventh branch 130 is a bit more current.
  • the third free end 1303 is connected to the eighth branch 131 and the ninth branch 132 respectively.
  • a fifth gap is formed between the eighth branch 131 and the seventh branch 130
  • a sixth gap is formed between the ninth branch 132 and the seventh branch 130 .
  • one end of the eighth branch 131 close to the third free end 1303 is connected to the third free end 1303, and one end of the eighth branch 131 away from the third free end 1303 is spaced from the seventh branch 130, so that a fifth gap is formed between the eighth branch 131 and the seventh branch 130.
  • One end of the ninth branch 132 close to the third free end 1303 is connected to the third free end 1303, and one end of the ninth branch 132 away from the third free end 1303 is spaced from the seventh branch 130, so that a sixth gap is formed between the ninth branch 132 and the seventh branch 130.
  • one end of the eighth branch 131 away from the third free end 1303 can be close to the third grounding end 1301 of the seventh branch 130, or one end of the eighth branch 131 away from the third free end 1303 can be opposite to and spaced from the third grounding end 1301 of the seventh branch 130.
  • the end of the ninth branch 132 away from the third free end 1303 may be close to the third grounding end 1301 of the seventh branch 130, or the end of the ninth branch 132 away from the third free end 1303 may be opposite to and spaced from the third grounding end 1301 of the seventh branch 130.
  • the size of the fifth gap portion may be the same as or different from the size of the sixth gap portion.
  • the size of the fifth gap portion may refer to L5 in FIG.
  • the size of the sixth gap portion may refer to L6 in FIG. 21.
  • the fifth gap portion is directly described as the fifth gap portion L5
  • the sixth gap portion is directly described as the sixth gap portion L6.
  • the fifth gap portion L5 and the sixth gap portion L6 may be less than or equal to the spacing distance between the third antenna radiator 13 and the first antenna radiator 11 along the second target direction Y. It can be understood that the current signal of the seventh branch 130 can be transmitted to the eighth branch 131 and the ninth branch 132.
  • the eighth branch 131 and the ninth branch 132 configured in this way can be used to adjust the high-order resonant current distribution of the seventh branch 130 and reduce the cross-polarization of the third antenna radiator 13 .
  • the first antenna radiator 11, the second antenna radiator 12 and the third antenna radiator 13 of the antenna assembly 1 provided in this embodiment all have small cross polarization, and can realize three-dimensional high-precision angle measurement.
  • the third antenna radiator 13 of the antenna assembly 1 includes a seventh branch 130, an eighth branch 131 and a ninth branch 132, the eighth branch 131 and the ninth branch 132 are respectively located on the opposite sides of the seventh branch 130, and the eighth branch 131 and the ninth branch 132 are respectively connected to the third free end 1303 of the seventh branch 130, a fifth gap L5 is formed between the eighth branch 131 and the seventh branch 130, and a sixth gap L6 is formed between the ninth branch 132 and the seventh branch 130, so that the eighth branch 131 and the ninth branch 132 can be used to adjust the high-order resonant current distribution of the seventh branch 130, improve the cross polarization of the third antenna radiator 13, so that the convergence of the phase difference curve of the antenna assembly 1 is high, and the angle measurement accuracy is high.
  • the antenna assembly 1 further includes a third feed line 16.
  • One end of the third feed line 16 is electrically connected to the third feed point 1302, and the other end of the third feed line 16 is electrically connected to the RF signal source.
  • the orthographic projection of the third feed line 16 on the surface where the third antenna radiator 13 is located extends from the third feed point 1302 toward the side where the third ground terminal 1301 is located, or the orthographic projection of the third feed line 16 on the surface where the third antenna radiator 13 is located extends from the third feed point 1302 toward the side where the third free end 1303 is located.
  • the third feed line 16 can be arranged on the same surface of the dielectric layer 10 as the third antenna radiator 13, or can be arranged on the front and back sides of the dielectric layer 10 respectively.
  • one end of the third feed line 16 electrically connected to the third feed point 1302 of the second antenna radiator 12 can be a conductive via.
  • the other end of the third feed line 16 may include a microstrip line, a coaxial line, a conductive via, a conductive probe, a conductive spring, etc.
  • the orthographic projection of the third feed line 1615 on the surface where the third antenna radiator 13 is located from the third feeding point 1302 toward the side where the third ground end 1301 is located or by extending the orthographic projection of the third feed line 16 on the surface where the third antenna radiator 13 is located from the third feeding point 1302 toward the side where the third free end 1303 is located, the high-order resonant current of the second antenna radiator 12 on the side close to the fifth gap portion L5 can be reduced, the high-order resonant current of the third antenna radiator 13 on the side close to the sixth gap portion L6 can be reduced, the cross-polarization of the seventh branch 130 itself can be reduced, and the angular measurement accuracy of the antenna assembly 1 can be improved.
  • the size of the fifth gap portion L5 is greater than or equal to 0.2 mm and less than or equal to 1.5 mm.
  • the size of the sixth gap portion L6 is greater than or equal to 0.2 mm and less than or equal to 1.5 mm.
  • the first free end 1103, the first feeding point 1102, the first grounding end 1101, the third grounding end 1301, the third feeding point 1302 and the third free end 1303 are sequentially arranged along the second target direction.
  • the first grounding end 1101 of the first antenna radiator 11 close to the third grounding end 1301 of the third antenna radiator 13 and the first free end 1103 of the first antenna radiator 11 away from the third free end 1303 of the third antenna radiator 13, the The electromagnetic interference between the first antenna radiator 11 and the third antenna radiator 13 improves the accuracy of the first antenna radiator 11 and the third antenna radiator 13 in receiving electromagnetic wave signals.
  • the first free end 1103, the first feeding point 1102, the first grounding end 1101, the third free end 1303, the third feeding point 1302 and the third grounding end 1301 are arranged in sequence along the second target direction.
  • the electromagnetic interference between the first antenna radiator 11 and the third antenna radiator 13 can be reduced, and the accuracy of the first antenna radiator 11 and the third antenna radiator 13 in receiving electromagnetic wave signals can be improved.
  • the second branch 112 the first branch 110, the third branch 113, the eighth branch 131, the seventh branch 130 and the ninth branch 132 are sequentially arranged along the first target direction.
  • the first grounding end 1101 of the first antenna radiator 11 and the third grounding end 1301 of the third antenna radiator 13 are arranged opposite to each other along the second target direction Y, and the first free end 1103 of the first antenna radiator 11 and the third free end 1303 of the third antenna radiator 13 are arranged opposite to each other along the second target direction Y; or, as shown in FIG.
  • the first grounding end 1101 of the first antenna radiator 11 and the third free end 1303 of the third antenna radiator 13 are arranged opposite to each other along the second target direction Y, and the first free end 1103 of the first antenna radiator 11 and the third grounding end 1301 of the third antenna radiator 13 are arranged opposite to each other along the second target direction Y.
  • This embodiment arranges the second branch 112, the first branch 110, the third branch 113, the eighth branch 131, the seventh branch 130 and the ninth branch 132 in sequence along the first target direction.
  • Figure 28 is a schematic diagram of a return loss curve of an antenna component 1 provided in an embodiment of the present application. It can be seen from Figure 28 that the bandwidth of the antenna component 1 is relatively wide, and the antenna component 1 can operate at 8 GHz.
  • Figure 29 is a schematic diagram of a radiation efficiency curve of an antenna component 1 provided in an embodiment of the present application. It can be seen from Figure 29 that the radiation efficiency of the antenna component 1 is relatively high.
  • Figure 30 is a schematic diagram of the polarization ratio direction of an antenna component 1 provided in an embodiment of the present application. It can be seen from Figure 30 that the coverage range of the antenna component 1 is wider at polarization ratios above 10 dB.
  • Figure 31 is a schematic diagram of the polarization ratio of an antenna component 1 provided in an embodiment of the present application. It can be seen from Figure 31 that the cross-polarization of the antenna component 1 is relatively low.
