WO2022142584A1 - 一种三元电池废料中除去单质铜的方法及其应用 - Google Patents

一种三元电池废料中除去单质铜的方法及其应用 Download PDF

Info

Publication number
WO2022142584A1
WO2022142584A1 PCT/CN2021/123414 CN2021123414W WO2022142584A1 WO 2022142584 A1 WO2022142584 A1 WO 2022142584A1 CN 2021123414 W CN2021123414 W CN 2021123414W WO 2022142584 A1 WO2022142584 A1 WO 2022142584A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
solution
iron
waste
nickel
Prior art date
Application number
PCT/CN2021/123414
Other languages
English (en)
French (fr)
Inventor
孙颉
杨鼎
陈若葵
乔延超
郑显亮
谭枫
李长东
Original Assignee
湖南邦普循环科技有限公司
广东邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南邦普循环科技有限公司, 广东邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 湖南邦普循环科技有限公司
Priority to EP21913329.5A priority Critical patent/EP4270595A4/en
Priority to HU2200284A priority patent/HUP2200284A1/hu
Publication of WO2022142584A1 publication Critical patent/WO2022142584A1/zh
Priority to US18/215,811 priority patent/US20230344030A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0089Treating solutions by chemical methods
    • C22B15/0091Treating solutions by chemical methods by cementation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0015Obtaining aluminium by wet processes
    • C22B21/0023Obtaining aluminium by wet processes from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0446Leaching processes with an ammoniacal liquor or with a hydroxide of an alkali or alkaline-earth metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/008Wet processes by an alkaline or ammoniacal leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present disclosure relates to the technical field of battery waste recycling, in particular to a method for removing elemental copper from ternary battery waste and its application.
  • Ternary polymer lithium battery refers to a lithium battery that uses lithium nickel cobalt manganese or lithium nickel cobalt aluminate ternary material as the positive electrode material. Because of its dual advantages of comprehensive performance and cost, it is increasingly concerned and recognized by the industry, and gradually surpasses phosphoric acid. Lithium iron and lithium manganate batteries have become mainstream. Due to the limited service life of lithium-ion batteries and the increase in their usage, the number of scrapped batteries is also increasing day by day, so the recycling and disposal of ternary battery waste has been difficult to ignore.
  • the current reported ternary battery waste recycling and treatment processes are mainly divided into two types: high-temperature solid-phase repair and wet leaching and extraction.
  • the former obtains ternary materials through physical sorting and chemical impurity removal, and then restores its performance by high-temperature calcination with lithium supplementation.
  • this method is short in process flow and low in cost, the impurity content of the product is high, and its electrochemical performance will be affected to a certain extent.
  • Wet leaching extraction refers to recovering precious metals such as nickel-cobalt-manganese by adding acid to battery powder, and then obtaining a salt solution of nickel-cobalt-manganese by means of impurity removal, extraction and separation, etc., such as the currently disclosed waste nickel-cobalt-manganese acid. Recycling method of lithium ternary battery cathode material, this method directly leaches elemental copper in battery powder into nickel-cobalt-manganese solution, then removes copper in solution by adding iron powder to replace, and then removes copper by precipitation method Iron and aluminum in molten metal. This process produces a large amount of iron-aluminum slag and is difficult to filter, which greatly affects the cost and efficiency of recovery.
  • the embodiments of the present disclosure provide a method for removing elemental copper from ternary battery waste and its application.
  • the method can remove most of the copper element in the ternary waste without causing the loss of precious metal elements such as nickel, cobalt, manganese, etc.
  • the copper content in the material leaching solution is reduced, the amount of auxiliary materials and slag in the process of removing iron and aluminum is reduced, and a sponge copper product is obtained at the same time.
  • the embodiments of the present disclosure provide:
  • a method for removing elemental copper from ternary battery waste comprising the steps of:
  • the ternary waste material is a positive electrode material obtained by dismantling a waste nickel-cobalt lithium manganate battery or a waste positive electrode material produced in the manufacturing process of a nickel-cobalt lithium manganate battery.
  • the magnetic field strength of the magnetic separation and iron removal is 60-120T.
  • Magnetic separation iron removal is physical iron removal, which reduces the use of chemical reagents, such as alkaline solutions.
  • the alkaline solution is an alkaline earth metal oxide solution; in another embodiment, the alkaline earth metal oxide solution is at least one of sodium hydroxide solution and potassium hydroxide solution. A sort of.
  • step (2) the mass percentage of the alkali solution is 15-35%.
  • step (2) the molar ratio of the alkali in the alkali solution to the aluminum in the ternary waste after iron removal is (1.2-1.5):1.
  • step (2) the liquid-solid ratio of the ternary waste after the alkaline solution and the iron removal is 3-5mL/g;
  • the liquid-solid ratio of the ternary waste is 4mL/g.
  • the temperature of the aluminum removal reaction is 80°C-100°C; in another embodiment, the temperature of the aluminum removal reaction is 85°C-95°C. According to the embodiments of the present disclosure, at 80° C. to 100° C., under the condition of excess alkali, most of the aluminum will be converted into metaaluminate and enter the solution, so there is no adsorption of nickel, cobalt, manganese or copper metals.
  • step (2) the time of the aluminum removal reaction is 0.5-5h; in another embodiment, the time of the aluminum removal reaction is 1-2h.
  • step (2) the volume-to-mass ratio of the water in the washing and the filter residue is 5-20mL/g; in another embodiment, the volume-to-mass ratio of the water in the washing and the filter residue is about 10mL/g.
  • step (2) the drying temperature is 80°C-150°C, and the drying time is 6-12h.
  • step (3) the molar ratio of Fe 3+ in the iron salt solution to the copper of the copper-containing nickel-cobalt-manganese material is (1-5):1.
  • step (3) the molar ratio of Fe 3+ in the iron salt solution to the copper of the copper-containing nickel-cobalt-manganese material is about 3:1.
