WO2022141707A1 - 磁浮式轮毂电机 - Google Patents

磁浮式轮毂电机 Download PDF

Info

Publication number
WO2022141707A1
WO2022141707A1 PCT/CN2021/073776 CN2021073776W WO2022141707A1 WO 2022141707 A1 WO2022141707 A1 WO 2022141707A1 CN 2021073776 W CN2021073776 W CN 2021073776W WO 2022141707 A1 WO2022141707 A1 WO 2022141707A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
array
magnetization direction
whose magnetization
face
Prior art date
Application number
PCT/CN2021/073776
Other languages
English (en)
French (fr)
Inventor
丁晨阳
张阳
姜龙滨
Original Assignee
光华临港工程应用技术研发(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光华临港工程应用技术研发(上海)有限公司 filed Critical 光华临港工程应用技术研发(上海)有限公司
Publication of WO2022141707A1 publication Critical patent/WO2022141707A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M7/00Motorcycles characterised by position of motor or engine
    • B62M7/12Motorcycles characterised by position of motor or engine with the engine beside or within the driven wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to the technical field of electric motors, in particular to a magnetic levitation type wheel hub motor.
  • the biggest feature of the hub motor is that the power, transmission and braking devices are integrated into the hub, so the mechanical part of the electric vehicle is greatly simplified.
  • the in-wheel motor omits a large number of transmission components, which makes the vehicle structure simpler.
  • the vehicle driven by the in-wheel motor can obtain higher space utilization and improve the transmission efficiency.
  • In-wheel motors can realize a variety of complex driving modes, and can realize differential steering similar to tracked vehicles through different rotational speeds of the left and right wheels or even reverse rotation, which greatly reduces the turning radius of the vehicle.
  • the traditional in-wheel motor in the prior art cannot realize the magnetic levitation function, and there is frictional energy loss during the movement.
  • the traditional in-wheel motor can only realize the rotation around the axis, only realize the movement of one degree of freedom, and cannot realize the movement of multiple degrees of freedom, so it is difficult to meet the performance requirements in specific situations. For occasions that need to achieve multi-degree-of-freedom motion, traditional in-wheel motors obviously cannot meet the requirements.
  • the traditional in-wheel motors have low positioning accuracy, making it difficult to achieve high-precision positioning functions.
  • the purpose of the present invention is to provide a maglev in-wheel motor to solve the problems of frictional energy loss, single-degree-of-freedom motion and low positioning accuracy of the traditional in-wheel motor proposed in the above background art.
  • a magnetic levitation type wheel hub motor including a motor mover housing, an end face permanent magnet array, a side permanent magnet array, a side face three-phase coil array, an end face three-phase coil array, a motor stator shaft and a motor shaft.
  • a sensor the inner wall of one end face of the motor mover housing is evenly and fixedly connected with an end face permanent magnet array, the inner side of the motor mover housing is fixedly connected with a side permanent magnet array, and the end face permanent magnet array and the side permanent magnet array are connected.
  • a motor stator shaft is arranged between the two sides, one end of the motor stator shaft close to the end face permanent magnet array is arranged with an end face three-phase coil array in a circumferential direction, and a side face three-phase coil array is arranged in a circumferential array on the side of the motor stator shaft.
  • the motor stator The side surface and the end surface of the shaft are located inside the three-phase coil array on the side and are fixedly connected with a Hall sensor. The sensor is electrically connected with the motor controller.
  • the end face permanent magnet array includes a first permanent magnet whose magnetization direction is axial and a second permanent magnet whose magnetization direction is axial, the first permanent magnet whose magnetization direction is axial and the magnetization direction which is axial
  • the magnetization direction of the second permanent magnet is opposite, and the end face permanent magnet array is arranged according to "the first permanent magnet with the magnetization direction as the axial direction, the second permanent magnet with the magnetization direction as the axial direction, and the first permanent magnet with the magnetization direction as the axial direction.
  • the magnet, the second permanent magnet whose magnetization direction is the axial direction are sequentially and periodically arranged.
  • the end face permanent magnet array also includes a first permanent magnet whose magnetization direction is the circumferential direction and a second permanent magnet whose magnetization direction is the circumferential direction.
  • the first permanent magnet whose magnetization direction is in the circumferential direction, the second permanent magnet whose magnetization direction is in the axial direction, and the second permanent magnet whose magnetization direction is in the circumferential direction is sequentially and periodically arranged.
  • the side permanent magnet array includes a first permanent magnet whose magnetization direction is radial and a second permanent magnet whose magnetization direction is radial, the first permanent magnet whose magnetization direction is radial, and the magnetization direction is radial
  • the magnetization direction of the second permanent magnet is opposite, and the side permanent magnet array is arranged according to "the first permanent magnet whose magnetization direction is radial, the second permanent magnet whose magnetization direction is radial, and the first permanent magnet whose magnetization direction is radial.
  • the magnets and the second permanent magnet whose magnetization direction is radial are sequentially arranged periodically.
  • the side permanent magnet array also includes a third permanent magnet whose magnetization direction is a circumferential direction and a fourth permanent magnet whose magnetization direction is a circumferential direction, and the side permanent magnet array is based on the "first permanent magnet whose magnetization direction is radial. , the third permanent magnet whose magnetization direction is in the circumferential direction, the second permanent magnet whose magnetization direction is in the radial direction, and the fourth permanent magnet whose magnetization direction is in the circumferential direction” is sequentially and periodically arranged.
  • the side three-phase coil array has four coil sub-arrays, and each coil sub-array of the side three-phase coil array is composed of 3 ⁇ n coils, where n is a positive integer.
  • the end face three-phase coil array has four coil sub-arrays, and each coil sub-array of the end face three-phase coil array is composed of 3 ⁇ n coils, and the n is a positive integer.
  • the Hall sensors on the end face of the stator shaft of the motor are uniformly arranged, and there are n number of the Hall sensors, and the n is a positive integer, and n ⁇ 8.
  • the Hall sensors on the side surface of the stator shaft of the motor are uniformly arranged, and there are n number of the Hall sensors, and the n is a positive integer, and n ⁇ 8.
  • the end face three-phase coil array and the side face three-phase coil array are internally plugged with iron cores.
  • the present invention realizes that when the maglev wheel hub motor is used, the motor stator shaft, the end face three-phase coil array, the side three-phase coil array and the Hall sensor are provided with the motor mover casing, the end face permanent magnet array, the side face permanent magnet array, the motor stator shaft, the end face three-phase coil array, the side face three-phase coil array and the Hall sensor.
  • Embodiment 1 is a schematic diagram of the overall axonometric structure in Embodiment 1 of the present invention.
  • Fig. 2 is the axonometric view of the connection structure of the motor stator shaft in the first embodiment of the present invention
  • FIG. 3 is a front view of the connection structure of the motor stator shaft in the first embodiment of the present invention.
  • Fig. 4 is the axonometric view of the magnet array of the motor mover in the first embodiment of the present invention
  • FIG. 5 is a front view of the magnet array of the motor mover in Embodiment 1 of the present invention.
  • Fig. 6 is the axonometric view of the magnet array of the motor mover in the second embodiment of the present invention.
  • FIG. 7 is a front view of the magnet array of the motor mover in the second embodiment of the present invention.
  • Embodiment 8 is a schematic diagram of the magnetization direction of the magnet array of the motor mover in Embodiment 1 of the present invention.
  • Embodiment 9 is a schematic diagram of the included angle of the Hall sensor of the motor mover in Embodiment 1 of the present invention.