  • the dimensions of the first branch 110, the second branch 112 and the third branch 113 of the antenna component 1 along the first target direction X are all 7 mm
  • the dimension of the first branch 110 along the second target direction Y is 5 mm
  • the dimension of the second branch 112 along the second target direction Y is 0.5 mm
  • the dimension of the second branch 112 along the second target direction Y is 0.5 mm
  • the first gap portion is 0.5 mm
  • the second gap portion is 0.5 mm
  • the thickness of the dielectric layer 10 is 0.5 mm
  • the dielectric constant of the dielectric layer 10 is 3.5.

Abstract

本申请提供一种天线组件及电子设备。天线组件包括第一天线辐射体和第二天线辐射体。第一天线辐射体包括第一枝节和分别位于第一枝节相背两侧的第二枝节、第三枝节,第一枝节包括第一接地端、第一馈电点和第一自由端,第一接地端用于电连接参考地,第一馈电点用于电连接射频信号源,第一自由端分别与第二枝节、第三枝节相连,第二枝节与第一枝节之间形成第一间隙部,第三枝节与第一枝节之间形成第二间隙部。第二天线辐射体与第一天线辐射体沿第一目标方向间隔排布,第二天线辐射体用于电连接射频信号源。电子设备包括设备本体和天线组件。本申请提供的天线组件及电子设备能够降低天线组件的交叉极化,提高测角精度。

Description

天线组件及电子设备
本申请要求于2022年09月30日提交至中国专利局,申请号为202211230326.4,申请名称为“天线组件及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种天线组件及电子设备。
背景技术
在通过依照特定方向间隔排布的多个天线确定相位差从而实现测角的技术方案中,由于天线的交叉极化影响使得多个天线之间的相位差曲线的收敛度较差,从而导致测角精度不高。因此,如何提高测角精度成为需要解决的技术问题。
发明内容
本申请提供了一种能够提高测角精度的天线组件及电子设备。
一方面,本申请提供了一种天线组件,包括:
第一天线辐射体,包括第一枝节和分别位于所述第一枝节相背两侧的第二枝节、第三枝节,所述第一枝节包括第一接地端、第一馈电点和第一自由端,所述第一接地端用于电连接参考地,所述第一馈电点用于电连接射频信号源,所述第一自由端分别与所述第二枝节、所述第三枝节相连,所述第二枝节与所述第一枝节之间形成第一间隙部,所述第三枝节与所述第一枝节之间形成第二间隙部;及
第二天线辐射体,所述第二天线辐射体与所述第一天线辐射体沿第一目标方向间隔排布,所述第二天线辐射体用于电连接所述射频信号源。
另一方面,本申请还提供了一种电子设备,包括设备本体及所述的天线组件,所述设备本体用于承载所述天线组件。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1为相关技术中双接收天线测角的结构示意图;
图2为本申请实施例提供的一种电子设备的结构示意图;
图3为图2所示电子设备的分解示意图;
图4为本申请实施例提供的一种天线组件的平面结构示意图,其中,天线组件包括第一天线辐射体和第二天线辐射体,第一天线辐射体包括第一枝节和位于第一枝节相背两侧的第二枝节和第三枝节;
图5为图4所示天线组件中第一天线辐射体的平面结构示意图;
图6为图4所示天线组件中第一天线辐射体的电流分布示意图;
图7为图5所示天线组件还包括第一馈线,第一馈线电连接第一天线辐射体的一种平面结构示意图;
图8为图5所示天线组件还包括第一馈线,第一馈线电连接第一天线辐射体的另一种平面结构示意图;
图9为图4所示天线组件的第二天线辐射体为贴片天线辐射体的平面结构示意图;
图10为图4所示天线组件的第二天线辐射体为IPFA天线辐射体的平面结构示意图;
图11为图4所示天线组件的第二天线辐射体包括第四枝节和位于第四枝节相背两侧的第五枝节、第六枝节的平面结构示意图;
图12为图11所示天线组件中第二天线辐射体的平面结构示意图;
图13为图11所示天线组件还包括第二馈线,第二馈线电连接第二天线辐射体的一种平面结构示意图;
图14为图11所示天线组件还包括第二馈线,第二馈线电连接第二天线辐射体的另一种平面结构示意图;
图15为图11所示第二天线辐射体与第一天线辐射体沿第一目标方向间隔排布的一种平面结构示意图;
图16为图11所示第二天线辐射体与第一天线辐射体沿第一目标方向间隔排布的另一种平面结构示意图;
图17为图11所示第二天线辐射体与第一天线辐射体沿第一目标方向间隔排布的再一种平面结构示意图;
图18为图11所示第二天线辐射体与第一天线辐射体沿第一目标方向间隔排布的又一种平面结构示意图;
图19为图11所示天线组件还包括第三天线辐射体,且第三天线辐射体为贴片天线辐射体的平面结构示意图;
图20为图11所示天线组件还包括第三天线辐射体,且第三天线辐射体为IPFA天线辐射体的平面结构示意图;
图21为图11所示天线组件还包括第三天线辐射体,且第三天线辐射体包括第七枝节和位于第七枝节相背两侧的第八枝节、第九枝节的平面结构示意图;
图22为图21所示天线组件还包括第三馈线,第三馈线电连接第三天线辐射体的一种平面结构示意图;
图23为图21所示天线组件还包括第三馈线,第三馈线电连接第三天线辐射体的另一种平面结构示意图;
图24为图21所示第三天线辐射体与第一天线辐射体沿第二目标方向间隔排布的一种平面结构示意图;
图25为图21所示第三天线辐射体与第一天线辐射体沿第二目标方向间隔排布的另一种平面结构示意图;
图26为图21所示第三天线辐射体与第一天线辐射体沿第二目标方向间隔排布的再一种平面结构示意图;
图27为图21所示第三天线辐射体与第一天线辐射体沿第二目标方向间隔排布的又一种平面结构示意图;
图28为本申请实施例提供的一种天线组件的回波损耗曲线图;
图29为本申请实施例提供的一种天线组件的辐射效率曲线图;
图30为本申请实施例提供的一种天线组件的极化比方向图;
图31为本申请实施例提供的一种天线组件的极化比曲线图。
具体实施方式
如图1所示,图1为相关技术中双接收天线测角的结构示意图。双接收天线实现测角的具体原理为:不同方向的电磁波信号到达两个接收天线的路径不同,引入了额外的路径差,从而引入额外的时间差,额外的时间差对应额外的相位差,通过两个接收天线接收电磁波信号的相位差与到达角的关系实现测角。在图1中,两个接收天线之间的间距为d。发射天线和接收天线的电场表达式如下:



天线的信号到达相位差(Phase-Difference-of-Arrival,PDOA)为发射天线与接收天线电场的点积的相位差,表达式如下:





r1-r2=d sinθ
其中,Rn用于表示发射天线与接收天线的交叉极化比的乘积;ε用于表示介电常数;α21用于表示两个接收天线的馈电相差;用于表示两个接收天线相位方向图的一致性;用于表示发射天线相位方向图。
从上述表达式中可以较直观的看到影响PDOA的因素有:发射和接收天线的极化比、接收天线相位中心间距、接收天线相位方向图、发射天线相位方向图、天线所处的介质环境、接收天线馈电相差。特别地,除了空间相位差,极化的不一致性也会引入额外的相位差。