  • the iron salt solution (aqueous solution of ferric ions) is a solution of at least one of the following: ferric chloride, ferric sulfate and ferric nitrate.
  • the iron concentration in the iron salt solution is 5-20 g/L.
  • the iron concentration in the iron salt solution is 10-20 g/L.
  • step (3) the temperature of the leaching reaction is 10°C-60°C, and the time of the leaching reaction is 2-6h.
  • step (3) the method further includes subjecting the nickel-cobalt-manganese waste to sulfuric acid leaching, impurity removal, extraction and separation to obtain a nickel-cobalt-manganese salt solution, and then recovering the nickel-cobalt-manganese metal.
  • the mesh number of the iron powder is 60-120 mesh; in another embodiment, the mesh number of the iron powder is 90-100 mesh.
  • the mol ratio of iron ions in the iron powder in the step (4) and the iron salt solution in the step (3) is (0.5-0.8): 1; when the iron salt solution iron ion concentration is too low, The leaching of copper in the waste is incomplete; when the iron ion concentration of the iron salt solution is too high, part of the nickel, cobalt, and manganese elements in the waste will be leached, resulting in the loss of valuable metals, and the amount of iron powder required in the subsequent reduction process will increase, resulting in a decrease in the purity of sponge copper.
  • the molar ratio of the iron powder in the step (4) to the iron ion in the iron salt solution in the step (3) is (0.6-0.7):1.
  • step (4) the drying temperature is 80°C-150°C; the drying time is 6-12h.
  • step (4) it also includes adding an oxidant to the solution after copper removal to react to obtain a solution containing ferric ions, and then diluting the solution with water and returning to step (3) to continue. Copper removal reaction.
  • the oxidant is at least one of oxygen, ozone and chlorine.
  • the addition rate of the oxidant is 10-50 L/h; in another embodiment, the addition rate of the oxidant is 20-25 L/h.
  • the time of the oxidation reaction is 3-12h; in another embodiment, the time of the oxidation reaction is 6-8h.
  • the embodiments of the present disclosure also provide the application of the methods of the above embodiments in recycling and processing wastes of ternary batteries.
  • Using the method of the embodiment of the present disclosure can remove most of the copper element in the ternary waste without causing the loss of precious metal elements such as nickel, cobalt, and manganese, so that the copper content in the ternary material leaching solution is reduced, and the amount of auxiliary materials and slag in the process of removing iron and aluminum is reduced. , while obtaining sponge copper products.
  • the preparation process of the embodiment of the present disclosure is simple, the equipment requirements and the energy consumption cost are low, the by-products are recycled, and the environment is friendly.
  • iron salt solution (ferric ion aqueous solution) to remove elemental copper in the ternary material
  • the leaching solution is replaced by iron powder to obtain sponge copper and ferrous ion aqueous solution, and the ferrous ion aqueous solution is oxidized to trivalent iron ion aqueous solution to continue leaching the copper in the ternary material.
  • the iron salt solution reacts; the second is to remove iron and aluminum in advance, and there will be no large amount of iron and aluminum slag, which makes it difficult to filter press, which reduces the recovery cost and improves the recovery efficiency.
  • FIG. 1 is a process flow diagram of Embodiment 1 of the present disclosure.
  • Fig. 1 is the process flow diagram of the disclosed embodiment 1.
  • the ferric ion aqueous solution is used to remove the elemental copper in the ternary material, and the copper leaching solution passes through the iron
  • the powder is replaced to obtain an aqueous solution of sponge copper and ferrous ions, and the aqueous solution of ferrous ions is oxidized into an aqueous solution of ferric ions, and the copper in the ternary material is continuously leached.
  • the content of copper in the sponge copper is 85.1%, and the content is greater than 40%, which can be directly sold as a product; the content of nickel, cobalt, and manganese in the copper leaching solution is relatively low, and the nickel, cobalt and manganese are basically not leached, and the solution containing ferric ions It is 19.0g/L, and the iron ion concentration meets the requirements for leaching copper in step (3), and can be reused in step (3) to continue the copper removal reaction.
  • the content of copper in the sponge copper is 73.1%, and the content is greater than 40%, which can be directly sold as a product; the content of nickel, cobalt, and manganese in the copper leaching solution is relatively low, and the nickel, cobalt and manganese are basically not leached, and the solution containing ferric ions It is 29.9g/L, and the iron ion concentration needs to be diluted to meet the requirements of step (3) leaching copper, and it can be reused to step (3) to continue the copper removal reaction.
  • the content of copper in the sponge copper is 82.3%, which can be directly sold as a product; the content of nickel, cobalt and manganese in the copper leaching solution is relatively low, and the nickel, cobalt and manganese are basically not leached; the solution containing ferric ions is 20.2g/L , the iron ion concentration meets the requirements of step (3) for leaching copper, and can be reused to step (3) for copper removal reaction.
  • the method for removing elemental copper from the ternary battery waste of Comparative Example 1 includes the following steps:
  • the content of copper in the sponge copper of Comparative Example 1 is 31.1%, a large amount of unreacted iron powder is mixed, the content of nickel, cobalt, and manganese in the leaching solution is relatively high, and part of the loss of nickel, cobalt, and manganese valuable metals enters into the ferric chloride solution.
  • the ferric ion-containing solution is 39.2 g/L, and the concentration of iron ions needs to be diluted to meet the requirements of copper leaching in step (3), and can be reused in step (3) for copper removal reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种三元电池废料中除去单质铜的方法及其应用,该方法包括以下步骤:将三元电池废料破碎筛分,再进行磁选除铁,得到除铁后三元废料;将碱溶液加入除铁后三元废料中进行除铝反应,过滤,取滤渣,水洗烘干,得到含铝废水及含铜镍钴锰材料;将铁盐溶液加入含铜镍钴锰材料中进行浸出反应,过滤洗涤,得到浸出溶液和镍钴锰废料;向浸出溶液中加入铁粉搅拌反应,过滤,取滤渣,水洗烘干,得到除铜后液和海绵铜。使用本公开实施例的方法能除去三元废料中大部分的铜单质而不造成其镍钴锰等贵金属元素损失,使三元材料浸出液中铜含量降低,除铁铝工序辅料及渣量减少,同时得到海绵铜产品。