  • FIG. 10 is a schematic diagram of the magnetization direction of the magnet array of the motor mover in the second embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the overall axonometric structure in the second embodiment of the present invention.
  • Motor mover housing 2. End face permanent magnet array; 2-1. The first permanent magnet whose magnetization direction is axial; 2-2, the first permanent magnet whose magnetization direction is circumferential; 2-3 , the second permanent magnet whose magnetization direction is the axial direction; 2-4, the second permanent magnet whose magnetization direction is the circumferential direction; 3, the side permanent magnet array; 3-1, the first permanent magnet whose magnetization direction is radial; 3 -2.
  • the three-phase coil on the side Array 5. End face three-phase coil array; 6. Motor stator shaft; 7. Hall sensor.
  • Embodiment 1 Please refer to FIGS. 1-5 and 8-9, the present invention provides a technical solution: a magnetic levitation in-wheel motor, including a motor mover housing 1, an end surface permanent magnet array 2, a side permanent magnet array 3, and a side surface three. Phase coil array 4 , end face three-phase coil array 5 , motor stator shaft 6 and Hall sensor 7 .
  • the inner wall of one end face of the motor mover housing 1 is evenly and fixedly connected to the end face permanent magnet array 2 by bonding, and the inner side surface of the motor mover housing 1 is evenly fixed and connected to the side permanent magnet array 3 by bonding, and the end face permanent magnet array
  • a motor stator shaft 6 is arranged in a magnetic suspension manner between the 2 and the side permanent magnet array 3, and one end of the motor stator shaft 6 near the end face permanent magnet array 2 is wound with an end face three-phase coil array 5.
  • Phase coil array 4 the side face and end face of motor stator shaft 6 are located in the middle of the side three-phase coil array 4, and a Hall sensor 7 is fixedly connected by clamping, and the side face and end face of motor stator shaft 6 are located in the middle of the end face three-phase coil array 5.
  • a hall sensor 7 is fixedly connected, and the hall sensor 7 is electrically connected with the motor controller.
  • the end face permanent magnet array 2 includes a first permanent magnet 2-1 whose magnetization direction is axial, a first permanent magnet 2-2 whose magnetization direction is circumferential, a second permanent magnet 2-3 whose magnetization direction is axial, and The second permanent magnet 2-4 whose magnetization direction is the circumferential direction, and the first permanent magnet 2-1 whose magnetization direction is the axial direction, the first permanent magnet 2-2 whose magnetization direction is the circumferential direction, and the first permanent magnet 2-2 whose magnetization direction is the axial direction, the magnetization direction is the axial direction
  • the second permanent magnets 2-3 and the second permanent magnets 2-4 with the magnetization direction in the circumferential direction are arranged periodically in sequence.
  • the side permanent magnet array 3 includes a first permanent magnet 3-1 with a radial magnetization direction, a third permanent magnet 3-2 with a circumferential magnetization direction, a second permanent magnet 3-3 with a radial magnetization direction, and
  • the magnetization direction is the fourth permanent magnet 3-4 in the circumferential direction, and the magnetization direction is the radial direction of the first permanent magnet 3-1, the magnetization direction is the third permanent magnet 3-2 in the circumferential direction, and the magnetization direction is the radial direction.
  • the second permanent magnet 3-3 and the fourth permanent magnet 3-4 with the magnetization direction in the circumferential direction are arranged periodically in sequence.
  • the side three-phase coil array 4 has four coil sub-arrays, and each coil sub-array of the side three-phase coil array 4 is composed of 3 ⁇ n coils, where n is a positive integer.
  • the end-face three-phase coil array 5 has four coil sub-arrays, and each coil sub-array of the end-face three-phase coil array 5 is composed of 3 ⁇ n coils, where n is a positive integer.
  • the Hall sensors 7 on the end surface of the motor stator shaft 6 are uniformly arranged, and n Hall sensors 7 are arranged, and the n is a positive integer, and n ⁇ 8.
  • the Hall sensors 7 on the side surface of the motor stator shaft 6 are uniformly arranged, and n Hall sensors 7 are arranged, and the n is a positive integer, and n ⁇ 8.
  • n is a positive integer.
  • the number of the side three-phase coil array 4, the end three-phase coil array 5 and the Hall sensor 7 are all multiples of 12.
  • the Hall sensors 7 may be uniformly arranged in the corresponding coils of the side three-phase coil array 4 and the end surface three-phase coil array 5 .
  • the Hall sensor 7 can be provided with a Hall sensor group, and the four coil sub-arrays of the side three-phase coil array 4 and the end three-phase coil array 5 correspond to four Hall sensor groups respectively, and the Hall sensor group of each Hall sensor group.
  • a plurality of Hall sensors 7 may be arranged in one coil, or may be uniformly arranged in each coil sub-array in the circumferential direction. Of course, other arrangements of Hall sensors 7 are not excluded, which are not limited here.
  • the three-phase coil array 5 on the end face and the three-phase coil array 4 on the side face are inserted with iron cores.
  • the motor is an iron-core motor
  • the iron core can be inserted into the three-phase coil array 5 on the end face and the three-phase coil array 4 on the side face. , which can generate a larger thrust.
  • the Hall sensor 7 is HW-101A, and the Hall sensor 7 collects the signal and feeds it back to the controller.
  • the controller calculates the control signal according to the preset control algorithm, and controls the coil current through the driver to adjust the motion of the motion table. , forming a closed-loop feedback control.
  • the side three-phase coil array 4 and the end face three-phase coil array 5 are fixed on the end face and side face of the stator shaft respectively, and the two coil arrays respectively have four sub-arrays of "upper, lower, left and right", and each subarray consists of It consists of 3 ⁇ n coils, which are respectively connected to three-phase alternating current. After each coil sub-array is energized, it acts independently with the magnet array. Different coil sub-arrays can generate forces in different directions.
  • Figures 2 and 3 only schematically illustrate a coil array, not limiting the number of coils , shape and array mode, for example, the number of coils can be an integer multiple of 12, and the phases of currents in adjacent coils in the same sub-array can be the same or different.
  • Hall sensors 7 are arranged on the end face and side surface of the motor stator shaft 6 respectively, and 12 Hall sensors are arranged on the end face of the motor stator shaft 6, and the two adjacent Hall sensors 7 on the end face are arranged. The included angle between them is ⁇ , and 12 Hall sensors are also arranged on the side of the motor stator shaft 6, and the included angle between two adjacent Hall sensors 7 on the side is ⁇ .
  • Two sets of Hall sensors are integrated. The array can measure six degrees of freedom motion of the motion stage. It should be noted here that this patent only schematically depicts an arrangement of Hall sensors, and does not limit the number and arrangement of Hall sensors.
  • the number of Hall sensors is not less than 8, and the shaft end face The number of Hall sensors on the side of the shaft can be different, and the included angle ⁇ of the adjacent sensors on the end face of the motor stator shaft 6 and the included angle ⁇ of the adjacent sensors on the side can be different.
  • the motor mover includes two magnet arrays and a mover casing, the two magnet arrays are respectively fixed on the inner end face and the inner face of the mover casing, and the end face permanent magnet array 2 includes a first permanent magnet whose magnetization direction is the axial direction 2-1.
  • the first permanent magnet 2-2 whose magnetization direction is the circumferential direction, the second permanent magnet 2-3 whose magnetization direction is the axial direction, and the second permanent magnet 2-4 whose magnetization direction is the circumferential direction, and press "magnetization”
  • the first permanent magnet 2-1 whose magnetization direction is the axial direction
  • the first permanent magnet 2-2 whose magnetization direction is the circumferential direction
  • the second permanent magnet 2-3 whose magnetization direction is the axial direction
  • the second permanent magnet whose magnetization direction is the circumferential direction.
  • the magnets 2-4" are arranged periodically in sequence;
  • the side permanent magnet array 3 includes a first permanent magnet 3-1 whose magnetization direction is radial, a third permanent magnet 3-2 whose magnetization direction is circumferential, and a third permanent magnet 3-2 whose magnetization direction is radial.