通过理论推导分析,当Rn→∞或Rn→0,即收发天线极化匹配,且具有高极化比时,PDOA主要受接收天线相位方向图的一致性的影响(稳定的相位中心)。接收天线越一致,PDOA曲线收敛度越好。而当极化失配,即R1→∞,R2→0或者R2→∞,R1→0,会出现∞·0,此时PDOA不确定。一般地,收发极化匹配时,若极化纯度一般,PDOA不仅受接收天线的主极化影响,也会受到接收天线的交叉极化和发射天线影响。为此,本申请提供一种交叉极化较小,测角精度较高的天线组件及电子设备。
本申请提供的天线组件包括第一天线辐射体及第二天线辐射体。第一天线辐射体包括第一枝节和分别位于所述第一枝节相背两侧的第二枝节、第三枝节,所述第一枝节包括第一接地端、第一馈电点和第一自由端,所述第一接地端用于电连接参考地,所述第一馈电点用于电连接射频信号源,所述第一自由端分别与所述第二枝节、所述第三枝节相连,所述第二枝节与所述第一枝节之间形成第一间隙部,所述第三枝节与所述第一枝节之间形成第二间隙部。所述第二天线辐射体与所述第一天线辐射体沿第一目标方向间隔排布,所述第二天线辐射体用于电连接所述射频信号源。
其中,所述天线组件还包括第一馈线,所述第一馈线的一端电连接所述第一馈电点,所述第一馈线的另一端电连接所述射频信号源,所述第一馈线在所述第一天线辐射体的所在面的正投影由所述第一馈电点朝向所述第一接地端的所在侧延伸,或者,所述第一馈线在所述第一天线辐射体的所在面的正投影由所述第一馈电点朝向所述第一自由端的所在侧延伸。
其中,所述第一间隙部的尺寸大于或等于0.2mm且小于或等于1.5mm,所述第二间隙部的尺寸大于或等于0.2mm且小于或等于1.5mm。
其中,所述第二枝节靠近所述第一自由端的一端与所述第一自由端相连,所述第二枝节远离所述第一自由端的一端与所述第一枝节间隔设置,所述第三枝节靠近所述第一自由端的一端与所述第一自由端相连,所述第三枝节远离所述第一自由端的一端与所述第一枝节间隔设置。
其中,所述第一接地端包括至少一个第一接地点。
其中,所述第一间隙部的尺寸、所述第二间隙部的尺寸小于或等于所述第一天线辐射体与所述第二天线辐射体之间沿所述第一目标方向的间隔距离。
其中,所述第二天线辐射体为贴片天线辐射体,所述第二天线辐射体未直接接地。
其中,所述第二天线辐射体为平面倒F型天线辐射体,所述第二天线辐射体包括第二馈电点和至少一个第二接地点。
其中,所述第二天线辐射体包括第四枝节和分别位于所述第四枝节相背两侧的第五枝节、第六枝节,所述第五枝节包括第二接地端、第二馈电点和第二自由端,所述第二接地端用于电连接参考地,所述第二馈电点用于电连接所述射频信号源,所述第二自由端分别与所述第五枝节、所述第六枝节相连,所述第五枝节与所述第四枝节之间形成第三间隙部,所述第六枝节与所述第四枝节之间形成第四间隙部。
其中,所述天线组件还包括第二馈线,所述第二馈线的一端电连接所述第二馈电点,所述第二馈线的另一端用于电连接所述射频信号源,所述第二馈线在所述第二天线辐射体的所在面的正投影由所述第二馈电点朝向所述第二接地端或者所述第二自由端的所在侧延伸。
其中,所述第三间隙部的尺寸大于或等于0.2mm,且小于或等于1.5mm,所述第四间隙部的尺寸大于或等于0.2mm且小于或等于1.5mm。
其中,所述第五枝节靠近所述第二自由端的一端与所述第二自由端相连,所述第五枝节远离所述第二自由端的一端与所述第四枝节间隔设置,所述第六枝节靠近所述第二自由端的一端与第二自由端相连,所述第六枝节远离所述第二自由端的一端与所述第四枝节间隔设置。
其中,所述第二接地端包括至少一个第二接地点。
其中,所述第一自由端、所述第一馈电点、所述第一接地端、所述第二接地端、所述第二馈电点及所述第二自由端沿所述第一目标方向依次排列。
其中,所述第一自由端、所述第一馈电点、所述第一接地端、所述第二自由端、所述第二馈电点及所述第二接地端沿所述第一目标方向依次排列。
其中,所述第二枝节、所述第一枝节、所述第三枝节、所述第五枝节、所述第四枝节及所述第六枝节沿所述第一目标方向依次排列。
其中,所述天线组件还包括第三天线辐射体,所述第三天线辐射体与所述第一天线辐射体沿第二目标方向间隔排布,或者,所述第三天线辐射体与所述第二天线辐射体沿第二目标方向间隔排布,其中,所述第二目标方向与所述第一目标方向相交,所述第三天线辐射体用于电连接所述射频信号源。
其中,所述第三天线辐射体包括第七枝节和分别位于所述第七枝节相背两侧的第八枝节、第九枝节,所述第七枝节包括第三接地端、第三馈电点和第三自由端,所述第三接地端用于电连接参考地,所述第三馈电点用于电连接所述射频信号源,所述第三自由端分别与所述第八枝节、所述第九枝节相连,所述第八枝节与所述第七枝节之间形成第五间隙部,所述第九枝节与所述第七枝节之间形成第六间隙部。
其中,所述天线组件还包括介质层,所述第一天线辐射体和所述第二天线辐射体设于所述介质层的表面。
本申请提供的种电子设备包括设备本体及所述的天线组件,所述设备本体用于承载所述天线组件。
下面将结合附图,对本申请的技术方案进行清楚、完整地描述。显然,本申请所描述的实施例仅仅是一部分实施例,而不是全部的实施例。基于本申请提供的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本申请的保护范围。
在本申请中提及“实施例”意味着,结合实施例所描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的、独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
如图2所示,图2为本申请实施例提供的一种电子设备100的结构示意图。电子设备100可以是手机、平板电脑、笔记本电脑、计算机、手表、无人机、机器人、基站、雷达、客户前置设备(Customer Premise Equipment,CPE)、车载设备、家电设备等具有无线通信功能的设备。本申请实施例以手机为例。
请参照图2和图3,电子设备100包括设备本体2和天线组件1。其中,设备本体2可以 包括显示屏20、外壳21(中框210和后盖211)、电路板22、摄像头模组23等部件。显示屏20与外壳21相互连接。电路板22、摄像头模组23位于显示屏20与外壳21之间的空间内。设备本体2用于承载天线组件1。具体的,天线组件1可直接承载于设备本体2的一个或多个部件(例如:电路板22或外壳21)上,也可通过其他支撑结构承载于设备本体2的一个或多个部件上。天线组件1可以承载于设备本体2内(即显示屏20与外壳21之间的空间内),也可部分集成于设备本体2的外壳21上。其中,电子设备100的外壳21可形成参考地,或者,电子设备100的电路板22的接地层可形成参考地。
天线组件1用于实现电子设备100的无线通信功能。本申请提供的天线组件1为UWB天线组件,即一种用于短距离无线通信的天线组件。天线组件1的传输距离可以在10m以内,使用1GHz以上带宽。由于UWB不采用载波,而是利用纳秒至微秒级的非正弦窄脉冲传输数据,因此,UWB天线组件所占的频谱范围很宽,适用于高速、近距离的无线个人通信。FCC规定,UWB的工作频段范围从3.1GHz到10.6GHz,最小工作频宽为500MHz。目前主流的UWB频段中心频率为6.5GHz和8GHz。可以理解的,本申请提供的天线组件1的工作频段范围可以位于3.1GHz到10.6GHz之间,最小工作频宽可以为500MHz,天线组件1的中心频率可以包括6.5GHz或8GHz。以下实施例中,以天线组件1的中心频率包括8GHz为例。
请参照图4和图5,图4为本申请实施例提供的一种天线组件1的结构示意图,图5为图4所示天线组件1中第一天线辐射体11的结构示意图。天线组件1包括沿第一目标方向间隔排布的第一天线辐射体11和第二天线辐射体12。天线组件1还可以包括介质层10。第一天线辐射体11和第二天线辐射体12可以设于介质层10的表面。
天线组件1的第一天线辐射体11包括第一枝节110和分别位于第一枝节110相背两侧的第二枝节112、第三枝节113。换言之,第二枝节112、第一枝节110以及第三枝节113依次排列。其中,第一枝节110的材质、第二枝节112的材质以及第三枝节113的材质皆为导电材质。举例而言:第一枝节110的材质、第二枝节112的材质以及第三枝节113的材质可以为金属、合金等。第一枝节110的材质、第二枝节112的材质以及第三枝节113的材质可以相同也可以不同。第一天线辐射体11可用于产生四分之一波长谐振模式或二分之一波长谐振模式。
