WO2023134405A1 - 电子设备 - Google Patents

电子设备 Download PDF

Info

Publication number
WO2023134405A1
WO2023134405A1 PCT/CN2022/140195 CN2022140195W WO2023134405A1 WO 2023134405 A1 WO2023134405 A1 WO 2023134405A1 CN 2022140195 W CN2022140195 W CN 2022140195W WO 2023134405 A1 WO2023134405 A1 WO 2023134405A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiator
electronic device
radiators
transmission
Prior art date
Application number
PCT/CN2022/140195
Other languages
English (en)
French (fr)
Inventor
罗嘉文
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023134405A1 publication Critical patent/WO2023134405A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present application relates to the technical field of communications, and in particular to an electronic device.
  • an embodiment of the present application provides an electronic device, and the electronic device includes:
  • the first antenna, the first antenna is an omnidirectional horizontally polarized antenna, and the first antenna includes:
  • a transmission part is carried on the bracket, the transmission part includes a power feeding part and a plurality of transmission parts, the power feeding part is used to receive radio frequency signals, and the plurality of transmission parts are respectively connected to the power feeding part connected to each other, for outputting the radio frequency signal;
  • a plurality of first radiators are all carried on the bracket and arranged around, each first radiator is electrically connected to the transmission part, and different first radiators are electrically connected to different transmission parts department.
  • Figure 1 is a schematic diagram of an electronic device using a UWB antenna to send and receive electromagnetic wave signals
  • FIG. 2 is a schematic perspective view of an electronic device provided in an embodiment of the present application.
  • FIG. 3 is a three-dimensional exploded schematic diagram of an electronic device shown in an embodiment
  • Fig. 4 is a sectional view along line I-I among Fig. 2;
  • FIG. 5 is a three-dimensional schematic diagram of a bracket and a first antenna in the electronic device shown in FIG. 3;
  • Fig. 6 is a sectional view along line II-II in Fig. 5;
  • Fig. 7 is the enlarged schematic diagram along III in Fig. 6;
  • Fig. 8 is a three-dimensional exploded schematic diagram of an electronic device shown in another embodiment
  • Fig. 9 is a schematic diagram of a part of the structure in Fig. 8.
  • Fig. 10 is a three-dimensional exploded schematic view of the structure in Fig. 9 at another angle;
  • Fig. 11 is a schematic diagram when an electronic device with a third antenna is paired with a preset electronic device
  • Fig. 12 is a circuit block diagram when the electronic device in Fig. 11 is paired with the preset electronic device;
  • FIG. 13 is a schematic diagram of an electronic device having a third antenna and a terminal device communicating
  • Fig. 14 is a circuit block diagram when the terminal device in Fig. 13 reads the communication information in the electronic device;
  • Fig. 15 is a top view of part of the structure in Fig. 8;
  • Fig. 16 is a sectional view along line IV-IV in Fig. 15;
  • Figure 17 is an enlarged view at V in Figure 16;
  • Fig. 18 is a top view of part of the structure in Fig. 8;
  • Fig. 19 is a sectional view along line VI-VI in Fig. 18;
  • Figure 20 is an enlarged view at VII in Figure 19;
  • Fig. 21 is a top view of part of the structure in Fig. 8;
  • Fig. 22 is a sectional view along line A-A in Fig. 21;
  • Figure 23 is an enlarged view at B in Figure 22;
  • Fig. 24 is a top view of the transmission, the first radiator and the parasitic radiator provided in another embodiment of the present application;
  • Figure 25 is a horizontal plane radiation pattern in Figure 24;
  • Fig. 26 is a schematic diagram of a scattering parameter curve of the first antenna in the electronic device shown in Fig. 3;
  • FIG. 27 is a schematic diagram of the antenna efficiency of the first antenna in the electronic device shown in FIG. 3;
  • Fig. 28 is a schematic diagram of 8 GHz surface current distribution on the first antenna and the support in the electronic device shown in Fig. 3;
  • FIG. 29 is a schematic diagram of the direction of the first antenna in FIG. 3 at a viewing angle
  • FIG. 30 is a schematic diagram of the direction of the first antenna in FIG. 3 at another viewing angle
  • Fig. 31 is a schematic diagram of the directionality of the first antenna in the electronic device shown in Fig. 3;
  • Fig. 32 is a schematic diagram of S parameters of the first antenna in Fig. 8;
  • FIG. 33 is a schematic diagram of the antenna efficiency of the first antenna in the electronic device shown in FIG. 8;
  • Fig. 34 is a schematic diagram of 8 GHz surface current distribution on the first antenna and support in the electronic device shown in Fig. 8;
  • Fig. 35 is a schematic diagram of directions in the first antenna in the electronic device shown in Fig. 8;
  • FIG. 36 is a schematic diagram of the directionality of the first antenna in the electronic device shown in FIG. 8 .
  • the first aspect of the present application provides an electronic device, the electronic device comprising:
  • the first antenna, the first antenna is an omnidirectional horizontally polarized antenna, and the first antenna includes:
  • a transmission part is carried on the bracket, the transmission part includes a power feeding part and a plurality of transmission parts, the power feeding part is used to receive radio frequency signals, and the plurality of transmission parts are respectively connected to the power feeding part connected to each other, for outputting the radio frequency signal;
  • a plurality of first radiators are all carried on the bracket and arranged around, the first radiators are electrically connected to the transmission part, and different first radiators are electrically connected to different transmission department.
  • the plurality of transmission parts surround the outer peripheral side of the feeding part and are arranged at uniform intervals, and the length of each transmission part in the plurality of transmission parts is the same; and the plurality of first radiators evenly surround on the peripheral side of the stent.
  • the multiple transmission parts are four transmission parts
  • the multiple first radiators are four first radiators.
  • the first antenna also includes:
  • At least one parasitic radiator the at least one parasitic radiator is carried on the peripheral side wall of the support, and the parasitic radiator is arranged between two adjacent first radiators, and the adjacent At least one of the two first radiators is coupled.
  • an equal number of parasitic radiators are arranged between two adjacent first radiators.
  • the first radiator and the parasitic radiator evenly surround the peripheral side of the bracket.
  • the support has:
  • the plurality of first radiators are disposed on the peripheral side;
  • the first surface is bent and connected to the peripheral side, and constitutes at least part of the outer surface of the bracket, at least part of the transmission member is disposed on the first surface;
  • the first antenna also includes:
  • circuit board disposed on one side of the second surface
  • a first feeder the first feeder is arranged on one side of the second surface, and the first feeder is electrically connected to the circuit board and the feeder, so that the radio frequency A signal is output from the circuit board to the power feeding part.
  • the support includes:
  • the outer surface of the body portion being the first surface and the inner surface of the body portion being the second surface;
  • a peripheral side wall, the peripheral side wall is bent and connected to the peripheral edge of the body part, and the outer surface of the peripheral side wall is the peripheral side wall.
  • the electronic device further includes a second antenna, wherein the second antenna is different from the first antenna, and the second antenna further includes:
  • the second radiator, the second radiator is carried on the bracket.
  • At least one of the first radiator and the second radiator is an LDS radiator.
  • the first antenna is a UWB antenna
  • the second antenna is a Bluetooth antenna
  • the electronic device further includes a third antenna, and the third antenna includes:
  • the third radiator, the third radiator is carried by the bracket, and is insulated from the first radiator and the transmission element.
  • the support has:
  • the plurality of first radiators are disposed on the peripheral side;
  • the first surface is bent and connected to the peripheral side, and constitutes at least part of the outer surface of the bracket, and the third radiator is disposed on the first surface;
  • a second surface, the second surface is set opposite to the first surface, and the transmission element is set on the second surface.
  • the support includes:
  • the outer surface of the body portion being the first surface and the inner surface of the body portion being the second surface;
  • a peripheral side wall, the peripheral side wall is bent and connected to the peripheral edge of the body part, and the outer surface of the peripheral side wall is the peripheral side wall, and the body part has a first surface and a second surface A plurality of via holes, each via corresponding to the first radiator;
  • the first antenna also includes:
  • a plurality of first conductive connectors, the first conductive connectors are disposed in the via holes to electrically connect the transmission element and the first radiator, and different first conductive connectors are electrically connected to different first radiator.
  • the plurality of transmission parts are used for dividing the radio frequency signal input by the power feeding part into a plurality of radio frequency signals of equal amplitude and same phase.
  • the number of the plurality of transmission parts is N, wherein, N ⁇ 2, and the phase difference between two adjacent transmission parts is 360°/N.
  • N 4
  • the multiple first radiators include four first radiators
  • the multiple transmission parts are respectively:
  • the first transmission part is used to load the radio frequency signal to a first radiator electrically connected to the first transmission part;
  • the second transmission part has a first phase shifter, and the first phase shifter is used to shift the phase of the radio frequency signal by 90° and load it to the first radiation electrically connected to the second transmission part body;
  • the third transmission part, the third transmission part has a second phase shifter, and the second phase shifter is used to shift the phase of the radio frequency signal by 180° and then load it to the first device electrically connected to the third transmission part.
  • the fourth transmission part, the fourth transmission part has a third phase shifter, and the third phase shifter is used to shift the phase of the radio frequency signal by 270° and then load it to the first radiator.
  • the first phase shifter has a phase shift unit; the second phase shifter has two phase shift units connected in series; the third phase shifter has three phase shift units connected in series unit.
  • the bracket has an accommodating space
  • the electronic device further includes:
  • the housing has a receiving space for receiving the bracket and the first antenna
  • a circuit board the circuit board is arranged in the accommodating space and is located in the accommodating space of the bracket.
  • the third antenna is an NFC antenna
  • the electronic device also includes:
  • the storage chip is electrically connected to the third antenna, the third antenna is used to pair with a preset electronic device, and transmits communication information of the preset electronic device to the storage chip, the The third antenna is also used for outputting the communication information stored in the memory chip when an inquiry signal is received.
  • FIG. 1 is a schematic diagram of an electronic device using a UWB antenna to send and receive electromagnetic wave signals.
  • point P 1 represents a first radiator in the first antenna 20 (refer to FIGS. 2-5 )
  • point P 2 represents another radiator in the first antenna 20
  • point P 3 represents The position where the electromagnetic wave signal comes from
  • point P 4 represents the midpoint of the line connecting P 1 and P 2 .
  • ⁇ 1 represents the angle between the connecting line P 1 P 2 and the connecting line P 3 P 1 ;
  • ⁇ 2 represents the angle between the connecting line P 1 P 2 and the connecting line P 3 P 2 ;
  • represents the angle between the connection line of P 1 P 2 and the connection line of P 3 P 4 ;
  • represents the complementary angle of ⁇ ;
  • D represents the distance between P 3 P 4 ;
  • represents the first antenna 20 and the first antenna 20 A wavelength of the electromagnetic wave signal sent and received by the antenna 20;
  • f represents the frequency of the electromagnetic wave signal transmitted and received by the first antenna 20;
  • d max represents the maximum distance between the two first radiators of the first antenna 20.
  • D is much larger than ⁇ , so ⁇ 1 ⁇ 2 ⁇ .
  • the first antenna 20 is an antenna using UWB technology, that is, the first antenna 20 is a UWB antenna, therefore:
  • the range of f is 6.25GHz ⁇ 8.25GHz;
  • the range of ⁇ /2 is 18.2mm to 24mm.
  • the time difference t1 between the electromagnetic wave signal reaching one first radiator of the first antenna 20 and another first radiator in the first antenna 20 is:
  • c represents the speed of light
  • t represents the time difference when the electromagnetic wave signal arrives at a first radiator of the first antenna 20 and another first radiator in the first antenna 20, therefore, it is also called the Time Difference of Arrival (Time Difference of Arrival , TDOA).
  • TDOA Time Difference of Arrival
  • the phase difference between the electromagnetic wave signal reaching one first radiator of the first antenna 20 and the other first radiator in the first antenna 20 for:
  • phase difference of arrival Phase Difference of Arrival
  • represents the angle of arrival (Angle of Arrival, AOA). It can be seen from (4) that the angle of arrival (AOA) ⁇ and phase difference of arrival (PDOA) relevant.
  • the angle measurement principle of the first antenna in the electronic device is: for the incident electromagnetic wave signals in different directions, the paths to the two first radiators in the first antenna in the electronic device are different. , thus introducing the path difference, which introduces the time difference of arrival (TDOA), which introduces the phase difference of arrival (PDOA) Angle measurement is achieved by the unique functional relationship (4) between the phase difference of arrival PDOA and the angle of arrival (AOA) ⁇ .
  • TDOA time difference of arrival
  • PDOA phase difference of arrival
  • AOA angle of arrival
  • the limit value of the equivalent omnidirectional radiation power spectral density of the transmitted signal of UWB antennas is -41dBm/MHz at 6GHz-9GHz. It can be seen that this regulation limits the transmission power of the UWB antenna. Therefore, the high directivity of the UWB antenna will lead to poor uniformity in ranging.
  • the UWB antenna has a long range in the direction of strong gain and a long distance in the direction of weak gain. Short range. In order to improve the communication distance of UWB antennas, it is necessary to introduce low directivity or even omnidirectional UWB antennas. Compared with directional antennas, omnidirectional UWB antennas have better ranging and angle measurement effects.
  • the embodiment of the present application provides an electronic device 1 .
  • the electronic device 1 may be, but not limited to, a device with a communication function. Please refer to Fig. 2, Fig. 3 and Fig. 4 together, Fig. 2 is a three-dimensional schematic diagram of an electronic device provided by an embodiment of the present application; Fig. 3 is a three-dimensional exploded schematic diagram of an electronic device shown in an embodiment; Fig. 4 is a diagram Sectional view along line I-I in 2.
  • the electronic device 1 includes, but is not limited to, a locator with a positioning function (also referred to as a wirelessly locatable tag).
  • the electronic device 1 includes a bracket 10 and a first antenna 20 .
  • the electronic device 1 further includes a casing 70 , a circuit board 30 and a battery 90 .
  • the housing 70 includes a first sub-housing 710 and a second sub-housing 720, the first sub-housing 710 and the second sub-housing 720 cooperate with each other to form a receiving space for accommodating the bracket 10 , the first antenna 20 , the circuit board 30 and the battery 90 .
  • the circuit board 30 is used for generating radio frequency signals, and the battery 90 is electrically connected with the circuit board 30 for powering the circuit board 30 .
  • the electronic device 1 provided in the embodiment of the present application is a description of an embodiment of the electronic device 1, and should not constitute a description of the bracket 10 and the first antenna 20 included in the electronic device 1 provided in the embodiment of the present application. limited.
  • the bracket 10 and the first antenna 20 included in the electronic device 1 will be described in detail later with reference to the accompanying drawings.
  • Fig. 5 is the three-dimensional schematic view of the bracket and the first antenna in the electronic device shown in Fig. 3;
  • Fig. 6 is a sectional view along the line II-II in Fig. 5;
  • Fig. 7 It is an enlarged schematic diagram along III in Fig. 6 .
  • the first antenna 20 is an omnidirectional horizontally polarized antenna, and the first antenna 20 includes a transmission element 210 and a plurality of first radiators 220 .
  • the transmission part 210 is carried on the bracket 10, the transmission part 210 includes a power feeding part 211 and a plurality of transmission parts 212, the power feeding part 211 is used to receive radio frequency signals, and the plurality of transmission parts 212 are respectively connected to The feeding part 211 is connected to output the radio frequency signal.
  • the plurality of first radiators 220 are carried on the support 10 and arranged around them, each first radiator 220 is electrically connected to the transmission part 212, and different first radiators 220 are electrically connected to different transmission parts 212 .
  • the material of the bracket 10 is an insulating material.
  • the material of the bracket 10 may be but not limited to plastic, or plastic, or glass, or ceramics.
  • the bracket 10 includes a main body portion 110 and a peripheral side wall 120 , and the peripheral side wall 120 is bent and connected to the peripheral edge of the main body portion 110 .
  • the peripheral sidewall 120 protrudes from the body part 110 , and the peripheral sidewall 120 and the body part 110 cooperate with each other to form a receiving space 1111 .
  • the accommodating space 1111 can be used for accommodating the circuit board 30 of the electronic device 1 , so that the electronic device 1 is lighter and thinner.
  • the bracket 10 may not have the accommodating space 1111, and the circuit board 30 of the electronic device 1 may be disposed on one side of the bracket 10. As long as the bracket 10 can carry the transmission element 210 and the plurality of first radiators 220 , it is sufficient.
  • the bracket 10 has a first surface 10a, a second surface 10b, and a peripheral side surface 10c.
  • the first surface 10a is opposite to the second surface 10b, and the peripheral side 10c is connected to the first surface 10a and the second surface 10b.
  • the first surface 10 a is an outer surface of the body part 110
  • the second surface 10 b is an inner surface of the body part 110 .
  • the peripheral side 10c is the outer surface of the peripheral side wall 120 . Understandably, in other implementation manners, the first surface 10 a may also be the bottom surface of the bracket 10 , and the second surface 10 b may also be the top surface of the bracket 10 .
  • the transmission part 210 is used for receiving radio frequency signals and transmitting the radio frequency signals to the plurality of transmission parts 212 .
  • the transmission member 210 is made of a conductive material, and the material of the transmission member 210 may be, but not limited to, a metal material, a conductive non-metallic material, or the like.
  • the material of the transmission element 210 may include one or more of gold, silver, copper, and aluminum.
  • the material of the transmission member 210 is a non-metallic conductive material
  • the material of the transmission member 210 may be, but not limited to, indium oxide, tin oxide, or indium tin oxide.
  • the transmission member 210 may be, but not limited to, formed on the bracket 10 by laser direct structuring (Laser Direct Structuring, LDS), or formed on the bracket 10 by a flexible printed circuit (Flexible Printed Circuit, FPC) process. , or formed on the bracket 10 by printing direct structuring (Print Direct Structuring, PDS) process, or formed on the bracket 10 as metal branches.