Description

一种三元电池废料中除去单质铜的方法及其应用 技术领域
本公开涉及电池废料回收技术领域,尤其是涉及一种三元电池废料中除去单质铜的方法及其应用。
背景技术
三元聚合物锂电池是指使用锂镍钴锰或者镍钴铝酸锂三元材料作为正极材料的锂电池,因其具有综合性能和成本的双重优势日益被行业所关注和认同,逐步超越磷酸铁锂和锰酸锂电池成为主流。由于锂离子电池使用寿命有限,其使用量的增加,导致其报废电池数目也与日俱增,因此三元电池废料的回收处理问题已经难以忽视。
目前报道的三元电池废料回收处理工艺主要分为高温固相修复以及湿法浸出提取两种,前者通过物理分选、化学除杂后得到三元材料,然后通过补锂高温煅烧来修复其性能,此方法虽然工艺流程较短,成本较低,但产品杂质含量偏高,其电化学性能会受到一定影响。
湿法浸出提取是指通过对电池粉进行加酸浸出后,再通过除杂、萃取分离等方式得到镍钴锰的盐溶液来回收镍钴锰等贵重金属,如目前公开的废旧镍钴锰酸锂三元电池正极材料的回收利用方法,此方法直接将电池粉中单质铜浸出至镍钴锰溶液中,然后通过加铁粉置换的方式来除去溶液中的铜,之后再通过沉淀法来除去金属液中的铁铝。这种工艺会产生大量的铁铝渣且难以压滤,极大地影响了回收的成本与效率。
发明内容
本公开实施例提供一种三元电池废料中除去单质铜的方法及其应用,该方法能除去三元废料中大部分的铜单质而不造成镍钴锰等贵金属元素的的损失,使三元材料浸出液中铜含量降低,除铁铝工序辅料及渣量减少,同时得到海绵铜产品,本公开实施例的制备工艺简单、设备要求及能耗成本低,副产物循环利用,环境友好。
为实现上述目的,本公开实施例提供了:
一种三元电池废料中除去单质铜的方法,包括如下步骤:
(1)将三元电池废料破碎筛分,再进行磁选除铁,得到除铁后三元废料;
(2)将碱溶液加入所述除铁后三元废料中进行除铝反应,过滤,取滤渣,水洗烘干, 得到含铝废水及含铜镍钴锰材料;
(3)将铁盐溶液加入所述含铜镍钴锰材料中进行浸出反应,过滤洗涤,得到含Fe 3+、Fe 2+、Cu 2+的浸出溶液和镍钴锰废料;
(4)向所述浸出溶液中加入铁粉搅拌反应,过滤,取滤渣,水洗烘干,得到除铜后液和海绵铜;所述铁盐溶液中Fe 3+的浓度为5-20g/L。
在一实施例中,步骤(1)中,所述三元废料为废旧镍钴锰酸锂电池拆解得到的正极材料或镍钴锰酸锂电池制造过程中产生的废弃正极材料。
在一实施例中,步骤(1)中,所述磁选除铁的磁场强度为60-120T。磁选除铁为物理除铁,减少了化学试剂的使用,比如碱溶液。
在一实施例中,步骤(2)中,所述碱溶液为碱土金属氧化物溶液;在另一实施例中,所述碱土金属氧化物溶液为氢氧化钠溶液和氢氧化钾溶液中的至少一种。
在一实施例中,步骤(2)中,所述碱溶液的质量百分数为15-35%。
在一实施例中,步骤(2)中,所述碱溶液中的碱与所述除铁后三元废料中铝的摩尔比为(1.2-1.5):1。
在一实施例中,步骤(2)中,所述碱溶液和所述除铁后三元废料的液固比为3-5mL/g;在另一实施例中,上述碱溶液和除铁后三元废料的液固比为4mL/g。
在一实施例中,步骤(2)中,所述除铝反应的温度为80℃-100℃;在另一实施例中,所述除铝反应的温度为85℃-95℃。根据本公开实施例,在80℃-100℃,过量碱的条件下大部分铝会转化成偏铝酸盐进入到溶液中,因此不存在吸附镍钴锰或铜金属。
在一实施例中,步骤(2)中,所述除铝反应的时间为0.5-5h;在另一实施例中,所述除铝反应的时间为1-2h。
在一实施例中,步骤(2)中,所述水洗中水与滤渣的体积质量比为5-20mL/g;在另一实施例中,所述水洗中水与滤渣的体积质量比约为10mL/g。
在一实施例中,步骤(2)中,所述烘干的温度为80℃-150℃,烘干的时间为6-12h。
在一实施例中,步骤(3)中,所述铁盐溶液中Fe 3+与所述含铜镍钴锰材料的铜的摩尔比为(1-5):1。
在另一实施例中,步骤(3)中,所述铁盐溶液中Fe 3+与所述含铜镍钴锰材料的铜的摩尔比约为3:1。
在一实施例中,步骤(3)中,所述铁盐溶液(三价铁离子水溶液)为以下中的至少一种的溶液:氯化铁、硫酸铁和硝酸铁。
在一实施例中,步骤(3)中,所述铁盐溶液中铁浓度为5-20g/L。
在另一实施例中,步骤(3)中,所述铁盐溶液中铁浓度为10-20g/L。
在一实施例中,步骤(3)中,所述浸出反应的温度为10℃-60℃,浸出反应的时间为2-6h。
在一实施例中,步骤(3)中,还包括将所述镍钴锰废料进行硫酸浸出、除杂、萃取、分离,得到镍钴锰盐溶液,再回收镍钴锰金属。