第一枝节110包括第一接地端1101、第一馈电点1102和第一自由端1103。第一接地端1101用于电连接参考地。具体的,第一接地端1101包括至少一个第一接地点110a,所述至少一个第一接地点110a用于电连接参考地。可选的,至少一个第一接地点110a电连接电子设备100(参照图2)的外壳21;或者,至少一个第一接地点110a电连接电子设备100的电路板22的接地层;又或者,介质层10的背面设有电连接电子设备100的外壳21或者电连接电子设备100的电路板22的接地层的接地金属,至少一个第一接地点110a可以电连接该接地金属,以实现电连接参考地。至少一个第一接地点110a与参考地之间可以通过微带线、同轴线、探针、弹片等进行电连接。射频信号源可以是射频芯片、射频模组等,射频信号源用于产生高频电流信号。第一馈电点1102与射频信号源之间可以通过微带线、同轴线、探针、弹片等进行电连接。第一馈电点1102用于获取射频信号源产生的电流信号。第一自由端1103与第一接地端1101相对设置,第一自由端1103未直接接地,也未直接电连接射频信号源。其中,第一自由端1103可形成第一枝节110的电场强点,第一接地端1101可形成第一枝节110的电流强点。
第一自由端1103分别与第二枝节112、第三枝节113相连,第二枝节112与第一枝节110之间形成第一间隙部L1,第三枝节113与第一枝节110之间形成第二间隙部L2。
具体的,第二枝节112靠近第一自由端1103的一端与第一自由端1103相连,第二枝节112远离第一自由端1103的一端与第一枝节110间隔设置,从而使得第二枝节112与第一枝节110之间形成第一间隙部。第三枝节113靠近第一自由端1103的一端与第一自由端1103相连,第三枝节113远离第一自由端1103的一端与第一枝节110间隔设置,从而使得第三枝节113与第一枝节110之间形成第二间隙部。其中,第二枝节112远离第一自由端1103的一端可以靠近第一枝节110的第一接地端1101,或者,第二枝节112远离第一自由端1103的一端可以与第一枝节110的第一接地端1101相对并间隔设置。第三枝节113远离第一自由端1103的一端可以靠近第一枝节110的第一接地端1101,或者,第三枝节113远离第一自由端 1103的一端可以与第一枝节110的第一接地端1101相对并间隔设置。第一间隙部的尺寸与第二间隙部的尺寸可以相同也可以不同。第一间隙部的尺寸可以参照附图5中的L1,第二间隙部的尺寸可以参照附图5中的L2,以下实施例中第一间隙部直接描述为第一间隙部L1,第二间隙部直接描述为第二间隙部L2。第一间隙部L1、第二间隙部L2可以小于或等于第一天线辐射体11与第二天线辐射体12之间沿第一目标方向的间隔距离。可以理解的,第一枝节110的电流信号可传输至第二枝节112和第三枝节113。如此设置的第二枝节112、第三枝节113可用于调节第一枝节110的高阶谐振电流分布,降低第一天线辐射体11的交叉极化。
第二天线辐射体12与第一天线辐射体11沿第一目标方向间隔排布。第一目标方向可以参照附图4中的X轴方向,以下实施例中直接描述为第一目标方向X。第一目标方向X可以为电子设备100的宽度方向,此时,第一天线辐射体11和第二天线辐射体12沿第一目标方向X间隔排布形成水平测角天线组,可用于测量电磁波信号的到达角中的方位角。当然,在其他实施例中,第一目标方向X还可以为电子设备100的长度方向,此时,第一天线辐射体11和第二天线辐射体12沿第一目标方向X间隔排布形成垂直测角天线组,可用于测量电磁波信号的到达角中的俯仰角。第二天线辐射体12的材质为导电材质。举例而言:第二天线辐射体12的材质可以是金属、合金等。第二天线辐射体12用于电连接射频信号源。第二天线辐射体12与射频信号源之间的电连接方式可以包括直接电连接、间接电连接、耦合连接中的一种或多种。第二天线辐射体12用于获取射频信号源产生的电流信号。第二天线辐射体12可产生四分之一波长谐振模式或二分之一波长谐振模式。
本申请提供的天线组件1包括沿第一目标方向间隔排布的第一天线辐射体11和第二天线辐射体12,第一天线辐射体11与第二天线辐射体12形成二维测角天线组,可根据第一天线辐射体11与第二天线辐射体12接收电磁波信号的相位差,实现到达角的测量。而第一天线辐射体11包括第一枝节110、第二枝节112和第三枝节113,第二枝节112、第三枝节113分别位于第一枝节110的相背两侧,且第二枝节112、第三枝节113分别与第一枝节110的第一自由端1103相连,第二枝节112与第一枝节110之间形成第一间隙部L1,第三枝节113与第一枝节110之间形成第二间隙部L2,如图6所示,使得第二枝节112、第三枝节113可用于调节第一枝节110的高阶谐振电流分布,改善第一天线辐射体11的交叉极化,提高天线组件1的相位差曲线的收敛度,进而有利于提高测量到达角的精度。
进一步地,请参照图7和图8,天线组件1还包括第一馈线14。第一馈线14的一端电连接第一馈电点1102,第一馈线14的另一端电连接射频信号源。第一馈线14在第一天线辐射体11的所在面的正投影由第一馈电点1102朝向第一接地端1101的所在侧延伸,或者,第一馈线14在第一天线辐射体11的所在面的正投影由第一馈电点1102朝向第一自由端1103的所在侧延伸。其中,第一馈线14可以与第一天线辐射体11设于介质层10的同一表面,也可分别设于介质层10的正面和背面。当第一馈线14与第一天线辐射体11分别设于介质层10的正面和背面时,第一馈线14电连接第一天线辐射体11的第一馈电点1102的一端可以为导电过孔。第一馈线14的另一端可以包括微带线、同轴线、导电过孔、导电探针、导电弹片等。
通过使第一馈线14在第一天线辐射体11的所在面的正投影由第一馈电点1102朝向第一接地端1101的所在侧延伸,或者,使第一馈线14在第一天线辐射体11的所在面的正投影由第一馈电点1102朝向第一自由端1103的所在侧延伸,可以减小第一天线辐射体11在靠近第一间隙部L1所在侧的高阶谐振电流,减小第一天线辐射体11在靠近第二间隙部L2所在侧的高阶谐振电流,降低第一枝节110自身的交叉极化,提高天线组件1的测角精度。
可选的,第一间隙部L1的尺寸大于或等于0.2mm且小于或等于1.5mm。第一间隙部L1的尺寸越小,第一枝节110在第一间隙部L1所在侧的磁流越强,第一枝节110的交叉极化越小,进一步地提高天线组件1的测角精度。第二间隙部L2的尺寸大于或等于0.2mm且小于或等于1.5mm。同样的,第二间隙部L2的尺寸越小,第一枝节110在第二间隙部L2所在侧的磁流越强,第一枝节110的交叉极化越小,进一步地提高天线组件1的测角精度。
一实施例中,如图9所示,第二天线辐射体12为贴片天线辐射体。第二天线辐射体12的形状可以为圆形、椭圆形、三角形、方形、矩形、其他多边形以及各种异形等,本实施例中以矩形的第二天线辐射体12为例。本实施例中,第二天线辐射体12未直接接地,第二天线辐射体12本身的交叉极化较小,与第一天线辐射体11结合,可使得天线组件1整体的交 叉极化较小,进而提高天线组件1的相位差曲线的收敛度,有利于提高天线组件1进行测角的精度。
另一实施例中,如图10所示,第二天线辐射体12为平面倒F型天线辐射体。第二天线辐射体12包括第二馈电点1202和至少一个第二接地点120a。第二馈电点1202用于电连接射频信号源。举例而言,第二馈电点1202与射频信号源之间可以通过微带线、同轴线、探针、弹片等进行电连接。至少一个第二接地点120a用于电连接参考地。本申请对于第二接地点120a的数量不作具体的限定。举例而言,第二接地点120a的数量可以为一个、两个、三个、五个、八个、十个等,当第二接地点120a的数量为多个时,多个第二接地点120a可以沿特定方向依次排列。可选的,至少一个第二接地点120a电连接电子设备100的外壳21,或者,至少一个第二接地点120a电连接电子设备100的电路板22的接地层。至少一个第二接地点120a与参考地之间可以通过微带线、同轴线、探针、弹片等进行电连接。本实施例中,第二天线辐射体12的频带宽、体积小,在实现测角的同时有利于拓宽天线组件1的带宽和实现天线组件1的小型化。