  • LDS Laser Direct Structuring
  • FPC Flexible Printed Circuit
  • PDS Print Direct Structuring
  • the multiple transmission units 212 are respectively connected to the feeding unit 211 for receiving the radio frequency signal output by the feeding unit 211 and transmitting the radio frequency signal to the first radiator 220 .
  • the power feeding portion 211 is partly disposed on the first surface 10 a, and partly exposed on the second surface 10 b through the bracket 10 , so as to be electrically connected to the circuit board 30 .
  • the feeding part 211 has a first sub-feeding part 2111 , a first sub-connecting part 2112 and a second sub-feeding part 2113 .
  • the first sub-feeding part 2111 is disposed on the first surface 10a, the first sub-connecting part 2112 is embedded in the bracket 10, and a part of the first sub-connecting part 2112 is connected to the first sub-connecting part 2112.
  • the sub-feeder 2111 is electrically connected.
  • the second sub-feeding portion 2113 is disposed on the second surface 10 b, and the second sub-feeding portion 2113 is electrically connected to the other end of the first sub-connecting portion 2112 .
  • the structure of the power feeding part 211 provided in this embodiment is convenient to be electrically connected to the circuit board 30 in the electronic device 1 to receive the radio frequency signal, and to be electrically connected to the transmission part 212 to output the radio frequency signal.
  • the orthographic projection of the first sub-connecting part 2112 on the first surface 10a is smaller than the orthographic projection of the first sub-feeding part 2111 on the first surface 10a, And the orthographic projection of the first sub-connecting portion 2112 on the first surface 10a falls within the range of the orthographic projection of the first sub-feeding portion 2111 on the first surface 10a. It can be seen that the radial dimension of the first sub-feeding portion 2111 is larger than the radial dimension of the first sub-connecting portion 2112 .
  • the size design of the first sub-feeding part 2111 and the first sub-connecting part 2112 can make the first sub-feeding part 2111 and the first sub-connecting part 2112 have better connection performance, even if There is a certain deviation between the first sub-power feeding part 2111 and the first sub-connecting part 2112 due to manufacturing process, tolerance and other reasons, but it can still ensure that the first sub-power feeding part 2111 and the first sub-connecting part 2112 electrically connected.
  • the first power feeding part 211 is circular so as to be electrically connected to the first sub-connecting part 2112 and facilitate the uniform transmission of the radio frequency signal to each transmission part 212 .
  • the orthographic projection of the first sub-connecting part 2112 on the first surface 10a is smaller than the orthographic projection of the second sub-feeding part 2113 on the first surface 10a, And the orthographic projection of the first sub-connecting portion 2112 on the first surface 10a falls within the range of the orthographic projection of the second sub-feeding portion 2113 on the first surface 10a. It can be seen that the radial dimension of the second sub-feeding portion 2113 is larger than the radial dimension of the first sub-connecting portion 2112 .
  • the size design of the second sub-feeding part 2113 and the first sub-connecting part 2112 can make the second sub-feeding part 2113 and the first sub-connecting part 2112 have better connection performance, even if the There is a certain deviation between the second sub-power feeding part 2113 and the first sub-connecting part 2112 due to manufacturing process, tolerance and other reasons, but it can still ensure that the second sub-power feeding part 2113 and the first sub-connecting part 2112 electrically connected.
  • the number of transmission parts 212 in the transmission member 210 is taken as an example for illustration. It can be understood that as long as the number of the transmission parts 212 is greater than or equal to 2 Can.
  • the number of the transmission units 212 is 2, or 3, or 4, or 5, or 6, or 7 or 8, or even more.
  • the plurality of transmission parts 212 are arranged around the outer circumference of the power feeding part 211 and are evenly spaced (in this embodiment, specifically, they are arranged evenly around the first sub-power feeding part 2111), and the plurality of transmission parts 212 Each transmission part 212 has the same length, so that the radio frequency signal input from the feeding part 211 is output to each first radiator 220 with equal amplitude and same phase.
  • the plurality of transmission parts 212 are evenly arranged around the power feeding part 211 (in this embodiment, specifically, they are evenly arranged around the first sub-power feeding part 2111 ), and among the plurality of transmission parts 212
  • the length of each transmission part 212 is the same, so that the amplitude and phase of the radio frequency signals received by each first radiator 220 are the same, so that the electromagnetic wave signal generated by the first radiator 220 according to the radio frequency signal
  • the frequency bands are the same, and have lower directivity.
  • the transmission element 210 in the electronic device 1 provided by the embodiment of the present application is arranged on the bracket 10 , and does not need to be separately designed on the circuit board 30 of the electronic device 1 , which can save the area of the circuit board 30 .
  • the number of transmission parts 212 in the transmission member 210 is taken as an example for illustration.
  • the number of the first radiators 220 is also four. Each first radiator 220 is electrically connected to one transmission part 212 , and different first radiators 220 are electrically connected to different first transmission parts 2121 .
  • the plurality of first radiators 220 are carried on the peripheral side wall 120 of the bracket 10 and are disposed on the peripheral side 10c. In other words, the plurality of first radiators 220 uniformly surround the peripheral surface 10 c of the bracket 10 . It can be understood that, in other embodiments, the plurality of first radiators 220 may also be disposed in other places than the peripheral side 10c, for example, embedded in the peripheral side wall 120, or disposed on the peripheral side wall 120 The inner wall surface of the peripheral side wall 120 opposite to the peripheral side surface 10c. The present application does not limit the form in which the plurality of first radiators 220 are carried on the bracket 10 .
  • the first radiator 220 may be, but not limited to, a laser direct structuring (Laser Direct Structuring, LDS) radiator, or a flexible circuit board (Flexible Printed Circuit, FPC) radiator, or a printing direct structuring (Print Direct Structuring, PDS) radiator, or metal branch radiator.
  • LDS Laser Direct Structuring
  • FPC Flexible Printed Circuit
  • PDS Print Direct Structuring
  • the number of the first radiators 220 is equal to the number of the transmission parts 212, each first radiator 220 is electrically connected to one transmission part 212, and different first radiators 220 are electrically connected to different transmission parts 212 .
  • the first radiator 220 receives the radio frequency signal transmitted by the transmission unit 212 and generates an electromagnetic wave signal of a preset frequency band according to the radio frequency signal.
  • the first antenna 20 is an antenna of UWB technology, therefore, the signal generated by the first radiator 220 is also a UWB signal.
  • the first antenna 20 of the UWB technology does not use a carrier wave, but a non-sinusoidal narrow pulse of nanosecond to microsecond level to transmit data.
  • the U.S. Federal Communications Commission stipulates that the operating frequency range of UWB technology antennas is from 3.1GHz to 10.6GHz, and the minimum operating bandwidth is 500MHz. At present, the center frequency point of the antenna of the mainstream UWB technology when transmitting and receiving the electromagnetic wave signal of the preset frequency band is 8 GHz or 6.5 GHz.
  • the plurality of first radiators 220 are uniformly arranged around the transmission member 210 .
  • the distance between each first radiator 220 and the transmission member 210 is the same, and the gap between two adjacent first radiators 220 is the same.
  • the plurality of first radiators 220 are evenly arranged around the transmission member 210, so that a relatively uniform circular current is formed on the plurality of first radiators 220, thereby achieving better omnidirectional radiation. It can be understood that the better the uniformity of the arrangement of the plurality of first radiators 220, the more uniform a circular current can be formed on the plurality of first radiators 220, and the omnidirectionality of the first antenna 20 the better.
  • the worse the uniformity of the arrangement of the plurality of first radiators 220 is, the relatively uniform circular current cannot be formed on the plurality of first radiators 220, and the omnidirectionality of the first antenna 20 worse.
  • the plurality of first radiators 220 are non-uniformly arranged around the transmission member 210.
  • the omnidirectionality of the first radiators 220 is relatively poor, but , mainly satisfying that the first antenna 20 can form an omnidirectional antenna.
  • the first antenna 20 in the electronic device 1 provided by the embodiment of the present application includes a plurality of first radiators 220, and the first radiators 220 are arranged around, so that the first antenna 20 is formed to be omnidirectional and horizontal polarized antenna. Therefore, the directivity of the first antenna 20 is low, and the omnidirectionality is good. When the electronic device 1 uses the first antenna 20 to measure distance and angle, the measurement effect is high.
  • the first antenna 20 further includes at least one parasitic radiator 230 .
  • the at least one parasitic radiator 230 is carried on the peripheral side wall 120 of the bracket 10, and the parasitic radiator 230 is arranged between two adjacent first radiators 220, and is connected to the two adjacent first radiators. At least one of the first radiators 220 is coupled.
  • the first antenna 20 also includes at least one parasitic radiator 230, which can be incorporated into the electronic device 1 provided in any of the preceding embodiments.
  • the first antenna 20 also includes at least one parasitic radiator 230 is combined with the schematic diagram of the electronic device 1 provided in the previous embodiment as an example. Understandably, it should not be construed as a limitation that the electronic device 1 provided in the embodiment of the present application also includes at least one parasitic radiator 230 .
  • the parasitic radiator 230 can be, but not limited to, a laser direct structuring (LDS) parasitic radiator 230, or a flexible circuit board (Flexible Printed Circuit, FPC) parasitic radiator 230, or a printing direct forming (Print Direct Structuring, PDS) parasitic radiator 230, or a metal branch parasitic radiator 230.
  • LDS laser direct structuring
  • FPC Flexible Printed Circuit
  • PDS Print Direct Structuring
  • the parasitic radiator 230 is disposed between two adjacent first radiators 220 for coupling with at least one of the two adjacent first radiators 220, the parasitic radiator 230 and the The first radiator 220 is coupled to form a coupling current.
  • the electronic device 1 provided in this embodiment is provided with a parasitic radiator 230, the first radiator 220 and the parasitic radiator 230 together form a more uniform circular current, the circular current can generate omnidirectional radiation, and can Further reducing the directivity of the first antenna 20 makes the omnidirectionality of the first antenna 20 better.
  • the number of the at least one parasitic radiator 230 is four, and the number of the first radiator 220 is taken as an example. Each parasitic radiator 230 is arranged on an adjacent The connection between the two first radiators 220 is shown as an example, and understandably, it should not constitute a limitation to the electronic device 1 provided in this application. In other implementation manners, the at least one parasitic radiator 230 may also be one, two, three, five, six or even more. The number of the at least one parasitic radiator 230 may be the same as the number of the first radiator 220 , or may be different from the number of the first radiator 220 . The number of parasitic radiators 230 between any two adjacent first radiators 220 may be the same or different.
  • the number of parasitic radiators 230 between a pair of adjacent first radiators 220 may be the same or different.
  • the number of parasitic radiators 230 between one pair of adjacent first radiators 220 may be greater than that of the other adjacent pair.
  • the number of parasitic radiators 230 between the first radiators 220 is the same, in other words, the same number of parasitic radiators 230 is disposed between two adjacent first radiators 220 .
  • the number of two adjacent first radiators 220 may be one, or greater than or equal to one.
  • the arrangement of the parasitic radiator 230 is various, as long as the parasitic radiator 230 is included in the first antenna 20, and the parasitic radiator 230 is arranged on two adjacent first radiators 220 and coupled with at least one of the two adjacent first radiators 220 .
  • the first antenna 20 further includes at least one parasitic radiator 230 .
  • the at least one parasitic radiator 230 is carried on the peripheral side wall 120 of the bracket 10, and the parasitic radiator 230 is arranged between two adjacent first radiators 220, and is connected to the two adjacent first radiators. At least one of the first radiators 220 is coupled. Further, the first radiator 220 and the parasitic radiator 230 evenly surround the peripheral surface 10 c of the bracket 10 . The first radiator 220 and the parasitic radiator 230 evenly surround the peripheral surface 10c of the bracket 10, so that a relatively uniform circle is formed on the plurality of first radiators 220 and the parasitic radiator 230. shaped current, thereby making the omnidirectionality of the first antenna 20 better.
  • the bracket 10 has a peripheral side surface 10c, a first surface 10a and a second surface 10b.
  • the electronic device 1 further includes a bracket 10 and a first antenna 20 .
  • the bracket 10 has a first surface 10a, a second surface 10b, and a peripheral side surface 10c.
  • the first surface 10a is opposite to the second surface 10b, and the peripheral side 10c is connected to the first surface 10a and the second surface 10b.
  • the first surface 10 a is an outer surface of the body part 110
  • the second surface 10 b is an inner surface of the body part 110
  • the peripheral side 10c is the outer surface of the peripheral side wall 120 . Understandably, in other implementation manners, the first surface 10 a may also be the bottom surface of the bracket 10 , and the second surface 10 b may also be the top surface of the bracket 10 .
  • the plurality of first radiators 220 are disposed on the peripheral side surface 10c.
  • the first surface 10a is bent and connected to the peripheral side 10c, and constitutes at least part of the outer surface of the bracket 10, and at least part of the transmission member 210 is disposed on the first surface 10a.
  • the second surface 10b is disposed opposite to the first surface 10a.
  • the electronic device 1 further includes a circuit board 30 .
  • the first feeding element 410 of the first antenna 20 is disposed on one side of the second surface 10b.
  • the first feeder 410 is disposed on one side of the second surface 10b, and the first feeder 410 is electrically connected to the circuit board 30 and the feeder 211 to transmit the radio frequency signal output from the circuit board 30 to the power feeding part 211 .
  • the electronic device 1 further includes a first feeder 410, and the first feeder 410 is used to electrically connect the circuit board 30 and the feeder 211, so that the circuit The excitation signal of the board 30 is output to the power feeding part 211 .
  • the first power feeder 410 is electrically connected to the circuit board 30 and the second sub-power feeder 2113 in the power feeder 211 .
  • the first feeder 410 may also be electrically connected to the first sub-feeder 2111 and the first sub-connection 2111 of the feeder 211, as long as the first feeder 410 The same as the power feeding part 211 can be used.
  • the first feeder 410 and the second sub-feeder 2113 are located on one side of the second surface 10b, they are convenient for connection.
  • the first feeder 410 is an elastic connector.
  • the first feeder 410 may also be a shrapnel, a spring, a probe, etc. that have a conductive function.
  • the electronic device 1 further includes a second antenna 50, wherein the second antenna 50 is different from the first antenna 20, and the second antenna 50 also includes a second radiator 510 , the second radiator 510 is carried on the bracket 10 .
  • FIG. 2 and FIG. 5 illustrate that the electronic device 1 includes the second antenna 50 as an example, in other implementation manners, the electronic device 1 may not include the second antenna 50 .
  • the electronic device 1 has more communication antennas and has better communication performance.
  • the second radiator 510 may be, but not limited to, a laser direct structuring (LDS) radiator, or a flexible circuit board (Flexible Printed Circuit, FPC) radiator, or a printed direct structuring (Print Direct Structuring, PDS) radiator. ) radiator, or metal branch radiator.
  • the shape of the second radiator 510 may be, but not limited to, an inverted-F antenna (Inverted-F Antenna, IFA).
  • the type of the second radiator 510 may be the same as that of the first radiator 220 or may be different from that of the first radiator 220 .
  • the second radiator 510 carried on the bracket 10 may be, but not limited to: the second radiator 510 is carried on the first surface 10a; or, the second radiator 510 is carried on the second The surface 10b; or, the second radiator 510 is carried on the peripheral surface 10c; or, the second radiator 510 is embedded in the bracket 10 .
  • the second radiator 510 is carried on the first surface 10a as an example for illustration, which should not be construed as a limitation to the electronic device 1 provided in the embodiment of this application.
  • the second antenna 50 is less shielded when transmitting and receiving electromagnetic signals. Small, so that the second antenna 50 has a better communication effect.
  • At least one of the first radiator 220 and the second radiator 510 is an LDS radiator.
  • the first radiator 220 and the second radiator 510 When at least one of the first radiator 220 and the second radiator 510 is an LDS radiator, it includes: the first radiator 220 is an LDS radiator, and the second radiator 510 is a non-LDS radiator. Or, the first radiator 220 is a non-LDS radiator, and the second radiator 510 is an LDS radiator; or, the first radiator 220 is an LDS radiator, and the second radiator 510 For the LDS radiator.
  • the non-LDS radiator may be, but not limited to, an FPC radiator, or a PDS radiator, or a metal branch radiator.
  • the first radiator 220 and the second radiator 510 is an LDS radiator
  • the first radiator 220 and the second radiator 510 are both LDS radiators, for example, the first radiator 220 and the second radiator 510 are both disposed on the first surface 10a
  • the entire conductive layer can be formed on the first surface 10a, and then the first radiator 220 and the second radiator 510 can be prepared in the same process by using a laser, thereby saving the degree of control.
  • the first antenna 20 is a UWB antenna
  • the second antenna 50 is a Bluetooth antenna.
  • Both the first radiator 220 and the second radiator 510 can be LDS radiators. Carved on top.
  • the first antenna 10 is an antenna of UWB technology, for example, the first antenna 10 works in the UWB CH9 frequency band (7.75GHz-8.25GHz).
  • the second antenna 50 is an antenna of Bluetooth technology, that is, the second antenna 50 is an antenna supported by Bluetooth technology, for example, the frequency band of the electromagnetic wave signal that the second antenna 50 can send and receive can be It is the Bluetooth 5G frequency band (5.15GHz-5.85GHz), or the Bluetooth 2.4G frequency band (2.4GHz-2.48GHz).
  • the first antenna 20 is a UWB antenna, so that the electronic device 1 has ranging and angle measuring functions; the second antenna 50 is a Bluetooth antenna, so that the electronic device 1 has Bluetooth Function. Therefore, the electronic device 1 provided in the embodiment of the present application has relatively rich communication functions.
  • the second antenna 50 can also be an antenna of Wireless Fidelity (Wireless Fidelity, WIFI) technology, and correspondingly, the frequency band of the electromagnetic wave signal sent and received by the second antenna 50 is a frequency band supported by WIFI technology .
