WO2023179128A1 - 一种天线模组以及电子设备 - Google Patents

一种天线模组以及电子设备 Download PDF

Info

Publication number
WO2023179128A1
WO2023179128A1 PCT/CN2022/140717 CN2022140717W WO2023179128A1 WO 2023179128 A1 WO2023179128 A1 WO 2023179128A1 CN 2022140717 W CN2022140717 W CN 2022140717W WO 2023179128 A1 WO2023179128 A1 WO 2023179128A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiators
antenna module
feed
electronic device
Prior art date
Application number
PCT/CN2022/140717
Other languages
English (en)
French (fr)
Inventor
罗嘉文
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023179128A1 publication Critical patent/WO2023179128A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture

Definitions

  • the present application relates to the field of communication technology, and in particular to an antenna module and electronic equipment.
  • the electronic device communicates with other devices by setting an antenna to achieve positioning of the electronic device or other devices.
  • UWB ultra-wideband
  • embodiments of the present application provide an antenna module, which includes an antenna bracket, a power dividing component, and a plurality of first radiators;
  • the antenna bracket includes a first surface and a first side connected to the first surface; wherein, the power dividing component is disposed on the first surface, a plurality of first radiators are disposed on the first side, and the plurality of first radiators surround the first
  • the side is distributed in an annular shape, and multiple branches corresponding to the power dividing component are electrically connected to multiple first radiators, which are used to convert the radio frequency signal input to the power dividing component into signals of equal amplitude and phase, and feed them into multiple first radiators respectively. the first radiator.
  • embodiments of the present application provide an electronic device, which includes the antenna module described in the first aspect.
  • Figure 1 is a schematic diagram of the composition and structure of an electronic device
  • Figure 2 is a schematic diagram of the angle measurement principle of an electronic device
  • Figure 3 is a schematic diagram of a communication scenario between an electronic device and a base station
  • Figure 4 is a schematic diagram of a positioning scenario for electronic equipment by multiple base stations
  • FIG. 5 is a schematic structural diagram of the antenna module provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram 2 of the composition and structure of the antenna module provided by the embodiment of the present application.
  • Figure 7 is a schematic diagram 3 of the composition and structure of the antenna module provided by the embodiment of the present application.
  • FIG. 8 is a detailed structural diagram of the antenna module provided by the embodiment of the present application.
  • Figure 9A is a schematic diagram of the scattering parameters of the first antenna provided by an embodiment of the present application.
  • Figure 9B is a schematic diagram of the antenna efficiency of the first antenna provided by the embodiment of the present application.
  • Figure 9C is a schematic diagram of the 8GHz surface current distribution of the first antenna provided by the embodiment of the present application.
  • Figure 9D is a schematic diagram of the radiation pattern of the first antenna provided by the embodiment of the present application.
  • Figure 9E is a schematic diagram 2 of the radiation pattern of the first antenna provided by the embodiment of the present application.
  • Figure 9F is a schematic diagram of the directivity distribution of the first antenna provided by the embodiment of the present application.
  • Figure 10 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG 11 is a detailed structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 12 is a schematic cross-sectional view of a label device provided by an embodiment of the present application.
  • embodiments of the present application provide an antenna module, which includes an antenna bracket, a power dividing component, and a plurality of first radiators;
  • the antenna bracket includes a first surface and a first side connected to the first surface; wherein the power dividing component is provided on the first surface, and the plurality of first radiators are provided on the first surface. side, and the plurality of first radiators are distributed in an annular shape around the first side, and a plurality of branches corresponding to the power dividing component are electrically connected to the plurality of first radiators respectively for connecting the input
  • the radio frequency signals sent to the power division components are converted into equal amplitude and in-phase signals and fed into the plurality of first radiators respectively.
  • the antenna module further includes a plurality of second radiators; wherein the plurality of second radiators are disposed on the first side, and the plurality of second radiators are in contact with the There is no electrical connection between the multiple branches corresponding to the power division components.
  • the plurality of first radiators and the plurality of second radiators are alternately distributed around the first side, and the distance between the adjacent first radiators and the second radiators is There is a gap between them.
  • the power dividing component includes two conductive paths; wherein the two conductive paths cross each other and have an intersection point to form multiple branches corresponding to the power dividing component.
  • the plurality of branches corresponding to the power dividing component are four branches, and the angle between two adjacent branches among the four branches is 90 degrees.
  • the power dividing component is a one-to-four power splitter with an equal power dividing structure
  • the plurality of first radiators are four first radiators
  • the paths are electrically connected to the four first radiators respectively, and are used to feed the equal amplitude and in-phase signals to the four first radiators.
  • the four branches are electrically connected to the four first radiators respectively, correspondingly forming four monopole antennas of equal amplitude and phase.
  • the antenna module further includes a first feeder, a second feeder and a substrate, and the second feeder and the substrate are both disposed on the antenna bracket away from the first feeder.
  • a first feed source is provided on the substrate, and the second feed element is electrically connected to the first feed source through the substrate; the first feed element is provided on the antenna on the bracket, and the first power feeding part is electrically connected to the second power feeding part and the power dividing component respectively, so that the power dividing component receives the radio frequency signal provided by the first feed source.
  • the antenna bracket is provided with a first via hole, and the first via hole penetrates the first surface and a second surface away from the first surface;
  • the first feed member includes A first feeding part and a second feeding part; wherein the first feeding part is arranged on the second surface, and the second feeding part is arranged in the first via hole, so that the The power dividing component receives the radio frequency signal provided by the first feed source.
  • the plurality of branches corresponding to the power division component are electrically connected to the plurality of first radiators respectively, so that the fed equal amplitude and in-phase signals form a current loop on the first side. , to form a first antenna with omnidirectional horizontal polarization characteristics.
  • the antenna module further includes a third radiator; wherein the third radiator is disposed on the first surface to form a second antenna with inverted F-shaped characteristics.
  • the antenna module further includes a third feeder, a fourth feeder and a substrate, and the fourth feeder and the substrate are both disposed on the antenna bracket away from the third feeder.
  • a third feeder is provided on the substrate, and the fourth feed element is electrically connected to the second feed source through the substrate;
  • the third feed element is provided on the antenna on the bracket, and the third feeder is electrically connected to the fourth feeder and the third radiator respectively, so that the third radiator receives the radio frequency signal provided by the second feeder.
  • the antenna module further includes a fifth feeder and a sixth feeder, and the sixth feeder is disposed on a side of the antenna bracket away from the first surface; A ground is provided on the substrate, and the sixth feeder is grounded through the substrate; the fifth feeder is provided on the antenna bracket, and the fifth feeder is connected to the sixth feeder respectively.
  • the electrical component is electrically connected to the third radiator, so that the third radiator is grounded.
  • the antenna bracket is provided with a second via hole and a third via hole, and the second via hole and the third via hole penetrate the first surface and are away from the first surface.
  • the third feed member includes a third feed part and a fourth feed part; wherein the third feed part is provided on the second surface, and the fourth feed part is provided on In the second via hole, so that the third radiator receives the radio frequency signal provided by the second feed source;
  • the fifth feed component includes a fifth feed part and a sixth feed part; wherein, The fifth power feeding part is provided on the second surface, and the sixth power feeding part is provided in the third via hole, so that the third radiator is grounded.
  • the first antenna operates in the CH9 frequency band
  • the second antenna operates in the Bluetooth frequency band
  • embodiments of the present application provide an electronic device, which includes the antenna module described in the first aspect.
  • the electronic device further includes a housing; wherein the antenna module is disposed inside the housing.
  • the housing is provided with a battery compartment, and the electronic device further includes a battery; wherein the battery is disposed in the battery compartment.
  • the electronic device further includes a charging interface; wherein the charging interface is used to connect an external power source to charge the battery.
  • the electronic device is a UWB tag device.
  • first ⁇ second ⁇ third involved in the embodiments of this application are only used to distinguish similar objects and do not represent a specific ordering of objects. It is understandable that “first ⁇ second ⁇ The third "specific order or sequence may be interchanged where permitted, so that the embodiments of the application described herein can be implemented in an order other than that illustrated or described herein.
  • Ultra Wide Band is a short-distance wireless communication method. Its transmission distance is usually within 10m, using bandwidth above 1GHz. UWB does not use sinusoidal carrier waves, but uses nanosecond to microsecond non-sinusoidal narrow pulses to transmit data. Therefore, it occupies a wide spectrum range and is suitable for high-speed, short-range wireless personal communications.
  • the Federal Communications Commission (FCC) of the United States stipulates that the operating frequency band of UWB ranges from 3.1GHz to 10.6GHz, and the minimum operating bandwidth is 500MHz. At present, the center frequencies of mainstream UWB frequency bands are 6.5GHz and 8GHz, and the bandwidth requirements are above 500MHz.