再一实施例中,请参照图11和图12,第二天线辐射体12包括第四枝节120和分别位于第四枝节120相背两侧的第五枝节121、第六枝节122。换言之,第五枝节121、第四枝节120以及第六枝节122依次排列。其中,第四枝节120的材质、第五枝节121的材质以及第六枝节122的材质皆为导电材质。举例而言:第四枝节120的材质、第五枝节121的材质以及第六枝节122的材质可以为金属、合金等。第四枝节120的材质、第五枝节121的材质以及第六枝节122的材质可以相同也可以不同。
第四枝节120包括第二接地端1201、第二馈电点1202和第二自由端1203。第二接地端1201用于电连接参考地。具体的,第二接地端1201包括至少一个第二接地点120a,所述至少一个第二接地点120a用于电连接参考地。可选的,至少一个第二接地点120a电连接电子设备100的外壳21;或者,至少一个第二接地点120a电连接电子设备100的电路板22的接地层;又或者,介质层10的背面设有电连接电子设备100的外壳21或者电连接电子设备100的电路板22的接地层的接地金属,至少一个第二接地点120a可以电连接该接地金属,以实现电连接参考地。至少一个第二接地点120a与参考地之间可以通过微带线、同轴线、探针、弹片等进行电连接。第二馈电点1202与射频信号源之间可以通过微带线、同轴线、探针、弹片等进行电连接。第二馈电点1202用于获取射频信号源产生的电流信号。第二自由端1203与第二接地端1201相对设置,第二自由端1203未直接接地,也未直接电连接射频信号源。其中,第二自由端1203可形成第四枝节120的电场强点,第二接地端1201可形成第四枝节120的电流强点。
第二自由端1203分别与第五枝节121、第六枝节122相连,第五枝节121与第四枝节120之间形成第三间隙部,第六枝节122与第四枝节120之间形成第四间隙部。
具体的,第五枝节121靠近第二自由端1203的一端与第二自由端1203相连,第五枝节121远离第二自由端1203的一端与第四枝节120间隔设置,从而使得第五枝节121与第四枝节120之间形成第三间隙部。第六枝节122靠近第二自由端1203的一端与第二自由端1203相连,第六枝节122远离第二自由端1203的一端与第四枝节120间隔设置,从而使得第六枝节122与第四枝节120之间形成第四间隙部。其中,第五枝节121远离第二自由端1203的一端可以靠近第四枝节120的第二接地端1201,或者,第五枝节121远离第二自由端1203的一端可以与第四枝节120的第二接地端1201相对并间隔设置。第六枝节122远离第二自由端1203的一端可以靠近第四枝节120的第二接地端1201,或者,第六枝节122远离第二自由端1203的一端可以与第四枝节120的第二接地端1201相对并间隔设置。第三间隙部的尺寸与第四间隙部的尺寸可以相同也可以不同。第三间隙部的尺寸可以参照附图12中的L3,第四间隙部的尺寸可以参照附图12中的L4。以下实施例中第三间隙部直接描述为第三间隙部L3,第四间隙部直接描述为第四间隙部L4。第三间隙部L3、第四间隙部L4可以小于或等于第一天线辐射体11与第二天线辐射体12之间沿第一目标方向的间隔距离。可以理解的,第四枝节120的电流信号可传输至第五枝节121和第六枝节122。如此设置的第五枝节121、第六枝节122可用于调节第四枝节120的高阶谐振电流分布,降低第二天线辐射体12的交叉极化。
本实施例提供的天线组件1的第一天线辐射体11包括第一枝节110、第二枝节112和第 三枝节113,第二枝节112、第三枝节113分别位于第一枝节110的相背两侧,且第二枝节112、第三枝节113分别与第一枝节110的第一自由端1103相连,第二枝节112与第一枝节110之间形成第一间隙部L1,第三枝节113与第一枝节110之间形成第二间隙部L2,使得第二枝节112、第三枝节113可用于调节第一枝节110的高阶谐振电流分布,改善第一天线辐射体11的交叉极化。天线组件1的第二天线辐射体12包括第四枝节120、第五枝节121和第六枝节122,第五枝节121、第六枝节122分别位于第四枝节120的相背两侧,且第五枝节121、第六枝节122分别与第四枝节120的第二自由端1203相连,第五枝节121与第四枝节120之间形成第三间隙部L3,第六枝节122与第四枝节120之间形成第四间隙部L4,使得第五枝节121、第六枝节122可用于调节第四枝节120的高阶谐振电流分布,改善第二天线辐射体12的交叉极化。从而,天线组件1的相位差曲线的收敛度较高,可实现高精度测角。
进一步地,请参照图13和图14,天线组件1还包括第二馈线15。第二馈线15的一端电连接第二馈电点1202,第二馈线15的另一端电连接射频信号源。第二馈线15在第二天线辐射体12的所在面的正投影由第二馈电点1202朝向第二接地端1201的所在侧延伸,或者,第二馈线15在第二天线辐射体12的所在面的正投影由第二馈电点1202朝向第二自由端1203的所在侧延伸。其中,第二馈线15可以与第二天线辐射体12设于介质层10的同一表面,也可分别设于介质层10的正面和背面。当第二馈线15与第二天线辐射体12分别设于介质层10的正面和背面时,第二馈线15电连接第二天线辐射体12的第二馈电点1202的一端可以为导电过孔。第二馈线15的另一端可以包括微带线、同轴线、导电过孔、导电探针、导电弹片等。
通过使第二馈线15在第二天线辐射体12的所在面的正投影由第二馈电点1202朝向第二接地端1201的所在侧延伸,或者,使第二馈线15在第二天线辐射体12的所在面的正投影由第二馈电点1202朝向第二自由端1203的所在侧延伸,可以减小第二天线辐射体12在靠近第三间隙部L3所在侧的高阶谐振电流,减小第二天线辐射体12在靠近第四间隙部L4所在侧的高阶谐振电流,降低第四枝节120自身的交叉极化,提高天线组件1的测角精度。
可选的,第三间隙部L3的尺寸大于或等于0.2mm且小于或等于1.5mm。第三间隙部L3的尺寸越小,第四枝节120在第三间隙部L3所在侧的磁流越强,第四枝节120的交叉极化越小,进一步地提高天线组件1的测角精度。第四间隙部L4的尺寸大于或等于0.2mm且小于或等于1.5mm。同样的,第四间隙部L4的尺寸越小,第四枝节120在第四间隙部L4所在侧的磁流越强,第四枝节120的交叉极化越小,进一步地提高天线组件1的测角精度。
一实施例中,如图15所示,第一自由端1103、第一馈电点1102、第一接地端1101、第二接地端1201、第二馈电点1202及第二自由端1203沿第一目标方向依次排列。本实施例通过使第一天线辐射体11的第一接地端1101靠近第二天线辐射体12的第二接地端1201,第一天线辐射体11的第一自由端1103远离第二天线辐射体12的第二自由端1203,可以减少第一天线辐射体11与第二天线辐射体12之间的电磁干扰,提高第一天线辐射体11、第二天线辐射体12接收电磁波信号的精度。
另一实施例中,如图16所示,第一自由端1103、第一馈电点1102、第一接地端1101、第二自由端1203、第二馈电点1202及第二接地端1201沿第一目标方向依次排列。同样的,本实施例通过使第一天线辐射体11的第一接地端1101靠近第二天线辐射体12的第二自由端1203,第一天线辐射体11的第一自由端1103远离第二天线辐射体12的第二自由端1203,可以减少第一天线辐射体11与第二天线辐射体12之间的电磁干扰,提高第一天线辐射体11、第二天线辐射体12接收电磁波信号的精度。