  • WIFI Wireless Fidelity
  • FIG. 8 is a three-dimensional exploded schematic diagram of an electronic device shown in another embodiment
  • FIG. 9 is a schematic diagram of a part of the structure in FIG. 8
  • the electronic device 1 further includes a third antenna 60
  • the electronic device 1 further includes a third antenna 60 that can be incorporated into the electronic device 1 provided in any of the preceding embodiments.
  • the third antenna 60 includes a third radiator 610 .
  • the third radiator 610 is carried on the bracket 10 and is insulated from the first radiator 220 and the transmission element 210 .
  • the third radiator 610 may be, but not limited to, a laser direct structuring (Laser Direct Structuring, LDS) radiator, or a flexible circuit board (Flexible Printed Circuit, FPC) radiator, or a printing direct structuring (Print Direct Structuring, PDS) radiator. ) radiator, or metal branch radiator.
  • LDS Laser Direct Structuring
  • FPC Flexible Printed Circuit
  • PDS Print Direct Structuring
  • the type of the third radiator 610 may be the same as that of the first radiator 220 or may be different from that of the first radiator 220 .
  • the type of the third radiator 610 can be the same as the type of the second radiator 510 The same type may also be different from the type of the second radiator 510 .
  • the third radiator 610 carried on the bracket 10 may be, but not limited to: the third radiator 610 is carried on the first surface 10a; or, the third radiator 610 is carried on the second The surface 10b; or, the third radiator 610 is carried on the peripheral surface 10c; or, the third radiator 610 is embedded in the bracket 10 .
  • the third radiator 610 is carried on the first surface 10a as an example for illustration, which should not be construed as a limitation to the electronic device 1 provided in the embodiment of this application.
  • the third antenna 60 is less shielded when transmitting and receiving electromagnetic signals. Small, so that the third antenna 60 has a better communication effect.
  • the third antenna 60 is a near field communication (Near field communication, NFC) NFC antenna.
  • the NFC antenna can assist in finding the owner of the electronic device 1 when the electronic device 1 is lost, so as to return the electronic device 1 .
  • FIG. 11 is a schematic diagram of pairing the electronic device with the third antenna with the preset electronic device
  • FIG. 12 is a schematic diagram of pairing the electronic device with the preset electronic device in FIG. 11
  • FIG. 13 is a schematic diagram of an electronic device with a third antenna and a terminal device communicating
  • FIG. 14 is a circuit block diagram of the terminal device in FIG. 13 when reading communication information in the electronic device.
  • the third antenna 60 is an NFC antenna
  • the electronic device 1 further includes a memory chip 80
  • the memory chip 80 is electrically connected to the third antenna 60
  • the third antenna 60 is used to communicate with the preset electronic device 2 pairing, and transmit the communication information of the preset electronic device 2 to the storage chip 80 .
  • the third antenna 60 is also used for outputting the communication information stored in the memory chip 80 when receiving an inquiry signal.
  • the memory chip 80 may or may not be disposed on the circuit board 30 of the electronic device 1 , and the application does not limit the location of the memory chip 80 .
  • the communication information may include, but is not limited to: one or more of the phone number, mailbox, instant messaging account, address, etc. of the owner of the preset electronic device 2 . It can be seen that the electronic device 1 is paired with the preset electronic device 2 , so that the communication information of the preset electronic device 2 is stored in the memory chip 80 .
  • the terminal device 3 sends a query signal to the electronic device 1, and the third antenna 60 in the electronic device 1 receiving the query information, and outputting the communication information stored in the storage chip 80 to the terminal device 3 according to the query information, so that the owner of the terminal device 3 sends the electronic Device 1 is returned.
  • the electronic device 1 provided by the embodiment of the present application has a third antenna 60, so that the terminal device 3 can query the communication information according to the third antenna 60, and can follow up to send the communication information to The electronic device 1 is returned to the owner of the electronic device.
  • the electronic device 1 further includes a third antenna 60
  • the third antenna 60 includes a third radiator 610
  • the third radiator 610 is carried on the bracket 10, and is connected to the
  • the first radiator 220 is insulated from the transmission element 210 .
  • the positional relationship among the first radiator 220 , the third radiator 610 and the transmission member 210 will be described in detail below.
  • the bracket 10 has a peripheral side surface 10c, a first surface 10a and a second surface 10b.
  • the plurality of first radiators 220 are disposed on the peripheral side surface 10c.
  • the first surface 10a is bent and connected to the peripheral side 10c, and constitutes at least part of the outer surface of the bracket 10, and the third radiator 610 is disposed on the first surface 10a.
  • the second surface 10b is disposed opposite to the first surface 10a, and the transmission member 210 is disposed on the second surface 10b.
  • the third antenna 60 is less shielded when transmitting and receiving electromagnetic signals. Small, so that the third antenna 60 has a better communication effect.
  • the circuit board 30 of the electronic device 1 is usually arranged on one side of the second surface 10b, the ground in the circuit board 30 is a reference ground, and the third radiator 610 is arranged on the first surface 10a has less influence on the feeding network formed by the transmission member 210 .
  • Figure 15 is a top view of part of the structure in Figure 8;
  • Figure 16 is a cross-sectional view along line IV-IV in Figure 15;
  • Figure 17 is an enlarged view of V in Figure 16 picture.
  • the bracket 10 includes a body portion 110 and a peripheral sidewall 120 .
  • the outer surface of the body part 110 is the first surface 10a, and the inner surface of the body part 110 is the second surface 10b.
  • the peripheral side wall 120 is bent and connected to the peripheral edge of the main body portion 110, and the outer surface of the peripheral side wall 120 is the peripheral side surface 10c.
  • the first antenna 20 further includes a plurality of first conductive connectors 240 .
  • the first conductive connector 240 is disposed in the via hole 121 to electrically connect the transmission member 210 and the first radiator 220, and different first conductive connectors 240 are electrically connected to different first radiators.
  • Body 220 Specifically, the circuit board 30 electrically connects the conductive element 250 , the transmission element 210 and the first conductive connecting element 240 to the first radiator 220 sequentially.
  • the transmission member 210 and the first radiator 220 are separated.
  • a plurality of via holes 121 are opened on the body part 110, and a first conductive connector 240 is arranged in the via holes 121, thereby realizing the above described The electrical connection between the transmission element 210 and the first radiator 220 .
  • the first conductive connection member 240 may be, but not limited to, a metallized via hole, or a conductive connection structure such as a metal branch.
  • the via hole 121 is provided on the peripheral side wall 120, and the first conductive connecting member 240 is provided in the via hole 121, which can help reduce the radio frequency signal from entering the transmission member 210.
  • the transmission path to the first radiator 220 can reduce the loss of the radio frequency signal during transmission.
  • the first conductive connecting member 240 may also be provided on the inner surface of the peripheral side wall 120 and the end surface of the peripheral side wall 120 connecting the inner surface and the peripheral side surface 10c , so as to electrically connect the transmission element 210 and the first radiator 220 .
  • Figure 18 is a top view of part of the structure in Figure 8;
  • Figure 19 is a cross-sectional view along line VI-VI in Figure 18;
  • Figure 20 is an enlarged view of VII in Figure 19 picture.
  • the second antenna 50 further includes a second feeder 520 for electrically connecting the circuit board 30 and the second radiator 510 .
  • the second antenna 50 has a second conductive connector 530, correspondingly, the bracket 10 has a through hole 130, and the second conductive connector 530 is disposed in the through hole 130 to electrically connect the second Radiator 510 and the second feeding element 520 .
  • the second conductive connector 530 has a third sub-feeding portion 531 , a second sub-connecting portion 532 and a fourth sub-feeding portion 533 that are electrically connected in sequence.
  • the third sub-feeding part 531 is disposed on the first surface 10a
  • the second sub-connecting part 532 is disposed in the through hole 130
  • the fourth sub-feeding part 533 is disposed on the second Surface 10b.
  • the third sub-feeder 531 is electrically connected to the second radiator 510
  • the fourth sub-feeder 533 is electrically connected to the second feeder 520 . Since the third sub-power feeding part 531 and the fourth sub-power feeding part 533 are respectively arranged on the first surface 10a and the second surface 10b, when the third sub-power feeding part 531 and the The fourth sub-feeder 533 can be a metal structure formed by LDS process, therefore, it can be regarded as that the second radiator 510 passes through the two LSD metal structures on opposite sides of the bracket 10 and the metal structure arranged in the through hole 130
  • the second sub-connecting portion 532 is electrically connected to the circuit board 30 .
  • the second radiator 510 is electrically connected to the ground electrode of the circuit board 30 through a ground member (such as a conductive shrapnel) to be grounded.
  • a ground member such as a conductive shrapnel
  • FIG. 21 is a top view of part of the structure in FIG. 8 ;
  • FIG. 22 is a cross-sectional view along line A-A in FIG. 21 ;
  • FIG. 23 is an enlarged view of B in FIG. 22 .
  • the third antenna 60 further includes a third feeder 620 for electrically connecting the circuit board 30 and the third radiator 610 .
  • the bracket 10 has a through hole 140
  • the third antenna 60 further includes a third conductive connector 630 disposed in the through hole 140 .
  • the third radiator 610 is electrically connected to the circuit board 30 through the third conductive connecting member 630 and the third feeding member 620 .
  • each transmission part The phases of the RF signals on 212 are equal.
  • the transmission part 210 is used to divide the radio frequency signal into multiple radio frequency signals of equal amplitude and phase, and output them through the plurality of transmission parts 212 , wherein one transmission part 212 outputs one radio frequency signal. Therefore, when the transmission element 210 includes M transmission parts 212, the transmission element 210 can form a feed network with equal amplitude and same phase.
  • FIG. 24 is a top view of the transmission, the first radiator and the parasitic radiator provided in another embodiment of the present application;
  • FIG. 25 is a horizontal plane radiation pattern in FIG. 24 .
  • the number of the multiple transmission units 212 is N, where N ⁇ 2, and the phase difference between two adjacent transmission units 212 is 360°/N.
  • the form of the transmission element 210 in the electronic device 1 provided in this embodiment makes the first antenna 20 more omnidirectional, and has better ranging performance and angle measurement performance.
  • the multiple first radiators 220 include four first radiators 220, and the multiple transmission parts 212 are the first transmission part 2121, the second transmission part 2122 , a third transmission unit 2123 and a fourth transmission unit 2124 .
  • the first transmission part 2121 is used to load the radio frequency signal to the first radiator 220 electrically connected to the first transmission part 2121 .
  • the second transmission part 2122 has a first phase shifter 2131, and the first phase shifter 2131 is used to shift the phase of the radio frequency signal by 90° and load it to the first radiating part electrically connected to the second transmission part 2122.
  • Body 220 is used to shift the phase of the radio frequency signal by 90° and load it to the first radiating part electrically connected to the second transmission part 2122.
  • the third transmission part 2123 has a second phase shifter 2132, and the second phase shifter 2132 is used to shift the phase of the radio frequency signal by 180° and load it to the first Radiator 220 .
  • the fourth transmission part 2124 has a third phase shifter 2133, and the third phase shifter 2133 is used to shift the phase of the radio frequency signal by 270° and then load it to the first Radiator 220 .
  • the four first radiators 220 are respectively named as the first radiator 220a, the first radiator 220b, the first radiator 220c, and the first radiator 220d.
  • the first transmission part 2121 is electrically connected to the first radiator 220a
  • the second transmission part 2122 is electrically connected to the first radiator 220b
  • the third transmission part 2123 is electrically connected to the first radiator 220c
  • the fourth transmission part 2124 is electrically connected to the first radiator 220d.
  • phase of the radio frequency signal loaded to the first radiator 220a is phase A
  • the phase of the radio frequency signal loaded to the first radiator 220b is phase B
  • the phase of the radio frequency signal loaded to the first radiator 220c is phase C
  • the phase loaded to the first radiator 220d is phase d.
  • phase B lags behind phase A by 90°
  • phase C lags phase B by 90°
  • phase D lags phase C by 90°.
  • the phase A is 0°
  • the phase B is -90°
  • the phase C is -180°
  • the phase D is -270°.
  • the first phase shifter 2131 has one phase shift unit 213a; the second phase shifter 2132 has two phase shift units 213a connected in series; the third The phase shifter 2133 has three phase shift units 213a connected in series.
  • the first phase shifter 2131 has one phase shift unit 213a; the second phase shifter 2132 has two phase shift units 213a connected in series; the third phase shifter 2133 has three The phase shifter 213a is connected in series, so the first phase shifter 2131, the second phase shifter 2132 and the third phase shifter 2133 are simple and easy.
  • the phase shift of the radio frequency signal by one phase shift unit 213a is 90°.
  • the electronic device 1 further includes a casing 70 and a circuit board 30 .
  • the casing 70 has a receiving space 1 a for receiving the bracket 10 and the first antenna 20 .
  • the circuit board 30 is disposed in the receiving space and located on a side of the support 10 away from the first radiator 220 .
  • the circuit board 30 is disposed in the receiving space 1 a and located in the receiving space 1111 of the bracket 10 .
  • the circuit board 30 is disposed in the containing space 1111 , which is beneficial to the thinning of the electronic device 1 .
  • the circuit board 30 has a ground electrode, and both the first radiator 220 and the parasitic radiator 230 are electrically insulated from the ground electrode. In other words, neither the first radiator 220 nor the parasitic radiator 230 is electrically connected to the ground of the circuit board 30 .
  • both the first radiator 220 and the parasitic radiator 230 in the electronic device 1 are electrically insulated from the ground, it is beneficial to form a loop current, thereby forming better omnidirectional radiation.
  • FIG. 26 is a schematic diagram of a scattering parameter curve of the first antenna in the electronic device shown in FIG. 3 .
  • the abscissa is the frequency, the unit is GHz; the ordinate is the S parameter, the unit is dB.
  • the schematic diagram is also referred to as a schematic diagram of the S11 curve. It can be seen from this schematic diagram that the value of the working frequency band S11 of the first antenna 20 is less than -6dB, that is, about 7.42GHz-9GHz. It can be seen that the first antenna 20 has a wider bandwidth.
  • the resonant frequency point is about 8.1 GHz, and the corresponding value of S11 is the smallest, which is about -16.5 dB. Therefore, the first antenna 20 has a deep matching depth. Therefore, the radiation of the first antenna 20 Higher efficiency.
  • FIG. 27 is a schematic diagram of antenna efficiency of the first antenna in the electronic device shown in FIG. 3 .
  • the horizontal axis is frequency, and the unit is GHz; the vertical axis is efficiency, and the unit is dB.
  • curve 1 is the total radiation efficiency curve
  • curve 2 is a schematic diagram of the radiation efficiency of the first antenna 20 . Factors such as radiation efficiency and antenna matching are considered in the calculation of the total radiation efficiency. It can be seen from this schematic diagram that the antenna efficiency of the first antenna 20 is relatively high.
  • FIG. 28 is a schematic diagram of 8 GHz surface current distribution on the first antenna and the bracket in the electronic device shown in FIG. 3 . It can be seen that a circular current is formed on the first radiator 220 and the parasitic radiator 230 , thereby achieving better omnidirectional radiation.
  • FIG. 29 is a schematic diagram of the direction of the first antenna in FIG. 3 at one viewing angle
  • FIG. 30 is a schematic diagram of the direction of the first antenna in FIG. 3 at another viewing angle. It can be seen that the horizontal pattern of the first antenna 20 is close to a circle, and the omnidirectionality of the first antenna 20 is better. Therefore, the uniformity of ranging in the horizontal mode is better, and it has a strong engineering performance. practicality.
  • FIG. 31 is a schematic diagram of the directionality of the first antenna in the electronic device shown in FIG. 3 .
  • the abscissa is the frequency, the unit is GHz; the ordinate is the direction, the unit is dBi.
  • the directivity of the first antenna 20 is less than 3dB in the CH9 frequency band, the minimum is close to 2dB, and the directivity is very low.
  • the omnidirectionality of the first antenna 20 is relatively good.
  • FIG. 32 is a schematic diagram of S parameters of the first antenna in FIG. 8 .
  • the abscissa is the frequency, the unit is GHz; the ordinate is the S parameter, the unit is dB.
  • the schematic diagram is also referred to as a schematic diagram of the S11 curve. It can be seen from this schematic diagram that the value of the working frequency band S11 of the first antenna 20 is less than -6dB, that is, about 7.62GHz-8.89GHz. It can be seen that the first antenna 20 has a wider bandwidth.
  • the resonant frequency point is about 8.15 GHz, and the corresponding value of S11 is the smallest, which is about -12.5 dB. Therefore, the first antenna 20 has a deep matching depth. Therefore, the radiation of the first antenna 20 Higher efficiency.
  • FIG. 33 is a schematic diagram of antenna efficiency of the first antenna in the electronic device shown in FIG. 8 .
  • the horizontal axis is frequency, and the unit is GHz; the vertical axis is efficiency, and the unit is dB.
  • curve 1 is the total radiation efficiency curve
  • curve 2 is a schematic diagram of the radiation efficiency of the first antenna 20 . Factors such as radiation efficiency and antenna matching are considered in the calculation of the total radiation efficiency. It can be seen from this schematic diagram that the antenna efficiency of the first antenna 20 is relatively high.
  • FIG. 34 is a schematic diagram of 8 GHz surface current distribution on the first antenna and support in the electronic device shown in FIG. 8 . It can be seen that a circular current is formed on the first radiator 220 and the parasitic radiator 230 , thereby achieving better omnidirectional radiation.
  • FIG. 35 is a schematic diagram of the direction of the first antenna in the electronic device shown in FIG. 8 . It can be seen from this that the horizontal pattern of the first antenna 20 is close to a circle, and the omnidirectionality of the first antenna 20 is better, so the uniformity of ranging in the horizontal mode is better, and has Strong engineering practicability.
  • FIG. 36 is a schematic diagram of the directionality of the first antenna in the electronic device shown in FIG. 8 .
  • the abscissa is the frequency, the unit is GHz; the ordinate is the direction, the unit is dBi.
  • the directivity of the first antenna 20 is mostly less than 3dB in the CH9 frequency band, the minimum is close to 2.4dB, and the directivity is very low.
  • the omnidirectionality of the first antenna 20 is relatively good.

