WO2022142648A1 - 有机硅预聚体、有机硅改性环氧树脂、胶粘剂、胶体及其制备方法 - Google Patents

有机硅预聚体、有机硅改性环氧树脂、胶粘剂、胶体及其制备方法 Download PDF

Info

Publication number
WO2022142648A1
WO2022142648A1 PCT/CN2021/126417 CN2021126417W WO2022142648A1 WO 2022142648 A1 WO2022142648 A1 WO 2022142648A1 CN 2021126417 W CN2021126417 W CN 2021126417W WO 2022142648 A1 WO2022142648 A1 WO 2022142648A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
modified epoxy
parts
silicone
siloxane
Prior art date
Application number
PCT/CN2021/126417
Other languages
English (en)
French (fr)
Inventor
娄星原
冯朝波
黎灿光
侯甫文
陈建军
刘光华
Original Assignee
广州市白云化工实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市白云化工实业有限公司 filed Critical 广州市白云化工实业有限公司
Publication of WO2022142648A1 publication Critical patent/WO2022142648A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5026Amines cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/10Block or graft copolymers containing polysiloxane sequences

Definitions

  • the invention relates to the technical field of materials, in particular to an organosilicon prepolymer, an organosilicon modified epoxy resin, an adhesive, a colloid and a preparation method thereof.
  • Epoxy adhesive is a curing system prepared by epoxy resin (as matrix) and curing agent in a certain proportion.
  • the molecular structure of epoxy resin is characterized by the presence of active epoxy groups in the molecular chain, and the epoxy groups can be located at the end, middle or cyclic structure of the molecular chain. Due to the active epoxy groups in the molecular structure, they can be cross-linked with various types of curing agents to form insoluble polymers with a three-way network structure.
  • the cured epoxy resin ie epoxy adhesive
  • the traditional epoxy adhesive has excellent bonding strength at low temperature, the bonding strength is significantly reduced at high temperature, which cannot meet the bonding requirements of heating devices.
  • the epoxy adhesive needs to have high temperature resistance. Rework and scrap rates, and epoxy adhesives are also required to have high impact toughness to reduce the brittle fracture of products. Based on this, it is urgent to develop an epoxy adhesive with excellent mechanical properties under high temperature conditions to meet the bonding requirements of devices with high heat generation.
  • the silicone-modified epoxy resin has high temperature resistance, that is, still has excellent mechanical properties under high temperature conditions, and can meet the bonding requirements of devices with large heat generation.
  • An organosilicon prepolymer is mainly formed by polymerizing siloxane and silicone oil in a mass ratio of 1:(0.3-5).
  • the organosilicon prepolymer has the structure shown in formula (I):
  • a and b are each independently any integer from 1 to 20;
  • R 1 is an optional siloxane acceptable group
  • R3 is an optional silicone oil acceptable group.
  • An organosilicon modified epoxy resin is mainly prepared from the following reaction raw materials in parts by weight: 35-55 parts of epoxy resin, 5-20 parts of siloxane, 5-20 parts of silicone oil, 0.1-3 parts of catalyst and 1-10 parts of water.
  • the siloxane is selected from: one or more of epoxytrimethoxysilane and epoxytriethoxysilane; and/or
  • the silicone oil is selected from the group consisting of: dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, polydimethylsiloxane and one or more of polydiethylsiloxanes; and/or
  • the epoxy resins are: one or more of glycidyl ether epoxy resins and glycidyl ester epoxy resins; and/or
  • the catalyst is hydrochloric acid with a mass percentage content of 30%-40%.
  • the epoxy resin has the structure shown in formula A:
  • X is O or -COO
  • n is an integer from 1 to 20;
  • the siloxane has the structure shown in formula B:
  • R 1 is an optional acceptable group in siloxane
  • Described silicone oil has the structure shown in formula C:
  • R2 and R3 are each independently an optional acceptable group in silicone oil.
  • the organosilicon-modified epoxy resin has a structure represented by formula (II):
  • X is O or -COO
  • R 1 is an optional acceptable group in siloxane
  • R3 is an optional acceptable group in silicone oil.
  • a silicone-modified epoxy adhesive comprising:
  • Component A is prepared by the reaction of the above-mentioned organosilicon prepolymer and epoxy resin, or is the above-mentioned organosilicon modified epoxy resin;
  • Component B including: 1,3-cyclohexanedimethylamine and accelerator.
  • a colloid is prepared from the above-mentioned organosilicon modified epoxy adhesive.
  • a preparation method of colloid comprising the following steps:
  • the mixture is coated on the part to be pasted and cured to obtain the colloid.
  • the step of providing the above-mentioned silicone modified epoxy adhesive comprises the following steps:
  • 1,3-cyclohexanedimethylamine and accelerator are provided to obtain B component of silicone modified epoxy resin.
  • the organosilicon prepolymer generated by siloxane and silicone oil in the present invention has excellent characteristics of high impact toughness, high and low temperature resistance, oxidation stability and weather resistance, and is modified and used with epoxy resin to increase the high temperature resistance of the epoxy adhesive. mechanical properties under conditions.
  • the introduction of silicone with epoxy functional groups can not only increase the crosslinking density of the epoxy resin itself, but also satisfy the toughness of the finished product, so as to satisfy the viscosity of devices with high heat generation such as high temperature or high and low temperature cycle use.
  • the weather resistance has also been further improved.
  • first and second are only used for description purposes, and cannot be interpreted as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first”, “second” may expressly or implicitly include one or more of that feature.
  • “plurality” means two or more, unless otherwise expressly and specifically defined.
  • the weight of the relevant components mentioned in the description of the embodiment of the present invention can not only refer to the specific content of each component, but also can represent the proportional relationship between the weights of the components. It is within the scope disclosed in the description of the embodiments of the present invention that the content of the ingredients is scaled up or down.
  • the weight described in the description of the embodiment of the present invention may be a mass unit known in the chemical field, such as ⁇ g, mg, g, and kg.
  • alkyl refers to a saturated hydrocarbon containing primary (normal) carbon atoms, or secondary carbon atoms, or tertiary carbon atoms, or quaternary carbon atoms, or a combination thereof. Phrases containing this term, for example, " C1 - C18 alkyl” refer to alkyl groups containing 1 to 18 carbon atoms.
  • Suitable examples include, but are not limited to: methyl (Me, -CH3 ), ethyl (Et, -CH2CH3), 1 -propyl (n-Pr, n - propyl, -CH2CH2CH ) 3 ), 2-propyl (i-Pr, i-propyl, -CH(CH 3 ) 2 ), 1-butyl (n-Bu, n-butyl, -CH 2 CH 2 CH 2 CH 3 ) , 2-methyl-1-propyl (i-Bu, i-butyl, -CH 2 CH(CH 3 ) 2 ), 2-butyl (s-Bu, s-butyl, -CH(CH 3 ) )CH 2 CH 3 ), 2-methyl-2-propyl (t-Bu, t-butyl, -C(CH 3 ) 3 ), 1-pentyl (n-pentyl, -CH 2 CH 2 ) CH 2 CH 2 CH 3 ), 2-p
  • An embodiment of the present invention provides an organosilicon prepolymer, which is mainly formed by polymerizing siloxane and silicone oil.