再一实施例中,请参照图17和图18,第二枝节112、第一枝节110、第三枝节113、第五枝节121、第四枝节120和第六枝节122沿第一目标方向依次排列。可选的,如图17所示,第一天线辐射体11的第一接地端1101与第二天线辐射体12的第二接地端1201沿第一目标方向X相对设置,第一天线辐射体11的第一自由端1103与第二天线辐射体12的第二自由端1203沿第一目标方向X相对设置;或者,如图18所示,第一天线辐射体11的第一接地端1101与第二天线辐射体12的第二自由端1203沿第一目标方向X相对设置,第一天线辐射体11的第一自由端1103与第二天线辐射体12的第二接地端1201沿第一目标方向X相对设置。本实施例通过使第二枝节112、第一枝节110、第三枝节113、第五枝节121、第四枝节120 和第六枝节122沿第一目标方向依次排列,同样可以避免第一天线辐射体11的第一自由端1103直接靠近第二天线辐射体12的第二自由端1203,减少第一天线辐射体11与第二天线辐射体12之间的电磁干扰,提高第一天线辐射体11、第二天线辐射体12接收电磁波信号的精度。
进一步地,请参照图19和图20,天线组件1还包括第三天线辐射体13。第三天线辐射体13与第一天线辐射体11沿第二目标方向间隔排布,或者,第三天线辐射体13与第二天线辐射体12沿第二目标方向间隔排布。第二目标方向与第一目标方向相交。本申请实施例中以第三天线辐射体13与第一天线辐射体11沿第二目标方向间隔排布,且第二目标方向与第一目标方向垂直为例。第二目标方向以参照附图19中的Y轴方向,以下实施例中直接描述为第二目标方向Y。第三天线辐射体13用于电连接射频信号源。第三天线辐射体13与射频信号源之间的电连接方式可以包括直接电连接、间接电连接、耦合连接中的一种或多种。第三天线辐射体13用于获取射频信号源产生的电流信号。第三天线辐射体13可产生四分之一波长谐振模式或二分之一波长谐振模式。通过使天线组件1包括第一天线辐射体11、第二天线辐射体12和第三天线辐射体13,第一天线辐射体11、第二天线辐射体12和第三天线辐射体13形成三维测角天线组,可实现三维测角。
一实施例中,如图19所示,第三天线辐射体13为贴片天线辐射体。第三天线辐射体13的形状可以为圆形、椭圆形、三角形、方形、矩形、其他多边形以及各种异形等,本实施例中以矩形的第三天线辐射体13为例。本实施例中,第三天线辐射体13未直接接地,第三天线辐射体13本身的交叉极化较小,与第一天线辐射体11、第二天线辐射体12结合,可使得天线组件1整体的交叉极化较小,进而提高天线组件1的相位差曲线的收敛度,有利于提高天线组件1进行三维测角的精度。
另一实施例中,如图20所示,第三天线辐射体13为平面倒F型天线辐射体。第三天线辐射体13包括第三馈电点1302和至少一个第三接地点130a。第三馈电点1302用于电连接射频信号源。举例而言,第三馈电点1302与射频信号源之间可以通过微带线、同轴线、探针、弹片等进行电连接。至少一个第三接地点130a用于电连接参考地。本申请对于第三接地点130a的数量不作具体的限定。举例而言,第三接地点130a的数量可以为一个、两个、三个、五个、八个、十个等,当第三接地点130a的数量为多个时,多个第三接地点130a可以沿特定方向依次排列。可选的,至少一个第三接地点130a电连接电子设备100的外壳21,或者,至少一个第三接地点130a电连接电子设备100的电路板22的接地层。至少一个第三接地点130a与参考地之间可以通过微带线、同轴线、探针、弹片等进行电连接。本实施例中,第三天线辐射体13的频带宽、体积小,在实现三维测角的同时有利于拓宽天线组件1的带宽和实现天线组件1的小型化。
再一实施例中,如图21所示,第三天线辐射体13包括第七枝节130和分别位于第七枝节130相背两侧的第八枝节131、第九枝节132。换言之,第八枝节131、第七枝节130以及第九枝节132依次排列。其中,第七枝节130的材质、第八枝节131的材质以及第九枝节132的材质皆为导电材质。举例而言:第七枝节130的材质、第八枝节131的材质以及第九枝节132的材质可以为金属、合金等。第七枝节130的材质、第八枝节131的材质以及第九枝节132的材质可以相同也可以不同。
第七枝节130包括第三接地端1301、第三馈电点1302和第三自由端1303。第三接地端1301用于电连接参考地。具体的,第三接地端1301包括至少一个第三接地点130a,所述至少一个第三接地点130a用于电连接参考地。可选的,至少一个第三接地点130a电连接电子设备100的外壳21;或者,至少一个第三接地点130a电连接电子设备100的电路板22的接地层;又或者,介质层10的背面设有电连接电子设备100的外壳21或者电连接电子设备100的电路板22的接地层的接地金属,至少一个第三接地点130a可以电连接该接地金属,以实现电连接参考地。至少一个第三接地点130a与参考地之间可以通过微带线、同轴线、探针、弹片等进行电连接。第三馈电点1302与射频信号源之间可以通过微带线、同轴线、探针、弹片等进行电连接。第三馈电点1302用于获取射频信号源产生的电流信号。第三自由端1303与第三接地端1301相对设置,第三自由端1303未直接接地,也未直接电连接射频信号源。其中,第三自由端1303可形成第七枝节130的电场强点,第三接地端1301可形成第七枝节 130的电流强点。
第三自由端1303分别与第八枝节131、第九枝节132相连,第八枝节131与第七枝节130之间形成第五间隙部,第九枝节132与第七枝节130之间形成第六间隙部。
具体的,第八枝节131靠近第三自由端1303的一端与第三自由端1303相连,第八枝节131远离第三自由端1303的一端与第七枝节130间隔设置,从而使得第八枝节131与第七枝节130之间形成第五间隙部。第九枝节132靠近第三自由端1303的一端与第三自由端1303相连,第九枝节132远离第三自由端1303的一端与第七枝节130间隔设置,从而使得第九枝节132与第七枝节130之间形成第六间隙部。其中,第八枝节131远离第三自由端1303的一端可以靠近第七枝节130的第三接地端1301,或者,第八枝节131远离第三自由端1303的一端可以与第七枝节130的第三接地端1301相对并间隔设置。第九枝节132远离第三自由端1303的一端可以靠近第七枝节130的第三接地端1301,或者,第九枝节132远离第三自由端1303的一端可以与第七枝节130的第三接地端1301相对并间隔设置。第五间隙部的尺寸与第六间隙部的尺寸可以相同也可以不同。第五间隙部的尺寸可以参照附图21中的L5,第六间隙部的尺寸可以参照附图21中的L6。以下实施例中第五间隙部直接描述为第五间隙部L5,第六间隙部直接描述为第六间隙部L6。第五间隙部L5、第六间隙部L6可以小于或等于第三天线辐射体13与第一天线辐射体11之间沿第二目标方向Y的间隔距离。可以理解的,第七枝节130的电流信号可传输至第八枝节131和第九枝节132。如此设置的第八枝节131、第九枝节132可用于调节第七枝节130的高阶谐振电流分布,降低第三天线辐射体13的交叉极化。
本实施例提供的天线组件1的第一天线辐射体11、第二天线辐射体12以及第三天线辐射体13皆具有较小的交叉极化,可实现三维高精度测角。其中,天线组件1的第三天线辐射体13包括第七枝节130、第八枝节131和第九枝节132,第八枝节131、第九枝节132分别位于第七枝节130的相背两侧,且第八枝节131、第九枝节132分别与第七枝节130的第三自由端1303相连,第八枝节131与第七枝节130之间形成第五间隙部L5,第九枝节132与第七枝节130之间形成第六间隙部L6,使得第八枝节131、第九枝节132可用于调节第七枝节130的高阶谐振电流分布,改善第三天线辐射体13的交叉极化,从而天线组件1的相位差曲线的收敛度较高,测角精度较高。
进一步地,请参照图22和图23,天线组件1还包括第三馈线16。第三馈线16的一端电连接第三馈电点1302,第三馈线16的另一端电连接射频信号源。第三馈线16在第三天线辐射体13的所在面的正投影由第三馈电点1302朝向第三接地端1301的所在侧延伸,或者,第三馈线16在第三天线辐射体13的所在面的正投影由第三馈电点1302朝向第三自由端1303的所在侧延伸。其中,第三馈线16可以与第三天线辐射体13设于介质层10的同一表面,也可分别设于介质层10的正面和背面。当第三馈线16与第三天线辐射体13分别设于介质层10的正面和背面时,第三馈线16电连接第二天线辐射体12的第三馈电点1302的一端可以为导电过孔。第三馈线16的另一端可以包括微带线、同轴线、导电过孔、导电探针、导电弹片等。