在一实施例中,步骤(4)中,所述铁粉的目数为60-120目;在另一实施例中,所述铁粉的目数为90-100目。
在一实施例中,所述步骤(4)中的铁粉与步骤(3)中的铁盐溶液中铁离子的摩尔比为(0.5-0.8):1;铁盐溶液铁离子浓度过低时,废料中铜浸出不完全;铁盐溶液铁离子浓度过高时,会浸出废料中一部分镍钴锰元素导致有价金属损失,并且后续还原工序所需铁粉用量增加,从而导致海绵铜纯度降低。在另一实施例中,所述步骤(4)中的铁粉与步骤(3)中的铁盐溶液中铁离子的摩尔比为(0.6-0.7):1。
在一实施例中,步骤(4)中,所述烘干的温度为80℃-150℃;烘干的时间为6-12h。
在一实施例中,步骤(4)中,还包括向所述除铜后液中加入氧化剂进行反应,得到含三价铁离子的溶液,然后将溶液加水稀释后返回步骤(3)中继续进行除铜反应。
在另一实施例中,所述氧化剂为氧气、臭氧和氯气中的至少一种。
在另一实施例中,所述氧化剂的加入速率为10-50L/h;在另一实施例中,所述氧化剂的加入速率为20-25L/h。
在另一实施例中,所述氧化反应的时间为3-12h;在另一实施例中,所述氧化反应的时间为6-8h。
本公开实施例还提供了上述实施例的方法在回收处理三元电池废料中的应用。
本公开实施例的优点:
1、使用本公开实施例方法能除去三元废料中大部分的铜单质而不造成其镍钴锰等贵金属元素损失,使三元材料浸出液中铜含量降低,除铁铝工序辅料及渣量减少,同时得到海绵铜产品。本公开实施例的制备工艺简单、设备要求及能耗成本低,副产物循环利用,环境友好。
2、本公开实施例对三元废料先进行破碎筛分除铁除铝等操作后,使用5-20g/L的铁盐溶液(三价铁离子水溶液)除去三元材料中的单质铜,铜浸出液通过铁粉置换得到海绵铜与亚铁离子水溶液,将亚铁离子水溶液氧化成三价铁离子水溶液继续浸出三元材料中的铜, 一是可以减少铁粉的浪费,可以使得铁不会与铁盐溶液发生反应;二是事先除铁铝,不会出现大量的铁铝渣导致难以压滤,降低了回收成本和提高了回收效率。其原理为2Fe 3++Cu=2Fe 2++Cu 2+,Fe+Cu 2+=Fe 2++Cu,Fe+2Fe 3+=3Fe 2+,4Fe 2++O 2+4H +=4Fe 3++2H 2O。
附图说明
本公开实施例的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例1的工艺流程图。
具体实施方式
为了对本公开进行深入的理解,下面结合实例对本公开的若干实施方案进行描述,以进一步地说明本公开的特点和优点,任何不偏离本公开主旨的变化或者改变能够为本领域的技术人员理解,本公开的保护范围由所属权利要求范围确定。
实施例1
本实施例的三元电池废料中除去单质铜的方法,包括如下步骤:
(1)将500g拆解镍钴锰酸锂电池后的报废料粉碎过100目筛,得408g筛下物,后置于磁场强度为60T的磁盘中进行磁选除铁30min,分离得到355g含铝镍钴锰酸锂材料;
(2)将355g含铝镍钴锰酸锂材料加入1000mL质量百分数为30%的氢氧化钠溶液中,90℃下搅拌反应1.5h,过滤、洗涤、烘干,得到296g除铝后的镍钴锰酸锂粉料,测得粉料中铜的质量分数为2.08%,镍质量分数为25.61%,钴质量分数为5.33%,锰质量分数为5.12%;
(3)向100g铜含量为2.08%的镍钴锰酸锂粉料加入铁浓度10g/L氯化铁溶液0.7L,50℃搅拌反应3h后,过滤,得到590mL铜浸出液,测得液中铜浓度为2.93g/L,镍浓度为19.2mg/L,钴浓度为10.4mg/L,锰浓度为4.5mg/L,滤渣水洗烘干后,质量为97.3g,测得铜含量为0.22%,镍含量为25.55%,钴含量为5.36%,锰含量为5.08%;
(4)在590mL铜浸出液中加入100目铁粉3.5g,常温搅拌反应2h,过滤,得除铜后液570mL,测得铜浓度为58.7mg/L,滤渣(海绵铜)洗涤烘干后2.1g,测得铜含量85.1%;
(5)向570mL除铜后液中通入氧气,流量为40L/h,常温搅拌反应4h,得到570mL含三价铁离子溶液(铁离子浓度满足步骤(3)浸出铜的要求,能回用至步骤(3)中继续进行除铜反应),测得三价铁离子浓度为18.9g/L。
图1为本公开实施例1的工艺流程图,先对三元废料进行破碎筛分除铁除铝等操作后,再使用三价铁离子水溶液除去三元材料中的单质铜,铜浸出液通过铁粉置换得到海绵铜与亚铁离子水溶液,将亚铁离子水溶液氧化成三价铁离子水溶液继续浸出三元材料中的铜。
表1实施例1中所得物质的含量
 