  • the silicone prepolymer is mainly formed by polymerizing siloxane and silicone oil in a mass ratio of 1:(0.3-5); further, the mass ratio of siloxane and silicone oil is 1:(0.3-5). 3); Further, the mass ratio of siloxane and silicone oil is 1:(1-3); Further, the mass ratio of siloxane and silicone oil is 1:1, 1:2, 1:3, 3: 1 or 2:1.
  • the organosilicon prepolymer has the structure shown in formula (I):
  • a and b are each independently any integer from 1 to 20;
  • R 1 is an optional siloxane acceptable group
  • R3 is an optional silicone oil acceptable group.
  • the number average molecular weight of the silicone prepolymer is 600-2000.
  • R 1 is selected from: C 1-18 alkyl; further, R 1 is selected from: C 1-6 alkyl; further, R 1 is selected from: methyl, ethyl, propyl , isopropyl, n-butyl, or tert-butyl.
  • R 3 is selected from: C 1-18 alkyl; further, R 3 is selected from: C 1-6 alkyl; further, R 3 is selected from: methyl, ethyl, propyl , isopropyl, n-butyl, or tert-butyl.
  • the above-mentioned organosilicon prepolymers have excellent properties of high impact toughness, high and low temperature resistance, oxidation stability, and weather resistance, and can be used to modify epoxy resins, which can effectively improve the mechanical properties of epoxy resins at high temperatures.
  • the introduction of silicone with epoxy functional groups can not only increase the crosslinking density of the epoxy resin itself, but also satisfy the finished product with considerable toughness, so as to meet the high calorific value of devices such as high temperature or high and low temperature cycle use. Adhesive demand, weather resistance has also been further improved.
  • the organosilicon modified epoxy resin formed by the above organosilicon prepolymer has high compatibility with both organosilicon and inorganic silicon.
  • the problem of the compatibility of inorganic silicon components effectively expands the formulation selection range of the above epoxy resin related products, and has a large application prospect.
  • Another embodiment of the present invention provides an organosilicon modified epoxy resin, which is mainly prepared from the following reaction raw materials: 35-55 parts of epoxy resin, 5-20 parts of siloxane, 5-20 parts of silicone oil, catalyst 0.1-3 parts and 1-10 parts water.
  • the epoxy resin is 40-50 parts
  • the siloxane is 5-15 parts
  • the silicone oil is 5-15 parts
  • the catalyst is 0.1-3 parts
  • the water is 1-8 parts. share.
  • the mass ratio of siloxane and silicone oil is 1:(0.3-5); further, the mass ratio of siloxane and silicone oil is 1:(0.3-3); further, the siloxane and The mass ratio of the silicone oil is 1:(1-3) Further, the mass ratio of the siloxane and the silicone oil is 1:1, 1:2, 1:3, 3:1 or 2:1.
  • the number average molecular weight of the silicone-modified epoxy resin is 1000-5000.
  • the catalyst is an inorganic acid; further, the catalyst is hydrochloric acid; further, the catalyst is hydrochloric acid with a mass percentage of 30%-40%.
  • the water is deionized water.
  • the epoxy resin is one or more of glycidyl ether epoxy resin and glycidyl ester epoxy resin.
  • the epoxy resin has the structure shown in formula A:
  • X is O or -COO
  • n is an integer of 1-20.
  • X is O, that is, the epoxy resin of the structure shown in formula A is:
  • X is COO, that is, the epoxy resin of the structure shown in formula A is:
  • the siloxane is selected from one or more of epoxytrimethoxysilane and epoxytriethoxysilane.
  • the siloxane has the structure of Formula B:
  • R1 is an optional acceptable group in the siloxane.
  • R 1 may be an optional acceptable group in siloxane, as long as it is not contrary to the purpose of the present invention. Specifically, the definition of R 1 is as described above, and details are not repeated here.
  • the silicone oil is selected from the group consisting of: dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, polydimethyl silane One or more of siloxane and polydiethylsiloxane.
  • the silicone oil has the structure shown in formula C:
  • R2 and R3 are each independently an optional acceptable group in silicone oil.
  • R 2 and R 3 can be optionally acceptable groups in the silicone oil, as long as it is not contrary to the purpose of the present invention. Specifically, the definition of R 3 is as described above, and details are not repeated here.
  • R 2 is selected from: C 1-18 alkyl; further, R 2 is selected from: C 1-6 alkyl; further, R 2 is selected from: methyl, ethyl, propyl, isopropyl, n-butyl, or tert-butyl.
  • the silicone-modified epoxy resin has a structure represented by formula (II)
  • X is O or -COO
  • R 1 is an optional acceptable group in siloxane
  • R3 is an optional acceptable group in silicone oil.
  • the above-mentioned organosilicon-modified epoxy resin has better high temperature resistance, that is, still has better mechanical properties and toughness under high temperature conditions, and can meet the bonding requirements of devices with large heat generation.
  • the above-mentioned organosilicon modified epoxy resin has high compatibility with both organosilicon and inorganic silicon, which changes the problem that the traditional epoxy resin formulation is difficult to be compatible with both organosilicon components and inorganic silicon components at the same time. It can expand the formulation selection range of the above epoxy resin related products, and has a great application prospect.
  • An embodiment of the present invention provides a silicone modified epoxy adhesive, comprising:
  • Component A is prepared by the reaction of the above-mentioned organosilicon prepolymer and epoxy resin, or is the above-mentioned organosilicon modified epoxy resin;
  • Component B including: 1,3-cyclohexanedimethylamine and accelerator.
  • the B component in parts by weight, is 5-15 parts of 1,3-cyclohexanedimethylamine, and the accelerator is 0.5-1.5 parts; further, 1,3-cyclohexanedimethylamine It is 8-12 parts, and the accelerator is 0.8-1.2 parts.
  • the present invention also provides a preparation method of the organosilicon modified epoxy adhesive, comprising the following steps:
  • step S101 includes the following steps:
  • S1011 Mix siloxane, silicone oil, catalyst and water, and carry out the reaction (preferably 1-3h, more preferably 110°C-130°C) (preferably 115°C-125°C, more preferably 120°C) 1.5-2.5h) to obtain an organosilicon prepolymer.
  • siloxane, silicone oil and catalyst in step S1011 are as described above.
  • step S1011 performs the following reaction:
  • S1012 Mix the silicone prepolymer and the epoxy resin, and carry out the reaction at 110°C-130°C (preferably 115°C-125°C, more preferably 120°C) to obtain a silicone-modified epoxy resin. A component.
  • step S1012 the organosilicon prepolymer, the epoxy resin and the catalyst are mixed, reacted at 110°C-130°C for 1-3h (preferably 1.5-2.5h), and then stirred openly Holding the temperature for a predetermined time to remove part or all of the solvent (preferably holding for 2-5h, more preferably 2.5-3.5h) to obtain the component A of the organosilicon modified epoxy resin.
  • step S1012 performs the following reaction:
  • step S102 includes the following steps: providing 1,3-cyclohexanedimethylamine and an accelerator.