  • the embodiment of the present application provides an antenna module, which is applied to an electronic device 1.
  • the electronic device 1 can be implemented in various forms, including but not limited to smart phones, tablet computers, notebook computers, PDAs, Internet devices (Mobile Internet Device, MID), e-books, Personal Digital Assistant (Personal Digital Assistant, PDA), Portable Player (Play Station Portable, PSP), smart watches, personal computers and other devices with communication functions.
  • the antenna module is an antenna module using UWB technology; in this way, the antenna module using UWB technology will no longer use carrier waves, but will use nanosecond to microsecond non-sinusoidal narrow pulse transmission. data.
  • FIG. 1 shows a schematic diagram of the composition and structure of an electronic device 1
  • FIG. 2 shows a schematic diagram of the angle measurement principle of an electronic device 1 for transmitting and receiving electromagnetic wave signals.
  • the electronic device 1 may include two antenna modules.
  • the two antenna modules are named first antenna module 10a and second antenna module 10b respectively.
  • ⁇ 1 represents the angle between the line connecting P 1 and P 2 and the line connecting P 3 and P 1
  • ⁇ 2 represents the angle between the line connecting P 1 and P 2 and P 3 and P 2
  • represents the angle between the line connecting P 1 and P 2 and the line connecting P 3 and P 4
  • represents the supplementary angle of ⁇
  • D represents the angle between P 3 and P 4 distance
  • represents the wavelength of the electromagnetic wave signal sent and received by the first antenna module 10a and the second antenna module 10b
  • f represents the frequency of the electromagnetic wave signal sent and received by the first antenna module 10a and the second antenna module 10b
  • d max represents The maximum value of the distance between the first antenna module 10a and the second antenna module 10b.
  • the range of f is 6.25GHz to 8.25GHz;
  • the range of ⁇ is 36.4mm ⁇ 48mm, and the range of ⁇ /2 is 18.2mm ⁇ 24mm;
  • the time difference t 1 for the electromagnetic wave signal to reach the first antenna module 10a and the second antenna module 10b is:
  • t 1 represents the time difference between the electromagnetic wave signal reaching the first antenna module 10a and the second antenna module 10b, it is also called Time Difference of Arrival (TDOA).
  • TDOA Time Difference of Arrival
  • the electromagnetic wave signal reaches the phase difference between the first antenna module 10a and the second antenna module 10b for:
  • Phase Difference of Arrival Phase Difference of Arrival
  • represents the angle of arrival (AOA). It can be seen from equation (3) that the arrival angle ⁇ and the arrival phase difference Related.
  • the angle measurement principle of the antenna module can be: for electromagnetic wave signals in different directions, the paths to the two antennas are different, which introduces additional path differences, thereby introducing additional time differences and additional phase differences.
  • the unique functional relationship between the phase difference and the angle of arrival is used to achieve angle measurement.
  • FIG. 3 shows a schematic diagram of a communication scenario between an electronic device and a base station.
  • electronic device 1 transmits a first signal to base station 2
  • base station 2 receives the first signal
  • a reaction time represented by T reply
  • T reply transmits a second signal to electronic device 1
  • electronic device 1 receives The second signal, where the time difference between the electronic device 1 receiving the second signal and the electronic device 1 transmitting the first signal is represented by T loop , then the time of flight (TOF) is calculated as follows:
  • D represents the distance between the electronic device 1 and the base station 2
  • c represents the speed of light
  • c 3 ⁇ 10 8 m/s.
  • FIG 4 shows a schematic diagram of a positioning scenario for the electronic device 1 by multiple base stations.
  • multiple base stations may include base station 2, base station 3, base station 4, etc.
  • the algorithm for positioning the electronic device 1 is the TDOA algorithm, which is an algorithm that uses time differences for positioning. By measuring the time it takes for the signal to reach the base station 2, the distance between the electronic device 1 and the base station 2 can be determined. By comparing the first signal sent by the electronic device 1 to reach the base station 2, the base station 3 and the base station 4, etc., the distance between the base stations 2, 3 and 4 can be determined.
  • the intersection point of the hyperbola with the electronic device 1 as the focus and the distance difference as the long axis can be determined, and the intersection point is the position of the electronic device 1 .
  • the distance difference is equal to the product of the speed of light and the time difference shown in equation (5).
  • antenna modules using UWB technology are either an inverted-F antenna (IFA) or a monopole antenna; but at this time, the printed circuit board (Printed circuit board) , PCB) area is larger, that is, the ground of the antenna is larger, making the directivity of UWB antennas relatively high (>4.5dB).
  • IFA inverted-F antenna
  • PCB printed circuit board
  • the equivalent isotropic radiation power spectral density limit of the UWB transmit signal of UWB radio equipment is -41dBm/MHz at 6.0 ⁇ 9.0GHz; This further limits the transmit power of the antenna, so higher antenna directivity will lead to poor ranging uniformity: the direction with strong antenna gain has long range; the direction with weak antenna gain has short range.
  • the embodiment of the present application introduces a UWB antenna with low directivity.
  • an antenna module which includes an antenna bracket, a power dividing component, and a plurality of first radiators;
  • the antenna bracket includes a first surface and a first side connected to the first surface.
  • the power dividing component is arranged on the first surface, a plurality of first radiators are arranged on the first side, and the plurality of first radiators are distributed annularly around the first side, and the multiple branches corresponding to the power dividing component are respectively It is electrically connected to a plurality of first radiators, and is used to convert the radio frequency signal input to the power division component into an equal amplitude and in-phase signal, and feed it into the plurality of first radiators respectively.
  • the directivity of the antenna module is low, and the horizontal direction pattern is close to a circle, which can not only improve the uniformity of ranging and increase the ranging distance, but also reduce the algorithm complexity of angle measurement, and have high engineering practicality ;
  • the power division component and the first radiator are integrated on the antenna bracket, the insertion loss can also be reduced.
  • the antenna module 10 may include an antenna bracket 101, a power dividing component 102 and a plurality of first radiators 103;
  • the antenna bracket 101 may include a first surface a and a first side b connected to the first surface a; wherein the power dividing component 102 is provided on the first surface a, a plurality of first radiators 103 is provided on the first side b, and A plurality of first radiators 103 are distributed in an annular shape around the first side b.
  • a plurality of branches corresponding to the power dividing component 102 are electrically connected to the plurality of first radiators 103 for transmitting radio frequency signals input to the power dividing component. It is converted into equal amplitude and in-phase signals and fed into multiple first radiators respectively.
  • the antenna module 10 here may be the first antenna module 10a in the aforementioned electronic device 1, or may be the second antenna module 10b in the aforementioned electronic device 1. In This is not specifically limited.
  • the antenna module (the first antenna module 10a and the second antenna module 10b) in the electronic device 1 does not It should be understood that this is a specific structural limitation of the antenna module 10 provided in the embodiment of the present application.
  • the first surface a is the upper outer surface of the antenna bracket 101
  • the first side b is the side outer surface of the antenna bracket 101
  • the antenna bracket 101 may also include a second surface c (not shown in the figure); wherein the second surface c may be an inner portion of the antenna bracket 101 that is away from the first surface a.
  • the surface may specifically refer to the upper inner surface of the antenna bracket 101 .
  • Laser Direct Structuring is a three-dimensional Molded Interconnect Device (3D-MID) production technology that specializes in laser processing, injection and electroplating processes. Its principle is to combine ordinary Plastic components/circuit boards give electrical interconnection functions, support component functions, and plastic housing support, protection and other functions, as well as shielding, antenna and other functions generated by the combination of mechanical entities and conductive patterns. They are combined into one to form the so-called 3D -MID, suitable for IC Substrate, HDI PCB, Lead Frame partial thin circuit production.
  • 3D-MID three-dimensional Molded Interconnect Device
  • the antenna bracket 101 may be made of plastic. Therefore, in a specific implementation manner, the power dividing component 102 can be carved on the first surface a of the antenna bracket 101 using the LDS method, and the plurality of first radiators 103 can be carved on the first surface a of the antenna bracket 101 using the LDS method. On one side b, in order to integrate the first antenna into the antenna bracket, the insertion loss can be reduced.
  • the corresponding branches of the power dividing component 102 are electrically connected to a plurality of first radiators respectively, so that the fed equal amplitude and in-phase signals form a current loop on the first side b, so as to form a full-circuit current loop.
  • the first antenna with horizontal polarization characteristics.
  • the input radio frequency signal can be output in multiple branches with equal amplitude and in phase through the power dividing component 102; because the multiple branches corresponding to the power dividing component 102 are respectively connected to the first radiation body, by feeding the plurality of first radiators with equal amplitude and in phase, a current loop (also called a ring current, a circular current, etc.) can be formed on the first side b, thereby achieving omnidirectional radiation; at the same time, due to the multiple The fact that the first radiator is not grounded can also enable the first antenna to achieve horizontally polarized radiation, thereby reducing the directivity of the first antenna.
  • a current loop also called a ring current, a circular current, etc.
  • embodiments of the present application may also add a second radiator between every two adjacent first radiators. Therefore, in some embodiments, based on the antenna module 10 shown in Figure 5, referring to Figure 6, the antenna module 10 may also include a plurality of second radiators 104;
  • the plurality of second radiators 104 are disposed on the first side b, and there is no electrical connection between the plurality of second radiators 104 and the plurality of branches corresponding to the power division component 102 .
