WO2019161624A1 - 一种非对称双三相弧线永磁同步电机 - Google Patents

一种非对称双三相弧线永磁同步电机 Download PDF

Info

Publication number
WO2019161624A1
WO2019161624A1 PCT/CN2018/088138 CN2018088138W WO2019161624A1 WO 2019161624 A1 WO2019161624 A1 WO 2019161624A1 CN 2018088138 W CN2018088138 W CN 2018088138W WO 2019161624 A1 WO2019161624 A1 WO 2019161624A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
rotor
stator
permanent magnet
motor
Prior art date
Application number
PCT/CN2018/088138
Other languages
English (en)
French (fr)
Inventor
房淑华
王海涛
阳辉
林鹤云
秦岭
盘真保
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2019161624A1 publication Critical patent/WO2019161624A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/12Machines characterised by the modularity of some components

Definitions

  • the invention relates to an asymmetric double three-phase arc permanent magnet synchronous motor, which is applied to a low speed and large torque direct drive occasion and a large diameter astronomical telescope driving occasion.
  • the large-caliber astronomical telescope plays a vital role in the process of human exploration of the universe. It integrates technologies such as astronomy, optics, mechanics, computers, automatic control and precision machinery, and it has extremely high requirements for drive accuracy.
  • large astronomical telescopes weigh hundreds to thousands of tons, and the volume is large.
  • the total load torque is greatly affected by the posture and environment of the telescope.
  • the large-diameter telescope The pitch axes are all open structures, such as the VLT telescope of the European Southern Observatory and the CFGT of the China Great Telescope.
  • large-caliber astronomical telescopes mainly include gear transmission, friction transmission and direct drive, and torque motor coaxial installation transmission, but these conventional transmission methods have many disadvantages such as high cost and low efficiency.
  • a splicing arc motor drive method suitable for large-caliber astronomical telescopes has been proposed. This transmission method has been successfully applied to the VLT telescope (8.2m) of the European Southern Observatory and the GTC telescope of Spain ( 10.4m) and so on.
  • the Institute of Astronomical Optics of the Chinese Academy of Sciences, the Institute of Optoelectronic Technology of the Chinese Academy of Sciences, Southeast University and other universities and research institutes have also conducted in-depth research on this type of transmission.
  • the Chinese patent discloses a three-dimensional air gap Halbach permanent magnet arc motor and control method for astronomical telescope, which not only saves material but also increases torque density while Hal The Bach structure suppresses torque ripple.
  • the Chinese patent Patent No.: 201110168527.1 discloses a multi-stator arc motor control method for large telescopes, which eliminates torque fluctuations and satisfies the requirements of the motor for wide speed regulation and high precision rotation. Compared with the traditional astronomical telescope driving motor, the arc motor can reduce the manufacturing cost, increase the torque density and facilitate the installation and manufacture on the basis of satisfying the torque requirement.
  • the object of the present invention is to provide an asymmetric double three-phase arc permanent magnet synchronous motor, which adopts an arc structure, which improves the torque density and power density of the motor, saves manufacturing costs, and facilitates manufacturing and transportation.
  • the asymmetric double-phase three-phase arc permanent magnet synchronous motor has high torque density, operating efficiency, low torque ripple, good running stability and reliability, and can be applied to low speed and large torque directly. Driving occasions and large-caliber telescope driving occasions.
  • the present invention proposes an asymmetric double-phase three-phase arc permanent magnet synchronous motor, and the three sets of stator combinations are evenly arranged on the circumference.
  • the two stator modules are unevenly arranged to form an asymmetrical structure to reduce the torque fluctuation of the motor; on the basis of this, an auxiliary tooth is added at the end of each stator core, and a low magnetic energy product permanent magnet is applied to the tooth tip.
  • the two stator module coils are connected by concentrated winding to reduce the end of the coil and reduce the loss of the motor.
  • the stator armature coils of the same stator combination are respectively connected into three phases, and the different kinds of stator armature coils are connected into a double three. Phase, improve the fault tolerance of the motor, enable redundant operation and improve the reliability of motor operation.
  • the rotor adopts a "V" type permanent magnet arrangement, and adds a magnetic isolation bridge to the permanent magnet to improve the air gap magnetic density, reduce the magnetic flux leakage, and effectively increase the torque density of the motor.
  • An asymmetric dual three-phase arc permanent magnet synchronous motor of the present invention comprises a stator assembly and a rotor.
  • the three stator assemblies form an arc structure on a circumference outside the rotor, and each stator assembly includes a 12-slot stator module and A 9-slot stator module is placed side by side on the outer circumference of the rotor;
  • the 12-slot stator module includes a 12-slot stator core, a 12-slot armature coil, a 12-slot auxiliary tooth, and a 12-slot low-energy product permanent magnet;
  • a 12-slot armature coil is located at 12 In the 12 slots in the slot stator core, the 12-slot auxiliary teeth are located on both sides of the 12-slot stator core, the 12-slot low-magnetic energy product permanent magnets are located on the crests of the 12-slot auxiliary teeth;
  • the 9-slot stator module includes 9-slot stator cores and 9 slots.
  • the permanent magnet is located at the top of the 9-slot auxiliary tooth; the 12-slot stator module and the rotor form a 12-slot 10-pole unit motor, and the 9-slot stator module and the rotor form a 9-slot 8-pole unit motor; the stator combination and the rotor together form a dual-phase motor