铜浸出液 2.93g/L 19.2mg/L 10.4mg/L 4.5mg/L 10.1g/L
镍钴锰废料 0.22% 25.55% 5.36% 5.08% 0.04%
除铜后液 58.7mg/L 14.4mg/L 9.4mg/L 4.3mg/L 19.0g/L
滤渣(海绵铜) 85.1% 0.17% 0.05% 0.1% 11.5%
含三价铁离子溶液 44mg/L 10.2mg/L 8.8mg/L 4.1mg/L 18.9g/L
从表1可得,海绵铜中铜的含量为85.1%,含量大于40%,可以作为产品直接出售;铜浸出液中镍钴锰含量较低,镍钴锰基本未浸出,含三价铁离子溶液为19.0g/L,铁离子浓度满足步骤(3)浸出铜的要求,能回用至步骤(3)中继续进行除铜反应。
实施例2
本实施例的三元电池废料中除去单质铜的方法,包括如下步骤:
(1)将1000g拆解镍钴锰酸锂电池后的报废料粉碎过100目筛,得820g筛下物,后置于磁场强度为60T的磁盘中进行磁选除铁30min,分离得到733g含铝镍钴锰酸锂材料;
(2)加入2000mL质量百分数为30%的氢氧化钠溶液中,90℃下搅拌反应1.5h,过滤、洗涤、烘干,得到500g除铝后的镍钴锰酸锂粉料,测得粉料中铜的质量分数为1.88%,镍质量分数为20.69%,钴质量分数为5.33%,锰质量分数为5.09%;
(3)向100g铜含量为3.8%的镍钴锰酸锂粉料加入铁浓度20g/L硫酸铁溶液0.5L,30℃搅拌反应3h后,过滤,得到380mL滤液,测得液中铜浓度为3.5g/L,镍浓度为30.1mg/L,钴浓度为15.4mg/L,锰浓度为10.1mg/L,滤渣水洗烘干后,质量为97.6g,测得铜含量为0.34%,镍含量为20.65%,钴含量为5.22%,锰含量为5.01%;
(4)在380mL铜浸出液中加入80目铁粉6g,常温搅拌反应2h,过滤,得滤液370mL,测得铜浓度为65.4mg/L,滤渣洗涤烘干后5.1g,测得铜含量73.1%;
(5)向370mL除铜后液中通入氧气,流量为26L/h,常温搅拌反应4h,得到375mL含三价铁离子溶液(铁离子浓度满足步骤(3)浸出铜的要求,能回用至步骤(3)中继续进行除铜反应),测得三价铁离子浓度为29.9g/L。
表2实施例2中所得各物质的含量
 
铜浸出液 3.5g/L 30.1mg/L 15.4mg/L 10.1mg/L 9.9g/L
镍钴锰废料 0.34% 20.65% 5.22% 5.01% 0.05%
除铜后液 65.4mg/L 26.4mg/L 14.2mg/L 10.0mg/L 30.5g/L
滤渣(海绵铜) 73.1% 0.15% 0.03% 0.12% 19.5%
含三价铁离子溶液 60.3m/L 20.1mg/L 9.9mg/L 9.3mg/L 29.9g/L
从表2可得,海绵铜中铜的含量为73.1%,含量大于40%,可以作为产品直接出售;铜浸出液中镍钴锰含量较低,镍钴锰基本未浸出,含三价铁离子溶液为29.9g/L,需进行稀释铁离子浓度满足步骤(3)浸出铜的要求,能回用至步骤(3)继续进行除铜反应。
实施例3
本实施例的三元电池废料中除去单质铜的方法,包括如下步骤:
(1)将250g拆解镍钴锰酸锂电池后的报废料粉碎过100目筛,得208g筛下物,后置于磁场强度为60T的磁盘中进行磁选除铁30min,分离得到187g含铝镍钴锰酸锂材料;
(2)加入250mL质量百分数为30%的氢氧化钠溶液中,90℃下搅拌反应1.5h,过滤、洗涤、烘干,得到126g除铝后的镍钴锰酸锂粉料,测得粉料中铜的质量分数为2.28%,镍质量分数为23.63%,钴质量分数为4.73%,锰质量分数为4.54%;
(3)向100g铜含量为2.28%的镍钴锰酸锂粉料加入铁浓度10g/L硝酸铁溶液1.5L,40℃搅拌反应2h后,过滤,得到1.38L滤液,测得液中铜浓度为1.57g/L,镍浓度为5.8mg/L,钴浓度为3.4mg/L,锰浓度为4.1mg/L,滤渣水洗烘干后,质量为100.3g,测得铜含量为0.29%,镍含量为23.55%,钴含量为4.76%,锰含量为4.48%;
(4)在1380mL铜浸出液中加入60目铁粉17g,常温搅拌反应2h,过滤,得滤液1370mL,测得铜浓度为66.3mg/L,滤渣洗涤烘干后2.7g,测得铜含量82.3%;
(5)向1370mL除铜后液中通入臭氧,流量为18L/h,常温搅拌反应3h,得到1396mL含三价铁离子溶液(铁离子浓度满足步骤(3)浸出铜的要求,能回用至步骤(3)),测得三价铁离子浓度为20.2g/L。
表3实施例3中所得各物质的含量
 