Abstract

本申请提供一种电子设备,所述电子设备包括支架以及第一天线;所述第一天线为全向水平极化天线,所述第一天线包括:传输件以及多个第一辐射体;所述传输件承载于所述支架,所述传输件包括馈电部以及多个传输部,所述馈电部用于接收射频信号,所述多个传输部分别与所述馈电部相连,用于将所述射频信号输出;所述多个第一辐射体均承载于所述支架,且环绕设置,每个第一辐射体均电连接传输部,且不同的第一辐射体电连接不同的传输部。本申请的电子设备的第一天线的全向性较好,因此具有较好的测距效果。

Description

电子设备
本申请要求2022年1月12日递交的申请名称为“电子设备”的申请号为202210032028.8的在先申请优先权,上述在先申请的内容以引用的方式并入本文本中。
技术领域
本申请涉及通信技术领域,尤其涉及一种电子设备。
背景技术
随着技术的发展,手机等具有通信功能电子设备的普及度越来越高,且功能越来越强大。电子设备中通常包括天线组件以实现电子设备的通信功能。然而,相关技术中的电子设备中的天线组件进行测距时的测距效果不够好,还有待提升的空间。
发明内容
第一方面,本申请实施方式提供一种电子设备,所述电子设备包括:
支架;以及
第一天线,所述第一天线为全向水平极化天线,所述第一天线包括:
传输件,所述传输件承载于所述支架,所述传输件包括馈电部以及多个传输部,所述馈电部用于接收射频信号,所述多个传输部分别与所述馈电部相连,用于将所述射频信号输出;以及
多个第一辐射体,所述多个第一辐射体均承载于所述支架,且环绕设置,每个第一辐射体均电连接传输部,且不同的第一辐射体电连接不同的传输部。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为电子设备利用UWB天线收发电磁波信号时的示意图;
图2为本申请一实施方式提供的电子设备的立体示意图;
图3为一实施方式中所示的电子设备的立体分解示意图;
图4为图2中沿I-I线的剖视图;
图5为图3中所示的电子设备中支架和第一天线的立体示意图;
图6为图5中沿II-II线的剖视图;
图7为图6中沿III的放大示意图;
图8为另一实施方式中所示的电子设备的立体分解示意图;
图9为图8中的部分结构的示意图;
图10为图9中的结构在另一角度的立体分解示意图;
图11为具有第三天线的电子设备与预设电子设备进行配对时的示意图;
图12为图11中电子设备与预设电子设备进行配对时的电路框图;
图13为具有第三天线的电子设备和终端设备进行通信时的示意图;
图14为图13中终端设备读取电子设备中的通信信息时的电路框图;
图15为图8中的部分结构的俯视图;
图16为图15中沿着IV-IV线的剖视图;
图17为图16中V处的放大图;
图18为图8中的部分结构的俯视图;
图19为图18中沿着VI-VI线的剖视图;
图20为图19中VII处的放大图;
图21为图8中的部分结构的俯视图;
图22为图21中沿着A-A线的剖视图;
图23为图22中B处的放大图;
图24为本申请另一实施方式提供的传输、第一辐射体及寄生辐射体的俯视图;
图25为图24中的水平面辐射方向图;
图26为图3中所示的电子设备中第一天线的散射参数曲线示意图;
图27为图3中所示的电子设备中第一天线的天线效率示意图;
图28为图3中所示的电子设备中第一天线以及支架上8GHz面电流分布示意图;
图29为图3中的第一天线在一视角下的方向示意图;
图30为图3中的第一天线在另一视角下的方向示意图;
图31为图3中所示的电子设备中第一天线的方向性示意图;
图32为图8中第一天线的S参数示意图;
图33为图8中所示的电子设备中第一天线的天线效率示意图;
图34为图8中所示的电子设备中第一天线及支架上8GHz面电流分布示意图;
图35为图8中所示的电子设备中的第一天线中的方向示意图;
图36为图8中所示的电子设备中第一天线的方向性示意图。
具体实施方式
本申请第一方面提供一种电子设备,所述电子设备包括:
支架;以及
第一天线,所述第一天线为全向水平极化天线,所述第一天线包括:
传输件,所述传输件承载于所述支架,所述传输件包括馈电部以及多个传输部,所述馈电部用于接收射频信号,所述多个传输部分别与所述馈电部相连,用于将所述射频信号输出;以及
多个第一辐射体,所述多个第一辐射体均承载于所述支架,且环绕设置,所述第一辐射体电连接所述传输部,且不同的第一辐射体电连接不同的传输部。
其中,所述多个传输部环绕所述馈电部的外周侧,且均匀间隔设置,所述多个传输部中的每个传输部的长度相同;且所述多个第一辐射体均匀环绕于所述支架的周侧面。
其中,所述多个传输部为四个传输部,所述多个第一辐射体为四个第一辐射体。
其中,所述第一天线还包括:
至少一个寄生辐射体,所述至少一个寄生辐射体承载于所述支架的周侧壁,且所述寄生辐射体设置于相邻的两个第一辐射体之间,且和所述相邻的两个第一辐射体中的至少一个耦合。
其中,相邻的两个第一辐射体之间设置有同等数目的寄生辐射体。
其中,所述第一辐射体及所述寄生辐射体均匀环绕于所述支架的周侧面。
其中,所述支架具有:
周侧面,所述多个第一辐射体设置于所述周侧面;
第一表面,所述第一表面与所述周侧面弯折相连,并构成所述支架的至少部分外表面,所述传输件的至少部分设置于所述第一表面;以及
第二表面,所述第二表面与所述第一表面相背设置;
所述第一天线还包括:
电路板,所述电路板设置于所述第二表面的一侧;以及
第一馈电件,所述第一馈电件设置于所述第二表面的一侧,且所述第一馈电件电连接所述电路板与所述馈电部,以将所述射频信号自所述电路板输出至所述馈电部。
其中,所述支架包括:
本体部,所述本体部的外表面为所述第一表面,所述本体部的内表面为所述第二表面;以及
周侧壁,所述周侧壁弯折连接于所述本体部的周缘,且所述周侧壁的外表面为所述周侧面。
其中,所述电子设备还包括第二天线,其中,所述第二天线与所述第一天线不同,所述第二天线还包括:
第二辐射体,所述第二辐射体承载于所述支架。
其中,所述第一辐射体及所述第二辐射体中的至少一种辐射体为LDS辐射体。
其中,所述第一天线为UWB天线,所述第二天线为蓝牙天线。
其中,所述电子设备还包括第三天线,所述第三天线包括:
第三辐射体,所述第三辐射体承载于所述支架,且与所述第一辐射体及所述传输件绝缘设置。
其中,所述支架具有:
周侧面,所述多个第一辐射体设置于所述周侧面;
第一表面,所述第一表面与所述周侧面弯折相连,并构成所述支架的至少部分外表面,所述第三辐射体设置于所述第一表面;以及
第二表面,所述第二表面与所述第一表面相背设置,所述传输件设置于所述第二表面。
其中,所述支架包括:
本体部,所述本体部的外表面为所述第一表面,所述本体部的内表面为所述第二表面;以及
周侧壁,所述周侧壁弯折连接于所述本体部的周缘,且所述周侧壁的外表面为所述周侧面,所述本体部具有官产第一表面及第二表面的多个过孔,每个过孔对应所述第一辐射体设置;
所述第一天线还包括:
多个第一导电连接件,所述第一导电连接件设置于所述过孔内,以电连接所述传输件及所述第一辐射体,且不同的第一导电连接件电连接不同的第一辐射体。
其中,所述多个传输部用于将所述馈电部输入的所述射频信号分成多个等幅同相的射频信号。
其中,所述多个传输部的数目为N个,其中,N≥2,相邻的两个传输部之间的相位差为360°/N。
其中,N=4,所述多个第一辐射体包括四个第一辐射体,所述多个传输部为分别为:
第一传输部,所述第一传输部用于将所述射频信号加载至与所述第一传输部电连接的第一辐射体;
第二传输部,所述第二传输部具有第一相移器,所述第一相移器用于将所述射频信号移相90°加载至与所述第二传输部电连接的第一辐射体;
第三传输部,所述第三传输部具有第二相移器,所述第二相移器用于将所述射频信号移相180°后加载至与所述第三传输部电连接的第一辐射体;以及
第四传输部,所述第四传输部具有第三相移器,所述第三相移器用于将所述射频信号移相270°后加载至与所述第四传输部电连接的第一辐射体。
其中,所述第一相移器具有一个相移单元;所述第二相移器具有两个串联的两个所述相移单元;所述第三相移器具有三个串联的所述相移单元。
其中,所述支架具有容纳空间,所述电子设备还包括:
壳体,所述壳体具有收容空间,所述收容空间用于收容所述支架及所述第一天线;以及
电路板,所述电路板设置于所述收容空间内,且位于所述支架的容纳空间内。
其中,所述第三天线为NFC天线,所述电子设备还包括:
存储芯片,所述存储芯片与所述第三天线电连接,所述第三天线用于与预设电子设备配对,并将所述预设电子设备的通信信息传输至所述存储芯片,所述第三天线还用于在接收到查询信号时将所述存储芯片中存储的所述通信信息输出。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
在对本申请提供的电子设备进行介绍之前,先介绍超宽带(Ultra Wide Band,UWB)技术的天线的测角原理。请参阅图1,图1为电子设备利用UWB天线收发电磁波信号时的示意图。在本示意图中,以P 1点表示第一天线20(参阅图2-图5)中的一个第一辐射体,以P 2点表示第一天线20中另一个辐射体,以P 3点表示电磁波信号过来的位置;P 4点表示P 1和P 2连线的中点。在本实施方式中,θ 1表示P 1P 2连线与P 3P 1连线之间的夹角;θ 2表示P 1P 2连线与P 3P 2的连线之间的夹角;θ表示P 1P 2的连线与P 3P 4的连线之间的夹角;α表示θ的余角;D表示P 3P 4之间的距离;λ表示第一天线20及第一天线20收发的电磁波信号的波长;f表示第一天线20收发的电磁波信号的频率;d max表示第一天线20的两个第一辐射体的间距的最大值。
其中,D远大于λ,则有θ 1≈θ 2≈θ。
由于所述第一天线20为利用UWB技术的天线,即所述第一天线20为UWB天线,因此:
f的范围为6.25GHz~8.25GHz;
相应地,
λ的范围为36.4mm~48mm,则有:
λ/2的范围为18.2mm~24mm。
d max=18mm;
d 1=d cos θ=d sin α    (1)
电磁波信号达到第一天线20的一个第一辐射体和第一天线20中另一个第一辐射体的时间差t 1为:
Figure PCTCN2022140195-appb-000001
其中,c表示光速,由于t 1表示电磁波信号达到第一天线20的一个第一辐射体和第一天线20中另一个第一辐射体的时间差,因此,也称为到达时间差(Time Difference of Arrival,TDOA)。
电磁波信号达到第一天线20的一个第一辐射体和第一天线20中另一个第一辐射体的相位差
Figure PCTCN2022140195-appb-000002
为:
Figure PCTCN2022140195-appb-000003
由于
Figure PCTCN2022140195-appb-000004
表示电磁波信号达到第一天线20的一个第一辐射体和第一天线20中另一个第一辐射体的相位差,因此,也称为到达相位差(Phase Difference of Arrival,PDOA)。
Figure PCTCN2022140195-appb-000005
其中,α表示达到角度(Angle of Arrival,AOA)。由(4)可见,到达角度(AOA)α和到达相位差(PDOA)
Figure PCTCN2022140195-appb-000006
相关。
综上所述,本申请实施方式提供的电子设备中第一天线的测角原理为:对于不同方向的入射的电磁波信号,到达电子设备中的第一天线中两个第一辐射体的路径不同,因此,引入了路径差,从而引入了到达时间差(TDOA),从而引入了到达相位差(PDOA)
Figure PCTCN2022140195-appb-000007
通过到达相位差PDOA和到达角(AOA)α之间的唯一函数关系(4)可实现测角。
工业和信息化部关于UWB天线的使用的规定为UWB天线的发射信号的等效全向辐射功率频谱密度限值在6GHz-9GHz时为-41dBm/MHz。由此可见,这个规定限制了UWB天线的发射功率,因此,UWB天线较高的方向性会导致测距均匀不佳,具体表现在UWB天线在增益强的方向测距远,在增益弱的方向测距短。为了提高UWB天线的通信距离,有必要引入低方向性甚至全向性的UWB天线。相较于定向天线而言,全向性的UWB天线的测距和测角效果更好。
本申请实施方式提供一种电子设备1。所述电子设备1可以为但不仅限于为具有通信功能的设备。请一并参阅图2、图3及图4,图2为本申请一实施方式提供的电子设备的立体示意图;图3为一实施方式中所示的电子设备的立体分解示意图;图4为图2中沿I-I线的剖视图。所述电子设备1包括但不仅限于为具有定位功能的定位器(也称为可无线定位的标签)。所述电子设备1包括支架10及第一天线20。此外,所述电子设备1还包括壳体70、电路板30以及电池90。所述壳体70包括第一子壳体710及第二子壳体720,所述第一子壳体710与所述第二子壳体720相互配合以形成收容空间,以收容所述支架10、所述第一天线20、所述电路板30以及所述电池90。所述电路板30用于产生射频信号,所述电池90与所述电路板30电连接,用于为所述电路板30供电。可以理解地,本申请实施方式提供的电子设备1为所述电子设备1的一种实施方式的描述,不应当构成对本申请实施方式提供的电子设备1中包括的支架10以及第一天线20的限定。稍后将结合附图对所述电子设备1中包括的支架10以及第一天线20进行详细描述。
请一并参阅图5、图6及图7,图5为图3中所示的电子设备中支架和第一天线的立体示意图;图6为图5中沿II-II线的剖视图;图7为图6中沿III的放大示意图。所述第一天线20为全向水平极化天线,所述第一天线20包括传输件210以及多个第一辐射体220。所述传输件210承载于所述支架10,所述传输件210包括馈电部211以及多个传输部212,所述馈电部211用于接收射频信号,所述多个传输部212分别与所述馈电部211相连,用于将所述射频信号输出。所述多个第一辐射体220均承载于所述支架10,且环绕设置,每个第一辐射体220均电连接传输部212,且不同的第一辐射体220电连接不同的传输部212。
所述支架10的材质为绝缘材质,比如,所述支架10的材质可以为但不仅限于为塑料、或者塑胶、或者玻璃、或者陶瓷等。