  • a plurality of first radiators 103 and a plurality of second radiators 104 are alternately distributed around the first side b, and there is a gap between adjacent first radiators and second radiators. Set with gaps.
  • the first radiator and the second radiator may be, but are not limited to, conductive patches.
  • the first radiator and the second radiator may be engraved on the first side b through LDS.
  • the shape of either the first radiator or the second radiator can be circular, rectangular, elliptical, polygonal, etc.
  • the first radiator and the second radiator are rectangular conductive patches as an example for illustration.
  • the antenna radiator may include two types: one is a first radiator directly connected to multiple branches corresponding to the power division component 102, which may also be called a feed radiation area or a single unit. Pole radiator; the other is a second radiator that is not directly connected to multiple branches corresponding to the power division component 102, which can also be called a parasitic patch.
  • the parasitic patch is isolated and can further reduce the directivity of the first antenna.
  • the power component 102 may include two conductive paths; wherein the two conductive paths cross each other and have an intersection point to form multiple branches corresponding to the component 102. road.
  • the power dividing component 102 corresponds to four branches, and the angle between two adjacent branches among the four branches is 90 degrees.
  • the power dividing component 102 may be a one-to-four power divider with an equal power dividing structure, and the plurality of first radiators are four first radiators. In this way, the four corresponding branches of the power dividing component 102 are electrically connected to the four first radiators respectively, and are used to feed equal amplitude and in-phase signals to the four first radiators.
  • the power dividing component 102 can be a cross-shaped LDS engraved line on the antenna bracket.
  • the power dividing component 102 corresponds to four branches, and each branch Correspondingly connect a first radiator.
  • the power dividing component 102 can also be called a one-to-four power divider, so as to feed the four first radiators with equal amplitude and phase.
  • the four branches are electrically connected to the four first radiators respectively, and can correspondingly form four monopole antennas of equal amplitude and phase, so that the four monopole antennas can be Equal amplitude and in-phase feed to achieve omnidirectional radiation.
  • the plurality of second radiators are also four second radiators; wherein, the four first radiators and the four second radiators Alternately distributed on the first side b to form a ring structure; thus when feeding the first antenna, a circular current can be formed on the first side b of the antenna bracket 101, thereby achieving omnidirectional radiation; at the same time, due to the multiple Neither the first radiator nor the plurality of second radiators is grounded, so the first antenna can also achieve horizontally polarized radiation.
  • the antenna module 10 may also include a first feeding element, a second feeding element and a substrate, and the second feeding element and the substrate are both disposed on the antenna bracket 101 The side facing away from the first surface a;
  • a first feed source is provided on the substrate, and the second feed element is electrically connected to the first feed source through the substrate;
  • the first feed element is disposed on the antenna bracket 101 and is electrically connected to the second feed element and the power dividing component 102 respectively, so that the power dividing component 102 receives the radio frequency signal provided by the first feed source 74 .
  • the antenna bracket 101 is provided with a first via hole, and the first via hole penetrates the first surface a and the second surface c away from the first surface;
  • the first power feeding part includes a first power feeding part and a second power feeding part; wherein, the first power feeding part is provided on the second surface, and the second power feeding part is provided in the first via hole, so that the power dividing component receives The RF signal provided by the first feed source.
  • the substrate may be a PCB board.
  • the first feed source may be a radio frequency circuit provided on the PCB board, and the radio frequency circuit can provide a radio frequency signal to realize feeding of the first antenna.
  • the second feed member may be the first feed spring corresponding to the first antenna, and the first feed spring and the PCB board are both disposed on the outer surface of the antenna bracket 101 away from the upper part. one side.
  • one end of the first feeding elastic piece can be welded on the PCB board, and the other end of the first feeding elastic piece can make metal surface contact with the first feeding part provided on the upper inner surface of the antenna bracket 101; and the third feeding elastic piece can be in metal surface contact.
  • the second feeding part is located in the first via hole, so that the first via hole is a metallized via hole.
  • the upper inner surface and the upper outer surface of the antenna bracket 101 are electrically connected, so that the antenna bracket 101 can The upper outer surface is fed with electricity, so that the power subassembly 102 located on the upper outer surface can receive the radio frequency signal provided by the first feed source.
  • the antenna module 10 may also include a third radiator 105; wherein the third radiator 105 is disposed on the first surface a to form a second antenna with inverted F-shaped characteristics.
  • the shape of the second antenna is similar to the inverted English letter F, so the second antenna can also be called an inverted F-type antenna.
  • the inverted F-shaped antenna has the characteristics of simple structure, low manufacturing cost, and high radiation efficiency.
  • the inverted F-shaped antenna can fully meet the bandwidth requirements of the Bluetooth antenna.
  • the operating frequency band of the first antenna is different from the operating frequency band of the second antenna.
  • the first antenna can work in the CH9 frequency band
  • the second antenna can work in the Bluetooth frequency band.
  • the first antenna with omnidirectional horizontal polarization characteristics can also be called an omnidirectional horizontally polarized UWB object-finding antenna, which can be applied to UWB object-finding and works in the CH9 frequency band of UWB; and has inverted F-type characteristics
  • the second antenna works in the Bluetooth band and is suitable for short-distance wireless communications.
  • the antenna module 10 may also include a third feeding element and a fourth feeding element, and the fourth feeding element is also disposed on the antenna.
  • a second feed source is provided on the substrate, and the fourth feed element is electrically connected to the second feed source through the substrate;
  • the third feeder is disposed on the antenna bracket 101, and is electrically connected to the fourth feeder and the third radiator 105 respectively, so that the third radiator 105 receives the radio frequency signal provided by the second feeder. .
  • the antenna module 10 may further include a fifth feeder and a sixth feeder, and the sixth feeder is also disposed on the side of the antenna bracket 101 away from the first surface a; wherein,
  • a ground is provided on the base plate, and the sixth feeder is grounded through the base plate;
  • the fifth feeder is disposed on the antenna bracket 101, and is electrically connected to the sixth feeder and the third radiator 105 respectively, so that the third radiator 105 is grounded.
  • the antenna bracket 101 is also provided with a second via hole and a third via hole, and the second via hole and the third via hole penetrate the first surface a and the second surface c away from the first surface. ;
  • the third feed part includes a third feed part and a fourth feed part; wherein the third feed part is disposed on the second surface, and the fourth feed part is disposed in the second via hole, so that the third radiator 105 receives the radio frequency signal provided by the second feed source;
  • the fifth feeding part includes a fifth feeding part and a sixth feeding part; wherein the fifth feeding part is arranged on the second surface, and the sixth feeding part is arranged in the third via hole, so that the third radiator 105 ground.
  • the PCB board may also be provided with a second feed source and a ground.
  • the fourth feeding member may be a second feeding spring corresponding to the second antenna
  • the sixth feeding member may be a grounding spring corresponding to the second antenna.
  • the second feeding elastic piece, the ground elastic piece and the PCB board are all arranged on the side of the antenna bracket 101 away from the upper outer surface.
  • one end of the second feeding elastic piece can also be welded on the PCB board, and the other end of the second feeding elastic piece can make metal surface contact with the third feeding part provided on the upper inner surface of the antenna bracket 101; and
  • the fourth feeding part is located in the second via hole, so that the second via hole is also a metallized via hole.
  • the upper inner surface of the antenna bracket 101 is electrically connected to the upper outer surface according to the metallized via hole, so that the upper inner surface of the antenna bracket 101 is electrically connected to the upper outer surface of the antenna bracket 101 .
  • the third radiator 105 on the outer surface can receive the radio frequency signal provided by the second feed source.
  • one end of the ground spring can also be welded on the PCB board, and the other end of the ground spring can make metal surface contact with the fifth feed part provided on the upper inner surface of the antenna bracket 101; and the sixth feed part is located on the upper inner surface of the antenna bracket 101.
  • the third via hole is also a metallized via hole, and the upper inner surface and the upper outer surface of the antenna bracket 101 are also electrically connected according to the metallized via hole, so that the third radiator located on the upper outer surface 105 can be grounded.
  • a plurality of buckles may be provided on the antenna bracket to fix the antenna bracket and the PCB board together.
  • a first antenna and a second antenna can be provided on the antenna bracket, for example, the two antennas are carved on the antenna bracket through LDS.
  • the first antenna is an omnidirectional horizontally polarized antenna that supports UWB technology and can be used for UWB object-finding applications
  • the second antenna is an IFA antenna that supports Bluetooth and can be used for short-distance Bluetooth communications.
  • This embodiment provides an antenna module.
  • the antenna module Based on the above-mentioned composition structure of the antenna module 10, the antenna module has low directivity, and the horizontal plane pattern is close to a circle, which can not only improve the uniformity of ranging, but also increase the number of measurements. It can also reduce the algorithm complexity in angle measurement and has high engineering practicability; in addition, because the power division component and the first radiator are integrated on the antenna bracket, the insertion loss can also be reduced.
  • FIG. 8 shows a detailed structural diagram of an antenna module 10 .