  • 1,3-cyclohexanedimethylamine can be mixed with the accelerator first to form a mixture, and then mixed with component A when the adhesive is actually used, or it can be directly mixed when the adhesive is actually used.
  • the mixing of component A, 1,3-cyclohexanedimethylamine and accelerator should be understood as all within the protection scope of the present invention.
  • An embodiment of the present invention provides a colloid prepared from the above-mentioned silicone-modified epoxy adhesive.
  • An embodiment of the present invention also provides a method for preparing a colloid, comprising the following steps:
  • step S201 is as described in steps S101-S102, and details are not repeated here.
  • the mass ratio of the A component and the B component is (8-12):1.
  • the colloid of the present invention has excellent mechanical properties under high temperature conditions, and the colloid has high crosslinking density and high toughness, and can be used in a high temperature environment or a high and low temperature cycle environment, so it can meet the requirements of modern high-calorie Device bonding requirements.
  • the epoxy resin used in the following examples is ordinary E51 epoxy resin; the siloxane is epoxy trimethoxysilane; the silicone oil is dimethyldimethoxysilane; the accelerator is DMP-30; The toughness agent is MX-154; the temperature resistance auxiliary agent is iron oxide auxiliary agent, MQ silicone resin; the unspecified reagents are conventional commercial reagents.
  • Component A silicone modified epoxy resin, the reaction raw materials: 40 parts of epoxy resin, 10 parts of siloxane, 10 parts of silicone oil, 1 part of 35% hydrochloric acid, and 5 parts of deionized water;
  • Component B 10 parts of 1,3-cyclohexanedimethylamine and 1 part of accelerator.
  • step (2) mixing the epoxy resin and the prepolymer a obtained in step (1), stirring, mixing evenly, heating to 120° C., stirring and refluxing for 2 hours, and then stirring openly and maintaining the temperature for 3 hours to obtain an organic Silicon modified epoxy resin, as A component;
  • step (3) Coating the mixture obtained in step (3) on a substrate and curing to obtain a colloid.
  • Component A silicone modified epoxy resin, the reaction raw materials: 40 parts of epoxy resin, 5 parts of siloxane, 15 parts of silicone oil, 1 part of 35% hydrochloric acid, and 5 parts of deionized water;
  • Component B 10 parts of 1,3-cyclohexanedimethylamine and 1 part of accelerator.
  • step (2) mixing the epoxy resin and the prepolymer a obtained in step (1), stirring, mixing evenly, heating to 120° C., stirring and refluxing for 2 hours, and then stirring openly and maintaining the temperature for 3 hours to obtain an organic Silicon modified epoxy resin, as A component;
  • step (3) Coating the mixture obtained in step (3) on a substrate and curing to obtain a colloid.
  • Component A silicone modified epoxy resin, the reaction raw materials: 40 parts of epoxy resin, 15 parts of siloxane, 5 parts of silicone oil, 1 part of 35% hydrochloric acid, and 5 parts of deionized water;
  • Component B 10 parts of 1,3-cyclohexanedimethylamine and 1 part of accelerator.
  • step (2) mixing the epoxy resin and the prepolymer a obtained in step (1), stirring, mixing evenly, heating to 120° C., stirring and refluxing for 2 hours, and then stirring openly and keeping the temperature for 3 hours to obtain silicone Modified epoxy resin, as A component;
  • step (3) Coating the mixture obtained in step (3) on a substrate and curing to obtain a colloid.
  • Component A Silicone modified epoxy resin, the reaction raw materials: 40 parts of epoxy resin, 0 parts of siloxane, 20 parts of silicone oil, 1 part of 35% hydrochloric acid, and 5 parts of deionized water;
  • Component B 10 parts of 1,3-cyclohexanedimethylamine and 1 part of accelerator.
  • silicone oil, epoxy resin, catalyst and water were stirred and mixed uniformly, heated to 120°C at the same time, stirred and refluxed for 2 hours, and then stirred openly and kept for 3 hours to obtain silicone modified epoxy resin, which was used as A component;
  • the A component and the B component are mixed in a mass ratio of 10:1, and the mixture is uniformly stirred to obtain a mixture.
  • step (3) Coating the mixture obtained in step (2) on a substrate and curing to obtain a colloid.
  • Component A silicone modified epoxy resin, the reaction raw materials: 40 parts of epoxy resin, 20 parts of siloxane, 0 part of silicone oil, 1 part of 35% hydrochloric acid, and 5 parts of deionized water;
  • Component B 10 parts of 1,3-cyclohexanedimethylamine and 1 part of accelerator.
  • the A component and the B component are mixed in a mass ratio of 10:1, and the mixture is uniformly stirred to obtain a mixture.
  • step (3) Coating the mixture in step (2) on the substrate and curing to obtain a colloid.
  • Component A silicone modified epoxy resin, the reaction raw materials: 40 parts of epoxy resin, 10 parts of siloxane, 10 parts of silicone oil, 0 part of 35% hydrochloric acid, and 5 parts of deionized water;
  • Component B 10 parts of 1,3-cyclohexanedimethylamine and 1 part of accelerator.
  • step (2) mixing the epoxy resin and the prepolymer a prepared in step (1), stirring, mixing evenly, heating to 120° C., stirring and refluxing for 2 hours, and then stirring openly and maintaining the temperature for 3 hours to obtain an organic Silicon modified epoxy resin, as A component;
  • step (3) Coating the mixture obtained in step (3) on a substrate and curing to obtain a colloid.
  • Component A 64 parts of epoxy resin, 2 parts of toughening agent;
  • Component B 10 parts of 1,3-cyclohexanedimethylamine and 1 part of accelerator.
  • step (3) Coating the mixture obtained in step (3) on a substrate and curing to obtain a colloid.
  • Component A 64 parts of epoxy resin, 2 parts of temperature resistance additives;
  • Component B 10 parts of 1,3-cyclohexanedimethylamine and 1 part of accelerator.
  • step (3) Coating the mixture obtained in step (3) on a substrate and curing to obtain a colloid.
  • Example 1-Example 4 The colloids of Example 1-Example 4, Comparative Example 1-Comparative Example 5 are tested by the following test method, and the test results are as shown in Table 1:
  • Example 1 Example 2 and Example 3
  • the difference is that the proportions of siloxane and silicone oil are different.
  • the technical effect of Example 1 and Example 2 is better than that of Example 3,
  • the mass ratio of siloxane and silicone oil is preferably 1:(1-3).
  • Comparing Example 1, Comparative Example 1 and Comparative Example 2 the difference is that Comparative Example 1 lacks siloxane and Comparative Example 2 lacks silicone oil. It can be seen from Table 1 that the technical effect of Example 1 is significantly better than that of Comparative Example 1 and Comparative Example 2, especially the mechanical properties at high temperature. It shows that the modification effect of the prepolymer generated by siloxane and silicone oil on epoxy resin is better than that of single organosilicon modification.
  • Comparative Example 1, Comparative Example 3, and Comparative Example 4, and Comparative Example 3 and Comparative Example 4 are commonly used formulations in traditional technology. It can be seen from Table 1 that its technical effect is not as good as that of Embodiment 1 of the present invention. Again, compared with the prior art, the technical solution of the present invention can greatly improve the mechanical properties at high and low temperature.