  • Two permanent magnets 3-3 and a fourth permanent magnet 3-4 whose magnetization direction is the circumferential direction, and the third permanent magnet 3-1 whose magnetization direction is the radial direction is the first permanent magnet 3-1 whose magnetization direction is radial 2.
  • the second permanent magnet 3-3 whose magnetization direction is in the radial direction and the fourth permanent magnet 3-4 whose magnetization direction is in the circumferential direction are arranged periodically in sequence.
  • the existence of the permanent magnet whose magnetization direction is in the circumferential direction enhances the magnetic field strength on the side close to the coil and improves the working efficiency of the motor. It should be noted here that this embodiment only schematically depicts a permanent magnet arrangement, and does not limit the number of permanent magnet arrays and the shape of the magnets. For example, the total number of periods of the magnet arrangement may be an integer multiple of 8.
  • Embodiment 2 Please refer to Figure 2-3, Figure 6-7 and Figure 10-11, the present invention provides a technical solution: a magnetic levitation in-wheel motor, including: a magnetic levitation in-wheel motor, including a motor mover housing 1, an end face permanent Magnet array 2 , side permanent magnet array 3 , side three-phase coil array 4 , end face three-phase coil array 5 , motor stator shaft 6 and Hall sensor 7 .
  • a magnetic levitation in-wheel motor including a motor mover housing 1, an end face permanent Magnet array 2 , side permanent magnet array 3 , side three-phase coil array 4 , end face three-phase coil array 5 , motor stator shaft 6 and Hall sensor 7 .
  • the inner wall of one end face of the motor mover housing 1 is evenly and fixedly connected to the end face permanent magnet array 2 by bonding, and the inner side surface of the motor mover housing 1 is evenly fixed and connected to the side permanent magnet array 3 by bonding, and the end face permanent magnet array
  • a motor stator shaft 6 is arranged in a magnetic suspension manner between the 2 and the side permanent magnet array 3, and one end of the motor stator shaft 6 near the end face permanent magnet array 2 is wound with an end face three-phase coil array 5.
  • Phase coil array 4 the side face and end face of motor stator shaft 6 are located in the middle of the side three-phase coil array 4, and a Hall sensor 7 is fixedly connected by clamping, and the side face and end face of motor stator shaft 6 are located in the middle of the end face three-phase coil array 5.
  • a hall sensor 7 is fixedly connected, and the hall sensor 7 is electrically connected with the motor controller.
  • the end face permanent magnet array 2 includes a first permanent magnet 2-1 whose magnetization direction is the axial direction and a second permanent magnet 2-3 whose magnetization direction is the axial direction, and the first permanent magnet 2-1 whose magnetization direction is the axial direction and The magnetization directions of the second permanent magnets 2-3 in the axial direction are opposite, and the first permanent magnets 2-1 in the axial direction and the second permanent magnets 2-3 in the axial direction are alternately arranged.
  • the side permanent magnet array 3 includes a first permanent magnet 3-1 with a radial magnetization direction and a second permanent magnet 3-3 with a radial magnetization direction, and a first permanent magnet 3-1 with a radial magnetization direction and The magnetization directions of the second permanent magnets 3-3 whose magnetization directions are radial directions are opposite, and the first permanent magnets 3-1 whose magnetization directions are radial directions and the second permanent magnets 3-3 whose magnetization directions are radial directions are alternately arranged.
  • the side three-phase coil array 4 has four coil sub-arrays, and each coil sub-array of the side three-phase coil array 4 is composed of 3 ⁇ n coils, where n is a positive integer.
  • the end-face three-phase coil array 5 has four coil sub-arrays, and each coil sub-array of the end-face three-phase coil array 5 is composed of 3 ⁇ n coils, where n is a positive integer.
  • the Hall sensors 7 on the end surface of the motor stator shaft 6 are uniformly arranged, and n Hall sensors 7 are arranged, and the n is a positive integer, and n ⁇ 8.
  • the Hall sensors 7 on the side surface of the motor stator shaft 6 are uniformly arranged, and n Hall sensors 7 are arranged, and the n is a positive integer, and n ⁇ 8.
  • the three-phase coil arrays 4 on the side surface and the three-phase coil arrays 5 on the end surface are provided with 12 ⁇ n pieces, and n is a positive integer.
  • the numbers of the side three-phase coil arrays 4 and the end three-phase coil arrays 5 are both multiples of 12.
  • the Hall sensor 7 can There are no less than 8, or 24, and further, the Hall sensors 7 can be uniformly arranged in the coils of the corresponding side three-phase coil array 4 and end face three-phase coil array 5 in the circumferential direction.
  • the Hall sensor 7 can be provided with a Hall sensor group, and the four coil sub-arrays of the side three-phase coil array 4 and the end three-phase coil array 5 correspond to four Hall sensor groups respectively, and the Hall sensor group of each Hall sensor group.
  • a plurality of Hall sensors 7 may be arranged in one coil, or may be uniformly arranged in each coil sub-array in the circumferential direction. Of course, other arrangements of Hall sensors 7 are not excluded, which are not limited here.
  • the Hall sensor 7 is HW-101A, and the Hall sensor 7 collects the signal and feeds it back to the controller.
  • the controller calculates the control signal according to the preset control algorithm, and controls the coil current through the driver to adjust the motion of the motion table. , forming a closed-loop feedback control.
  • the side three-phase coil array 4 and the end face three-phase coil array 5 are fixed on the end face and side face of the stator shaft respectively, and the two coil arrays respectively have four sub-arrays of "upper, lower, left and right", and each subarray consists of It consists of three coils, which are respectively fed with three-phase alternating current. After each coil sub-array is energized, it acts independently with the magnet array. Different coil sub-arrays can generate forces in different directions. The moment in the direction of each coordinate axis makes the motion table move with 6 degrees of freedom; it should be noted here that Figures 2 and 3 only schematically illustrate a coil array, and do not limit the number and shape of the coils. For example, the number of coils can be an integer multiple of 12, and the phases of currents in adjacent coils in the same sub-array can be the same or different.
  • Hall sensors 7 are arranged on the end face and side surface of the motor stator shaft 6 respectively, and 12 Hall sensors are arranged on the end face of the motor stator shaft 6, and the two adjacent Hall sensors 7 on the end face are arranged. The included angle between them is ⁇ , and 12 Hall sensors are also arranged on the side of the motor stator shaft 6, and the included angle between two adjacent Hall sensors 7 on the side is ⁇ .
  • Two sets of Hall sensors are integrated.
  • the array can measure six degrees of freedom motion of the motion stage. It should be noted here that this patent only schematically depicts an arrangement of Hall sensors, and does not limit the number and arrangement of Hall sensors.
  • the number of Hall sensors can be an integer multiple of 12.
  • the number of Hall sensors on the shaft end face and the shaft side face can be different, and the included angle ⁇ of the adjacent sensors on the end face of the motor stator shaft 6 and the included angle ⁇ of the adjacent sensors on the side face can be different.
  • the motor mover includes an end face permanent magnet array 2, a side permanent magnet array 3 and a mover casing, and the two permanent magnets are respectively fixed on the inner end face and the inner face of the mover casing.
  • the end face permanent magnet array 2 includes a first permanent magnet 2-1 whose magnetization direction is the axial direction and a second permanent magnet 2-3 whose magnetization direction is the axial direction, and the first permanent magnet 2-1 whose magnetization direction is the axial direction and the magnetization direction
  • the magnetization directions of the second permanent magnets 2-3 in the axial direction are opposite, and the first permanent magnets 2-1 in the axial direction and the second permanent magnets 2-3 in the axial direction are alternately arranged;
  • the array 3 includes a first permanent magnet 3-1 with a radial magnetization direction and a second permanent magnet 3-3 with a radial magnetization direction, a first permanent magnet 3-1 with a radial magnetization direction and a radial magnetization direction
  • the magnetization directions of the second permanent magnets 3-3 are opposite, and