  • (a) is a top view of the upper outer surface (ie, the first surface) of the antenna module 10
  • (b) is a top view of the upper inner surface (ie, the second surface) of the antenna module
  • (c) ) is a side perspective view of the antenna module 10
  • (c) is another side perspective view of the antenna module 10 .
  • 801 is used to identify the power component (filled with vertical lines), 802 is used to identify the first radiator (filled with grid lines), 803 is used to identify the second radiator (filled with dots), 804 Used to identify the third radiator (indicated by a bold line), 804 is used to identify the first feed part in the first feed element to make metal surface contact with the first feed elastic piece (not shown in the figure) Connection; 805 is used to identify the first via hole, in which the second feed part of the first feed part is disposed in order to realize the connection between the first surface and the second surface, so that the power component can feed Input radio frequency signal; 806 is used to identify the third feed part in the third feed member, so as to make a metal surface contact connection with the second feed elastic piece (not shown in the figure); 807 is used to identify the second via hole, The fourth feeding part in the third feeding part is disposed in the second via hole to realize the connection between the first surface and the second surface, so that the third radiator can also feed the radio frequency signal; 808 is used to identify the third The
  • the antenna module 10 may also include a PCB board. Among them, 810 is used to identify the buckle provided on the antenna bracket so that the antenna bracket and the PCB board can be fixed together.
  • the number of first radiators and second radiators is four, and these four first radiators alternate with four second radiators. distribution; and the first radiator is directly connected to the branch corresponding to the power division component, and the second radiator is not directly connected to the branch corresponding to the power division component, that is, the second radiator can be regarded as an isolated parasitic patch.
  • the power dividing component, the first radiator, the second radiator and the first feed spring, etc. form a first antenna with omnidirectional horizontal polarization characteristics, and the third radiator, the second feed spring, the ground spring, etc. A second antenna with inverted F-shaped characteristics is formed.
  • two antennas may be provided on the antenna bracket, and both antennas are formed on the antenna bracket through LDS technology. Their functions and applications are shown in Table 2.
  • the second antenna is an inverted F-type antenna.
  • the second antenna can be fed through a second feed spring.
  • the inner surface of the antenna bracket has 2 LDS engravings.
  • the metal contact surface, and the inside and outside are connected through metallized vias engraved by LDS method. It works in the Bluetooth frequency band and is used for Bluetooth communication.
  • the first antenna is an omnidirectional horizontally polarized antenna, used for UWB object-finding antennas, and works in the CH9 frequency band of UWB.
  • the second antenna has a first feed spring.
  • the radio frequency signal contacts the metal contact surface provided on the inner surface of the antenna bracket through the first feed spring welded on the PCB board to feed, and then feeds in the center of the antenna bracket, inside. It is connected to the outside through metallized vias provided by LDS.
  • LDS there are two intersecting LDS engraved lines above the antenna bracket. This is the power dividing network of the first antenna, which can output the input video signal with equal amplitude and phase.
  • the end of the LDS engraved line is connected to the antenna radiation on the side of the antenna bracket.
  • the adjacent There is also a parasitic patch between the monopole radiators that further reduces the directivity of the first antenna.
  • a current loop can be formed on the side of the antenna bracket, thereby achieving omnidirectional radiation; since the monopole radiator or parasitic patch is not grounded on the outer ring of the PCB board (that is, the outside of the circumference of the PCB board, That is, the ground of the PCB board), so horizontally polarized radiation can also be achieved.
  • Figure 9A shows a schematic diagram of the scattering parameters of a first antenna provided by an embodiment of the present application.
  • Figure 9B shows a schematic diagram of the antenna efficiency of the first antenna provided by an embodiment of the present application.
  • Figure 9C shows a schematic diagram of the first antenna provided by an embodiment of the present application.
  • Figure 9D shows a schematic diagram of a radiation pattern of the first antenna provided by an embodiment of the present application.
  • Figure 9E shows another schematic diagram of the first antenna provided by an embodiment of the present application.
  • FIG. 9F shows a schematic diagram of the directivity distribution of the first antenna provided by the embodiment of the present application.
  • the first antenna has a wider bandwidth and higher efficiency in the CH9 frequency band of UWB; as shown in Figure 9C, Figure 9D and Figure 9E, thanks to the equal amplitude from the center In-phase feeding, the fed monopole radiator and parasitic patch form a ring current on the side of the antenna bracket, producing omnidirectional horizontally polarized radiation; as shown in Figure 9F, the directivity of the first antenna is less than 3dB in the CH9 frequency band. The minimum is close to 2dB, that is, the directivity of the antenna is very low.
  • UWB antennas in related technologies have only one monopole, which is affected by the larger PCB ground and has higher directivity (>4.5dB).
  • the technical solution of the embodiment of the present application has a small directivity (about 2-3dB) and can achieve a good omnidirectional radiation effect.
  • the effect of angle measurement and ranging can also be greatly improved. From the perspective of improving the complexity of the antenna hardware, it can reduce the complexity of the software algorithm and reduce the work of the software algorithm, which has It has strong practical significance; in addition, the equal-amplitude and in-phase feed RF network of the first antenna is designed on the antenna bracket. At this time, no additional PCB area is needed, and the insertion loss can be reduced by integrating into the antenna bracket.
  • This embodiment provides an antenna module.
  • the equivalent signal received by UWB is According to the regulations of omnidirectional radiation power spectrum density, the directivity of this antenna module is low, which can reduce the gain of the antenna. Therefore, it can increase the radio frequency power, increase the signal strength, increase the ranging distance, improve the user experience, and has strong engineering practicality.
  • the directivity of the antenna module is low, and the horizontal plane pattern is close to a circle, so the ranging uniformity in the horizontal direction is good and has strong engineering practicability;
  • the radiation of the first antenna The body is designed on the side of the antenna bracket, forming a current loop when working, thereby forming horizontally polarized radiation, which can be used with a horizontally polarized angle measurement antenna array;
  • the antenna module can also reduce the dependence on the angle measurement algorithm by increasing the hardware complexity of the antenna, reduce the software algorithm work, improve the user experience, and has strong engineering practicality.
  • FIG. 10 shows a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 100 may include the antenna module 10 of any of the foregoing embodiments.
  • FIG. 11 shows a detailed structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 100 may further include a housing 1001 ; wherein the antenna module 10 is disposed inside the housing 1001 .
  • the housing 1001 is provided with a battery compartment 1002 , and the electronic device 100 may further include a battery 1003 ; wherein the battery 1003 is disposed in the battery compartment 1002 .
  • the battery 1003 may be a non-rechargeable battery (such as a button battery). In this case, the electronic device 100 does not need a charging interface and the battery 1003 does not need to be charged.
  • the battery 1003 can also be a rechargeable battery (such as a storage battery, a lithium battery, etc.), in which case the electronic device 100 requires a charging interface.
  • a rechargeable battery such as a storage battery, a lithium battery, etc.
  • the electronic device 100 may further include a charging interface 1004 ; wherein the charging interface 1004 may be connected to an external power source to charge the battery 1003 .
  • the electronic device 100 may be a UWB tag device.
  • FIG. 12 shows a schematic cross-sectional view of a label device provided by an embodiment of the present application.
  • the tag device 120 can support UWB object finding applications.
  • the tag device 120 may include a housing 1201, an antenna bracket 1202, a first feed spring 1203, a second feed spring 1204, a ground spring 1205, a PCB board 1206, a battery compartment 1207, a button battery 1208, and so on.
  • the housing 1201, the antenna bracket 1202 and the battery compartment 1207 are all made of plastic; and the first antenna and the second antenna are arranged on the antenna bracket 1202 through LDS.
  • the embodiment of the present application provides an electronic device, which includes the antenna module described in the previous embodiment. Since the antenna module has low directivity and the horizontal direction pattern is close to a circle, it can not only improve the measurement distance uniformity, increase the ranging distance, and can also reduce the algorithm complexity in angle measurement, with high engineering practicability; in addition, since the power division component and the first radiator are integrated on the antenna bracket, the insertion loss can also be reduced .
  • the antenna module includes an antenna bracket, a power dividing component and a plurality of first radiators;
  • the antenna bracket includes a first surface and a first side connected to the first surface; wherein, the power dividing component is disposed on the first On the surface, a plurality of first radiators are arranged on the first side, and the plurality of first radiators are distributed annularly around the first side, and a plurality of branches corresponding to the power division component are electrically connected to the plurality of first radiators respectively, It is used to convert the radio frequency signal input to the power division component into an equal amplitude and in-phase signal, and feed it into a plurality of first radiators respectively.
  • the directivity of the antenna module is low, and the horizontal direction pattern is close to a circle, which can not only improve the uniformity of ranging and increase the ranging distance, but also reduce the algorithm complexity of angle measurement, and have high engineering practicality ;
  • the power division component and the first radiator are integrated on the antenna bracket, the insertion loss can also be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例公开了一种天线模组以及电子设备,该天线模组包括天线支架、功分部件和多个第一辐射体;天线支架包括第一表面以及与第一表面连接的第一侧面;其中,功分部件设置在第一表面,多个第一辐射体设置在第一侧面,且多个第一辐射体围绕第一侧面呈环状分布,功分部件对应的多条支路分别与多个第一辐射体电连接,用于将输入至功分部件的射频信号转换为等幅同相信号,并分别馈入所述多个第一辐射体。这样,该天线模组的方向性低,而且水平面方向图接近为一个圆,从而不仅能够提升测距均匀度,增加测距距离,而且还能够降低测角方面的算法复杂度,工程实用性高。