Abstract

本发明涉及有机硅预聚体、有机硅改性环氧树脂、胶粘剂、胶体及其制备方法,其中,有机硅改性环氧树脂主要由以下重量份的反应原料制备而成:环氧树脂35-55份、硅氧烷5-20份、硅油5-20份、催化剂0.1-3份及水0-10份。该有机硅改性环氧树脂具有较高的耐温性能,在高温条件下仍然具有较优的机械性能,能够满足发热量较大的器件的粘接需求。

Description

有机硅预聚体、有机硅改性环氧树脂、胶粘剂、胶体及其制备方法 技术领域
本发明涉及材料技术领域,特别涉及有机硅预聚体、有机硅改性环氧树脂、胶粘剂、胶体及其制备方法。
背景技术
环氧胶粘剂是以环氧树脂(作为基体)和固化剂按一定比例配制成的固化体系。环氧树脂的分子结构是以分子链中含有活泼的环氧基团为特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶的具有三向网状结构的高聚物。固化后的环氧树脂(即环氧胶粘剂)具有良好的物理、化学性能,它对金属和非金属材料的表面具有优异的粘接强度,且机械强度高,介电性能良好等优点,广泛应用于器件、构件的粘接中。
但传统的环氧胶粘剂,虽然在低温下具有较优的粘接强度,在高温下粘接强度显著降低,无法满足发热器件的粘接需求。特别是在电子器件、动力电池等技术领域中,随着使用时间延长,器件发热量较大,胶粘剂的相关性能会受到一定影响,故需要环氧胶粘剂具有较高的耐温性能,以降低产品返修、报废率,且还需要环氧胶粘剂具有较高的冲击韧性,以降低制品的脆性断裂情况。基于此,急需研究一种在高温条件下仍然具有较优的机械性能的环氧胶粘剂,以满足发热量较大的器件的粘接需求。
发明内容
基于此,有必要提供一种有机硅预聚体、有机硅改性环氧树脂、胶粘剂、胶体及其制备方法。该有机硅改性环氧树脂具有较高的耐温性能,即在高温条件下仍然具有较优的机械性能,能够满足发热量较大的器件的粘接需求。
一种有机硅预聚体,主要由硅氧烷和硅油以质量比为1:(0.3-5)聚合而成。
在其中一实施例中,所述有机硅预聚体具有式(I)所示结构:
Figure PCTCN2021126417-appb-000001
a和b各自独立地为1-20任一整数;
R 1为任选硅氧烷中可接受基团;
R 3为任选硅油中可接受基团。
一种有机硅改性环氧树脂,主要由以下重量份的反应原料制备而成:环氧树脂35-55份、硅氧烷5-20份、硅油5-20份、催化剂0.1-3份及水1-10份。
在其中一实施例中,所述硅氧烷选自:环氧基三甲氧基硅烷和环氧基三乙氧基硅烷中的一种或多种;和/或
所述硅油选自:二甲基二甲氧基硅烷、二甲基二乙氧基硅烷、二乙基二甲氧基硅烷、二乙基二乙氧基硅烷、聚二甲基硅氧烷和聚二乙基硅氧烷中的一种或多种;和/或
所述环氧树脂为:缩水甘油醚类环氧树脂和缩水甘油酯类环氧树脂中的一种或多种;和/或
所述催化剂为质量百分含量为30%-40%的盐酸。
在其中一实施例中,所述环氧树脂具有式A所示结构:
Figure PCTCN2021126417-appb-000002
X为O或-COO;
n为1-20的整数;和/或
所述硅氧烷具有式B所示结构:
Figure PCTCN2021126417-appb-000003
R 1为硅氧烷中任选可接受基团;和/或
所述硅油具有式C所示结构:
Figure PCTCN2021126417-appb-000004
R 2和R 3各自独立地为硅油中任选可接受基团。
在其中一实施例中,所述有机硅改性环氧树脂具有式(II)所示结构:
Figure PCTCN2021126417-appb-000005
n为1-20任一整数;a和b各自独立地为1-20任一整数;
X为O或-COO;
R 1为硅氧烷中任选可接受基团;
R 3为硅油中任选可接受基团。
一种有机硅改性环氧胶粘剂,包括:
A组分,由上述有机硅预聚体和环氧树脂反应制备得到,或为上述有机硅改性环氧树脂;
B组分,包括:1,3-环己二甲胺和促进剂。
一种胶体,由上述有机硅改性环氧胶粘剂制备而成。
一种胶体的制备方法,包括以下步骤:
提供上述有机硅改性环氧胶粘剂;
将所述有机硅改性环氧树脂中的A组分和B组分混合,制得混合物;
将所述混合物涂覆于待粘贴部分,固化,制得所述胶体。
在其中一实施例中,提供上述有机硅改性环氧胶粘剂的步骤包括以下步骤:
将硅氧烷、硅油、催化剂和水混合,在110℃-130℃的条件下进行反应,得到有机硅预聚体;
将所述有机硅预聚体和环氧树脂混合,在110℃-130℃的条件下进行反应,得到有机硅改性环氧树脂的A组分;
提供1,3-环己二甲胺和促进剂,得到有机硅改性环氧树脂的B组分。
有益效果
本发明利用硅氧烷和硅油生成的有机硅预聚体具有高冲击韧性、耐高低温、耐氧化稳定性、耐候性的优异特性,与环氧树脂改性使用,以增加环氧胶粘剂在高温条件下的机械性能。同时,带有环氧官能团有机硅的引入,这既可以增加环氧树脂本身的交联密度,也满足成品具有相当的韧性,以满足高温或高低温循环使用等发热量较大的器件的粘接需求,耐候性也有进一步的提升。
具体实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述,并给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该 特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本发明实施例说明书中所提到的相关成分的重量不仅仅可以指代各组分的具体含量,也可以表示各组分间重量的比例关系,因此,只要是按照本发明实施例说明书相关组分的含量按比例放大或缩小均在本发明实施例说明书公开的范围之内。具体地,本发明实施例说明书中所述的重量可以是μg、mg、g、kg等化工领域公知的质量单位。
术语
除非另外说明或存在矛盾之处,本文中使用的术语或短语具有以下含义:
术语“烷基”是指包含伯(正)碳原子、或仲碳原子、或叔碳原子、或季碳原子、或其组合的饱和烃。包含该术语的短语,例如,“C 1~C 18烷基”是指包含1~18个碳原子的烷基。合适的实例包括但不限于:甲基(Me、-CH 3)、乙基(Et、-CH 2CH 3)、1-丙基(n-Pr、n-丙基、-CH 2CH 2CH 3)、2-丙基(i-Pr、i-丙基、-CH(CH 3) 2)、1-丁基(n-Bu、n-丁基、-CH 2CH 2CH 2CH 3)、2-甲基-1-丙基(i-Bu、i-丁基、-CH 2CH(CH 3) 2)、2-丁基(s-Bu、s-丁基、-CH(CH 3)CH 2CH 3)、2-甲基-2-丙基(t-Bu、t-丁基、-C(CH 3) 3)、1-戊基(n-戊基、-CH 2CH 2CH 2CH 2CH 3)、2-戊基(-CH(CH3)CH2CH2CH3)、3-戊基(-CH(CH 2CH 3) 2)、2-甲基-2-丁基(-C(CH 3) 2CH 2CH 3)、3-甲基-2-丁基(-CH(CH 3)CH(CH 3) 2)、3-甲基-1-丁基(-CH 2CH 2CH(CH 3) 2)、2-甲基-1-丁基(-CH 2CH(CH 3)CH 2CH 3)、1-己基(-CH 2CH 2CH 2CH 2CH 2CH 3)、2-己基(-CH(CH 3)CH 2CH 2CH 2CH 3)、3-己基(-CH(CH 2CH 3)(CH 2CH 2CH 3))、2-甲基-2-戊基(-C(CH 3) 2CH 2CH 2CH 3)、3-甲基-2-戊基(-CH(CH 3)CH(CH 3)CH 2CH 3)、4-甲基-2-戊基(-CH(CH 3)CH 2CH(CH 3) 2)、3-甲基-3-戊基(-C(CH 3)(CH 2CH 3) 2)、2-甲基-3-戊基(-CH(CH 2CH 3)CH(CH 3) 2)、2,3-二甲基-2-丁基(-C(CH 3) 2CH(CH 3) 2)、3,3-二甲基-2-丁基(-CH(CH 3)C(CH 3) 3和辛基(-(CH 2) 7CH 3)。
详细解释
本发明一实施方式提供了一种有机硅预聚体,主要由硅氧烷和硅油聚合而成。
在一实施例中,有机硅预聚体主要由硅氧烷和硅油以质量比为1:(0.3-5) 聚合而成;进一步地,硅氧烷和硅油的质量比为1:(0.3-3);进一步地,硅氧烷和硅油的质量比为1:(1-3);更进一步地,硅氧烷和硅油的质量比为1:1、1:2、1:3、3:1或2:1。
在一实施例中,有机硅预聚体具有式(I)所示结构:
Figure PCTCN2021126417-appb-000006
a和b各自独立地为1-20任一整数;
R 1为任选硅氧烷中可接受基团;
R 3为任选硅油中可接受基团。
在一实施例中,有机硅预聚体的数均分子量为600-2000。
在一实施例中,R 1选自:C 1-18烷基;进一步地,R 1选自:C 1-6烷基;更进一步地,R 1选自:甲基、乙基、丙基、异丙基、正丁基、或叔丁基。
在一实施例中,R 3选自:C 1-18烷基;进一步地,R 3选自:C 1-6烷基;更进一步地,R 3选自:甲基、乙基、丙基、异丙基、正丁基、或叔丁基。
上述有机硅预聚体具有高冲击韧性、耐高低温、耐氧化稳定性、耐候性的优异特性,可以用于对环氧树脂进行改性,能够有效地提高环氧树脂的在高温下的机械性能,同时,带有环氧官能团有机硅的引入,这既可以增加环氧树脂本身的交联密度,也满足成品具有相当的韧性,以满足高温或高低温循环使用等发热量较高的器件的粘接需求,耐候性也有进一步的提升。
此外,上述有机硅预聚体所形成的有机硅改性环氧树脂对有机硅和无机硅均具有较高的相容性,改变了传统的环氧树脂配方很难同时与有机硅组分和无机硅组分相容的问题,有效地扩大上述环氧树脂相关产品的配方选择范围,具有较大的应用前景。
本发明另一实施方式提供了一种有机硅改性环氧树脂,主要由以下反应原料制备而成:环氧树脂35-55份、硅氧烷5-20份、硅油5-20份、催化剂0.1-3份及水1-10份。
在一实施例中,上述有机硅改性环氧树脂中,环氧树脂为40-50份、硅氧烷为5-15份、硅油5-15份、催化剂0.1-3份及水1-8份。
在一实施例中,硅氧烷和硅油的质量比为1:(0.3-5);进一步地,硅氧烷和硅油的质量比为1:(0.3-3);进一步地,硅氧烷和硅油的质量比为1:(1-3)更进一步地,硅氧烷和硅油的质量比为1:1、1:2、1:3、3:1或2:1。
在一实施例中,有机硅改性环氧树脂的数均分子量为1000-5000。
在一实施例中,催化剂为无机酸;进一步地,催化剂为盐酸;进一步地,催化剂为质量百分含量为30%-40%的盐酸。
在一实施例中,水为去离子水。
在一实施例中,环氧树脂为:缩水甘油醚类环氧树脂和缩水甘油酯类环氧树脂中的一种或多种。
在一实施例中,环氧树脂具有式A所示结构:
Figure PCTCN2021126417-appb-000007
X为O或-COO;
n为1-20的整数。
在一实施例中,X为O,即式A所示结构环氧树脂为:
Figure PCTCN2021126417-appb-000008
在一实施例中,X为COO,即式A所示结构环氧树脂为:
Figure PCTCN2021126417-appb-000009
在一实施例中,硅氧烷选自:环氧基三甲氧基硅烷和环氧基三乙氧基硅烷中的一种或多种。
在一实施例中,硅氧烷具有式B所示结构:
Figure PCTCN2021126417-appb-000010
R 1为硅氧烷中任选可接受基团。
可理解的,式B所示结构中,R 1可以为硅氧烷中任选可接受基团,仅需不与本发明目的相悖即可。具体地,R 1的定义如上所述,在此不再进行赘述。
在一实施例中,硅油选自:二甲基二甲氧基硅烷、二甲基二乙氧基硅烷、二乙基二甲氧基硅烷、二乙基二乙氧基硅烷、聚二甲基硅氧烷和聚二乙基硅氧烷中的一种或多种。
在一实施例中,硅油具有式C所示结构:
Figure PCTCN2021126417-appb-000011
R 2和R 3各自独立地为硅油中任选可接受基团。
可理解的,式C所示结构中,R 2和R 3可以为硅油中任选可接受基团,仅需不与本发明目的相悖即可。具体地,R 3的定义如上所述,在此不再进行赘述。
在一实施例中,R 2选自:C 1-18烷基;进一步地,R 2选自:C 1-6烷基;进一步地,R 2选自:甲基、乙基、丙基、异丙基、正丁基、或叔丁基。
在一实施例中,有机硅改性环氧树脂,具有式(II)所示结构
Figure PCTCN2021126417-appb-000012
Figure PCTCN2021126417-appb-000013
n为1-20任一整数;a和b各自独立地为1-20任一整数;
X为O或-COO;
R 1为硅氧烷中任选可接受基团;
R 3为硅油中任选可接受基团。
其中,各基团定义如上所述,在此不再进行赘述。
上述有机硅改性环氧树脂具有较优的耐高温性能,即在高温条件下仍然具有较优的机械性能和韧性,能够满足发热量较大的器件的粘接需求。上述有机硅改性环氧树脂对有机硅和无机硅均具有较高的相容性,改变了传统的环氧树脂配方很难同时与有机硅组分和无机硅组分相容的问题,有效地扩大上述环氧树脂相关产品的配方选择范围,具有较大的应用前景。
本发明一实施方式提供了一种有机硅改性环氧胶粘剂,包括:
A组分,由上述有机硅预聚体和环氧树脂反应制备得到,或为上述有机硅改性环氧树脂;
B组分,包括:1,3-环己二甲胺和促进剂。