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Linear Motors (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

本发明公开了磁浮式轮毂电机,包括电机动子外壳、端面永磁体阵列、侧面永磁体阵列、侧面三相线圈阵列、端面三相线圈阵列、电机定子轴和霍尔传感器,所述电机动子外壳一端面内壁均匀固定连接有端面永磁体阵列,所述电机动子外壳内侧面一周固定连接有侧面永磁体阵列,所述端面永磁体阵列与侧面永磁体阵列之间设置有电机定子轴;本发明能够实现六自由度运动,可以对电机动子位置进行更加灵活的调节;电磁场转速和动子转速保持一致,故电机的转速稳定,使该电机具有良好的运动精度;此外,由于本磁浮式轮毂电机在运动过程中,定子和动子没有直接接触,无摩擦力,因此不存在摩擦引起的能量损耗。

Description

磁浮式轮毂电机 技术领域
本发明涉及电机技术领域,具体为磁浮式轮毂电机。
背景技术
轮毂电机的最大特点就是将动力、传动和制动装置都整合到轮毂内,因此将电动车辆的机械部分大大简化。轮毂电机省略了大量的传动部件,让车辆结构更简单,采用轮毂电机驱动的车辆可以获得更高的空间利用率,同时传动效率也得到提高。轮毂电机可实现多种复杂的驱动方式,可以通过左右车轮的不同转速甚至反转实现类似履带式车辆的差动转向,大大减小车辆的转弯半径。
现有技术中传统的轮毂电机无法实现磁悬浮功能,在运动过程中有摩擦能量损耗。传统的轮毂电机只能实现绕轴转动,只实现了一个自由度的运动,不能实现多自由度的运动,难以满足特定情况下的性能要求。对于需要实现多自由度运动的场合下,传统的轮毂电机显然无法满足要求。此外,传统的轮毂电机定位精度低,难以实现高精度的定位功能。
发明内容
本发明的目的在于提供磁浮式轮毂电机,以解决上述背景技术中提出的传统轮毂电机存在的摩擦能量损耗、单自由度运动、定位精度低的问题。
为实现上述目的,本发明提供如下技术方案:磁浮式轮毂电机,包括电机动子外壳、端面永磁体阵列、侧面永磁体阵列、侧面三相线圈阵列、端面三相线圈阵列、电机定子轴和霍尔传感器,所述电机动子外壳一端面内壁均匀固定连接有端面永磁体阵列,所述电机动子外壳内侧面一周固定连接有侧面永磁体阵列,所述端面永磁体阵列与侧面永磁体阵列之间设置有电机定子轴,所述电机定子轴靠近端面永磁体阵列一端沿圆周方向阵列设置有端面三相线圈阵列,所述电机定子轴侧面一周阵列设置有侧面三相线圈阵列,所述 电机定子轴侧面以及端面位于所述侧面三相线圈阵列的内部固定连接有霍尔传感器,所述电机定子轴侧面以及端面位于所述端面三相线圈阵列的内部固定连接有霍尔传感器,所述霍尔传感器与电机控制器电性连接。
其中,所述端面永磁体阵列包含磁化方向为轴向的第一永磁体和磁化方向为轴向的第二永磁体,所述磁化方向为轴向的第一永磁体和所述磁化方向为轴向的第二永磁体的磁化方向相反,所述端面永磁体阵列按“磁化方向为轴向的第一永磁体、磁化方向为轴向的第二永磁体、磁化方向为轴向的第一永磁体、磁化方向为轴向的第二永磁体”顺序周期重复排列。
其中,所述端面永磁体阵列还包含磁化方向为环向的第一永磁体和磁化方向为环向的第二永磁体,所述端面永磁体阵列按“磁化方向为轴向的第一永磁体、磁化方向为环向的第一永磁体、磁化方向为轴向的第二永磁体、磁化方向为环向的第二永磁体”顺序周期重复排列。
其中,所述侧面永磁体阵列包含磁化方向为径向的第一永磁体和磁化方向为径向的第二永磁体,所述磁化方向为径向的第一永磁体和所述磁化方向为径向的第二永磁体的磁化方向相反,所述侧面永磁体阵列按“磁化方向为径向的第一永磁体、磁化方向为径向的第二永磁体、磁化方向为径向的第一永磁体、磁化方向为径向的第二永磁体”顺序周期排列。
其中,所述侧面永磁体阵列还包含磁化方向为环向的第三永磁体和磁化方向为环向的第四永磁体,所述侧面永磁体阵列按“磁化方向为径向的第一永磁体、磁化方向为环向的第三永磁体、磁化方向为径向的第二永磁体、磁化方向为环向的第四永磁体”顺序周期重复排列。
其中,所述侧面三相线圈阵列有四个线圈子阵列,所述侧面三相线圈阵列的每个线圈子阵列由3×n个线圈组成,所述n为正整数。
其中,所述端面三相线圈阵列有四个线圈子阵列,所述端面三相线圈阵列的每个线圈子阵列由3×n个线圈组成,所述n正整数。
其中,所述电机定子轴端面上的所述霍尔传感器均匀设置,且所述霍尔传感器设置有n个,所述n为正整数,且n≧8。
其中,所述电机定子轴侧面上的所述霍尔传感器均匀设置,且所述霍尔传感器设置有n个,所述n为正整数,且n≧8。
其中,所述端面三相线圈阵列和所述侧面三相线圈阵列内部插接有铁芯。
与现有技术相比,本发明的有益效果是:
本发明通过设置的电机动子外壳、端面永磁体阵列、侧面永磁体阵列、电机定子轴、端面三相线圈阵列、侧面三相线圈阵列以及霍尔传感器,实现了在磁浮式轮毂电机使用时,能够实现六自由度运动,可以对电机动子位置进行更加灵活的调节;电磁场转速和动子转速保持一致,故电机的转速稳定,使该电机具有良好的运动精度;此外,由于本磁浮式轮毂电机在运动过程中,定子和动子没有直接接触,无摩擦力,因此不存在摩擦引起的能量损耗。
附图说明
图1为本发明实施例一中整体轴测结构示意图;
图2为本发明实施例一中电机定子轴连接结构轴测图;
图3为本发明实施例一中电机定子轴连接结构主视图;
图4为本发明实施例一中电机动子的磁体阵列轴测图;
图5为本发明实施例一中电机动子的磁体阵列主视图;
图6为本发明实施例二中电机动子的磁体阵列轴测图;
图7为本发明实施例二中电机动子的磁体阵列主视图;
图8为本发明实施例一中电机动子的磁体阵列磁化方向示意图;
图9为本发明实施例一中电机动子的霍尔传感器夹角示意图;
图10为本发明实施例二中电机动子的磁体阵列磁化方向示意图;