在本实施方式中,所述支架10包括本体部110以及周侧壁120,所述周侧壁120弯折连接于所述本体部110的周缘。换而言之,在本实施方式中,所述周侧壁120凸出于所述本体部110,所述周侧壁120和所述本体部110相互配合以形成容纳空间1111。所述容纳空间1111可用于收容所述电子设备1的电路板30,以使得所述电子设备1较为轻薄。在其他实施方式中,所述支架10也可以不具有所述容 纳空间1111,所述电子设备1的电路板30设置于所述支架10的一侧即可。只要满足所述支架10能够承载所述传输件210及所述多个第一辐射体220即可。
在本实施方式中,所述支架10具有第一表面10a、第二表面10b以及周侧面10c。所述第一表面10a与所述第二表面10b相背设置,所述周侧面10c连接于所述第一表面10a及所述第二表面10b。在本实施方式中,以所述第一表面10a为所述支架10的顶面,所述第二表面10b为所述支架10的底面为例进行示意。所述第一表面10a为所述本体部110的外表面,所述第二表面10b为所述本体部110的内表面。所述周侧面10c为所述周侧壁120的外表面。可以理解地,在其他实施方式中,所述第一表面10a也可以为所述支架10的底面,所述第二表面10b也可以为所述支架10的顶面。
所述传输件210用于接收射频信号并将所述射频信号传输至所述多个传输部212。所述传输件210为导电材质,所述传输件210的材质可以为但不仅限于为金属材质、或者导电非金属材质等。举例而言,当所述传输件210的材质为金属材质时,所述传输件210的材质可包括金、银、铜、铝中的一种或多种。当所述传输件210的材质为非金属导电材质时,所述传输件210的材质可以为但不仅限于氧化铟、或氧化锡、或氧化铟锡等。
所述传输件210可以为但不仅限于为通过激光直接成型(Laser Direct Structuring,LDS)形成在所述支架10上,或者,通过柔性电路板(Flexible Printed Circuit,FPC)工艺形成在所述支架10上,或者通过印刷直接成型(Print Direct Structuring,PDS)工艺形成在所述支架10上、或者为金属枝节形成在所述支架10上。
所述多个传输部212分别与所述馈电部211相连,用于接收所述馈电部211输出的所述射频信号,并将所述射频信号传输至所述第一辐射体220。
在本实施方式中,所述馈电部211部分设置于所述第一表面10a,部分通过所述支架10显露于所述第二表面10b,以便于与电路板30电连接。具体地,所述馈电部211具有第一子馈电部2111、第一子连接部2112以及第二子馈电部2113。所述第一子馈电部2111设置于所述第一表面10a,所述第一子连接部2112嵌设于所述支架10,且所述第一子连接部2112的一部分与所述第一子馈电部2111电连接。所述第二子馈电部2113设置于所述第二表面10b,且所述第二子馈电部2113电连接所述第一子连接部2112的另一端。本实施方式提供的馈电部211的结构便于与电子设备1中的电路板30电连接以接收所述射频信号,且便于与所述传输部212电连接,以将所述射频信号输出。
进一步地,在本实施方式中,所述第一子连接部2112在所述第一表面10a上的正投影小于所述第一子馈电部2111在所述第一表面10a上的正投影,且所述第一子连接部2112在所述第一表面10a上的正投影落入所述第一子馈电部2111在所述第一表面10a上的正投影的范围内。由此可见,所述第一子馈电部2111的径向尺寸比所述第一子连接部2112的径向尺寸大。所述第一子馈电部2111与所述第一子连接部2112的尺寸设计可使得所述第一子馈电部2111与所述第一子连接部2112具有较好的连接性能,即便所述第一子馈电部2111与所述第一子连接部2112之间由于制程、公差等原因有一定的偏差,仍然能够保证所述第一子馈电部2111与所述第一子连接部2112电性连接。
在本实施方式中,所述第一馈电部211为圆形,以便于与所述第一子连接部2112电连接,且便于所述射频信号均匀传输至各个传输部212。
进一步地,在本实施方式中,所述第一子连接部2112在所述第一表面10a上的正投影小于所述第二子馈电部2113在所述第一表面10a上的正投影,且所述第一子连接部2112在所述第一表面10a上的正投影落入所述第二子馈电部2113在所述第一表面10a上的正投影的范围内。由此可见,所述第二子馈电部2113的径向尺寸比所述第一子连接部2112的径向尺寸大。所述第二子馈电部2113与所述第一子连接部2112的尺寸设计可使得所述第二子馈电部2113与所述第一子连接部2112具有较好的连接性能,即便所述第二子馈电部2113与所述第一子连接部2112之间由于制程、公差等原因有一定的偏差,仍然能够保证所述第二子馈电部2113与所述第一子连接部2112电性连接。
可以理解地,在本实施方式的示意图中,以所述传输件210中传输部212的数量为4个为例进行示意,可以理解地,所述传输部212的数量只要满足大于或等于2即可。举例而言,所述传输部212的数量为2个,或者3个,或4个,或5个,或6个,或7个或8个,甚至更多。
所述多个传输部212环绕所述馈电部211的外周侧设,且均匀间隔(本实施方式,具体为均匀环绕所述第一子馈电部2111设置),所述多个传输部212中的每个传输部212的长度相同,以使得自所述馈电部211输入的所述射频信号被等幅同相地输出至各个第一辐射体220。换而言之,述多个传输部212均匀环绕所述馈电部211设置(本实施方式,具体为均匀环绕所述第一子馈电部2111设置)且所述多个传输部212中的每个传输部212的长度相同,从而使得各个第一辐射体220上接收的所述射频信号的幅度相同且相位相同,进而使得所述第一辐射体220根据所述射频信号产生的电磁波信号的频段相同,且具有较低的方向性。当所述电子设备1利用所述第一天线20进行测距及测角时,测量效果较高。
此外,本申请实施方提供的电子设备1中的传输件210设置于所述支架10上,无需单独设计在所述电子设备1的电路板30上,可节约所述电路板30的面积。
在本实施方式的示意图中,以所述传输件210中传输部212的数量为4个为例进行示意,相应地,所述第一辐射体220的数目也为4个。每个第一辐射体220电连接一个传输部212,且不同的第一辐射体220电连接不同的第一传输部2121。
在本实施方式中,所述多个第一辐射体220承载于所述支架10的周侧壁120上,且设置于所述周侧面10c。换而言之,所述多个第一辐射体220均匀环绕于所述支架10的周侧面10c。可以理解地,在其他实施方式中,所述多个第一辐射体220也可以设置于所述周侧面10c之外的其他地方,比如,内嵌于所述周侧壁120,或设置于所述周侧壁120中与所述周侧面10c相背设置的内壁面。本申请对所述多个第一辐射体220承载于所述支架10的形式不做限定。
所述第一辐射体220可以为但不仅限于为激光直接成型(Laser Direct Structuring,LDS)辐射体,或者,柔性电路板(Flexible Printed Circuit,FPC)辐射体,或者印刷直接成型(Print Direct Structuring,PDS)辐射体、或者为金属枝节辐射体。
所述第一辐射体220的数目与所述传输部212的数目相等,每个第一辐射体220均与一个传输部212电连接,且不同的第一辐射体220电连接不同的传输部212。当所述第一天线20用于发射电磁波信号时,所述第一辐射体220接收所述传输部212传输的所述射频信号,并根据所述射频信号产生预设频段的电磁波信号。所述第一天线20为UWB技术的天线,因此,所述第一辐射体220产生的信号也为UWB信号。所述UWB技术的第一天线20不是采用载波,而是采用纳秒至微秒级的非正弦波窄脉冲传输数据,因此,所占的频谱范围较宽,适用于高速、近距离通信。美国联邦通信委员会(Federal Communications Commission,FCC)规定,UWB技术的天线的工作频段范围从3.1GHz到10.6GHz,最小工作频宽为500MHz。目前主流的UWB技术的天线收发预设频段的电磁波信号时的中心频点为8GHz或者为6.5GHz。
在本实施方式中,所述多个第一辐射体220均匀环绕所述传输件210设置。换而言之,每个第一辐射体220与所述传输件210之间的距离相同,且相邻的两个第一辐射体220之间的间隙相同。所述多个第一辐射体220均匀环绕所述传输件210设置,从而使得所述多个第一辐射体220上形成相对均匀的圆形电流,进而实现较好的全向辐射。可以理解地,所述多个第一辐射体220排布的均匀性越好,所述多个第一辐射体220上越能够形成相对均匀的圆形电流,所述第一天线20的全向性越好。反之,所述多个第一辐射体220排布的均匀性越差,所述多个第一辐射体220上则不能够形成相对均匀的圆形电流,所述第一天线20的全向性越差。可以理解地,在其他实施方式中,所述多个第一辐射体220非均匀环绕所述传输件210设置,这种情况下,虽然所述第一辐射体220的全向性相对差点,但,主要满足所述第一天线20能够形成全向天线即可。
综上所述,本申请实施方式提供的电子设备1中第一天线20包括多个第一辐射体220,且第一辐射体220环绕设置,以使得所述第一天线20形成为全向水平极化天线。因此,所述第一天线20的方向性较低,全向性较好,当所述电子设备1利用所述第一天线20进行测距及测角时,测量效果较高。
请继续参阅图2及图5在本实施方式中,所述第一天线20还包括至少一个寄生辐射体230。所述至少一个寄生辐射体230承载于所述支架10的周侧壁120,且所述寄生辐射体230设置于相邻的两个第一辐射体220之间,且和所述相邻的两个第一辐射体220中的至少一个耦合。
所述第一天线20还包括至少一个寄生辐射体230可结合到前面任意实施方式提供的电子设备1中, 在本实施方式的示意图中,以所述第一天线20还包括至少一个寄生辐射体230结合到前面一个实施方式提供的电子设备1的示意图中为例进行示意,可以理解地,不应当理解为对本申请实施方式提供的电子设备1还包括至少一个寄生辐射体230的限定。
所述寄生辐射体230可以为但不仅限于为激光直接成型(Laser Direct Structuring,LDS)寄生辐射体230,或者,柔性电路板(Flexible Printed Circuit,FPC)寄生辐射体230,或者印刷直接成型(Print Direct Structuring,PDS)寄生辐射体230、或者为金属枝节寄生辐射体230。
所述寄生辐射体230设置于相邻的两个第一辐射体220之间,用于和所述相邻的两个第一辐射体220中的至少一个耦合,所述寄生辐射体230和所述第一辐射体220耦合,并形成耦合电流。本实施方式中提供的电子设备1通过设置寄生辐射体230,所述第一辐射体220及所述寄生辐射体230一起形成更加均匀的圆形电流,圆形电流可产生全向辐射,且可进一步降低所述第一天线20的方向性,使得所述第一天线20的全向性更好。
在本实施方式的示意图中,以所述至少一个寄生辐射体230为4个,且以所述第一辐射体220为4个为例进行示意,每个寄生辐射体230均设置于相邻的两个第一辐射体220之间为例进行示意,可以理解地,不应当构成对本申请提供的电子设备1的限定。在其他实施方式中,所述至少一个寄生辐射体230也可以为一个,两个,三个,五个,六个甚至更多个。所述至少一个寄生辐射体230的数目可以与第一辐射体220的数目相同,也可以与所述第一辐射体220的数目不相同。任意两个相邻的第一辐射体220之间的寄生辐射体230的数目可以相同,也可以不相同。当然,在一种实施方式中,在一对相邻的两个第一辐射体220之间存在寄生辐射体230,在另一对相邻的第一辐射体220之间不存在寄生辐射体230。在另一种实施方式中,当两对相邻的第一辐射体220之间都存在寄生辐射体230时,其中的一对相邻的第一辐射体220之间的寄生辐射体230的数目可以与另一对相邻的第一辐射体220之间的寄生辐射体230的数目相同,也可以不相同。当两对相邻的第一辐射体220之间都存在寄生辐射体230时,其中的一对相邻的第一辐射体220之间的寄生辐射体230的数目可以与另一对相邻的第一辐射体220之间的寄生辐射体230的数目相同,换而言之,相邻的两个第一辐射体220之间设置有同等数目的寄生辐射体230。当相邻的两个第一辐射体220之间设置有第一辐射体220时,相邻的两个第一辐射体220的数目可以为一个,也可以大于或等于一个。综上所述,所述寄生辐射体230的设置方式多种多样,只要满足所述第一天线20中包括寄生辐射体230,所述寄生辐射体230设置于相邻的两个第一辐射体220之间,且和所述相邻的两个第一辐射体220中的至少一个耦合即可。
在一实施方式中,所述第一天线20还包括至少一个寄生辐射体230。所述至少一个寄生辐射体230承载于所述支架10的周侧壁120,且所述寄生辐射体230设置于相邻的两个第一辐射体220之间,且和所述相邻的两个第一辐射体220中的至少一个耦合。进一步地,所述第一辐射体220及所述寄生辐射体230均匀环绕于所述支架10的周侧面10c。所述第一辐射体220及所述寄生辐射体230均匀环绕在所述支架10的周侧面10c,从而使得所述多个第一辐射体220及所述寄生辐射体230上形成相对均匀的圆形电流,进而使得所述第一天线20的全向性较好。
请继续一并参阅图5、图6及图7,所述支架10具有周侧面10c、第一表面10a及第二表面10b。所述电子设备1还包括支架10及第一天线20。在本实施方式中,所述支架10具有第一表面10a、第二表面10b以及周侧面10c。所述第一表面10a与所述第二表面10b相背设置,所述周侧面10c连接于所述第一表面10a及所述第二表面10b。在本实施方式中,以所述第一表面10a为所述支架10的顶面,所述第二表面10b为所述支架10的底面为例进行示意。所述第一表面10a为所述本体部110的外表面,所述第二表面10b为所述本体部110的内表面。所述周侧面10c为所述周侧壁120的外表面。可以理解地,在其他实施方式中,所述第一表面10a也可以为所述支架10的底面,所述第二表面10b也可以为所述支架10的顶面。所述多个第一辐射体220设置于所述周侧面10c。所述第一表面10a与所述周侧面10c弯折相连,并构成所述支架10的至少部分外表面,所述传输件210的至少部分设置于所述第一表面10a。所述第二表面10b与所述第一表面10a相背设置。所述支架10及所述请参阅前面描述,在此不再赘述。进一步地,在本实施方式中,所述电子设备1还包括电路板30。所述第一天线20第一馈电件410。所述电路板30设置于所述第二表面10b的一侧。所述第一馈电件410设置于所述第二表面 10b的一侧,且所述第一馈电件410电连接所述电路板30与所述馈电部211,以将所述射频信号自所述电路板30输出至所述馈电部211。