  • the rotor contains the rotor
  • the magnet, the magnetic isolation bridge and the rotor core are arranged in the permanent magnet body in the rotor core uniformly arranged on the circumference, and the adjacent two rotor permanent magnets have opposite polarities, forming a pair of poles, forming 120 pairs of poles on the circumference, and applying a gap between the permanent magnets
  • the three stator assemblies are evenly arranged on the circumference of the rotor, arranged in an arc shape, and together with the rotor constitute an arc motor.
  • Each of the stator assemblies comprises a 12-slot stator module and a 9-slot stator module.
  • the same type of modules in the three stator combinations are evenly arranged on the circumference, and different types of modules are unevenly arranged on the circumference. Forming an asymmetric structure in which different modules are unevenly arranged.
  • stator 12 slot armature coil and the 9 slot armature coil in the same stator combination are respectively connected into three phases, and the two stator armature coils are connected into two three phases, and the stator combination and the rotor together form a two-phase motor.
  • the 12-slot armature coil and the 9-slot armature coil are both concentrated windings.
  • the 12-slot stator core and the 9-slot stator core have 12-slot auxiliary teeth and 9-slot auxiliary teeth at the two ends, and 12-slot low-energy product permanent magnets are placed on the 12-slot auxiliary teeth and the 9-slot auxiliary teeth. And 9-slot low magnetic energy product permanent magnets.
  • the rotor permanent magnets are arranged in a built-in V-shape.
  • the two permanent magnets in the rotor permanent magnets have opposite polarities, and a magnetic bridge composed of a non-magnetic material or air is applied between the two permanent magnets.
  • the 12-slot stator core, the 9-slot stator core and the rotor core are all laminated by high-performance magnetic conductive materials such as silicon steel sheets.
  • the rotor permanent magnet is composed of neodymium iron boron; the 12-slot low magnetic energy product permanent magnet and the 9-slot low magnetic energy product permanent magnet (8) are composed of an alumino-nickel-cobalt magnetic material.
  • the magnetic isolation bridge is made of magnetic isolation material or air.
  • the motor has an arc structure and different types of stator modules are arranged asymmetrically, and the rotor is arranged with a "V" type permanent magnet
  • the magnetic asymmetric double-phase three-phase arc permanent magnet synchronous motor has the following Advantages:
  • the motor adopts an arc structure, which improves the torque density and power density of the motor, saves manufacturing costs, and facilitates manufacturing, transportation and installation.
  • the different stator modules in the same stator combination are unevenly arranged, so that the motor harmonics are higher.
  • stator armature coils in the same stator combination are respectively connected into three phases, and the two stator armature coils are connected into two three-phase, and the stator combination and the rotor together form a double three
  • the phase motor improves the fault tolerance of the motor, enables redundant operation, and improves the reliability of the motor operation;
  • stator module coils are The concentrated winding is used to effectively reduce the coil end, reduce the loss and improve the efficiency of the motor; the rotor adopts the "V" type permanent magnet arrangement, which can improve the air gap magnetic density and thus increase the output torque of the motor.
  • a magnetic isolation bridge is applied to block the magnetic flux leakage between the poles, thereby improving the utilization rate of the permanent magnet and increasing the torque density of the motor. Therefore, the asymmetric double three-phase arc permanent magnet synchronous motor has high torque density, operating efficiency, low torque ripple, good running stability and reliability, and can be applied to low speed and large torque directly. Driving occasions and large-caliber telescope driving occasions.
  • FIG. 1 is a schematic structural view of an asymmetric double three-phase arc permanent magnet synchronous motor
  • FIG. 2 is a schematic view of a stator assembly part of an asymmetric double three-phase arc type permanent magnet synchronous motor
  • FIG. 3 is a partial schematic view of a 12-slot stator module of an asymmetric dual-phase three-phase arc permanent magnet synchronous motor
  • FIG. 4 is a partial schematic view of a 9-slot stator module of an asymmetric double three-phase arc permanent magnet synchronous motor
  • FIG. 5 is a schematic view of a rotor portion of an asymmetric double three-phase arc permanent magnet synchronous motor
  • stator combination I 12-slot stator module II, 9-slot stator module III, rotor IV;
  • the asymmetric double-phase three-phase arc permanent magnet synchronous motor has a specific embodiment as shown in FIG. 1 , and mainly includes a stator assembly I and a rotor IV.
  • the stator assembly portion is composed of a 12-slot stator module II and a 9-slot stator module III as shown in FIG.
  • the 12-slot stator module portion is composed of a 12-slot stator core 1, a 12-slot armature coil 2, a 12-slot auxiliary tooth 3, and a 12-slot low-magnetic energy product permanent magnet 4, as shown in FIG.
  • the 9-slot stator module portion is composed of a 9-slot stator core 5, a 9-slot armature coil 6, a 9-slot auxiliary tooth 7, and a 9-slot low-magnetic product permanent magnet 8 as shown in FIG.
  • the rotor portion is composed of a "V"-type arrangement permanent magnet 9, a magnetic isolation bridge 10, and a rotor core 11.
  • the asymmetric double-phase three-phase arc permanent magnet synchronous motor adopts an arc structure.
  • three sets of stator combinations I are taken, uniformly arranged on the circumference, and separated from each other by 120°. The position remains the same.