其中,A组分中的各组分如上所述,在此不再进行赘述。
在一实施例中,B组分,以重量份计,1,3-环己二甲胺为5-15份,促进剂为0.5-1.5份;进一步地,1,3-环己二甲胺为8-12份,促进剂为0.8-1.2份。
本发明还提供了一种有机硅改性环氧胶粘剂的制备方法,包括以下步骤:
S101:制备有机硅改性环氧胶粘剂的A组分;
进一步地,步骤S101包括以下步骤:
S1011:将硅氧烷、硅油、催化剂和水混合,在110℃-130℃(优选115℃-125℃,更有选为120℃)的条件下进行反应(优选反应1-3h,更优选反应1.5-2.5h),得到有机硅预聚体。
步骤S1011中的硅氧烷、硅油和催化剂如上所述。
在一实施例中,步骤S1011进行如下反应:
Figure PCTCN2021126417-appb-000014
上述反应式的各基团定义如上所述。
S1012:将有机硅预聚体和环氧树脂混合,在110℃-130℃(优选115℃-125℃,更有选为120℃)的条件下进行反应,得到有机硅改性环氧树脂的A组分。
在一实施例中,步骤S1012中,将有机硅预聚体、环氧树脂和催化剂混合,在110℃-130℃的条件下反应1-3h(优选反应1.5-2.5h),然后敞口搅拌保温预定时间,以除去部分或全部溶剂(优选保温2-5h,更优选2.5-3.5h),得到有机硅改性环氧树脂的A组分。
在一实施例中,步骤S1012进行如下反应:
Figure PCTCN2021126417-appb-000015
S102:制备有机硅改性环氧胶粘剂的B组分。
在一实施例中,步骤S102包括以下步骤:提供1,3-环己二甲胺和促进剂。
可理解的,步骤S102中可以先将1,3-环己二甲胺和促进剂混合,形成混合物后,再在胶粘剂实际使用时与A组分混合,也可以在胶粘剂实际使用时,直接将A组分、1,3-环己二甲胺和促进剂混合,应理解为均在本发明的保护范 围内。
本发明一实施方式提供了一种胶体,由上述有机硅改性环氧胶粘剂制备而成。
本发明一实施方式还提供了一种胶体的制备方法,包括以下步骤:
S201:提供上述有机硅改性环氧胶粘剂;
具体地,步骤S201如步骤S101-S102所述,在此不再进行赘述。
S202:将有机硅改性环氧树脂中的A组分和B组分混合,制得混合物;
在一实施例中,混合物中,A组分和B组分的质量比为(8-12):1。
S203:将混合物涂覆于待粘贴部分,固化,制得胶体。
本发明的胶体在高温条件下具有优异的机械性能,且胶体的交联密度较高,具有较高的韧性,能够在高温环境或高低温循环环境下使用,故可以满足现代发热量较大的器件的粘接要求。
下面列举具体实施例来对本发明进行说明。
以下实施例中所述使用的环氧树脂为普通型E51环氧树脂;硅氧烷为环氧基三甲氧基硅烷;硅油为二甲基二甲氧基硅烷;促进剂为DMP-30;增韧剂为MX-154;耐温助剂为氧化铁助剂、MQ硅树脂;未指明的试剂为常规市售试剂。
实施例1
有机硅改性环氧胶粘剂
A组分:有机硅改性环氧树脂,其反应原料:环氧树脂40份、硅氧烷10份、硅油10份、35%盐酸1份、去离子水5份;
B组分:1,3-环己二甲胺10份、促进剂1份。
制备方法:
(1)将硅氧烷、硅油、催化剂和水混合,搅拌均匀,同时加热至120℃,搅拌、回流反应2h,得到预聚体a,备用;
(2)将环氧树脂和步骤(1)中所得到的预聚体a混合,搅拌,混合均匀,同时加热至120℃,搅拌、回流反应2h,然后敞口搅拌、保温3小时,得到有机硅改性环氧树脂,作为A组分;
(3)将A组分与组分B以质量比为10:1混合,搅拌均匀,制得混合物。
(4)将步骤(3)中得到的混合物涂覆至基板上,固化,制得胶体。
实施例2
有机硅改性环氧胶粘剂
A组分:有机硅改性环氧树脂,其反应原料:环氧树脂40份、硅氧烷5份、硅油15份、35%盐酸1份、去离子水5份;
B组分:1,3-环己二甲胺10份、促进剂1份。
制备方法:
(1)将硅氧烷、硅油、催化剂和水混合,搅拌均匀,同时加热至120℃,搅拌、回流反应2h,得到预聚体a,备用;
(2)将环氧树脂和步骤(1)中所得到的预聚体a混合,搅拌,混合均匀,同时加热至120℃,搅拌、回流反应2h,然后敞口搅拌、保温3小时,得到有机硅改性环氧树脂,作为A组分;
(3)将A组分和B组分以质量比为10:1混合,搅拌均匀,制得混合物。
(4)将步骤(3)中得到的混合物涂覆至基板上,固化,制得胶体。
实施例3
有机硅改性环氧胶粘剂
A组分:有机硅改性环氧树脂,其反应原料:环氧树脂40份、硅氧烷15份、硅油5份、35%盐酸1份、去离子水5份;
B组分:1,3-环己二甲胺10份、促进剂1份。
制备方法:
(1)将硅氧烷、硅油、催化剂和水混合,搅拌均匀,同时加热至120℃,搅拌、回流反应2h,得到预聚体a,备用;
(2)将环氧树脂和步骤(1)所得到的预聚体a混合,搅拌,混合均匀,同时加热至120℃,搅拌、回流反应2h,然后敞口搅拌、保温3小时,得到有机硅改性环氧树脂,作为A组分;
(3)将A组分和B组分以质量比为10:1混合,搅拌均匀,制得混合物。
(4)将步骤(3)中得到的混合物涂覆至基板上,固化,制得胶体。
对比例1
有机硅改性环氧胶粘剂
A组分:有机硅改性环氧树脂,其反应原料:环氧树脂40份、硅氧烷0份、硅油20份、35%盐酸1份、去离子水5份;
B组分:1,3-环己二甲胺10份、促进剂1份。
制备方法:
(1)将硅油、环氧树脂、催化剂和水,搅拌并混合均匀,同时加热至120℃,搅拌、回流反应2h,然后敞口搅拌、保温3小时,得到有机硅改性环氧树脂,作为A组分;
(2)将A组分和B组分以质量比为10:1混合,搅拌均匀,制得混合物。
(3)将步骤(2)所得到的混合物涂覆至基板上,固化,制得胶体。
对比例2
有机硅改性环氧胶粘剂
A组分:有机硅改性环氧树脂,其反应原料:环氧树脂40份、硅氧烷20份、硅油0份、35%盐酸1份、去离子水5份;
B组分:1,3-环己二甲胺10份、促进剂1份。
制备方法:
(1)将硅氧烷、环氧树脂、催化剂和水,搅拌并混合均匀,同时加热至120℃,搅拌、回流反应2h,然后敞口搅拌、保温3小时,得到有机硅改性环氧树脂,作为A组分;
(2)将A组分和B组分以质量比为10:1混合,搅拌均匀,制得混合物。
(3)将步骤(2)中的混合物涂覆至基板上,固化,制得胶体。
对比例3
有机硅改性环氧胶粘剂
A组分:有机硅改性环氧树脂,其反应原料:环氧树脂40份、硅氧烷10份、硅油10份、35%盐酸0份、去离子水5份;
B组分:1,3-环己二甲胺10份、促进剂1份。
制备方法:
(1)将硅氧烷、硅油和水混合,搅拌均匀,同时加热至120℃,搅拌、回流 反应2h,得到预聚体a,备用;