铜浸出液 1.57g/L 5.8mg/L 3.4mg/L 4.1mg/L 10.1g/L
镍钴锰废料 0.29% 23.55% 4.76% 4.48% 0.06%
除铜后液 66.3mg/L 1.9mg/L 5.8mg/L 3.4mg/L 21.1mg/L
滤渣(海绵铜) 82.3% 0.15% 0.04% 0.11% 8.1%
含三价铁离子溶液 44.1mg/L 1.8mg/L 3.1mg/L 4.0mg/L 20.2g/L
从表3可得,海绵铜中铜的含量为82.3%,可以作为产品直接出售;铜浸出液中镍钴锰 含量较低,镍钴锰基本未浸出;含三价铁离子溶液为20.2g/L,铁离子浓度满足步骤(3)浸出铜的要求,能回用至步骤(3)进行除铜反应。
对比例1(铁离子浓度25g/L)
对比例1的三元电池废料中除去单质铜的方法,包括如下步骤:
(1)将250g拆解镍钴锰酸锂电池后的报废料粉碎过100目筛,得200g筛下物,后置于磁场强度为60T的磁盘中进行磁选除铁30min,分离得到167g含铝镍钴锰酸锂材料;
(2)加入250mL质量百分数为30%的氢氧化钠溶液中,90℃下搅拌反应1.5h,过滤、洗涤、烘干,得到106g除铝后的镍钴锰酸锂粉料,测得粉料中铜的质量分数为2.28%,镍质量分数为23.63%,钴质量分数为4.73%,锰质量分数为4.54%;
(3)向100g铜含量为2.28%的镍钴锰酸锂粉料加入铁浓度25g/L硝酸铁溶液1.5L,25℃搅拌反应2h后,过滤,得到1.48L滤液,测得液中铜浓度为1.47g/L,镍浓度为28.8mg/L,钴浓度为10.4mg/L,锰浓度为24.1mg/L,滤渣水洗烘干后,质量为100.3g,测得铜含量为0.09%,镍含量为24.55%,钴含量为4.46%,锰含量为5.48%;
(4)在1480mL铜浸出液中加入60目铁粉28g,常温搅拌反应2h,过滤,得滤液1420mL,测得铜浓度为66.3mg/L,滤渣洗涤烘干后7.4g,测得铜含量31.1%;
(5)向1420mL除铜后液中通入臭氧,流量为18L/h,常温搅拌反应3h,得到1450mL含三价铁离子溶液(铁离子浓度满足步骤(3)浸出铜的要求,能回用至步骤(3)),测得三价铁离子浓度为37.2g/L。
表4对比例1中所得各物质的含量
 
铜浸出液 1.58g/L 755.5mg/L 233.1mg/L 510.1mg/L 24.9g/L
镍钴锰废料 0.29% 24.55% 4.46% 5.48% 0.01%
除铜后液 58.7mg/L 725.5mg/L 230.1mg/L 500.1mg/L 39.9g/L
滤渣(海绵铜) 31.1% 0.25% 0.09% 0.13% 66.2%
含三价铁离子溶液 53.7mg/L 713.5mg/L 200.1mg/L 479.1mg/L 39.2g/L
从表4可得,对比例1的海绵铜中铜的含量为31.1%,夹杂大量未反应铁粉,浸出液镍钴锰含量较高,部分镍钴锰有价金属损失进入至氯化铁溶液中。含三价铁离子溶液为39.2g/L,需进行稀释铁离子浓度才能满足满足步骤(3)浸出铜的要求,能回用至步骤(3)进行除铜反应。
以上对本公开实施例提供的三元电池废料中除去单质铜的方法及其应用进行了详细的介绍,本文中应用了具体实施例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想,包括若干方式,并且也使得本领域的任何技术人员都能够实践本公开,包括制造和使用任何装置或系统,和实施任何结合的方法。应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以对本公开进行若干改进和修饰,这些改进和修饰也落入本公开权利要求的保护范围内。本公开专利保护的范围通过权利要求来限定,并可包括本领域技术人员能够想到的其他实施例。如果这些其他实施例具有不是不同于权利要求文字表述的结构要素,或者如果它们包括与权利要求的文字表述无实质差异的等同结构要素,那么这些其他实施例也应包含在权利要求的范围内。

Claims (10)