  • a stator assembly consists of a 12-slot stator module 1 and a 9-slot stator module 5. This design increases the torque density and power density of the motor, saves manufacturing costs, and facilitates manufacturing, transportation, and installation.
  • the asymmetric double three-phase arc permanent magnet synchronous motor adopts two kinds of stator modules, namely a 12-slot stator module 1 and a 9-slot stator module 5; on the circumference, three stator assemblies I are evenly arranged on the circumference.
  • the angle between the 12-slot stator module II and the 9-slot stator module III can be adjusted, and the angle can be calculated according to the principle of obtaining the highest no-load back EMF and minimum torque fluctuation, forming different kinds of stators.
  • the asymmetric structure in which the modules are unevenly arranged eliminates the harmonics in space, reduces the torque ripple caused by the end of the arc type motor, improves the smoothness of the motor operation, and is beneficial to the arc type motor. Precision control.
  • the asymmetric double-phase three-phase arc type permanent magnet synchronous motor adds 12-slot auxiliary teeth 3 and 9-slot auxiliary teeth 7 at the end of the 12-slot stator core 1 and 9-slot stator core 5, which can make the stator module
  • the end magnetic circuit is complete, reducing the torque ripple caused by the end effect; at the same time, applying 12 slots of low magnetic energy product permanent magnets 4 and 9 slots of low magnetic energy product permanent magnets 8 on the auxiliary tooth tips, and finishing the magnetic lines of the stator end, Further improve the role of the auxiliary teeth to make the motor run more smoothly.
  • the magnetic energy product of the permanent magnets used is low, which can minimize the influence on the air gap of the motor and the magnetic circuit of the stator.
  • the low magnetic energy product permanent magnet can be used forever, such as aluminum-nickel-cobalt. Magnetic material.
  • the asymmetric double three-phase arc type permanent magnet synchronous motor wherein the 12-slot stator core 1 and the 9-slot stator core 5 are all laminated by a high-performance magnetic conductive material, such as a ten-steel steel or a silicon steel sheet;
  • the slot armature coil 2 and the 9-slot armature coil 6 all adopt concentrated windings, the coil ends are small, the loss is reduced, the motor running efficiency is improved, the cost is saved, and the coil is made of copper material, and the conductivity is good and the thermal conductivity is large.
  • the asymmetric double three-phase arc permanent magnet synchronous motor the same stator combination I 12-slot armature coil 2 and 9-slot armature coil 6 are respectively connected into three phases, and the two stator armature coils are connected into a double three Phase, stator combination I and rotor IV together form a two-phase three-phase motor, which improves the fault tolerance and reliability of the motor while ensuring the constant torque density of the motor.
  • the motor fails, the motor can realize redundant operation; It does not interlock with each other, which helps to accurately control the motor and realize redundant operation of the motor.
  • the motor phase is faulty and the module is faulty, the winding can be switched to ensure the smooth and reliable operation of the motor.
  • the two-phase three-phase is beneficial to the rise.
  • the high pulsating frequency of electromagnetic torque reduces torque ripple, which in turn reduces vibration and noise during low speed operation.
  • the permanent magnets 9 of the rotor are evenly arranged along the circumference, the central angles of the corresponding permanent magnets are equal, and the adjacent two permanent magnets have the same polarity, forming a “V” shape.
  • the adjacent two sets of "V" type permanent magnets have opposite polarities, forming a pair of poles, which are alternately arranged, and the rotor permanent magnets 9 form 120 pairs of poles on one circumference; the air gap magnetic density can be improved, thereby increasing the output torque of the motor.
  • the permanent magnet materials are all high-performance permanent magnets, such as neodymium iron boron, etc.
  • the permanent magnet material has good stability, large coercive force, high residual magnetism, easy processing, and small magnetic leakage.
  • the asymmetric double-phase three-phase arc permanent magnet synchronous motor applies a magnetic isolation bridge between the rotor "V" permanent magnets and the adjacent "V" type permanent magnets to block magnetic flux leakage between the poles, which is beneficial to improving the permanent magnets.
  • the utilization rate increases the torque density of the motor, and the magnetic isolation bridge is composed of magnetic isolation material or air.
  • the asymmetric double three-phase arc permanent magnet synchronous motor adopts two kinds of stator modules, and different types of modules have different number of slots, and together with the rotor constitute a unit modular motor with different pole slots, the pole of the unit modular motor There are various combinations of slot fits, and a combination of 12-slot 10-pole and 9-slot 8-pole unit modular motors is preferred in this embodiment.
  • the asymmetric double three-phase arc permanent magnet synchronous motor has a limited rotating operation range, and the stator module wound with the coil can be used as a rotor, and the rotor embedded with the permanent magnet can be used as a stator.
  • the asymmetric double-phase three-phase arc type permanent magnet synchronous motor can output a large torque by increasing the number of poles to reduce the motor speed.
  • the pole number of the permanent magnet of the rotor is preferably 120 poles.
  • the asymmetric double three-phase arc permanent magnet synchronous motor can be applied to a large-diameter astronomical telescope driving occasion, a wind power generation system and the like in a low-speed large torque direct drive occasion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