(2)将环氧树脂和步骤(1)中制得的预聚体a混合,搅拌,混合均匀,同时加热至120℃,搅拌、回流反应2h,然后敞口搅拌、保温3小时,得到有机硅改性环氧树脂,作为A组分;
(3)将A组分和B组分以质量比为10:1混合,搅拌均匀,制得混合物。
(4)将步骤(3)得到的混合物涂覆至基板上,固化,制得胶体。
对比例4
环氧胶粘剂
A组分:环氧树脂64份、增韧剂2份;
B组分:1,3-环己二甲胺10份、促进剂1份。
制备方法:
(1)将环氧树脂和增韧剂混合,得到A组分;
(2)将1,3-环己二甲胺和促进剂混合,得到B组分;
(3)将A组分和B组分以质量比为10:1混合,搅拌均匀,制得混合物。
(4)将步骤(3)得到的混合物涂覆至基板上,固化,制得胶体。
对比例5
环氧胶粘剂
A组分:环氧树脂64份、耐温助剂2份;
B组分:1,3-环己二甲胺10份、促进剂1份。
制备方法:
(1)将环氧树脂和耐温助剂混合,得到A组分;
(2)将1,3-环己二甲胺和促进剂混合,得到B组分;
(3)将A组分和B组分以质量比为10:1混合,搅拌均匀,制得混合物。
(4)将步骤(3)得到的混合物涂覆至基板上,固化,制得胶体。
性能测试
将实施例1-实施例4、对比例1-对比例5的胶体按以下测试方法进行测试,测试结果如表1:
冲击强度KJ/m 2:GB 1043;
剪切强度:GB 7124。
表1
Figure PCTCN2021126417-appb-000016
从表1可以看出,上述实施例1-实施例3在低温和高温下均具有较优的力学性能。说明本发明的技术方案具有较高的耐温性能,即在高温条件下仍然能够保持较优的机械性能,故可以满足发热量较大的器件的粘接需求。
另外,对比实施例1、实施例2和实施例3,区别在于,硅氧烷和硅油的比例不同,从表1可以看出,实施例1和实施例2的技术效果优于实施例3,说明硅氧烷和硅油的质量比优选为1:(1-3)。
对比实施例1、对比例1和对比例2,区别在于,对比例1缺少硅氧烷,对比例2缺少硅油。从表1可以看出,实施例1的技术效果显著优于对比例1和对比例2,特别是高温下的力学性能。说明硅氧烷和硅油生成的预聚物对环氧树脂的改性效果优于单独的有机硅改性效果。
对比实施例1和对比例3和对比例4,对比例3和对比例4为传统技术中常用配方。从表1可以看出,其技术效果不如本发明的实施例1。再次说明本发明的技术方案相比于现有技术,高低温下的机械性能得到较大幅度的提高。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对 上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种有机硅预聚体,其特征在于,主要由硅氧烷和硅油以质量比为1:(0.3-5)聚合而成。
  2. 根据权利要求1所述的有机硅预聚体,其特征在于,所述有机硅预聚体具有式(I)所示结构:
    Figure PCTCN2021126417-appb-100001
    a和b各自独立地为1-20任一整数;
    R 1为任选硅氧烷中可接受基团;
    R 3为任选硅油中可接受基团。
  3. 一种有机硅改性环氧树脂,其特征在于,主要由以下重量份的反应原料制备而成:环氧树脂35-55份、硅氧烷5-20份、硅油5-20份、催化剂0.1-3份及水1-10份。
  4. 根据权利要求3所述的有机硅改性环氧树脂,其特征在于,所述硅氧烷选自:环氧基三甲氧基硅烷和环氧基三乙氧基硅烷中的一种或多种;和/或
    所述硅油选自:二甲基二甲氧基硅烷、二甲基二乙氧基硅烷、二乙基二甲氧基硅烷、二乙基二乙氧基硅烷、聚二甲基硅氧烷和聚二乙基硅氧烷中的一种或多种;和/或
    所述环氧树脂为:缩水甘油醚类环氧树脂和缩水甘油酯类环氧树脂中的一种或多种;和/或
    所述催化剂为质量百分含量为30%-40%的盐酸。
  5. 根据权利要求3所述的有机硅改性环氧树脂,其特征在于,所述环氧树脂具有式A所示结构:
    Figure PCTCN2021126417-appb-100002
    X为O或-COO;
    n为1-20的整数;和/或
    所述硅氧烷具有式B所示结构:
    Figure PCTCN2021126417-appb-100003
    R 1为硅氧烷中任选可接受基团;和/或
    所述硅油具有式C所示结构:
    Figure PCTCN2021126417-appb-100004
    R 2和R 3各自独立地为硅油中任选可接受基团。
  6. 根据权利要求3所述的有机硅改性环氧树脂,其特征在于,所述有机硅改性环氧树脂具有式(II)所示结构:
    Figure PCTCN2021126417-appb-100005
    n为1-20任一整数;a和b各自独立地为1-20任一整数;
    X为O或-COO;
    R 1为硅氧烷中任选可接受基团;
    R 3为硅油中任选可接受基团。
  7. 一种有机硅改性环氧胶粘剂,其特征在于,包括:
    A组分,由权利要求1或2所述的有机硅预聚体和环氧树脂反应制备得到,或为权利要求3-6任一项所述的有机硅改性环氧树脂;
    B组分,包括:1,3-环己二甲胺和促进剂。
  8. 一种胶体,其特征在于,由权利要求7所述的有机硅改性环氧胶粘剂制备而成。
  9. 一种胶体的制备方法,其特征在于,包括以下步骤:
    提供权利要求7所述的有机硅改性环氧胶粘剂;
    将所述有机硅改性环氧树脂中的A组分和B组分混合,制得混合物;
    将所述混合物涂覆于待粘贴部分,固化,制得所述胶体。
  10. 根据权利要求9所述的制备方法,其特征在于,所述提供权利要求7所述的有机硅改性环氧胶粘剂的步骤包括以下步骤:
    将硅氧烷、硅油、催化剂和水混合,在110℃-130℃的条件下进行反应,得到有机硅预聚体;
    将所述有机硅预聚体和环氧树脂混合,在110℃-130℃的条件下进行反应,得到有机硅改性环氧树脂的A组分;
    提供1,3-环己二甲胺和促进剂,得到有机硅改性环氧树脂的B组分。
PCT/CN2021/126417 2020-12-30 2021-10-26 有机硅预聚体、有机硅改性环氧树脂、胶粘剂、胶体及其制备方法 WO2022142648A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011617525.1 2020-12-30
CN202011617525.1A CN112759765B (zh) 2020-12-30 2020-12-30 有机硅预聚体、有机硅改性环氧树脂、胶粘剂、胶体及其制备方法