在本实施方式中,所述电子设备1还包括第一馈电件410,所述第一馈电件410用于电连接所述电路板30及所述馈电部211,以将所述电路板30的激励信号输出至所述馈电部211。具体地,在本实施方式中,所述第一馈电件410电连接所述电路板30及所述馈电部211中的第二子馈电部2113。在其他实施方式中,所述第一馈电件410也可电连接至所述馈电部211的第一子馈电部2111第一子连接部2111,只要满足所述第一馈电件410与所述馈电部211即可。本实施方式中,由于所述第一馈电件410及所述第二子馈电部2113均位于所述第二表面10b的一侧,便于连接。在本实施方式中,所述第一馈电件410为弹性连接件,在其他实施方式中,所述第一馈电件410也可以为具导电作用的弹片、弹簧、探针等。
请参阅图2及图5,所述电子设备1还包括第二天线50,其中,所述第二天线50与所述第一天线20不同,所述第二天线50还包括第二辐射体510,所述第二辐射体510承载于所述支架10。
可以理解地,虽然在图2及图5中以所述电子设备1包括第二天线50为例进行示意,在其他实施方式中,所述电子设备1也可不包括所述第二天线50。当所述电子设备1还包括所述第二天线50时,所述电子设备1具有较多的通信天线,具有较好的通信性能。
所述第二辐射体510可以为但不仅限于激光直接成型(Laser Direct Structuring,LDS)辐射体,或者,柔性电路板(Flexible Printed Circuit,FPC)辐射体,或者印刷直接成型(Print Direct Structuring,PDS)辐射体、或者为金属枝节辐射体。所述第二辐射体510的形状可以为但不仅限于为倒F天线(Inverted-F Antenna,IFA)。
所述第二辐射体510的类型可以与所述第一辐射体220的类型相同,也可以与所述第一辐射体220的类型不同。
所述第二辐射体510承载于所述支架10可以为但不仅限于:所述第二辐射体510承载于所述第一表面10a;或者,所述第二辐射体510承载于所述第二表面10b;或者,所述第二辐射体510承载于所述周侧面10c;或者,所述第二辐射体510内嵌于所述支架10。在本实施方式的示意图中,以所述第二辐射体510承载于所述第一表面10a为例进行示意,不应当理解为对本申请实施方式提供的电子设备1的限定。当所述第二辐射体510承载于所述第一表面10a时,且所述第一表面10a为所述支架10的顶面时,所述第二天线50在收发电磁波信号时受到的遮挡较小,从而使得所述第二天线50具有较好的通信效果。
在一实施方式中,所述第一辐射体220及所述第二辐射体510中的至少一种辐射体为LDS辐射体。
当所述第一辐射体220及所述第二辐射体510的至少一者为LDS辐射体时包括:所述第一辐射体220为LDS辐射体,所述第二辐射体510为非LDS辐射体;或者,所述第一辐射体220为非LDS辐射体,所述第二辐射体510为LDS辐射体;或者,所述第一辐射体220为LDS辐射体,所述第二辐射体510为LDS辐射体。所述非LDS辐射体可以为但不仅限于为FPC辐射体,或者PDS辐射体、或者为金属枝节辐射体。
当所述第一辐射体220及所述第二辐射体510中的至少一个辐射体为LDS辐射体时,便于制备。比如,当所述第一辐射体220及所述第二辐射体510均为LDS辐射体时,比如,所述第一辐射体220及所述第二辐射体510均设置于所述第一表面10a时,可在所述第一表面10a上形成整层导电层,再利用激光在同一工序中制备出第一辐射体220及第二辐射体510,从而节约制程度。
在本实施方式中,所述第一天线20为UWB天线,所述第二天线50为蓝牙天线。所述第一辐射体220及所述第二辐射体510均可为LDS辐射体,换而言之,所述第一辐射体220及所述第二辐射体510通过LDS工艺在所述支架10上雕刻形成。
在本实施方式中,所述第一天线10为UWB技术的天线,比如,所述第一天线10工作于UWB的CH9频段(7.75GHz~8.25GHz)。
在本实施方式中,所述第二天线50为蓝牙技术的天线,即,所述第二天线50为蓝牙技术所支持的天线,比如,所述第二天线50可收发的电磁波信号的频段可以为蓝牙5G频段(5.15GHz-5.85GHz), 或者为蓝牙2.4G频段(2.4GHz-2.48GHz)。
本实施方式中,所述第一天线20为UWB天线,从而使得所述电子设备1具有测距及测角功能;所述第二天线50为蓝牙天线,从而给使得所述电子设备1具有蓝牙功能。因此,本申请实施方式提供的电子设备1具有较为丰富的通信功能。
在其他实施方式中,所述第二天线50还可以为无线保真(Wireless Fidelity,WIFI)技术的天线,相应地,所述第二天线50收发的电磁波信号的频段为WIFI技术所支持的频段。
请一并参阅图8、图9及图10,图8为另一实施方式中所示的电子设备的立体分解示意图;图9为图8中的部分结构的示意图;图10为图9中的结构在另一角度的立体分解示意图。在本实施方式中,所述电子设备1还包括第三天线60,所述电子设备1还包括第三天线60可结合到前面任意实施方式提供的电子设备1中,在本实施方式的示意图中,仅以所述电子设备1还包括第三天线60结合到前面的一种实施方式提供的电子设备1中为例进行示意,可以理解地,不应当构成对本申请提供的电子设备1的限定。所述第三天线60包括第三辐射体610,所述第三辐射体610承载于所述支架10,且与所述第一辐射体220及所述传输件210绝缘设置。
所述第三辐射体610可以为但不仅限于激光直接成型(Laser Direct Structuring,LDS)辐射体,或者,柔性电路板(Flexible Printed Circuit,FPC)辐射体,或者印刷直接成型(Print Direct Structuring,PDS)辐射体、或者为金属枝节辐射体。
所述第三辐射体610的类型可以与所述第一辐射体220的类型相同,也可以与所述第一辐射体220的类型不同。
当所述电子设备1还包括第三天线60结合到所述电子设备1还包括第二天线50的实施方式中,所述第三辐射体610的类型可以与所述第二辐射体510的类型相同,也可以与所述第二辐射体510的类型不同。
所述第三辐射体610承载于所述支架10可以为但不仅限于:所述第三辐射体610承载于所述第一表面10a;或者,所述第三辐射体610承载于所述第二表面10b;或者,所述第三辐射体610承载于所述周侧面10c;或者,所述第三辐射体610内嵌于所述支架10。在本实施方式的示意图中,以所述第三辐射体610承载于所述第一表面10a为例进行示意,不应当理解为对本申请实施方式提供的电子设备1的限定。当所述第三辐射体610承载于所述第一表面10a时,且所述第一表面10a为所述支架10的顶面时,所述第三天线60在收发电磁波信号时受到的遮挡较小,从而使得所述第三天线60具有较好的通信效果。
在本实施方式中,所述第三天线60为近场通信(Near field communication,NFC)NFC天线。所述NFC天线可在所述电子设备1丢失时协助找到所述电子设备1的归属人,从而将所述电子设备1归还。具体地,请一并参阅图11至图14,图11为具有第三天线的电子设备与预设电子设备进行配对时的示意图;图12为图11中电子设备与预设电子设备进行配对时的电路框图;图13为具有第三天线的电子设备和终端设备进行通信时的示意图;图14为图13中终端设备读取电子设备中的通信信息时的电路框图。所述第三天线60为NFC天线,所述电子设备1还包括存储芯片80,所述存储芯片80与所述第三天线60电连接,所述第三天线60用于与预设电子设备2配对,并将所述预设电子设备2的通信信息传输至所述存储芯片80。所述第三天线60还用于在接收到查询信号时将所述存储芯片80中存储的所述通信信息输出。
所述存储芯片80可以设置在所述电子设备1的电路板30上,也可以不设置于所述电子设备1的电路板30上,本申请对所述存储芯片80的位置不做限定。
具体地,所述通信信息可以包括但不仅限于包括:所述预设电子设备2的归属人的电话号码、邮箱、即时通信账号、地址等中的一个或多个。由此可见,所述电子设备1与所述预设电子设备2配对,从而将所述预设电子设备2的通信信息存储至所述存储芯片80。
当所述电子设备1丢失或者其他需要查询所述电子设备1的归属人的一些场景中,所述终端设备3向所述电子设备1发出查询信号,所述电子设备1中的第三天线60接收到所述查询信息,并根据所述查询信息将所述存储芯片80中存储的通信信息输出至所述终端设备3,以便所述终端设备3的所有者 根据所述通信信息将所述电子设备1归还。
由此可见,本申请实施方式提供的电子设备1具有第三天线60,可使得所述终端设备3可根据所述第三天线60查询所述通信信息,并可跟进将所述通信信息将所述电子设备1归还给所述电子设备的归属人。
请继续参阅图8至图10所述电子设备1还包括第三天线60时,第三天线60包括第三辐射体610,所述第三辐射体610承载于所述支架10,且与所述第一辐射体220及所述传输件210绝缘设置。下面对所述第一辐射体220、所述第三辐射体610及所述传输件210的位置关系进行详细说明。具体地,所述支架10具有周侧面10c、第一表面10a及第二表面10b。所述多个第一辐射体220设置于所述周侧面10c。所述第一表面10a与所述周侧面10c弯折相连,并构成所述支架10的至少部分外表面,所述第三辐射体610设置于所述第一表面10a。所述第二表面10b与所述第一表面10a相背设置,所述传输件210设置于所述第二表面10b。
当所述第三辐射体610承载于所述第一表面10a时,且所述第一表面10a为所述支架10的顶面时,所述第三天线60在收发电磁波信号时受到的遮挡较小,从而使得所述第三天线60具有较好的通信效果。
此外,所述电子设备1的电路板30通常设置在所述第二表面10b的一侧,所述电路板30中的地极为参考地,所述第三辐射体610设置于所述第一表面10a上对所述传输件210形成的馈电网络的影响较小。
请一并参阅图15、图16及图17,图15为图8中的部分结构的俯视图;图16为图15中沿着IV-IV线的剖视图;图17为图16中V处的放大图。所述支架10包括本体部110以及周侧壁120。所述本体部110的外表面为所述第一表面10a,所述本体部110的内表面为所述第二表面10b。所述周侧壁120弯折连接于所述本体部110的周缘,且所述周侧壁120的外表面为所述周侧面10c,所述本体部110具有贯穿所述第一表面10a及第二表面10b的多个过孔121,每个过孔121对应所述第一辐射体220设置。所述第一天线20还包括多个第一导电连接件240。所述第一导电连接件240设置于所述过孔121内,以电连接所述传输件210及所述第一辐射体220,且不同的第一导电连接件240电连接不同的第一辐射体220。具体地,所述电路板30依次电连接所述导电件250、所述传输件210及所述第一导电连接件240至所述第一辐射体220。
在本实施方式中,由于将所述第一辐射体220设置于所述周侧壁120的周侧面10c,将所述传输件210设置于所述第二表面10b,因此,所述传输件210及所述第一辐射体220被隔开,本申请实施方式中通过在本体部110上开设多个过孔121,在所述过孔121内设置第一导电连接件240,从而实现了所述传输件210及所述第一辐射体220之间的电连接。在一实施方式中,所述第一导电连接件240可以为但不仅限于金属化过孔,或者金属枝节等导电的连接结构。此外,在所述周侧壁120上设置过孔121,将所述第一导电连接件240设置于所述过孔121中,可有利于减小所述射频信号从进入到所述传输件210至传输到所述第一辐射体220时的传输路径,可减小所述射频信号在传输中的损耗。
可以理解地,在其他实施方式中,也可以在所述周侧壁120的内表面以及所述周侧壁120中连接所述内表面以及周侧面10c的端面设置所述第一导电连接件240,以将所述传输件210及所述第一辐射体220电连接。
请一并参阅图18、图19及图20,图18为图8中的部分结构的俯视图;图19为图18中沿着VI-VI线的剖视图;图20为图19中VII处的放大图。所述第二天线50还包括第二馈电件520,所述第二馈电件520用于电连接所述电路板30及所述第二辐射体510。
所述第二天线50具有第二导电连接件530,相应地,所述支架10具有贯孔130,所述第二导电连接件530设置于所述贯孔130内,以电连接所述第二辐射体510以及所述第二馈电件520。在本实施方式中,所述第二导电连接件530具有依次电连接的第三子馈电部531、第二子连接部532以及第四子馈电部533。所述第三子馈电部531设在于所述第一表面10a,所述第二子连接部532设置于所述贯孔130内,所述第四子馈电部533设置于所述第二表面10b。所述第三子馈电部531电连接所述第二辐射体510,所述第四子馈电部533电连接所述第二馈电件520。由于所述第三子馈电部531及所述第四子馈电部533分别设置于所述第一表面10a及所述第二表面10b,当所述第三子馈电部531及所述第四子馈电部533 可以为LDS工艺形成的金属结构,因此,可视为所述第二辐射体510通过支架10相背的两侧的两个LSD金属结构以及设置于贯孔130内的第二子连接部532电连接所述电路板30。
所述第二辐射体510通过接地件(比如导电弹片)电连接至所述电路板30的地极,以接地。
请一并参阅图21、图22及图23,图21为图8中的部分结构的俯视图;图22为图21中沿着A-A线的剖视图;图23为图22中B处的放大图。所述第三天线60还包括第三馈电件620,所述第三馈电件620用于电连接所述电路板30及所述第三辐射体610。具体地,所述支架10具有通孔140,所述第三天线60还包括第三导电连接件630,所述第三导电连接件630设置于所述通孔140内。所述第三辐射体610通过所述第三导电连接件630及所述第三馈电件620电连接至所述电路板30。