Description

一种天线模组以及电子设备
相关申请的交叉引用
本申请要求在2022年03月23日提交中国专利局、申请号为202210293782.7、申请名称为“一种天线模组以及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种天线模组以及电子设备。
背景技术
随着通信技术的发展,智能手机等电子设备的发展也越来越迅速,因此提高用户使用电子设备的便捷性成为用户关注的焦点。其中,电子设备通过设置天线与其他设备进行通信,以实现对电子设备或对其他设备的定位。
目前,电子设备中设置超宽带(Ultra Wide Band,UWB)天线结构时,可以基于UWB天线实现与其他设备的短距离无线通信。但是UWB天线的方向性都比较高,而较高的天线方向性会导致测距和测角方面的表现不佳。
发明内容
本申请的技术方案是这样实现的:
第一方面,本申请实施例提供了一种天线模组,该天线模组包括天线支架、功分部件和多个第一辐射体;
天线支架包括第一表面以及与第一表面连接的第一侧面;其中,功分部件设置在第一表面,多个第一辐射体设置在第一侧面,且多个第一辐射体围绕第一侧面呈环状分布,功分部件对应的多条支路分别与多个第一辐射体电连接,用于将输入至功分部件的射频信号转换为等幅同相信号,并分别馈入多个第一辐射体。
第二方面,本申请实施例提供了一种电子设备,该电子设备包括如第一方面所述的天线模组。
附图说明
图1为一种电子设备的组成结构示意图;
图2为一种电子设备的测角原理示意图;
图3为一种电子设备与基站的通信场景示意图;
图4为一种多个基站对电子设备的定位场景示意图;
图5为本申请实施例提供的天线模组的组成结构示意图一;
图6为本申请实施例提供的天线模组的组成结构示意图二;
图7为本申请实施例提供的天线模组的组成结构示意图三;
图8为本申请实施例提供的天线模组的详细结构示意图;
图9A为本申请实施例提供的第一天线的散射参数示意图;
图9B为本申请实施例提供的第一天线的天线效率示意图;
图9C为本申请实施例提供的第一天线的8GHz面电流分布示意图;
图9D为本申请实施例提供的第一天线的辐射方向图示意图一;
图9E为本申请实施例提供的第一天线的辐射方向图示意图二;
图9F为本申请实施例提供的第一天线的方向性分布示意图;
图10为本申请实施例提供的电子设备的组成结构示意图;
图11为本申请实施例提供的电子设备的详细结构示意图;
图12为本申请实施例提供的标签设备的切面示意图。
具体实施方式
第一方面,本申请实施例提供了一种天线模组,所述天线模组包括天线支架、功分部件和多个第一辐射体;
所述天线支架包括第一表面以及与所述第一表面连接的第一侧面;其中,所述功分部件设置在所述第一表面,所述多个第一辐射体设置在所述第一侧面,且所述多个第一辐射体围绕所述第一侧面呈环状分布,所述功分部件对应的多条支路分别与所述多个第一辐射体电连接,用于将输入至所述功分部件的射频信号转换为等幅同相信号,并分别馈入所述多个第一辐射体。
在一些实施例中,所述天线模组还包括多个第二辐射体;其中,所述多个第二辐射体设置在所述第一侧面,且所述多个第二辐射体与所述功分部件对应的多个支路均不存在电连接。
在一些实施例中,所述多个第一辐射体与所述多个第二辐射体围绕所述第一侧面交替分布,且相邻的所述第一辐射体与所述第二辐射体之间设置有间隙。
在一些实施例中,所述功分部件包括两条导电路径;其中,所述两条导电路径相互交叉且具有一个交叉点,以形成所述功分部件对应的多条支路。
在一些实施例中,所述功分部件对应的多条支路为四条支路,且所述四条支路中相邻两条支路之间的夹角为90度。
在一些实施例中,所述功分部件为具有等功分结构的一分四功分器,所述多个第一辐射体为四个第一辐射体;所述功分部件对应的四条支路分别与所述四个第一辐射体电连接,用于向所述四个第一辐射体馈入所述等幅同相信号。
在一些实施例中,所述四条支路分别与所述四个第一辐射体电连接,对应形成四个等幅同相的单极子天线。
在一些实施例中,所述天线模组还包括第一馈电件、第二馈电件和基板,且所述第二馈电件和所述基板均设置于所述天线支架背离所述第一表面的一侧;所述基板上设置有第一馈源,所述第二馈电件通过所述基板与所述第一馈源电连接;所述第一馈电件设置在所述天线支架上,且所述第一馈电件分别与所述第二馈电件和所述功分部件电连接,以使得所述功分部件接收所述第一馈源提供的射频信号。
在一些实施例中,所述天线支架设置有第一过孔,且所述第一过孔贯穿所述第一表面及背离所述第一表面的第二表面;所述第一馈电件包括第一馈电部分和第二馈电部分;其中,所述第一馈电部分设置在所述第二表面,所述第二馈电部分设置在所述第一过孔内,以使得所述功分部件接收所述第一馈源提供的射频信号。
在一些实施例中,所述功分部件对应的多条支路分别与所述多个第一辐射体电连接,使得馈入的所述等幅同相信号在所述第一侧面形成电流环,以形成具有全向水平极化特性的第一天线。
在一些实施例中,所述天线模组还包括第三辐射体;其中,所述第三辐射体设置在所述第一表面,以形成具有倒F型特性的第二天线。
在一些实施例中,所述天线模组还包括第三馈电件、第四馈电件和基板,且所述第四馈电件和所述基板均设置于所述天线支架背离所述第一表面的一侧;所述基板上设置有第二馈源,所述第四馈电件通过所述基板与所述第二馈源电连接;所述第三馈电件设置在所述天线支架上,且所述第三馈电件分别与所述第四馈电件和所述第三辐射体电连接,以使得所述第三辐射体接收所述第二馈源提供的射频信号。
在一些实施例中,所述天线模组还包括第五馈电件和第六馈电件,且所述第六馈电件设置于所述天线支架背离所述第一表面的一侧;所述基板上设置有地,所述第六馈电件通过所述基板接地;所述第五馈电件设置在所述天线支架上,且所述第五馈电件分别与所述第六馈电件和所述第三辐射体电连接,以使得所述第三辐射体接地。
在一些实施例中,所述天线支架设置有第二过孔和第三过孔,且所述第二过孔和所述第三过孔贯穿所述第一表面及背离所述第一表面的第二表面;所述第三馈电件包括第三馈电部分和第四馈电部分;其中,所述第三馈电部分设置在所述第二表面,所述第四馈电部分设置在所述第二过孔内,以使得所述第三辐射体接收所述第二馈源提供的射频信号;所述第五馈电件包括第五馈电部分和第六馈电部分;其中,所述第五馈电部分设置在所述第二表面,所述第六馈电部分设置在所述第三过孔内,以使得所述第三辐射体接地。
在一些实施例中,所述第一天线工作于CH9频段,所述第二天线工作于蓝牙频段。
第二方面,本申请实施例提供了一种电子设备,所述电子设备包括如第一方面所述的天线模组。
在一些实施例中,所述电子设备还包括壳体;其中,所述天线模组设置 在所述壳体内部。
在一些实施例中,所述壳体开设有电池仓,所述电子设备还包括电池;其中,所述电池设置在所述电池仓内。
在一些实施例中,所述电子设备还包括充电接口;其中,所述充电接口用于连接外部电源向所述电池充电。
在一些实施例中,所述电子设备为UWB标签设备。
为了能够更加详尽地了解本申请实施例的特点与技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。
在以下的描述中,涉及到“一些实施例”,其描述了所有可能实施例的子集,但是可以理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。
还需要指出,本申请实施例所涉及的术语“第一\第二\第三”仅是用于区别类似的对象,不代表针对对象的特定排序,可以理解地,“第一\第二\第三”在允许的情况下可以互换特定的顺序或先后次序,以使这里描述的本申请实施例能够以除了在这里图示或描述的以外的顺序实施。
可以理解,超宽带(Ultra Wide Band,UWB)是一种短距离的无线通信方式。其传输距离通常在10m以内,使用1GHz以上带宽。UWB不采用正弦载波,而是利用纳秒至微秒级的非正弦波窄脉冲传输数据,因此,其所占的频谱范围很宽,适用于高速、近距离的无线个人通信。美国联邦通信委员会(Federal Communications Commission,FCC)规定,UWB的工作频段范围为从3.1GHz到10.6GHz,最小工作频宽为500MHz。目前主流UWB频段的中心频率为6.5GHz和8GHz,带宽要求500MHz以上。
本申请实施例提供了一种天线模组,应用于电子设备1,该电子设备1可以以各种形式来实施,包括但不限于智能手机、平板电脑、笔记本电脑、掌上电脑、互联网设备(Mobile Internet Device,MID)、电子书、个人数字助理(Personal Digital Assistant,PDA)、便携式播放器(Play Station Portable,PSP)、智能手表、个人计算机等具有通信功能的设备。在一种实施方式中,天线模组为利用UWB技术的天线模组;这样,利用UWB技术的天线模组将不再采用载波,而是采用纳秒至微秒级的非正弦波窄脉冲传输数据。
下面结合图1及图2对本申请实施例提供的天线模组的测角原理进行介绍。其中,图1示出了一种电子设备1的组成结构示意图;图2示出了一种电子设备1收发电磁波信号的测角原理示意图。在图1中,电子设备1可以包括两个天线模组,为了方便描述,两个天线模组分别命名为第一天线模组10a和第二天线模组10b。
如图2所示,假定P 1点表示第一天线模组10a,P 2点表示第二天线模组 10b,P 3点表示电磁波信号的发射位置,P 4点表示P 1和P 2的连线中点。在本申请实施例中,θ 1表示P 1和P 2的连线与P 3和P 1的连线之间的夹角;θ 2表示P 1和P 2的连线与P 3和P 2的连线之间的夹角;θ表示P 1和P 2的连线与P 3和P 4的连线之间的夹角;α表示θ的余角;D表示P 3和P 4之间的距离;λ表示第一天线模组10a及第二天线模组10b收发的电磁波信号的波长;f表示第一天线模组10a及第二天线模组10b收发的电磁波信号的频率;d max表示第一天线模组10a及第二天线模组10b的间距的最大值。
其中,当D远大于λ时,则有θ 1≈θ 2≈θ;
由于第一天线模组10a及第二天线模组10b为利用UWB技术的天线模组,因此,f的范围为6.25GHz~8.25GHz;
相应地,λ的范围为36.4mm~48mm,则有λ/2的范围为18.2mm~24mm;
另外,d max=18mm;基于图2可以得到,d 1=dcosθ=dsinα。
电磁波信号达到第一天线模组10a和第二天线模组10b的时间差t 1为:
Figure PCTCN2022140717-appb-000001
其中,c表示光速,由于t 1表示电磁波信号达到第一天线模组10a和第二天线模组10b的时间差,因此,也称为到达时间差(Time Difference of Arrival,TDOA)。
电磁波信号达到第一天线模组10a和第二天线模组10b的相位差
Figure PCTCN2022140717-appb-000002
为:
Figure PCTCN2022140717-appb-000003
由于
Figure PCTCN2022140717-appb-000004
表示电磁波信号达到第一天线模组10a和第二天线模组10b的相位差,因此,也称为到达相位差(Phase Difference of Arrival,PDOA)。
Figure PCTCN2022140717-appb-000005
其中,α表示到达角度(Angle of Arrival,AOA)。由式(3)可见,到达角度α和到达相位差
Figure PCTCN2022140717-appb-000006
相关。
简单来说,针对天线模组的测角原理,可以是:对于不同方向的电磁波信号,到达两个天线的路径不同,引入了额外的路径差,从而引入额外的时间差和额外的相位差,通过相位差与到达角度的唯一函数关系来实现测角。