通过使第三馈线1615在第三天线辐射体13的所在面的正投影由第三馈电点1302朝向第三接地端1301的所在侧延伸,或者,使第三馈线16在第三天线辐射体13的所在面的正投影由第三馈电点1302朝向第三自由端1303的所在侧延伸,可以减小第二天线辐射体12在靠近第五间隙部L5所在侧的高阶谐振电流,减小第三天线辐射体13在靠近第六间隙部L6所在侧的高阶谐振电流,降低第七枝节130自身的交叉极化,提高天线组件1的测角精度。
可选的,第五间隙部L5的尺寸大于或等于0.2mm且小于或等于1.5mm。第五间隙部L5的尺寸越小,第七枝节130在第五间隙部L5所在侧的磁流越强,第七枝节130的交叉极化越小,进一步地提高天线组件1的测角精度。第六间隙部L6的尺寸大于或等于0.2mm且小于或等于1.5mm。同样的,第六间隙部L6的尺寸越小,第七枝节130在第六间隙部L6所在侧的磁流越强,第七枝节130的交叉极化越小,进一步地提高天线组件1的测角精度。
一实施例中,如图24所示,第一自由端1103、第一馈电点1102、第一接地端1101、第三接地端1301、第三馈电点1302及第三自由端1303沿第二目标方向依次排列。本实施例通过使第一天线辐射体11的第一接地端1101靠近第三天线辐射体13的第三接地端1301,第一天线辐射体11的第一自由端1103远离第三天线辐射体13的第三自由端1303,可以减少 第一天线辐射体11与第三天线辐射体13之间的电磁干扰,提高第一天线辐射体11、第三天线辐射体13接收电磁波信号的精度。
另一实施例中,如图25所示,第一自由端1103、第一馈电点1102、第一接地端1101、第三自由端1303、第三馈电点1302及第三接地端1301沿第二目标方向依次排列。同样的,本实施例通过使第一天线辐射体11的第一接地端1101靠近第三天线辐射体13的第三自由端1303,第一天线辐射体11的第一自由端1103远离第三天线辐射体13的第三自由端1303,可以减少第一天线辐射体11与第三天线辐射体13之间的电磁干扰,提高第一天线辐射体11、第三天线辐射体13接收电磁波信号的精度。
再一实施例中,请参照图26和图27,第二枝节112、第一枝节110、第三枝节113、第八枝节131、第七枝节130和第九枝节132沿第一目标方向依次排列。可选的,如图26所示,第一天线辐射体11的第一接地端1101与第三天线辐射体13的第三接地端1301沿第二目标方向Y相对设置,第一天线辐射体11的第一自由端1103与第三天线辐射体13的第三自由端1303沿第二目标方向Y相对设置;或者,如图27所示,第一天线辐射体11的第一接地端1101与第三天线辐射体13的第三自由端1303沿第二目标方向Y相对设置,第一天线辐射体11的第一自由端1103与第三天线辐射体13的第三接地端1301沿第二目标方向Y相对设置。本实施例通过使第二枝节112、第一枝节110、第三枝节113、第八枝节131、第七枝节130和第九枝节132沿第一目标方向依次排列,同样可以避免第一天线辐射体11的第一自由端1103直接靠近第三天线辐射体13的第三自由端1303,减少第一天线辐射体11与第三天线辐射体13之间的电磁干扰,提高第一天线辐射体11、第三天线辐射体13接收电磁波信号的精度。
请参照图28至图31,图28为本申请实施例提供的一种天线组件1的回波损耗曲线示意图,从图28中可以看出天线组件1的带宽较宽,天线组件1可工作于8GHz;图29为本申请实施例提供的一种天线组件1的辐射效率曲线示意图,从图29中可以看出天线组件1的辐射效率较高;图30为本申请实施例提供的一种天线组件1的极化比方向示意图,从图30中可以看出天线组件1在10dB以上极化比的覆盖范围更广。图31为本申请实施例提供的一种天线组件1的极化比示意图。从图31中可以看出天线组件1的交叉极化较低。其中,天线组件1的第一枝节110、第二枝节112以及第三枝节113沿第一目标方向X的尺寸皆为7mm,第一枝节110沿第二目标方向Y的尺寸为5mm,第二枝节112沿第二目标方向Y的尺寸为0.5mm,第二枝节112沿第二目标方向Y的尺寸为0.5mm,第一间隙部为0.5mm,第二间隙部为0.5mm,介质层10的厚度为0.5mm,介质层10的介电常数为3.5。
上述在说明书、权利要求书以及附图中提及的特征,只要在本申请的范围内是有意义的,均可以任意相互组合。针对天线组件1所说明的优点和特征以相应的方式适用于电子设备100。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种天线组件,包括:
    第一天线辐射体,包括第一枝节和分别位于所述第一枝节相背两侧的第二枝节、第三枝节,所述第一枝节包括第一接地端、第一馈电点和第一自由端,所述第一接地端用于电连接参考地,所述第一馈电点用于电连接射频信号源,所述第一自由端分别与所述第二枝节、所述第三枝节相连,所述第二枝节与所述第一枝节之间形成第一间隙部,所述第三枝节与所述第一枝节之间形成第二间隙部;及
    第二天线辐射体,所述第二天线辐射体与所述第一天线辐射体沿第一目标方向间隔排布,所述第二天线辐射体用于电连接所述射频信号源。
  2. 根据权利要求1所述的天线组件,所述天线组件还包括第一馈线,所述第一馈线的一端电连接所述第一馈电点,所述第一馈线的另一端电连接所述射频信号源,所述第一馈线在所述第一天线辐射体的所在面的正投影由所述第一馈电点朝向所述第一接地端的所在侧延伸,或者,所述第一馈线在所述第一天线辐射体的所在面的正投影由所述第一馈电点朝向所述第一自由端的所在侧延伸。
  3. 根据权利要求1或2所述的天线组件,所述第一间隙部的尺寸大于或等于0.2mm且小于或等于1.5mm,所述第二间隙部的尺寸大于或等于0.2mm且小于或等于1.5mm。
  4. 根据权利要求1或2所述的天线组件,所述第二枝节靠近所述第一自由端的一端与所述第一自由端相连,所述第二枝节远离所述第一自由端的一端与所述第一枝节间隔设置,所述第三枝节靠近所述第一自由端的一端与所述第一自由端相连,所述第三枝节远离所述第一自由端的一端与所述第一枝节间隔设置。
  5. 根据权利要求1或2所述的天线组件,所述第一接地端包括至少一个第一接地点。
  6. 根据权利要求1或2所述的天线组件,所述第一间隙部的尺寸、所述第二间隙部的尺寸小于或等于所述第一天线辐射体与所述第二天线辐射体之间沿所述第一目标方向的间隔距离。
  7. 根据权利要求1或2所述的天线组件,所述第二天线辐射体为贴片天线辐射体,所述第二天线辐射体未直接接地。
  8. 根据权利要求1或2所述的天线组件,所述第二天线辐射体为平面倒F型天线辐射体,所述第二天线辐射体包括第二馈电点和至少一个第二接地点。
  9. 根据权利要求1或2所述的天线组件,所述第二天线辐射体包括第四枝节和分别位于所述第四枝节相背两侧的第五枝节、第六枝节,所述第五枝节包括第二接地端、第二馈电点和第二自由端,所述第二接地端用于电连接参考地,所述第二馈电点用于电连接所述射频信号源,所述第二自由端分别与所述第五枝节、所述第六枝节相连,所述第五枝节与所述第四枝节之间形成第三间隙部,所述第六枝节与所述第四枝节之间形成第四间隙部。
  10. 根据权利要求9所述的天线组件,所述天线组件还包括第二馈线,所述第二馈线的一端电连接所述第二馈电点,所述第二馈线的另一端用于电连接所述射频信号源,所述第二馈线在所述第二天线辐射体的所在面的正投影由所述第二馈电点朝向所述第二接地端或者所述第二自由端的所在侧延伸。
  11. 根据权利要求9所述的天线组件,所述第三间隙部的尺寸大于或等于0.2mm,且小于或等于1.5mm,所述第四间隙部的尺寸大于或等于0.2mm且小于或等于1.5mm。
  12. 根据权利要求9所述的天线组件,所述第五枝节靠近所述第二自由端的一端与所述第二自由端相连,所述第五枝节远离所述第二自由端的一端与所述第四枝节间隔设置,所述第六枝节靠近所述第二自由端的一端与第二自由端相连,所述第六枝节远离所述第二自由端的一端与所述第四枝节间隔设置。