图11为本发明实施例二中整体轴测结构示意图。
图中:1、电机动子外壳;2、端面永磁体阵列;2-1、磁化方向为轴向的 第一永磁体;2-2、磁化方向为环向的第一永磁体;2-3、磁化方向为轴向的第二永磁体;2-4、磁化方向为环向的第二永磁体;3、侧面永磁体阵列;3-1、磁化方向为径向的第一永磁体;3-2、磁化方向为环向的第三永磁体;3-3、磁化方向为径向的第二永磁体;3-4、磁化方向为环向的第四永磁体;4、侧面三相线圈阵列;5、端面三相线圈阵列;6、电机定子轴;7、霍尔传感器。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:请参阅图1-5以及图8-9,本发明提供一种技术方案:磁浮式轮毂电机,包括电机动子外壳1、端面永磁体阵列2、侧面永磁体阵列3、侧面三相线圈阵列4、端面三相线圈阵列5、电机定子轴6和霍尔传感器7。
其中,电机动子外壳1一端面内壁通过粘接方式均匀固定连接有端面永磁体阵列2,电机动子外壳1内侧面一周通过粘接方式均匀固定连接有侧面永磁体阵列3,端面永磁体阵列2与侧面永磁体阵列3之间磁悬浮方式设置有电机定子轴6,电机定子轴6靠近端面永磁体阵列2一端阵列缠绕有端面三相线圈阵列5,电机定子轴6侧面一周阵列缠绕有侧面三相线圈阵列4,电机定子轴6侧面以及端面位于侧面三相线圈阵列4的中部通过卡接固定连接有霍尔传感器7,电机定子轴6侧面以及端面位于端面三相线圈阵列5的中部通过卡接固定连接有霍尔传感器7,霍尔传感器7与电机控制器电性连接。
其中,端面永磁体阵列2包含磁化方向为轴向的第一永磁体2-1、磁化方向为环向的第一永磁体2-2、磁化方向为轴向的第二永磁体2-3和磁化方向为环向的第二永磁体2-4,并按“磁化方向为轴向的第一永磁体2-1、磁化方向为环向的第一永磁体2-2、磁化方向为轴向的第二永磁体2-3、磁化方向为环 向的第二永磁体2-4”顺序周期排列。
其中,侧面永磁体阵列3包含磁化方向为径向的第一永磁体3-1、磁化方向为环向的第三永磁体3-2、磁化方向为径向的第二永磁体3-3和磁化方向为环向的第四永磁体3-4,并按“磁化方向为径向的第一永磁体3-1、磁化方向为环向的第三永磁体3-2、磁化方向为径向的第二永磁体3-3、磁化方向为环向的第四永磁体3-4”顺序周期排列。
其中,侧面三相线圈阵列4有四个线圈子阵列,侧面三相线圈阵列4每个线圈子阵列由3×n个线圈组成,n为正整数。
其中,端面三相线圈阵列5有四个线圈子阵列,端面三相线圈阵列5的每个线圈子阵列由3×n个线圈组成,n为正整数。
其中,电机定子轴6端面上的霍尔传感器7均匀设置,且霍尔传感器7设置有n个,所述n为正整数,且n≧8。
其中,电机定子轴6侧面上的霍尔传感器7均匀设置,且霍尔传感器7设置有n个,所述n为正整数,且n≧8。
其中,侧面三相线圈阵列4和端面三相线圈阵列5均设置有12×n个,n为正整数。
其中,侧面三相线圈阵列4、端面三相线圈阵列5和霍尔传感器7的个数均为12的倍数,例如:侧面三相线圈阵列4和端面三相线圈阵列5均设置24个时,霍尔传感器7可以设置12个,也可以设置24个,进一步的,霍尔传感器7可以周向均匀设置在对应的侧面三相线圈阵列4和端面三相线圈阵列5的线圈内。进一步的,霍尔传感器7可以设置霍尔传感器组,侧面三相线圈阵列4和端面三相线圈阵列5的四个线圈子阵列分别对应四个霍尔传感器组,每个霍尔传感器组的霍尔传感器7可以多个全都设置在一个线圈中,也可以周向均匀设置在各线圈子阵列中,当然也不排除其他霍尔传感器7的设置方式,在此不做限定。
其中,端面三相线圈阵列5和侧面三相线圈阵列4内部插接有铁芯,当电机为铁芯电机时,可以将铁芯插入到端面三相线圈阵列5和侧面三相线圈阵列4内部,能够产生较大的推力。
其中,霍尔传感器7型号为HW-101A,霍尔传感器7采集信号反馈到控制器,控制器根据预设的控制算法计算出控制信号,并通过驱动器来控制线圈电流,从而调节运动台的运动,形成闭环反馈控制。
其中,侧面三相线圈阵列4与端面三相线圈阵列5分别阵列固定在定子轴的端面和侧面上,两个线圈阵列分别有“上、下、左、右”四个子阵列,每个子阵列由3×n个线圈组成,分别通入三相交流电,每个线圈子阵列通电后与磁体阵列单独作用,不同线圈子阵列可以产生不同方向的力,综合作用产生XYZ三个坐标轴方向的力和XYZ三个坐标轴方向的力矩,使运动台产生6个自由度的运动;要在此说明的是,图2与图3中只是示意性的画出了一种线圈阵列,并非限制线圈的数量、形状和阵列方式,例如线圈数目可以为12的整数倍,此时同一个子阵列中相邻的线圈中电流的相位可以相同,也可以不同。
其中,在电机定子轴6的端面和侧面上,分别布置了霍尔传感器7,在电机定子轴6的端面上,布置了12个霍尔传感器,端面上两个相邻的霍尔传感器7之间的夹角为α,在电机定子轴6的侧面上,也布置了12个霍尔传感器,侧面上两个相邻的霍尔传感器7之间的夹角为β,综合两组霍尔传感器阵列可以测量运动台的六个自由度运动。要在此说明的是,本专利只是示意性的画出了一种霍尔传感器布置形式,并非限制霍尔传感器的数量和布置方式,例如:霍尔传感器的个数不小于8,且轴端面和轴侧面的霍尔传感器数目可以不同,位于电机定子轴6端面上的相邻传感器的夹角α与侧面上相邻传感器的夹角β可以不同。