结合上述各个实施方式中提供的电子设备1,电子设备1中的传输件210中经由所述馈电部211加载的所述射频信号被传输至所述多个传输部212上时,各个传输部212上的射频信号的相位相等。换而言之,所述传输件210用于将所述射频信号分成多个等幅同相的射频信号,并经由所述多个传输部212输出,其中,一个传输部212输出一个射频信号。因此,当所述传输件210包括M个传输部212时,所述传输件210可构成等幅同相的馈电网络。
请参阅图24,图24为本申请另一实施方式提供的传输、第一辐射体及寄生辐射体的俯视图;图25为图24中的水平面辐射方向图。所述多个传输部212的数目为N个,其中,N≥2,相邻的两个传输部212之间的相位差为360°/N。
本实施方式提供的电子设备1中的传输件210的形式,使得所述第一天线20的全向性更好,具有更好的测距性能及测角性能。
在本实施方式的示意图中,N=4,所述多个第一辐射体220包括四个第一辐射体220,所述多个传输部212为分别为第一传输部2121、第二传输部2122、第三传输部2123以及第四传输部2124。所述第一传输部2121用于将所述射频信号加载至与所述第一传输部2121电连接的第一辐射体220。所述第二传输部2122具有第一相移器2131,所述第一相移器2131用于将所述射频信号移相90°加载至与所述第二传输部2122电连接的第一辐射体220。所述第三传输部2123具有第二相移器2132,所述第二相移器2132用于将所述射频信号移相180°后加载至与所述第三传输部2123电连接的第一辐射体220。所述第四传输部2124具有第三相移器2133,所述第三相移器2133用于将所述射频信号移相270°后加载至与所述第四传输部2124电连接的第一辐射体220。
在本实施方式中,为了方便描述,将四个第一辐射体220分别命名为第一辐射体220a、第一辐射体220b、第一辐射体220c、以及第一辐射体220d。所述第一传输部2121电连接所述第一辐射体220a,所述第二传输部2122部电连接所述第一辐射体220b,所述第三传输部2123电连接所述第一辐射体220c,所述第四传输部2124电连接所述第一辐射体220d。加载至所述第一辐射体220a的射频信号的相位为相位A,加载至所述第一辐射体220b的射频信号的相位为相位B,加载至所述第一辐射体220c的相位为相位C,加载至第一辐射体220d的相位为相位d。其中,相位B相较于相位A滞后90°,相位C相较于相位B滞后90°,相位D相较于相位C滞后90°。举例而言,当所述相位A为0°时,所述相位B为-90°,所述相位C为-180°,所述相位D为-270°。
具体地,在本实施方式中,所述第一相移器2131具有一个相移单元213a;所述第二相移器2132具有两个串联的两个所述相移单元213a;所述第三相移器2133具有三个串联的所述相移单元213a。
本实施方式中将第一相移器2131具有一个相移单元213a;所述第二相移器2132具有两个串联的两个所述相移单元213a;所述第三相移器2133具有三个串联的所述相移单元213a,因此,所述第一相移器2131、所述第二相移器2132及所述第三相移器2133简单易行。其中,一个相移单元213a对射频信号的相移为90°。
请再次参阅图1至图3,所述电子设备1还包括壳体70及电路板30。所述壳体70具有收容空间1a,所述收容空间用于收容所述支架10及所述第一天线20。所述电路板30设置于所述收容空间内,且位于所述支架10背离所述第一辐射体220的一侧。所述电路板30设置于所述收容空间1a内,且位于所述支架10的容纳空间1111内。所述电路板30设置于所述容纳空间1111内,可有利于所述电子设备1的轻薄化。
结合上述任意实施方提供的电子设备1,所述电路板30具有地极,所述第一辐射体220及所述寄生辐射体230均与地极电性绝缘。换而言之,所述第一辐射体220与所述寄生辐射体230都没有电连接至所述电路板30的地极。
当所述电子设备1中的所述第一辐射体220及所述寄生辐射体230均与地极电性绝缘时,有利于形成环向电流,进而形成较好的全向辐射。
下面将结合仿真示意图,对本申请实施方式提供的电子设备1的通信性能进行说明。
请参阅图26,图26为图3中所示的电子设备中第一天线的散射参数曲线示意图。在本示意图中,横坐标为频率,单位为GHz;纵坐标为S参数,单位为dB。在本实施方式中,所述示意图也称为S11曲线示意图。由本示意图可见,所述第一天线20的工作频段S11的数值小于-6dB的,即,约为7.42GHz-9GHz。由此可见,所述第一天线20具有较宽的带宽。此外,由本示意图可见,谐振频点约为8.1GHz,对应的S11的值最小,约为-16.5dB,因此,所述第一天线20具有较深的匹配深度,因此,第一天线20的辐射效率较高。
请参阅图27,图27为图3中所示的电子设备中第一天线的天线效率示意图。在本示意图中,横轴为频率,单位为GHz;纵坐标为效率,单位为dB。在本示意图中,曲线①为总辐射效率曲线,曲线②为第一天线20的辐射效率示意图。总辐射效率计算时考量到了辐射效率以及天线匹配等因素。由本示意图可见,所述第一天线20的天线效率较高。
请参阅图28,图28为图3中所示的电子设备中第一天线以及支架上8GHz面电流分布示意图。由此可见,所述第一辐射体220及所述寄生辐射体230上形成圆形电流,进而实现较好的全向辐射。
请一并参阅图29及图30,图29为图3中的第一天线在一视角下的方向示意图;图30为图3中的第一天线在另一视角下的方向示意图。由此可见,所述第一天线20的水平方向图接近一个圆,所述第一天线20的全向性较好,因此,在水平方式上的测距均匀性较好,具有较强的工程实用性。
请参阅图31,图31为图3中所示的电子设备中第一天线的方向性示意图。在本示意图中,横坐标为频率,单位为GHz;纵坐标为方向大小,单位为dBi。由此可见,所述第一天线20的方向性在CH9频段小于3dB,最小接近2dB,方向性很低,相应地,所述第一天线20的全向性较好。
请一并参阅图32,图32为图8中第一天线的S参数示意图。在本示意图中,横坐标为频率,单位为GHz;纵坐标为S参数,单位为dB。所述示意图也称为S11曲线示意图。由本示意图可见,所述第一天线20的工作频段S11的数值小于-6dB的,即,约为7.62GHz-8.89GHz。由此可见,所述第一天线20具有较宽的带宽。此外,由本示意图可见,谐振频点约为8.15GHz,对应的S11的值最小,约为-12.5dB,因此,所述第一天线20具有较深的匹配深度,因此,第一天线20的辐射效率较高。
请参阅图33,图33为图8中所示的电子设备中第一天线的天线效率示意图。在本示意图中,横轴为频率,单位为GHz;纵坐标为效率,单位为dB。在本示意图中,曲线①为总辐射效率曲线,曲线②第一天线20的辐射效率示意图。总辐射效率计算时考量到了辐射效率以及天线匹配等因素。由本示意图可见,所述第一天线20的天线效率较高。
请参阅图34,图34为图8中所示的电子设备中第一天线及支架上8GHz面电流分布示意图。由此可见,所述第一辐射体220及所述寄生辐射体230上形成圆形电流,进而实现较好的全向辐射。
请参阅图35,图35为图8中所示的电子设备中的第一天线中的方向示意图。由此可见,由此可见,所述第一天线20的水平方向图接近一个圆,所述第一天线20的全向性较好,因此,在水平方式上的测距均匀性较好,具有较强的工程实用性。
请参阅图36,图36为图8中所示的电子设备中第一天线的方向性示意图。在本示意图中,横坐标为频率,单位为GHz;纵坐标为方向大小,单位为dBi。由此可见,所述第一天线20的方向性在CH9频段大部分都小于3dB,最小接近2.4dB,方向性很低,相应地,所述第一天线20的全向性较好。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种电子设备,其特征在于,所述电子设备包括:
    支架;以及
    第一天线,所述第一天线为全向水平极化天线,所述第一天线包括:
    传输件,所述传输件承载于所述支架,所述传输件包括馈电部以及多个传输部,所述馈电部用于接收射频信号,所述多个传输部分别与所述馈电部相连,用于将所述射频信号输出;以及
    多个第一辐射体,所述多个第一辐射体均承载于所述支架,且环绕设置,所述第一辐射体电连接所述传输部,且不同的第一辐射体电连接不同的传输部。
  2. 如权利要求1所述的电子设备,其特征在于,所述多个传输部环绕所述馈电部的外周侧,且均匀间隔设置,所述多个传输部中的每个传输部的长度相同;且所述多个第一辐射体均匀环绕于所述支架的周侧面。
  3. 如权利要求2所述的电子设备,其特征在于,所述多个传输部为四个传输部,所述多个第一辐射体为四个第一辐射体。
  4. 如权利要求1所述的电子设备,其特征在于,所述第一天线还包括:
    至少一个寄生辐射体,所述至少一个寄生辐射体承载于所述支架的周侧壁,且所述寄生辐射体设置于相邻的两个第一辐射体之间,且和所述相邻的两个第一辐射体中的至少一个耦合。
  5. 如权利要求4所述的电子设备,其特征在于,相邻的两个第一辐射体之间设置有同等数目的寄生辐射体。
  6. 如权利要求4所述的电子设备,其特征在于,所述第一辐射体及所述寄生辐射体均匀环绕于所述支架的周侧面。
  7. 如权利要求1所述的电子设备,其特征在于,所述支架具有:
    周侧面,所述多个第一辐射体设置于所述周侧面;
    第一表面,所述第一表面与所述周侧面弯折相连,并构成所述支架的至少部分外表面,所述传输件的至少部分设置于所述第一表面;以及
    第二表面,所述第二表面与所述第一表面相背设置;
    所述第一天线还包括:
    电路板,所述电路板设置于所述第二表面的一侧;以及
    第一馈电件,所述第一馈电件设置于所述第二表面的一侧,且所述第一馈电件电连接所述电路板与所述馈电部,以将所述射频信号自所述电路板输出至所述馈电部。
  8. 如权利要求7所述的电子设备,其特征在于,所述支架包括:
    本体部,所述本体部的外表面为所述第一表面,所述本体部的内表面为所述第二表面;以及
    周侧壁,所述周侧壁弯折连接于所述本体部的周缘,且所述周侧壁的外表面为所述周侧面。
  9. 如权利要求1所述的电子设备,其特征在于,所述电子设备还包括第二天线,其中,所述第二天线与所述第一天线不同,所述第二天线还包括:
    第二辐射体,所述第二辐射体承载于所述支架。
  10. 如权利要求9所述的电子设备,其特征在于,所述第一辐射体及所述第二辐射体中的至少一种辐射体为LDS辐射体。
  11. 如权利要求9所述的电子设备,其特征在于,所述第一天线为UWB天线,所述第二天线为蓝牙天线。
  12. 如权利要求1所述的电子设备,其特征在于,所述电子设备还包括第三天线,所述第三天线包括:
    第三辐射体,所述第三辐射体承载于所述支架,且与所述第一辐射体及所述传输件绝缘设置。
  13. 如权利要求12所述的电子设备,其特征在于,所述支架具有:
    周侧面,所述多个第一辐射体设置于所述周侧面;
    第一表面,所述第一表面与所述周侧面弯折相连,并构成所述支架的至少部分外表面,所述第三辐射体设置于所述第一表面;以及
    第二表面,所述第二表面与所述第一表面相背设置,所述传输件设置于所述第二表面。
  14. 如权利要求13所述的电子设备,其特征在于,所述支架包括:
    本体部,所述本体部的外表面为所述第一表面,所述本体部的内表面为所述第二表面;以及
    周侧壁,所述周侧壁弯折连接于所述本体部的周缘,且所述周侧壁的外表面为所述周侧面,所述本体部具有官产第一表面及第二表面的多个过孔,每个过孔对应所述第一辐射体设置;
    所述第一天线还包括:
    多个第一导电连接件,所述第一导电连接件设置于所述过孔内,以电连接所述传输件及所述第一辐射体,且不同的第一导电连接件电连接不同的第一辐射体。
  15. 如权利要求1-14任意一项所述的电子设备,其特征在于,所述多个传输部用于将所述馈电部输入的所述射频信号分成多个等幅同相的射频信号。
  16. 如权利要求1所述的电子设备,其特征在于,所述多个传输部的数目为N个,其中,N≥2,相邻的两个传输部之间的相位差为360°/N。
  17. 如权利要求16所述的电子设备,其特征在于,N=4,所述多个第一辐射体包括四个第一辐射体,所述多个传输部为分别为:
    第一传输部,所述第一传输部用于将所述射频信号加载至与所述第一传输部电连接的第一辐射体;
    第二传输部,所述第二传输部具有第一相移器,所述第一相移器用于将所述射频信号移相90°加载至与所述第二传输部电连接的第一辐射体;
    第三传输部,所述第三传输部具有第二相移器,所述第二相移器用于将所述射频信号移相180°后加载至与所述第三传输部电连接的第一辐射体;以及
    第四传输部,所述第四传输部具有第三相移器,所述第三相移器用于将所述射频信号移相270°后加载至与所述第四传输部电连接的第一辐射体。
  18. 如权利要求17所述的电子设备,其特征在于,所述第一相移器具有一个相移单元;所述第二相移器具有两个串联的两个所述相移单元;所述第三相移器具有三个串联的所述相移单元。
  19. 如权利要求1所述的电子设备,其特征在于,所述支架具有容纳空间,所述电子设备还包括:
    壳体,所述壳体具有收容空间,所述收容空间用于收容所述支架及所述第一天线;以及
    电路板,所述电路板设置于所述收容空间内,且位于所述支架的容纳空间内。
  20. 如权利要求12所述的电子设备,其特征在于,所述第三天线为NFC天线,所述电子设备还包括:
    存储芯片,所述存储芯片与所述第三天线电连接,所述第三天线用于与预设电子设备配对,并将所述预设电子设备的通信信息传输至所述存储芯片,所述第三天线还用于在接收到查询信号时将所述存储芯片中存储的所述通信信息输出。
PCT/CN2022/140195 2022-01-12 2022-12-20 电子设备 WO2023134405A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210032028.8A CN114374077A (zh) 2022-01-12 2022-01-12 电子设备
CN202210032028.8 2022-01-12