  13. 根据权利要求9所述的天线组件,所述第二接地端包括至少一个第二接地点。
  14. 根据权利要求9所述的天线组件,所述第一自由端、所述第一馈电点、所述第一接地端、所述第二接地端、所述第二馈电点及所述第二自由端沿所述第一目标方向依次排列。
  15. 根据权利要求9所述的天线组件,所述第一自由端、所述第一馈电点、所述第一接 地端、所述第二自由端、所述第二馈电点及所述第二接地端沿所述第一目标方向依次排列。
  16. 根据权利要求9所述的天线组件,所述第二枝节、所述第一枝节、所述第三枝节、所述第五枝节、所述第四枝节及所述第六枝节沿所述第一目标方向依次排列。
  17. 根据权利要求9所述的天线组件,所述天线组件还包括第三天线辐射体,所述第三天线辐射体与所述第一天线辐射体沿第二目标方向间隔排布,或者,所述第三天线辐射体与所述第二天线辐射体沿第二目标方向间隔排布,其中,所述第二目标方向与所述第一目标方向相交,所述第三天线辐射体用于电连接所述射频信号源。
  18. 根据权利要求17所述的天线组件,所述第三天线辐射体包括第七枝节和分别位于所述第七枝节相背两侧的第八枝节、第九枝节,所述第七枝节包括第三接地端、第三馈电点和第三自由端,所述第三接地端用于电连接参考地,所述第三馈电点用于电连接所述射频信号源,所述第三自由端分别与所述第八枝节、所述第九枝节相连,所述第八枝节与所述第七枝节之间形成第五间隙部,所述第九枝节与所述第七枝节之间形成第六间隙部。
  19. 根据权利要求1或2所述的天线组件,所述天线组件还包括介质层,所述第一天线辐射体和所述第二天线辐射体设于所述介质层的表面。
  20. 一种电子设备,包括设备本体及如权利要求1至19任意一项所述的天线组件,所述设备本体用于承载所述天线组件。
PCT/CN2023/107738 2022-09-30 2023-07-17 天线组件及电子设备 WO2024066679A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211230326.4 2022-09-30
CN202211230326.4A CN117810698A (zh) 2022-09-30 2022-09-30 天线组件及电子设备

Publications (1)

Publication Number Publication Date
WO2024066679A1 true WO2024066679A1 (zh) 2024-04-04

Family

ID=90419012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107738 WO2024066679A1 (zh) 2022-09-30 2023-07-17 天线组件及电子设备

Country Status (2)

Country Link
CN (1) CN117810698A (zh)
WO (1) WO2024066679A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205790361U (zh) * 2016-05-30 2016-12-07 深圳市天联凌科技有限公司 4g外置天线结构
CN108985124A (zh) * 2018-07-31 2018-12-11 常州信息职业技术学院 一种基于射频识别技术的电子数据传输系统及方法
CN211088517U (zh) * 2019-12-20 2020-07-24 上海安费诺永亿通讯电子有限公司 一种频率可调谐的微带天线及终端通信设备
KR102238396B1 (ko) * 2019-12-11 2021-04-12 단국대학교 산학협력단 디커플링 소자를 가지는 다중 입출력 안테나
CN113013596A (zh) * 2021-02-26 2021-06-22 Oppo广东移动通信有限公司 天线装置、壳体及电子设备
WO2022142785A1 (zh) * 2020-12-31 2022-07-07 Oppo广东移动通信有限公司 天线组件及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205790361U (zh) * 2016-05-30 2016-12-07 深圳市天联凌科技有限公司 4g外置天线结构
CN108985124A (zh) * 2018-07-31 2018-12-11 常州信息职业技术学院 一种基于射频识别技术的电子数据传输系统及方法
KR102238396B1 (ko) * 2019-12-11 2021-04-12 단국대학교 산학협력단 디커플링 소자를 가지는 다중 입출력 안테나
CN211088517U (zh) * 2019-12-20 2020-07-24 上海安费诺永亿通讯电子有限公司 一种频率可调谐的微带天线及终端通信设备
WO2022142785A1 (zh) * 2020-12-31 2022-07-07 Oppo广东移动通信有限公司 天线组件及电子设备
CN113013596A (zh) * 2021-02-26 2021-06-22 Oppo广东移动通信有限公司 天线装置、壳体及电子设备

Also Published As

Publication number Publication date
CN117810698A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
US6366258B2 (en) Low profile high polarization purity dual-polarized antennas
US6531985B1 (en) Integrated laptop antenna using two or more antennas
KR101981368B1 (ko) 자기 접지형 안테나 장치
WO2022179324A1 (zh) 天线装置、壳体及电子设备
CN110380193A (zh) 一种小型化多波段共口径圆极化天线
WO2021083223A1 (zh) 天线单元及电子设备
WO2023134405A1 (zh) 电子设备
CN211350966U (zh) 一种超低剖面双频uwb天线及通信设备
CN113193358A (zh) 天线装置、电子标签设备及通信系统
US20070241981A1 (en) Wideband Antenna with Omni-Directional Radiation
CN113193356A (zh) 天线装置、电子标签设备及通信系统
WO2023138324A1 (zh) 一种天线结构、电子设备及无线网络系统
WO2024066679A1 (zh) 天线组件及电子设备
WO2021083220A1 (zh) 天线单元及电子设备
US8373600B2 (en) Single-band antenna
WO2024066677A1 (zh) 天线组件及电子设备
WO2021083218A1 (zh) 天线单元及电子设备
WO2021083213A1 (zh) 天线单元及电子设备
ud Din et al. High performance antenna system in MIMO configuration for 5G wireless communications over sub-6 GHz spectrum
TWI389388B (zh) 雙頻平面天線
CN112736439A (zh) 天线、天线组件及电子设备
Malik et al. Extremely close integration of dual band sub-6 GHz 4G antenna with unidirectional mm-wave 5G antenna
WO2023226420A1 (zh) 天线组件及电子设备
WO2024041138A1 (zh) 天线模组、定位系统和电子设备
US11749910B2 (en) Dual band antenna