其中,电机动子包括两个磁铁阵列和一个动子外壳,两个磁铁阵列分别 固定在动子外壳的内端面和内侧面上,端面永磁体阵列2包含磁化方向为轴向的第一永磁体2-1、磁化方向为环向的第一永磁体2-2、磁化方向为轴向的第二永磁体2-3和磁化方向为环向的第二永磁体2-4,并按“磁化方向为轴向的第一永磁体2-1、磁化方向为环向的第一永磁体2-2、磁化方向为轴向的第二永磁体2-3、磁化方向为环向的第二永磁体2-4”顺序周期排列;侧面永磁体阵列3包含磁化方向为径向的第一永磁体3-1、磁化方向为环向的第三永磁体3-2、磁化方向为径向的第二永磁体3-3和磁化方向为环向的第四永磁体3-4,并按“磁化方向为径向的第一永磁体3-1、磁化方向为环向的第三永磁体3-2、磁化方向为径向的第二永磁体3-3、磁化方向为环向的第四永磁体3-4”顺序周期排列。磁化方向为环向的永磁体的存在增强了靠近线圈一侧的磁场强度,提高了电机的工作效率。要在此说明的是,本实施例只是示意性的画出了一种永磁体布置形式,并非限制永磁体阵列的数量和磁体形状,例如:磁体排布的周期总数可以为8的整数倍。
实施例二:请参阅图2-3、图6-7以及图10-11,本发明提供一种技术方案:磁浮式轮毂电机,包括:磁浮式轮毂电机,包括电机动子外壳1、端面永磁体阵列2、侧面永磁体阵列3、侧面三相线圈阵列4、端面三相线圈阵列5、电机定子轴6和霍尔传感器7。
其中,电机动子外壳1一端面内壁通过粘接方式均匀固定连接有端面永磁体阵列2,电机动子外壳1内侧面一周通过粘接方式均匀固定连接有侧面永磁体阵列3,端面永磁体阵列2与侧面永磁体阵列3之间磁悬浮方式设置有电机定子轴6,电机定子轴6靠近端面永磁体阵列2一端阵列缠绕有端面三相线圈阵列5,电机定子轴6侧面一周阵列缠绕有侧面三相线圈阵列4,电机定子轴6侧面以及端面位于侧面三相线圈阵列4的中部通过卡接固定连接有霍尔传感器7,电机定子轴6侧面以及端面位于端面三相线圈阵列5的中部通过卡接固定连接有霍尔传感器7,霍尔传感器7与电机控制器电性连接。
其中,端面永磁体阵列2包含磁化方向为轴向的第一永磁体2-1和磁化方向为轴向的第二永磁体2-3,磁化方向为轴向的第一永磁体2-1和磁化方向为轴向的第二永磁体2-3的磁化方向相反,且磁化方向为轴向的第一永磁体2-1和磁化方向为轴向的第二永磁体2-3交替排列。
其中,侧面永磁体阵列3包含磁化方向为径向的第一永磁体3-1和磁化方向为径向的第二永磁体3-3,磁化方向为径向的第一永磁体3-1和磁化方向为径向的第二永磁体3-3的磁化方向相反,且磁化方向为径向的第一永磁体3-1和磁化方向为径向的第二永磁体3-3交替排列。
其中,侧面三相线圈阵列4有四个线圈子阵列,侧面三相线圈阵列4每个线圈子阵列由3×n个线圈组成,n为正整数。
其中,端面三相线圈阵列5有四个线圈子阵列,端面三相线圈阵列5的每个线圈子阵列由3×n个线圈组成,n为正整数。
其中,电机定子轴6端面上的霍尔传感器7均匀设置,且霍尔传感器7设置有n个,所述n为正整数,且n≧8。
其中,电机定子轴6侧面上的霍尔传感器7均匀设置,且霍尔传感器7设置有n个,所述n为正整数,且n≧8。
其中,侧面三相线圈阵列4和端面三相线圈阵列5均设置有12×n个,n为正整数。
其中,侧面三相线圈阵列4和端面三相线圈阵列5的个数均为12的倍数,例如:侧面三相线圈阵列4和端面三相线圈阵列5均设置24个时,霍尔传感器7可以设置不少于8个,也可以设置24个,进一步的,霍尔传感器7可以周向均匀设置在对应的侧面三相线圈阵列4和端面三相线圈阵列5的线圈内。进一步的,霍尔传感器7可以设置霍尔传感器组,侧面三相线圈阵列4和端面三相线圈阵列5的四个线圈子阵列分别对应四个霍尔传感器组,每个霍尔传感器组的霍尔传感器7可以多个全都设置在一个线圈中,也可以周向均匀 设置在各线圈子阵列中,当然也不排除其他霍尔传感器7的设置方式,在此不做限定。
其中,霍尔传感器7型号为HW-101A,霍尔传感器7采集信号反馈到控制器,控制器根据预设的控制算法计算出控制信号,并通过驱动器来控制线圈电流,从而调节运动台的运动,形成闭环反馈控制。
其中,侧面三相线圈阵列4与端面三相线圈阵列5分别阵列固定在定子轴的端面和侧面上,两个线圈阵列分别有“上、下、左、右”四个子阵列,每个子阵列由三个线圈组成,分别通入三相交流电,每个线圈子阵列通电后与磁体阵列单独作用,不同线圈子阵列可以产生不同方向的力,综合作用产生XYZ三个坐标轴方向的力和XYZ三个坐标轴方向的力矩,使运动台产生6个自由度的运动;要在此说明的是,图2与图3中只是示意性的画出了一种线圈阵列,并非限制线圈的数量、形状和阵列方式,例如线圈数目可以为12的整数倍,此时同一个子阵列中相邻的线圈中电流的相位可以相同,也可以不同。
其中,在电机定子轴6的端面和侧面上,分别布置了霍尔传感器7,在电机定子轴6的端面上,布置了12个霍尔传感器,端面上两个相邻的霍尔传感器7之间的夹角为α,在电机定子轴6的侧面上,也布置了12个霍尔传感器,侧面上两个相邻的霍尔传感器7之间的夹角为β,综合两组霍尔传感器阵列可以测量运动台的六个自由度运动。要在此说明的是,本专利只是示意性的画出了一种霍尔传感器布置形式,并非限制霍尔传感器的数量和布置方式,例如:霍尔传感器的个数可以为12的整数倍,且轴端面和轴侧面的霍尔传感器数目可以不同,位于电机定子轴6端面上的相邻传感器的夹角α与侧面上相邻传感器的夹角β可以不同。
其中,电机动子包括端面永磁体阵列2、侧面永磁体阵列3和一个动子外壳,两个永磁体分别固定在动子外壳的内侧端面和内侧面上。端面永磁体阵 列2包含磁化方向为轴向的第一永磁体2-1和磁化方向为轴向的第二永磁体2-3,磁化方向为轴向的第一永磁体2-1和磁化方向为轴向的第二永磁体2-3的磁化方向相反,且磁化方向为轴向的第一永磁体2-1和磁化方向为轴向的第二永磁体2-3交替排列;侧面永磁体阵列3包含磁化方向为径向的第一永磁体3-1和磁化方向为径向的第二永磁体3-3,磁化方向为径向的第一永磁体3-1和磁化方向为径向的第二永磁体3-3的磁化方向相反,且磁化方向为径向的第一永磁体3-1和磁化方向为径向的第二永磁体3-3交替排列。图6-7为实施例2的磁体阵列实施方式,与实施例1相比,没有磁化方向为环形的永磁体。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