Publications (1)

Publication Number Publication Date
WO2022142648A1 true WO2022142648A1 (zh) 2022-07-07

Family

ID=75697869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126417 WO2022142648A1 (zh) 2020-12-30 2021-10-26 有机硅预聚体、有机硅改性环氧树脂、胶粘剂、胶体及其制备方法

Country Status (2)

Country Link
CN (1) CN112759765B (zh)
WO (1) WO2022142648A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112759765B (zh) * 2020-12-30 2022-12-23 广州市白云化工实业有限公司 有机硅预聚体、有机硅改性环氧树脂、胶粘剂、胶体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295875A (zh) * 2011-06-29 2011-12-28 中科院广州化学有限公司 含环氧基有机硅杂化物的环氧地坪涂料及制备方法与应用
CN103450636A (zh) * 2013-08-20 2013-12-18 中国科学院宁波材料技术与工程研究所 一种阻燃的环氧树脂/木质素/有机硅复合材料及其制备方法
CN104761994A (zh) * 2015-04-10 2015-07-08 南昌航空大学 一种光固化有机硅改性环氧树脂漆膜的制备方法
CN104830268A (zh) * 2015-01-15 2015-08-12 杭州师范大学 一种led灯丝封装有机硅材料及其制备方法
CN112759765A (zh) * 2020-12-30 2021-05-07 广州市白云化工实业有限公司 有机硅预聚体、有机硅改性环氧树脂、胶粘剂、胶体及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101463223B (zh) * 2009-01-13 2011-06-01 南京大学 一种环氧增强的韧性有机硅涂料
JP2012236894A (ja) * 2011-05-11 2012-12-06 Asahi Kasei Chemicals Corp 硬化性樹脂組成物及びその用途
CN102443342B (zh) * 2011-10-18 2013-06-12 中科院广州化学有限公司 含环氧基聚醚有机硅杂化物的环氧地坪涂料及制备方法
CN104558616B (zh) * 2015-01-05 2017-02-22 郑州中原思蓝德高科股份有限公司 一种含芳基和环氧基的硅树脂、其制备方法及包含该硅树脂的环氧树脂胶粘剂
CN107955581B (zh) * 2017-11-21 2020-08-14 黑龙江省科学院石油化学研究院 一种环氧有机硅改性光固化led封装胶及其制备方法
CN109880561A (zh) * 2017-12-06 2019-06-14 上海本诺电子材料有限公司 一种环氧树脂灌封胶组合物及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295875A (zh) * 2011-06-29 2011-12-28 中科院广州化学有限公司 含环氧基有机硅杂化物的环氧地坪涂料及制备方法与应用
CN103450636A (zh) * 2013-08-20 2013-12-18 中国科学院宁波材料技术与工程研究所 一种阻燃的环氧树脂/木质素/有机硅复合材料及其制备方法
CN104830268A (zh) * 2015-01-15 2015-08-12 杭州师范大学 一种led灯丝封装有机硅材料及其制备方法
CN104761994A (zh) * 2015-04-10 2015-07-08 南昌航空大学 一种光固化有机硅改性环氧树脂漆膜的制备方法
CN112759765A (zh) * 2020-12-30 2021-05-07 广州市白云化工实业有限公司 有机硅预聚体、有机硅改性环氧树脂、胶粘剂、胶体及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI MEIJIANG, ET AL.: "Synthesis and Heat-resistance Property of Silicone Resin Containing Epoxy and Phenyl Groups", JOURNAL OF HANGZHOU NORMAL UNIVERSITY (NATURAL SCIENCE EDITION), vol. 12, no. 2, 31 March 2013 (2013-03-31), XP055947365, ISSN: 1674-232X, DOI: 10.3969/j.issn.1674-232X.2013.02.001 *
LI YINWEN, ET AL.: "Synthesis of Polyphenylmethoxy Silicone Modified Epoxy Resins", GAOFENZI-CAILIAO-KEXUE-YU-GONGCHENG = POLYMER MATERIALS SCIENCE AND ENGINEERING, CHENGDU KEJI DAXUE GAOFENZI YANJIUSUO, CN, vol. 26, no. 1, 31 January 2010 (2010-01-31), CN , pages 22 - 25, XP055947361, ISSN: 1000-7555, DOI: 10.16865/j.cnki.1000-7555.2010.01.007 *
PEI LEI, ET AL.: "Preparation and Properties of Non-drying High Temperature Resistant Paint", HUAXUE YU NIANHE - CHEMISTRY AND ADHESION, HEILONGJIANG SHENG KEXUEYUAN, SHIYOU HUAXUE YANJIUSUO, HARBIN, CN, vol. 40, no. 4, 31 December 2018 (2018-12-31), CN , pages 278 - 280, XP055947363, ISSN: 1001-0017 *

Also Published As

Publication number Publication date
CN112759765B (zh) 2022-12-23
CN112759765A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
CN104152104B (zh) 一种自粘性有机硅压敏胶粘剂及其制备方法
CN102731788B (zh) 一种有机硅杂化物及其有机硅复合涂料的制备方法
CN103709988B (zh) 一种电子元器件用硅凝胶及其制备方法
TW593440B (en) Thermosetting resin composition having low coefficient of thermal expansion and film using thereof
CN108699340A (zh) 放热构件用组合物、放热构件、电子机器及放热构件的制造方法
WO2022142648A1 (zh) 有机硅预聚体、有机硅改性环氧树脂、胶粘剂、胶体及其制备方法
JPS5821417A (ja) 硬化性エポキシ樹脂組成物
CN111499877A (zh) 一种有机硅改性的环氧树脂的制备方法
CN103788727B (zh) 一种钢结构表面的防护涂料及其制备方法
CN108779386A (zh) 放热构件用组合物、放热构件、电子机器、放热构件用组合物的制造方法、放热构件的制造方法
CN114836129A (zh) 一种环保型隔热保温涂料及其制备方法
CN110317562B (zh) 一种有机硅改性的环氧灌封胶
CN110387128A (zh) 一种自粘型单组份加成型硅橡胶及其制备方法
CN115584129A (zh) 一种导热硅胶片及其制备方法
CN112094514B (zh) 一种水性陶瓷涂料及其制备方法
CN108384022A (zh) 一种提高非固化橡胶沥青耐高温性能超支化树脂的制备
JP2002322343A (ja) 熱硬化性樹脂組成物及びその製造方法
CN104804193A (zh) 硅烷偶联剂、制备方法、底漆组合物和涂料组合物
WO2019221032A1 (ja) 樹脂組成物、蓄熱材、及び物品
KR101801658B1 (ko) 온수 배관용 알루미늄관 제조 방법 및 이에 의하여 제조된 온수 배관용 알루미늄관
TW574262B (en) Imide based oligomer having acid anhydride at terminal, and resin composition having curing property
CN112708395B (zh) 动力电池用导热黏合剂及其制备方法
JP2003165906A (ja) シリコーンゲル組成物およびシリコーンゲル
CN109435396A (zh) 一种用于工程塑料的弯头的耐腐蚀隔热复合膜
CN109593311B (zh) 丙烯酸酯树脂组合物以及丙烯酸酯树脂注模产品及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913393

Country of ref document: EP

Kind code of ref document: A1