Publications (1)

Publication Number Publication Date
WO2023134405A1 true WO2023134405A1 (zh) 2023-07-20

Family

ID=81144347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140195 WO2023134405A1 (zh) 2022-01-12 2022-12-20 电子设备

Country Status (2)

Country Link
CN (1) CN114374077A (zh)
WO (1) WO2023134405A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374077A (zh) * 2022-01-12 2022-04-19 Oppo广东移动通信有限公司 电子设备
CN116845522A (zh) * 2022-03-23 2023-10-03 Oppo广东移动通信有限公司 一种天线模组以及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201562751U (zh) * 2009-09-29 2010-08-25 哈尔滨工程大学 一种宽频带全向天线
CN111029713A (zh) * 2019-11-29 2020-04-17 Oppo广东移动通信有限公司 一种电子设备
US20200153117A1 (en) * 2018-11-14 2020-05-14 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
US20200303807A1 (en) * 2019-03-22 2020-09-24 The Antenna Company International N.V. MIMO Antenna System, Wireless Device, and Wireless Communication System
CN114374077A (zh) * 2022-01-12 2022-04-19 Oppo广东移动通信有限公司 电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201562751U (zh) * 2009-09-29 2010-08-25 哈尔滨工程大学 一种宽频带全向天线
US20200153117A1 (en) * 2018-11-14 2020-05-14 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
US20200303807A1 (en) * 2019-03-22 2020-09-24 The Antenna Company International N.V. MIMO Antenna System, Wireless Device, and Wireless Communication System
CN111029713A (zh) * 2019-11-29 2020-04-17 Oppo广东移动通信有限公司 一种电子设备
CN114374077A (zh) * 2022-01-12 2022-04-19 Oppo广东移动通信有限公司 电子设备

Also Published As

Publication number Publication date
CN114374077A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2023134405A1 (zh) 电子设备
US6531985B1 (en) Integrated laptop antenna using two or more antennas
US10230160B2 (en) Wireless communication system and wearable electronic device including the same
US9478866B2 (en) Orientation agnostic millimeter-wave radio link
WO2021238347A1 (zh) 天线和电子设备
WO2022199321A1 (zh) 电子设备
CN113067151B (zh) 天线组件、电子设备及通信系统
CN101488605A (zh) 用于无线数字设备的天线系统
US8310406B2 (en) Antenna device
CN113193358A (zh) 天线装置、电子标签设备及通信系统
CN211350966U (zh) 一种超低剖面双频uwb天线及通信设备
JP2004363848A (ja) アンテナ実装基板及びそれを備えたpcカード
US20070241981A1 (en) Wideband Antenna with Omni-Directional Radiation
US20070126639A1 (en) Three-dimensional antenna structure
JP2010074344A (ja) 片面放射アンテナ
CN113193356A (zh) 天线装置、电子标签设备及通信系统
US6222488B1 (en) Antenna structure for communication
TWI515961B (zh) 指向性天線及用於指向性天線之輻射場型調整方法
WO2023226420A1 (zh) 天线组件及电子设备
US20080129611A1 (en) Antenna module and electronic device using the same
GB2434697A (en) RF communication device with a casing slot antenna
WO2024066679A1 (zh) 天线组件及电子设备
US6222490B1 (en) Fishbone-shaped patch antenna
WO2023179128A1 (zh) 一种天线模组以及电子设备
WO2023240987A1 (zh) 天线组件及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920036

Country of ref document: EP

Kind code of ref document: A1