  1. 磁浮式轮毂电机,包括电机动子外壳(1)、端面永磁体阵列(2)、侧面永磁体阵列(3)、侧面三相线圈阵列(4)、端面三相线圈阵列(5)、电机定子轴(6)和霍尔传感器(7),其特征在于:所述电机动子外壳(1)一端面内壁均匀固定连接有端面永磁体阵列(2),所述电机动子外壳(1)内侧面一周固定连接有侧面永磁体阵列(3),所述端面永磁体阵列(2)与侧面永磁体阵列(3)之间设置有电机定子轴(6),所述电机定子轴(6)靠近端面永磁体阵列(2)一端沿圆周方向阵列设置有端面三相线圈阵列(5),所述电机定子轴(6)侧面一周阵列设置有侧面三相线圈阵列(4),所述电机定子轴(6)侧面以及端面位于所述侧面三相线圈阵列(4)的内部固定连接有霍尔传感器(7),所述电机定子轴(6)侧面以及端面位于所述端面三相线圈阵列(5)的内部固定连接有霍尔传感器(7),所述霍尔传感器(7)与电机控制器电性连接。
  2. 根据权利要求1所述的磁浮式轮毂电机,其特征在于:所述端面永磁体阵列(2)包含磁化方向为轴向的第一永磁体(2-1)和磁化方向为轴向的第二永磁体(2-3),所述磁化方向为轴向的第一永磁体(2-1)和所述磁化方向为轴向的第二永磁体(2-3)的磁化方向相反,所述端面永磁体阵列(2)按“磁化方向为轴向的第一永磁体(2-1)、磁化方向为轴向的第二永磁体(2-3)、磁化方向为轴向的第一永磁体(2-1)、磁化方向为轴向的第二永磁体(2-3)”顺序周期重复排列。
  3. 根据权利要求2所述的磁浮式轮毂电机,其特征在于:所述端面永磁体阵列(2)还包含磁化方向为环向的第一永磁体(2-2)和磁化方向为环向的第二永磁体(2-4),所述端面永磁体阵列(2)按“磁化方向为轴向的第一永磁体(2-1)、磁化方向为环向的第一永磁体(2-2)、磁化方向为轴向的第二永磁体(2-3)、磁化方向为环向的第二永磁体(2-4)”顺序周期重复排列。
  4. 根据权利要求1所述的磁浮式轮毂电机,其特征在于:所述侧面永磁体阵列(3)包含磁化方向为径向的第一永磁体(3-1)和磁化方向为径向的第二永磁体(3-3),所述磁化方向为径向的第一永磁体(3-1)和所述磁化方向为径向的第二永磁体(3-3)的磁化方向相反,所述侧面永磁体阵列(3)按“磁化方向为径向的第一永磁体(3-1)、磁化方向为径向的第二永磁体(3-3)、磁化方向为径向的第一永磁体(3-1)、磁化方向为径向的第二永磁体(3-3)”顺序周期排列。
  5. 根据权利要求4所述的磁浮式轮毂电机,其特征在于:所述侧面永磁体阵列(3)还包含磁化方向为环向的第三永磁体(3-2)和磁化方向为环向的第四永磁体(3-4),所述侧面永磁体阵列(3)按“磁化方向为径向的第一永磁体(3-1)、磁化方向为环向的第三永磁体(3-2)、磁化方向为径向的第二永磁体(3-3)、磁化方向为环向的第四永磁体(3-4)”顺序周期重复排列。
  6. 根据权利要求1所述的磁浮式轮毂电机,其特征在于:所述侧面三相线圈阵列(4)有四个线圈子阵列,所述侧面三相线圈阵列(4)的每个线圈子阵列由3×n个线圈组成,所述n为正整数。
  7. 根据权利要求1所述的磁浮式轮毂电机,其特征在于:所述端面三相线圈阵列(5)有四个线圈子阵列,所述端面三相线圈阵列(5)的每个线圈子阵列由3×n个线圈组成,所述n正整数。
  8. 根据权利要求1所述的磁浮式轮毂电机,其特征在于:所述电机定子轴(6)端面上的所述霍尔传感器(7)均匀设置,且所述霍尔传感器(7)设置有n个,所述n为正整数,且n≧8。
  9. 根据权利要求1所述的磁浮式轮毂电机,其特征在于:所述电机定子轴(6)侧面上的所述霍尔传感器(7)均匀设置,且所述霍尔传感器(7)设置有n个,所述n为正整数,且n≧8。
  10. 根据权利要求1所述的磁浮式轮毂电机,其特征在于:所述端面三相线圈阵列(5)和所述侧面三相线圈阵列(4)内部插接有铁芯。
PCT/CN2021/073776 2020-12-28 2021-01-26 磁浮式轮毂电机 WO2022141707A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011580313.0 2020-12-28
CN202011580313.0A CN112910127A (zh) 2020-12-28 2020-12-28 磁浮式轮毂电机