下面结合图3和图4对本申请的测距原理进行介绍。图3示出了一种电子设备与基站的通信场景示意图。如图3所示,电子设备1发射第一信号至基站2,基站2接收到第一信号,并经过反应时间(用T reply表示)后发射第二信号至电子设备1,电子设备1接收到第二信号,其中,电子设备1接收到第二信号以及电子设备1发射第一信号的时间差用T loop表示,那么,飞行时间(Time of flight,TOF)的计算如下:
TOF=(T loop-T reply)/2                   (4)
D=c×TOF                                (5)
其中,D表示电子设备1与基站2之间的距离,c表示光速,c=3×10 8m/s。
图4示出了一种多个基站对电子设备1的定位场景示意图。如图4所示,多个基站可以包括基站2、基站3和基站4等。其中,对电子设备1进行定位 的算法为TDOA算法,即利用时间差进行定位的算法。通过测量信号达到基站2的时间,可确定出电子设备1与基站2之间的距离,通过比较电子设备1发出的第一信号达到基站2、基站3和基站4等多个不同基站之间的时间差,就能确定出以电子设备1为焦点、距离差为长轴的双曲线的交点,该交点即为电子设备1的位置。其中,该距离差等于式(5)所示的光速与时间差之积。
在相关技术中,利用UWB技术的天线模组要么是一种倒F型天线(Inverted-F antenna,IFA),要么是一种单极子天线;但是这时候的印制电路板(Printed circuit board,PCB)面积较大,即天线的地较大,使得UWB天线的方向性都比较高(>4.5dB)。考虑到工业和信息化部关于UWB技术频率使用的规定,如表1所示,UWB无线电设备UWB发射信号的等效全向辐射功率谱密度限值在6.0~9.0GHz时为-41dBm/MHz;进而限制了天线的发射功率,因此较高的天线方向性会导致测距均匀不佳:天线增益强的方向,测距远;天线增益弱的方向,测距短。为了提高通信距离,在符合规定的情况下,本申请实施例引入了一种具有低方向性的UWB天线。
表1
Figure PCTCN2022140717-appb-000007
此外,经过大量实验测试表明,较高方向性的UWB天线在增益低的角域测距和测角方面的表现较差,而全向天线相对于定向天线,测距和测角效果更好。一般情况下,等幅同相馈电的射频网络需要单独在PCB上设计,从而还会需要额外的PCB面积,难以集成到天线,具有较高的插入损耗。
基于此,本申请实施例提供了一种天线模组,该天线模组包括天线支架、功分部件和多个第一辐射体;天线支架包括第一表面以及与第一表面连接的第一侧面;其中,功分部件设置在第一表面,多个第一辐射体设置在第一侧面,且多个第一辐射体围绕第一侧面呈环状分布,功分部件对应的多条支路分别与多个第一辐射体电连接,用于将输入至功分部件的射频信号转换为等幅同相信号,并分别馈入多个第一辐射体。这样,该天线模组的方向性低,而且水平面方向图接近为一个圆,从而不仅能够提升测距均匀度,增加测距距离,而且还能够降低测角方面的算法复杂度,工程实用性高;此外,由于功分部件和第一辐射体均集成在天线支架上,还能够减小插入损耗。
下面将结合附图对本申请各实施例进行详细说明。
在本申请的一实施例中,参见图5,其示出了本申请实施例提供的一种天 线模组的组成结构示意图。如图5所示,天线模组10可以包括天线支架101、功分部件102和多个第一辐射体103;
天线支架101可以包括第一表面a以及与第一表面a连接的第一侧面b;其中,功分部件102设置在第一表面a,多个第一辐射体103设置在第一侧面b,且多个第一辐射体103围绕第一侧面b呈环状分布,功分部件102对应的多条支路分别与多个第一辐射体103电连接,用于将输入至功分部件的射频信号转换为等幅同相信号,并分别馈入多个第一辐射体。
需要说明的是,在本申请实施例中,这里的天线模组10可以为前述电子设备1中的第一天线模组10a,也可以为前述电子设备1中的第二天线模组10b,在此不作具体限定。另外,虽然前述对天线模组在电子设备1中一种应用场景进行介绍,但是可以理解,该电子设备1中的天线模组(第一天线模组10a及第二天线模组10b)并不应当理解为对本申请实施例提供的天线模组10的具体结构限定。
还需要说明的是,在本申请实施例中,第一表面a为天线支架101的上部外表面,第一侧面b为天线支架101的侧部外表面。除了第一表面a和第一侧面b之外,天线支架101还可以包括第二表面c(图中未示出);其中,第二表面c可以为天线支架101中背离第一表面a的内表面,具体可以是指天线支架101的上部内表面。
可以理解地,激光直接成型(Laser Direct Structuring,LDS)是一种专业镭射加工、射出与电镀制程的三维互联器件(Three-dimensional Molded Interconnect Device,3D-MID)生产技术,其原理是将普通的塑胶元件/电路板赋予电气互连功能、支撑元器件功能和塑料壳体的支撑、防护等功能,以及由机械实体与导电图形结合而产生的屏蔽、天线等功能结合于一体,形成所谓的3D-MID,适用于IC Substrate、HDI PCB、Lead Frame局部细线路制作。
天线支架101可以是由塑料构成。因此,在一种具体的实现方式中,功分部件102可以采用LDS方式雕刻在天线支架101的第一表面a上,多个第一辐射体103可以是采用LDS方式雕刻在天线支架101的第一侧面b上,以便将第一天线集成到天线支架上,能够减小插入损耗。
在本申请实施例中,功分部件102对应的多条支路分别与多个第一辐射体电连接,使得馈入的等幅同相信号在第一侧面b形成电流环,以形成具有全向水平极化特性的第一天线。也就是说,当对第一天线馈电时,通过功分部件102能够对输入的射频信号进行多支路等幅同相输出;由于功分部件102对应的多条支路分别连接有第一辐射体,通过对这多个第一辐射体进行等幅同相馈电,可以在第一侧面b形成电流环(也可称为环形电流、圆形电流等),因而实现全向辐射;同时由于多个第一辐射体没有接地,还能够使得第一天线实现水平极化辐射,从而能够降低第一天线的方向性。
为了进一步降低第一天线的方向性,本申请实施例还可以在每相邻两个的第一辐射体之间增加一个第二辐射体。因此,在一些实施例中,在图5所示天线模组10的基础上,参见图6,天线模组10还可以包括多个第二辐射体 104;
其中,多个第二辐射体104设置在第一侧面b,且多个第二辐射体104与功分部件102对应的多个支路均不存在电连接。
需要说明的是,在本申请实施例中,多个第一辐射体103与多个第二辐射体104围绕第一侧面b交替分布,且相邻的第一辐射体与第二辐射体之间设置有间隙。
还需要说明的是,在本申请实施例中,第一辐射体与第二辐射体可以为但不仅限于导电贴片。在一种具体的实现方式中,第一辐射体与第二辐射体可以是通过LDS方式雕刻在第一侧面b上。其中,无论是第一辐射体还是第二辐射体的形状,可以为圆形、矩形、椭圆形、多边形等。在本申请实施例中,以第一辐射体和第二辐射体为矩形导电贴片为例进行示意。
另外,在本申请实施例中,天线辐射器可以包括两种:一种是直接与功分部件102对应的多条支路相连接的第一辐射体,也可以称为馈电辐射区或者单极子辐射器;另一种是没有直接与功分部件102对应的多条支路相连接的第二辐射体,也可以称为寄生贴片。在这里,寄生贴片是孤立的,能够进一步降低第一天线的方向性。
对于功分部件102而言,在一些实施例中,功分部件102可以包括两条导电路径;其中,两条导电路径相互交叉且具有一个交叉点,以形成功分部件102对应的多条支路。
在一种具体的实施例中,功分部件102对应有四条支路,而且这四条支路中相邻两条支路之间的夹角为90度。
在一种更具体的实施例中,功分部件102可以为具有等功分结构的一分四功分器,多个第一辐射体为四个第一辐射体。这样,功分部件102对应的四条支路分别与四个第一辐射体电连接,用于向四个第一辐射体馈入等幅同相信号。
需要说明的是,如图5或图6所示,功分部件102可以为在天线支架上呈交叉形状的LDS刻线,这时候的功分部件102对应有四条支路,而且每一条支路对应连接一个第一辐射体。在这种情况下,功分部件102又可以称为一分四功分器,以便向四个第一辐射体等幅同相馈电。
还需要说明的是,在本申请实施例中,四条支路分别与四个第一辐射体电连接,可以对应形成四个等幅同相的单极子天线,以便对这四个单极子天线等幅同相馈电来实现全向辐射。
还可以理解地,当功分部件102为一分四功分器时,多个第二辐射体也为四个第二辐射体;其中,这四个第一辐射体和四个第二辐射体在第一侧面b上交替分布,以形成环状结构;从而在对第一天线馈电时,能够在天线支架101的第一侧面b形成圆形电流,因而实现全向辐射;同时由于多个第一辐射体或者多个第二辐射体均没有接地,因此还能够使得第一天线实现水平极化辐射。
当对第一天线馈电时,在一些实施例中,天线模组10还可以包括第一馈 电件、第二馈电件和基板,且第二馈电件和基板均设置于天线支架101背离第一表面a的一侧;其中,
基板上设置有第一馈源,第二馈电件通过基板与第一馈源电连接;
第一馈电件设置在天线支架101上,且第一馈电件分别与第二馈电件和功分部件102电连接,以使得功分部件102接收第一馈源74提供的射频信号。
在一种具体的实施例中,天线支架101设置有第一过孔,且第一过孔贯穿第一表面a及背离第一表面的第二表面c;
第一馈电件包括第一馈电部分和第二馈电部分;其中,第一馈电部分设置在第二表面,第二馈电部分设置在第一过孔内,以使得功分部件接收第一馈源提供的射频信号。
需要说明的是,在本申请实施例中,基板可以为PCB板。第一馈源可以是设置在PCB板上的射频电路,该射频电路能够提供射频信号,以便实现第一天线的馈电。
还需要说明的是,在本申请实施例中,第二馈电件可以为第一天线对应的第一馈电弹片,第一馈电弹片与PCB板均设置于天线支架101背离上部外表面的一侧。具体地,第一馈电弹片的一端可以焊接在PCB板上,第一馈电弹片的另一端可以与设置在天线支架101的上部内表面上的第一馈电部分进行金属面接触;而第二馈电部分位于第一过孔内,使得第一过孔为金属化过孔,根据该金属化过孔将天线支架101的上部内表面与上部外表面进行电连接,从而可以在天线支架101的上部外表面馈电,使得位于上部外表面的功分部件102能够接收第一馈源提供的射频信号。
进一步地,在一些实施例中,在图6所示天线模组10的基础上,参见图7,天线模组10还可以包括第三辐射体105;其中,第三辐射体105设置在第一表面a,以形成具有倒F型特性的第二天线。
需要说明的是,第二天线的形状与倒置的英文字母F相似,故第二天线也可以称为倒F型天线。其中,倒F型天线具有结构简单、制造成本低、辐射效率高等特点,在蓝牙协议规定的2.402~2.480GHz工作频段内,倒F型天线完全可以满足蓝牙天线的带宽要求。
在这里,第一天线的工作频段与第二天线的工作频段不同。在一种具体的实施例中,第一天线可以工作于CH9频段,第二天线可以工作于蓝牙频段。其中,对于具有全向水平极化特性的第一天线,也可以称为全向水平极化UWB寻物天线,其可以应用于UWB寻物,工作于UWB的CH9频段;而具有倒F型特性的第二天线,其工作于蓝牙频段,适用于短距离无线通信。
还需要说明的是,当对第二天线馈电时,在一些实施例中,天线模组10还可以包括第三馈电件和第四馈电件,且第四馈电件也设置于天线支架101背离第一表面a的一侧;其中,
基板上设置有第二馈源,第四馈电件通过基板与第二馈源电连接;
第三馈电件设置在天线支架101上,且第三馈电件分别与第四馈电件和第三辐射体105电连接,以使得第三辐射体105接收第二馈源提供的射频信 号。
当对第二天线馈电时,第二天线还需要接地。因此,在一些实施例中,天线模组10还可以包括第五馈电件和第六馈电件,且第六馈电件也设置于天线支架101背离第一表面a的一侧;其中,