  1. 一种三元电池废料中除去单质铜的方法,包括如下步骤:
    (1)将三元电池废料破碎筛分,再进行磁选除铁,得到除铁后的三元废料;
    (2)将碱溶液加入所述除铁后的三元废料中进行除铝反应,过滤,取滤渣,水洗烘干,得到含铝废水及含铜镍钴锰材料;
    (3)将铁盐溶液加入所述含铜镍钴锰材料中进行浸出反应,过滤洗涤,得到含Fe 3+、Fe 2+、Cu 2+的浸出溶液和镍钴锰废料;
    (4)向所述浸出溶液中加入铁粉搅拌反应,过滤,取滤渣,水洗烘干,得到除铜后液和海绵铜;所述铁盐溶液中Fe 3+的浓度为5-20g/L。
  2. 根据权利要求1所述的方法,其中,步骤(1)中,所述三元废料为废旧镍钴锰酸锂电池拆解得到的正极材料或镍钴锰酸锂电池制造过程中产生的废弃正极材料。
  3. 根据权利要求1所述的方法,其中,步骤(2)中,所述碱溶液为碱土金属氧化物溶液;所述碱土金属氧化物溶液为氢氧化钠溶液和氢氧化钾溶液中的至少一种。
  4. 根据权利要求1所述的方法,其中,步骤(2)中,所述碱溶液中的碱与所述除铁后三元废料中铝的摩尔比为(1.2-1.5):1;所述步骤(4)中的铁粉与步骤(3)中的铁盐溶液中铁离子的摩尔比为(0.5-0.8):1;所述铁粉的目数为60-120目。
  5. 根据权利要求1所述的方法,其中,步骤(2)中,所述除铝反应的温度为80℃-100℃,所述除铝反应的时间为0.5-5h;步骤(3)中,所述铁盐溶液为以下中的至少一种的溶液:氯化铁、硫酸铁和硝酸铁。
  6. 根据权利要求1所述的方法,其中,步骤(3)中,所述浸出反应的温度为10℃-30℃,所述浸出反应的时间为2-6h。
  7. 根据权利要求1所述的方法,其中,步骤(3)中,还包括将所述镍钴锰废料进行酸浸、除杂、萃取、分离,得到镍钴锰盐溶液,再回收镍钴锰金属。
  8. 根据权利要求1所述的方法,其中,步骤(4)中,还包括向所述除铜后液中加入氧化剂进行氧化反应,得到含三价铁离子的溶液,然后将溶液加水稀释后返回步骤(3)中继续进行除铜反应。
  9. 根据权利要求8所述的方法,其中,所述氧化剂为氧气、臭氧和氯气中的至少一种;所述氧化剂的加入速率为10-50L/h;所述氧化反应的时间为3-12h。
  10. 权利要求1-9中任一项所述的方法在回收处理三元电池废料中的应用。
PCT/CN2021/123414 2020-12-28 2021-10-13 一种三元电池废料中除去单质铜的方法及其应用 WO2022142584A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21913329.5A EP4270595A4 (en) 2020-12-28 2021-10-13 METHOD FOR REMOVING ELEMENTAL COPPER FROM WASTE TERNARY BATTERY AND USE THEREOF
HU2200284A HUP2200284A1 (hu) 2020-12-28 2021-10-13 Elemi réz háromkomponensû akkumulátorhulladékból történõ eltávolításának eljárása és annak alkalmazása
US18/215,811 US20230344030A1 (en) 2020-12-28 2023-06-28 Method for removing elemental copper from ternary battery waste and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011587284.0A CN112701372B (zh) 2020-12-28 2020-12-28 一种三元电池废料中除去单质铜的方法及其应用
CN202011587284.0 2020-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/215,811 Continuation US20230344030A1 (en) 2020-12-28 2023-06-28 Method for removing elemental copper from ternary battery waste and application thereof

Publications (1)

Publication Number Publication Date
WO2022142584A1 true WO2022142584A1 (zh) 2022-07-07

Family

ID=75511403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123414 WO2022142584A1 (zh) 2020-12-28 2021-10-13 一种三元电池废料中除去单质铜的方法及其应用

Country Status (5)

Country Link
US (1) US20230344030A1 (zh)
EP (1) EP4270595A4 (zh)
CN (1) CN112701372B (zh)
HU (1) HUP2200284A1 (zh)
WO (1) WO2022142584A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116337985A (zh) * 2023-05-25 2023-06-27 瑞浦兰钧能源股份有限公司 一种磷酸铁锂材料中可析出铜含量的测试方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112701372B (zh) * 2020-12-28 2022-03-15 湖南邦普循环科技有限公司 一种三元电池废料中除去单质铜的方法及其应用
CN116683075B (zh) * 2023-05-08 2024-10-22 山东华劲电池材料科技有限公司 一种锂离子电池正极材料的修复方法及其正极材料