Publications (1)

Publication Number Publication Date
WO2022141707A1 true WO2022141707A1 (zh) 2022-07-07

Family

ID=76111728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073776 WO2022141707A1 (zh) 2020-12-28 2021-01-26 磁浮式轮毂电机

Country Status (2)

Country Link
CN (1) CN112910127A (zh)
WO (1) WO2022141707A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201781403U (zh) * 2010-03-10 2011-03-30 碧达科技有限公司 车轮惯性发动及发电装置
CN103904950A (zh) * 2014-04-09 2014-07-02 河南理工大学 高转矩盘式永磁减速装置
CN107666227A (zh) * 2016-07-29 2018-02-06 叶贞枝 多功能动力机构
JP2018029423A (ja) * 2016-08-16 2018-02-22 マツダ株式会社 回転電機
CN110474517A (zh) * 2019-08-06 2019-11-19 广东极迅精密仪器有限公司 一种转子及悬浮转子电机
JP3224745U (ja) * 2019-10-31 2020-01-16 ゆみ 押田 車輪発電システム
US20200220439A1 (en) * 2016-12-30 2020-07-09 Axel Michael Sigmar Integrated Adaptive Polyphase Electric Motor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037067A (ja) * 1998-07-17 2000-02-02 Ricoh Co Ltd 直流ブラシレスモータ及びそれを用いたポリゴンスキャナ
CN105207430B (zh) * 2015-09-15 2017-11-14 清华大学 一种磁轮驱动的磁悬浮动量球
CN206559150U (zh) * 2017-01-19 2017-10-13 杨济阁 一种稀土永磁磁悬浮电机
US20180342933A1 (en) * 2017-05-23 2018-11-29 Simmonds Precision Products, Inc. Halbach array for rotor position sensing
US10947986B2 (en) * 2018-07-11 2021-03-16 Ch Biomedical (Usa) Inc. Compact centrifugal pump with magnetically suspended impeller
CN115208092A (zh) * 2018-11-27 2022-10-18 深圳核心医疗科技有限公司 盘式电机及其控制方法
CN110120716A (zh) * 2019-05-15 2019-08-13 华中科技大学 一种组合阵列式外转子轴径向混合磁通永磁电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201781403U (zh) * 2010-03-10 2011-03-30 碧达科技有限公司 车轮惯性发动及发电装置
CN103904950A (zh) * 2014-04-09 2014-07-02 河南理工大学 高转矩盘式永磁减速装置
CN107666227A (zh) * 2016-07-29 2018-02-06 叶贞枝 多功能动力机构
JP2018029423A (ja) * 2016-08-16 2018-02-22 マツダ株式会社 回転電機
US20200220439A1 (en) * 2016-12-30 2020-07-09 Axel Michael Sigmar Integrated Adaptive Polyphase Electric Motor
CN110474517A (zh) * 2019-08-06 2019-11-19 广东极迅精密仪器有限公司 一种转子及悬浮转子电机
JP3224745U (ja) * 2019-10-31 2020-01-16 ゆみ 押田 車輪発電システム

Also Published As

Publication number Publication date
CN112910127A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
US7462968B2 (en) Electric wheel
CN108809023B (zh) 一种盘式三自由度磁悬浮开关磁阻电机
WO2019161624A1 (zh) 一种非对称双三相弧线永磁同步电机
CN111884460B (zh) 一种轴向磁通混合励磁记忆电机
CN108847725B (zh) 一种定子永磁式薄片型无轴承开关磁阻电机
CN103490572A (zh) 一种三自由度磁悬浮开关磁阻电机
US10141823B2 (en) Motor, gimbal, and mechanical arm having the same
CN110611384B (zh) 一种磁路分解型游标永磁电机
CN104682621B (zh) 轴向磁场滑差同步式双直风力发电机
CN111082551A (zh) 定子及模块化结构的旋转直线两自由度永磁电机
CN114944737A (zh) 初级、次级混合励磁型双凸极两自由度磁通反向电机
CN112713814B (zh) 一种五自由度锥形混合励磁磁悬浮开关磁阻电机
CN113178961A (zh) 一种轴向模块化磁通反向电机
WO2022141707A1 (zh) 磁浮式轮毂电机
CN108809021B (zh) 一种双薄片式五自由度无轴承开关磁阻电机
CN210405045U (zh) 轴向并列复合电机
CN110474517B (zh) 一种转子及悬浮转子电机
CN113036962B (zh) 一种低成本轻量化的交替极永磁电机
CN108712048B (zh) 一种定子永磁式五自由度锥形无轴承开关磁阻电机
CN210608875U (zh) 一种径向磁场复合型磁通切换电机
CN113346638A (zh) 一种三相并行磁路电机
CN102545423B (zh) 横向磁场永磁电机
Zhou et al. Structural design and FEA of a new type of multi-DOF spherical induction motor without output shaft
CN110635639A (zh) 径向磁场复合型双功率流电机
CN201887625U (zh) 无铁芯永磁电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.11.2023)