基板上设置有地,第六馈电件通过基板接地;
第五馈电件设置在天线支架101上,且第五馈电件分别与第六馈电件和第三辐射体105电连接,以使得第三辐射体105接地。
在一种具体的实施例中,天线支架101还设置有第二过孔和第三过孔,且第二过孔和第三过孔贯穿第一表面a及背离第一表面的第二表面c;
第三馈电件包括第三馈电部分和第四馈电部分;其中,第三馈电部分设置在第二表面,第四馈电部分设置在第二过孔内,以使得第三辐射体105接收第二馈源提供的射频信号;
第五馈电件包括第五馈电部分和第六馈电部分;其中,第五馈电部分设置在第二表面,第六馈电部分设置在第三过孔内,以使得第三辐射体105接地。
需要说明的是,以基板为PCB板为例,除了第一馈源之外,PCB板上还可以设置有第二馈源和地。在本申请实施例中,第四馈电件可以为第二天线对应的第二馈电弹片,第六馈电件可以为第二天线对应的接地弹片。
具体来讲,这里的第二馈电弹片、接地弹片与PCB板均设置于天线支架101背离上部外表面的一侧。具体地,第二馈电弹片的一端也可以焊接在PCB板上,第二馈电弹片的另一端可以与设置在天线支架101的上部内表面上的第三馈电部分进行金属面接触;而第四馈电部分位于第二过孔内,使得第二过孔也为金属化过孔,同样根据该金属化过孔将天线支架101的上部内表面与上部外表面进行电连接,使得位于上部外表面的第三辐射体105能够接收第二馈源提供的射频信号。另外,接地弹片的一端也可以焊接在PCB板上,接地弹片的另一端可以与设置在天线支架101的上部内表面上的第五馈电部分进行金属面接触;而第六馈电部分位于第三过孔内,使得第三过孔也为金属化过孔,同样根据该金属化过孔将天线支架101的上部内表面与上部外表面进行电连接,使得位于上部外表面的第三辐射体105能够接地。
除此之外,在一些实施例中,天线支架上还可以设置多个卡扣,以便实现天线支架与PCB板固定在一起。
简言之,在本申请实施例中,天线支架上可以设置第一天线和第二天线,例如通过LDS方式在天线支架上雕刻两种天线。其中,第一天线为全向水平极化天线,支持UWB技术,其可以应用于UWB寻物应用;第二天线为IFA天线,支持蓝牙,其可以应用于短距离的蓝牙通信。
本实施例提供了一种天线模组,基于上述天线模组10的组成结构,该天线模组的方向性低,而且水平面方向图接近为一个圆,从而不仅能够提升测距均匀度,增加测距距离,而且还能够降低测角方面的算法复杂度,工程实用性高;此外,由于功分部件和第一辐射体均集成在天线支架上,还能够减 小插入损耗。
在本申请的另一实施例中,参见图8,其示出了一种天线模组10的详细结构示意图。如图8所示,(a)为天线模组10的上部外表面(即第一表面)的俯视图,(b)为天线模组10的上部内表面(即第二表面)的俯视图,(c)为天线模组10的一种侧面立体图,(c)为天线模组10的另一种侧面立体图。
在图8中,801用于标识功分部件(用竖线填充),802用于标识第一辐射体(用网格线填充),803用于标识第二辐射体(用点填充),804用于标识第三辐射体(用加粗线表示),804用于标识第一馈电件中的第一馈电部分,以便与第一馈电弹片(图中未示出)进行金属面接触连接;805用于标识第一过孔,第一过孔内设置有第一馈电件中的第二馈电部分,以便实现第一表面与第二表面的连接,从而使得功分部件能够馈入射频信号;806用于标识第三馈电件中的第三馈电部分,以便与第二馈电弹片(图中未示出)进行金属面接触连接;807用于标识第二过孔,第二过孔内设置有第三馈电件中的第四馈电部分,以便实现第一表面与第二表面的连接,从而使得第三辐射体也能够馈入射频信号;808用于标识第五馈电件中的第五馈电部分,以便与接地弹片(图中未示出)进行金属面接触连接;809用于标识第三过孔,第三过孔内设置有第五馈电件中的第六馈电部分,以便实现第一表面与第二表面的连接,从而使得第三辐射体接地。
在图8中,天线模组10还可以包括PCB板。其中,810用于标识天线支架上设置的卡扣,以便实现天线支架与PCB板固定在一起。
另外,需要说明的是,根据(c)和(d)可以看出,第一辐射体和第二辐射体的数量均为四个,这四个第一辐射体与四个第二辐射体交替分布;而且第一辐射体直接与功分部件对应的支路连接,第二辐射体未直接与功分部件对应的支路连接,即第二辐射体可以看作孤立的寄生贴片。在这里,功分部件、第一辐射体、第二辐射体和第一馈电弹片等形成具有全向水平极化特性的第一天线,第三辐射体、第二馈电弹片和接地弹片等形成具有倒F型特性的第二天线。
综上可知,在本申请实施例中,天线支架上可以设置有两个天线,这两个天线均是通过LDS技术在天线支架上设置形成。它们的功能与应用如表2所示。
表2
Figure PCTCN2022140717-appb-000008
其中,第二天线为倒F型天线,第二天线可以通过1个第二馈电弹片进行馈电,在第二馈电弹片旁边还存在一个接地弹片,天线支架内侧表面具有2个LDS方式雕刻的金属接触面,而且内侧与外侧通过LDS方式雕刻的金属化过孔来连接,其工作在蓝牙频段,用于蓝牙通信。
第一天线为全向水平极化天线,用于UWB寻物天线,工作在UWB的CH9频段。第二天线具有1个第一馈电弹片,射频信号通过PCB板上焊接的第一馈电弹片接触到天线支架内侧表面设置的金属接触面进行馈电,进而在天线支架的中心馈电,内侧与外侧通过LDS方式设置的金属化过孔来连接。其中,天线支架上方具有两条相互交叉的LDS刻线,这是第一天线的功分网络,能够对输入的视频信号进行等幅同相输出,LDS刻线的末端接入天线支架侧面的天线辐射器(具体为四个单极子辐射器),因此对这四个单极子辐射器进行等幅同相馈电来实现全向辐射,除了馈电的单极子辐射器之外,相邻的单极子辐射器之间还存在一个寄生贴片,该寄生贴片可进一步降低第一天线的方向性。当对第一天线馈电时,能够在天线支架侧面形成电流环,因而实现全向辐射;由于单极子辐射器或寄生贴片没有接地在PCB板的外环(即PCB板的圆周外侧,也即PCB板的地),因此还可以实现水平极化辐射。
图9A示出了本申请实施例提供的一种第一天线的散射参数示意图,图9B示出了本申请实施例提供的第一天线的天线效率示意图,图9C示出了本申请实施例提供的第一天线的8GHz面电流分布示意图,图9D示出了本申请实施例提供的第一天线的一种辐射方向图示意图,图9E示出了本申请实施例提供的第一天线的另一种辐射方向图示意图,图9F示出了本申请实施例提供的第一天线的方向性分布示意图。其中,如图9A和图9B所示,第一天线在UWB的CH9频段具有较宽的带宽和较高的效率;如图9C、图9D和图9E所示,得益于来自中心的等幅同相馈电,馈电的单极子辐射器和寄生贴片在天线支架侧面形成环形电流,产生全向水平极化辐射;如图9F所示,第一天线的方向性在CH9频段小于3dB,最小接近2dB,即该天线的方向性很低。
与相关技术相比,相关技术中的UWB天线仅有一个单极子,受较大的PCB地影响,其方向性较高(>4.5dB)。而本申请实施例的技术方案方向性较小(大约2~3dB),可以取得很好的全向辐射效果。另外,得益于低方向性和水平全向辐射,测角测距效果也能够取得较大的提升,从提升天线硬件复杂度的角度来降低软件算法的复杂度,减少软件算法的工作,具有很强的实用意义;此外,第一天线的等幅同相馈电的射频网络设计在天线支架上,这时候不需要额外的PCB面积,通过集成到天线支架还能够使得插入损耗小。
本实施例提供了一种天线模组,通过上述实施例对前述实施例的具体实现进行了详细阐述,从中可以看出,通过前述实施例的技术方案,一方面,受UWB发射信号的等效全向辐射功率谱密度的规定,该天线模组的方向性低,可降低天线的增益,因此可以提高射频功率,增加了信号强度,增加测距距离,提升用户体验,具有很强的工程实用性;另一方面,该天线模组的方向性低,水平面方向图接近一个圆,因此在水平方向的测距均匀度好,具有很 强的工程实用性;又一方面,第一天线的辐射体设计在天线支架侧面,工作时形成电流环,从而形成水平极化辐射,可与水平极化的测角天线阵列搭配使用;再一方面,在测角方面,得益于水平面的全向辐射,该天线模组还可以通过提高天线的硬件复杂度来降低对测角算法的依赖,减少软件算法工作,提升用户体验,具有很强的工程实用性。
在本申请的又一实施例中,参见图10,其示出了本申请实施例提供的一种电子设备的组成结构示意图。如图10所示,电子设备100可以包括前述实施例任一项的天线模组10。
进一步地,图11示出了本申请实施例提供的一种电子设备的详细结构示意图。在一些实施例中,如图11所示,电子设备100还可以包括壳体1001;其中,天线模组10设置在壳体1001内部。
在一些实施例中,如图11所示,壳体1001开设有电池仓1002,电子设备100还可以包括电池1003;其中,电池1003设置在电池仓1002内。
需要说明的是,在本申请实施例中,电池1003可以为不可充电电池(例如纽扣电池),这时候电子设备100不需要充电接口,无需对电池1003进行充电。
还需要说明的是,在本申请实施例中,电池1003还可以为充电电池(例如蓄电池、锂电池等),这时候电子设备100需要充电接口。
在一些实施例中,如图11所示,当电池1003为充电电池时,电子设备100还可以包括充电接口1004;其中,充电接口1004可以与外部电源连接,以便向电池1003充电。
在一种具体的实施例中,电子设备100可以为UWB标签设备。
以标签设备为例,参见图12,其示出了本申请实施例提供的一种标签设备的切面示意图。如图12所示,该标签设备120能够支持UWB寻物应用。其中,标签设备120可以包括外壳1201、天线支架1202、第一馈电弹片1203、第二馈电弹片1204、接地弹片1205、PCB板1206、电池仓1207和纽扣电池1208等等。其中,外壳1201、天线支架1202和电池仓1207均是由塑料构成;而第一天线和第二天线则是通过LDS方式设置在天线支架1202上。
本申请实施例提供了一种电子设备,该电子设备中包括前述实施例所述的天线模组,由于该天线模组的方向性低,而且水平面方向图接近为一个圆,从而不仅能够提升测距均匀度,增加测距距离,而且还能够降低测角方面的算法复杂度,工程实用性高;此外,由于功分部件和第一辐射体均集成在天线支架上,还能够减小插入损耗。
需要说明的是,在本申请中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况 下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
本申请所提供的几个方法实施例中所揭露的方法,在不冲突的情况下可以任意组合,得到新的方法实施例。
本申请所提供的几个产品实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的产品实施例。
本申请所提供的几个方法或设备实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的方法实施例或设备实施例。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
工业实用性
本申请实施例中,天线模组包括天线支架、功分部件和多个第一辐射体;天线支架包括第一表面以及与第一表面连接的第一侧面;其中,功分部件设置在第一表面,多个第一辐射体设置在第一侧面,且多个第一辐射体围绕第一侧面呈环状分布,功分部件对应的多条支路分别与多个第一辐射体电连接,用于将输入至功分部件的射频信号转换为等幅同相信号,并分别馈入多个第一辐射体。这样,该天线模组的方向性低,而且水平面方向图接近为一个圆,从而不仅能够提升测距均匀度,增加测距距离,而且还能够降低测角方面的算法复杂度,工程实用性高;此外,由于功分部件和第一辐射体均集成在天线支架上,还能够减小插入损耗。