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238571B1 (en) * 1998-09-15 2001-05-29 Massachusetts Institute Of Technology Removal of contaminant metals from waste water
CN101599563A (zh) * 2009-07-08 2009-12-09 中南大学 一种高效回收废旧锂电池中正极活性材料的方法
CN102101701A (zh) * 2010-12-31 2011-06-22 湖南邦普循环科技有限公司 一种从废钴酸锂中回收钴锂并制备钴酸锂的方法
CN102534223A (zh) * 2012-01-09 2012-07-04 湖南邦普循环科技有限公司 一种从废旧锂离子电池中回收有价金属的方法
CN103555954A (zh) * 2013-11-04 2014-02-05 湖南格瑞普新能源有限公司 从废旧镍氢电池中回收稀土元素的方法
CN106521166A (zh) * 2016-11-29 2017-03-22 湖南埃格环保科技有限公司 一种利用含铜污泥湿法浸出溶液制备铜粉和硫酸亚铁的方法
CN110492193A (zh) * 2019-08-09 2019-11-22 珠海格力电器股份有限公司 一种从废旧三元锂离子电池中回收铁、铝的方法
CN112701372A (zh) * 2020-12-28 2021-04-23 湖南邦普循环科技有限公司 一种三元电池废料中除去单质铜的方法及其应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100374593C (zh) * 2005-05-13 2008-03-12 河南科技大学 从磁铁矿尾渣中提取金属钴的工艺
WO2017159745A1 (ja) * 2016-03-16 2017-09-21 Jx金属株式会社 リチウムイオン電池スクラップの処理方法
CN106910889B (zh) * 2017-02-27 2019-07-23 中南大学 一种从废旧磷酸铁锂电池中再生正极活性物质的方法
CN112011821A (zh) * 2019-05-31 2020-12-01 王美华 三价铁溶铜系统
EP3983578A4 (en) * 2019-06-14 2024-07-24 Battelle Energy Alliance Llc METHODS FOR RECOVERING ACTIVE MATERIALS FROM RECHARGEABLE BATTERIES, AND ASSOCIATED DEVICES
CN110527835B (zh) * 2019-09-02 2020-07-07 清华大学 一种废旧三元锂电池软包全组分回收的方法
CN111304444B (zh) * 2020-03-26 2021-08-24 无锡中天固废处置有限公司 一种含铬污泥中分离回收铜、铁、锌、镍、铬的处理方法
CN111471864B (zh) * 2020-04-24 2022-02-18 广东邦普循环科技有限公司 一种废旧锂离子电池浸出液中回收铜、铝、铁的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238571B1 (en) * 1998-09-15 2001-05-29 Massachusetts Institute Of Technology Removal of contaminant metals from waste water
CN101599563A (zh) * 2009-07-08 2009-12-09 中南大学 一种高效回收废旧锂电池中正极活性材料的方法
CN102101701A (zh) * 2010-12-31 2011-06-22 湖南邦普循环科技有限公司 一种从废钴酸锂中回收钴锂并制备钴酸锂的方法
CN102534223A (zh) * 2012-01-09 2012-07-04 湖南邦普循环科技有限公司 一种从废旧锂离子电池中回收有价金属的方法
CN103555954A (zh) * 2013-11-04 2014-02-05 湖南格瑞普新能源有限公司 从废旧镍氢电池中回收稀土元素的方法
CN106521166A (zh) * 2016-11-29 2017-03-22 湖南埃格环保科技有限公司 一种利用含铜污泥湿法浸出溶液制备铜粉和硫酸亚铁的方法
CN110492193A (zh) * 2019-08-09 2019-11-22 珠海格力电器股份有限公司 一种从废旧三元锂离子电池中回收铁、铝的方法
CN112701372A (zh) * 2020-12-28 2021-04-23 湖南邦普循环科技有限公司 一种三元电池废料中除去单质铜的方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4270595A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116337985A (zh) * 2023-05-25 2023-06-27 瑞浦兰钧能源股份有限公司 一种磷酸铁锂材料中可析出铜含量的测试方法

Also Published As

Publication number Publication date
US20230344030A1 (en) 2023-10-26
HUP2200284A1 (hu) 2022-11-28
CN112701372B (zh) 2022-03-15
EP4270595A1 (en) 2023-11-01
CN112701372A (zh) 2021-04-23
EP4270595A4 (en) 2024-07-03

Similar Documents

Publication Publication Date Title
WO2022142584A1 (zh) 一种三元电池废料中除去单质铜的方法及其应用
CN110835682B (zh) 废旧锂离子电池正、负极活性材料协同处理的方法
CN112158894A (zh) 一种废旧锂电池正极材料的回收方法
CN110474123B (zh) 废旧磷酸铁锂电池正极材料综合回收方法
WO2022166476A1 (zh) 从含镍铁粉中提取镍并制备磷酸铁的方法和应用
WO2022142583A1 (zh) 一种磷酸铁锂废料的回收方法及其应用
KR20090087801A (ko) Co, Ni, Mn 함유 리튬 전지 찌꺼기로부터의 유가 금속 회수 방법
CN104911359A (zh) 一种从锰废渣中提取钴和镍的工艺方法
CN112079371A (zh) 一种镍钴锰溶液中除氟的回收方法
CN110459828B (zh) 废旧磷酸铁锂电池正极材料综合回收方法
CN111206153A (zh) 一种镍钴锰酸锂电池正极材料的回收方法
CN111926191B (zh) 一种回收磷酸铁锂电池的方法
CN111945002A (zh) 一种废旧锂电池回收湿法除铜的方法
WO2023050805A1 (zh) 一种废旧锂电池中除氟的方法
CN106299526A (zh) 一种废旧锂电池回收行业强碱溶液的回收利用方法
WO2023284441A1 (zh) 由镍铁铜合金制备硫酸镍的方法
CN106229577A (zh) 一种废旧镍氢电池正负极物料混合浸出的方法
JP6314730B2 (ja) 廃ニッケル水素電池からの有価金属の回収方法
JP2017008383A (ja) 廃ニッケル水素電池からのフェロニッケル製造用原料の回収方法及びその回収装置
WO2024178774A1 (zh) 一种废旧锂离子电池粉的浸出方法
CN113816354B (zh) 一种利用钛白粉生产过程中废弃物制备磷酸铁的方法
US8974754B2 (en) Method for producing nickel-containing acid solution
JP5541512B2 (ja) ニッケル含有酸性溶液の製造方法
JP6201905B2 (ja) 廃ニッケル水素電池からの有価金属の回収方法
WO2024130850A1 (zh) 一种废旧锂电池浸出液除杂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021913329

Country of ref document: EP

Effective date: 20230728