Claims (20)

  1. 一种天线模组,所述天线模组包括天线支架、功分部件和多个第一辐射体;
    所述天线支架包括第一表面以及与所述第一表面连接的第一侧面;其中,所述功分部件设置在所述第一表面,所述多个第一辐射体设置在所述第一侧面,且所述多个第一辐射体围绕所述第一侧面呈环状分布,所述功分部件对应的多条支路分别与所述多个第一辐射体电连接,用于将输入至所述功分部件的射频信号转换为等幅同相信号,并分别馈入所述多个第一辐射体。
  2. 根据权利要求1所述的天线模组,其中,所述天线模组还包括多个第二辐射体;
    其中,所述多个第二辐射体设置在所述第一侧面,且所述多个第二辐射体与所述功分部件对应的多个支路均不存在电连接。
  3. 根据权利要求2所述的天线模组,其中,所述多个第一辐射体与所述多个第二辐射体围绕所述第一侧面交替分布,且相邻的所述第一辐射体与所述第二辐射体之间设置有间隙。
  4. 根据权利要求1所述的天线模组,其中,所述功分部件包括两条导电路径;其中,所述两条导电路径相互交叉且具有一个交叉点,以形成所述功分部件对应的多条支路。
  5. 根据权利要求4所述的天线模组,其中,所述功分部件对应的多条支路为四条支路,且所述四条支路中相邻两条支路之间的夹角为90度。
  6. 根据权利要求1所述的天线模组,其中,所述功分部件为具有等功分结构的一分四功分器,所述多个第一辐射体为四个第一辐射体;
    所述功分部件对应的四条支路分别与所述四个第一辐射体电连接,用于向所述四个第一辐射体馈入所述等幅同相信号。
  7. 根据权利要求6所述的天线模组,其中,所述四条支路分别与所述四个第一辐射体电连接,对应形成四个等幅同相的单极子天线。
  8. 根据权利要求1所述的天线模组,其中,所述天线模组还包括第一馈电件、第二馈电件和基板,且所述第二馈电件和所述基板均设置于所述天线支架背离所述第一表面的一侧;
    所述基板上设置有第一馈源,所述第二馈电件通过所述基板与所述第一馈源电连接;
    所述第一馈电件设置在所述天线支架上,且所述第一馈电件分别与所述第二馈电件和所述功分部件电连接,以使得所述功分部件接收所述第一馈源提供的射频信号。
  9. 根据权利要求8所述的天线模组,其中,所述天线支架设置有第一过孔,且所述第一过孔贯穿所述第一表面及背离所述第一表面的第二表面;
    所述第一馈电件包括第一馈电部分和第二馈电部分;其中,所述第一馈 电部分设置在所述第二表面,所述第二馈电部分设置在所述第一过孔内,以使得所述功分部件接收所述第一馈源提供的射频信号。
  10. 根据权利要求1至9中任一项所述的天线模组,其中,所述功分部件对应的多条支路分别与所述多个第一辐射体电连接,使得馈入的所述等幅同相信号在所述第一侧面形成电流环,以形成具有全向水平极化特性的第一天线。
  11. 根据权利要求10所述的天线模组,其中,所述天线模组还包括第三辐射体;
    其中,所述第三辐射体设置在所述第一表面,以形成具有倒F型特性的第二天线。
  12. 根据权利要求11所述的天线模组,其中,所述天线模组还包括第三馈电件、第四馈电件和基板,且所述第四馈电件和所述基板均设置于所述天线支架背离所述第一表面的一侧;
    所述基板上设置有第二馈源,所述第四馈电件通过所述基板与所述第二馈源电连接;
    所述第三馈电件设置在所述天线支架上,且所述第三馈电件分别与所述第四馈电件和所述第三辐射体电连接,以使得所述第三辐射体接收所述第二馈源提供的射频信号。
  13. 根据权利要求12所述的天线模组,其中,所述天线模组还包括第五馈电件和第六馈电件,且所述第六馈电件设置于所述天线支架背离所述第一表面的一侧;
    所述基板上设置有地,所述第六馈电件通过所述基板接地;
    所述第五馈电件设置在所述天线支架上,且所述第五馈电件分别与所述第六馈电件和所述第三辐射体电连接,以使得所述第三辐射体接地。
  14. 根据权利要求13所述的天线模组,其中,所述天线支架设置有第二过孔和第三过孔,且所述第二过孔和所述第三过孔贯穿所述第一表面及背离所述第一表面的第二表面;
    所述第三馈电件包括第三馈电部分和第四馈电部分;其中,所述第三馈电部分设置在所述第二表面,所述第四馈电部分设置在所述第二过孔内,以使得所述第三辐射体接收所述第二馈源提供的射频信号;
    所述第五馈电件包括第五馈电部分和第六馈电部分;其中,所述第五馈电部分设置在所述第二表面,所述第六馈电部分设置在所述第三过孔内,以使得所述第三辐射体接地。
  15. 根据权利要求11所述的天线模组,其中,所述第一天线工作于CH9频段,所述第二天线工作于蓝牙频段。
  16. 一种电子设备,其中,所述电子设备包括如权利要求1至15中任一项所述的天线模组。
  17. 根据权利要求16所述的电子设备,其中,所述电子设备还包括壳体;其中,所述天线模组设置在所述壳体内部。
  18. 根据权利要求17所述的电子设备,其中,所述壳体开设有电池仓,所述电子设备还包括电池;其中,所述电池设置在所述电池仓内。
  19. 根据权利要求18所述的电子设备,其中,所述电子设备还包括充电接口;其中,所述充电接口用于连接外部电源向所述电池充电。
  20. 根据权利要求16所述的电子设备,其中,所述电子设备为UWB标签设备。
PCT/CN2022/140717 2022-03-23 2022-12-21 一种天线模组以及电子设备 WO2023179128A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210293782.7A CN116845522A (zh) 2022-03-23 2022-03-23 一种天线模组以及电子设备
CN202210293782.7 2022-03-23

Publications (1)

Publication Number Publication Date
WO2023179128A1 true WO2023179128A1 (zh) 2023-09-28

Family

ID=88099777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140717 WO2023179128A1 (zh) 2022-03-23 2022-12-21 一种天线模组以及电子设备

Country Status (2)

Country Link
CN (1) CN116845522A (zh)
WO (1) WO2023179128A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117691349A (zh) * 2023-12-26 2024-03-12 青岛柯锐思德电子科技有限公司 一种板载小型化uwb单极子天线及测角组合

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433742B1 (en) * 2000-10-19 2002-08-13 Magis Networks, Inc. Diversity antenna structure for wireless communications
CN202282445U (zh) * 2011-11-10 2012-06-20 武汉虹信通信技术有限责任公司 一种双极化室分天线
CN106469854A (zh) * 2015-08-21 2017-03-01 华为技术有限公司 一种微波毫米波双频天线
CN109216897A (zh) * 2018-10-24 2019-01-15 常熟正昊电子科技有限公司 一种适用于隐蔽安装的小型化北斗导航天线
CN109687167A (zh) * 2018-12-29 2019-04-26 上海微波技术研究所(中国电子科技集团公司第五十研究所) 用于x波段无线通信系统的天线阵列
CN209329169U (zh) * 2019-02-27 2019-08-30 山东雷诚电子科技有限公司 一种s波段开关切换环形天线阵
CN111029737A (zh) * 2019-11-22 2020-04-17 深圳市鼎耀科技有限公司 一种紧凑型的圆极化全向天线
CN114374077A (zh) * 2022-01-12 2022-04-19 Oppo广东移动通信有限公司 电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433742B1 (en) * 2000-10-19 2002-08-13 Magis Networks, Inc. Diversity antenna structure for wireless communications
CN202282445U (zh) * 2011-11-10 2012-06-20 武汉虹信通信技术有限责任公司 一种双极化室分天线
CN106469854A (zh) * 2015-08-21 2017-03-01 华为技术有限公司 一种微波毫米波双频天线
CN109216897A (zh) * 2018-10-24 2019-01-15 常熟正昊电子科技有限公司 一种适用于隐蔽安装的小型化北斗导航天线
CN109687167A (zh) * 2018-12-29 2019-04-26 上海微波技术研究所(中国电子科技集团公司第五十研究所) 用于x波段无线通信系统的天线阵列
CN209329169U (zh) * 2019-02-27 2019-08-30 山东雷诚电子科技有限公司 一种s波段开关切换环形天线阵
CN111029737A (zh) * 2019-11-22 2020-04-17 深圳市鼎耀科技有限公司 一种紧凑型的圆极化全向天线
CN114374077A (zh) * 2022-01-12 2022-04-19 Oppo广东移动通信有限公司 电子设备

Also Published As

Publication number Publication date
CN116845522A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
US10819029B2 (en) Electronic device having multi-frequency ultra-wideband antennas
US20220077583A1 (en) Antenna unit and terminal device
US20230387572A1 (en) Mobile terminal
CN201781071U (zh) 一种宽频带天线及馈电网络
CN110212283A (zh) 一种天线单元及终端设备
TWI662746B (zh) 三頻帶天線
US8081120B2 (en) Broadband antenna unit comprising a folded plate-shaped monopole antenna portion and two conductive elements
WO2023134405A1 (zh) 电子设备
Lee et al. End-fire Vivaldi antenna array with wide fan-beam for 5G mobile handsets
WO2023179128A1 (zh) 一种天线模组以及电子设备
CN111987415B (zh) 电子设备
EP4266497A1 (en) Electronic device
CN113067151B (zh) 天线组件、电子设备及通信系统
US20070241981A1 (en) Wideband Antenna with Omni-Directional Radiation
US8134507B2 (en) Mobile electronic device
US20070096996A1 (en) Antenna with a split radiator element
US10122093B2 (en) Dipole array antenna
CN114846694B (zh) 一种毫米波天线的芯片及终端设备
CN102280717B (zh) 一种移动终端天线及其实现方法
Viikari et al. Millimeter-wave antennas for mobile devices and networks
CN116259956A (zh) 一种天线结构和电子设备
Bandewar et al. Design and Analysis of Smart Antenna for Mobile Application
Chu Investigations and Design of Wideband Dual Linear Polarized Massive MIMO Panel Array Antenna for 5G Communication Applications
WO2024066679A1 (zh) 天线组件及电子设备
WO2024041138A1 (zh) 天线模组、定位系统和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933176

Country of ref document: EP

Kind code of ref document: A1