一种非对称双三相弧线永磁同步电机,该电机包括定子组合(I)和转子(IV)两部分,三个定子组合(I)在转子(IV)外的圆周上形成弧线结构,每一个定子组合(I)包含一个12槽定子模块(II)和一个9槽定子模块(III)并排设置在转子(IV)外的圆周上;12槽定子模块(II)与转子(IV)形成12槽10极单元电机,9槽定子模块(III)与转子(IV)形成9槽8极单元电机;定子组合(I)与转子(IV)共同构成双三相电机;转子采用内置式"V"型永磁体(9)排布,聚磁效应强,能够有效提升主磁通,提高电机的转矩密度;永磁体构成120对极,使得电机具有低速大转矩的特点,应用于低速大转矩直接驱动场合以及大口径天文望远镜驱动场合。

Description

一种非对称双三相弧线永磁同步电机 技术领域
本发明涉及非对称双三相弧线永磁同步电机,应用于低速大转矩直接驱动场合以及大口径天文望远镜驱动场合。
背景技术
大口径天文望远镜在人类探索宇宙过程中起着至关重要的作用,它集成了天文、光学、力学、计算机、自动控制和精密机械等技术,其对驱动精度有极高的要求。通常大型天文望远镜的机架重达数百至数千吨,体积大,负载总力矩受望远镜姿态和环境的影响很大,为了简化望远镜结构、降低结构惯性矩的控制系统影响,大口径天文望远镜的俯仰轴都采用开放式结构,如欧洲南方天文台的VLT望远镜、中国极大望远镜CFGT等。
目前,大口径天文望远镜主要有齿轮传动、摩擦传动和直接驱动以及力矩电机同轴安装传动,但是这些传统的传动方式存在这造价高、效率低等诸多缺点。随着科学技术的进一步发展,适用于大口径天文望远镜的拼接式弧形电机驱动方式被提出,这种传动方式已经成功地应用在欧洲南方天文台的VLT望远镜(8.2m)、西班牙的GTC望远镜(10.4m)等。同时,国内中科院天文光学研究所、中科院光电技术研究所、东南大学等高校及科研单位也对这种传动方式进行了深入研究。中国专利(专利号:CN2015102840353.7)公布了一种天文望远镜用三维气隙哈尔巴赫永磁弧形电机及控制方法,该电机结构不仅能够节省材料,而且可以提升转矩密度,同时哈尔巴赫结构可以抑制转矩脉动。中国专利(专利号:201110168527.1)公布了一种用于大型望远镜的多定子弧形电机控制方法,消除力矩波动,并且满足电机对宽调速、高精度旋转的要求。相比于传统天文望远镜驱动电机,采用弧线电机,在满足力矩要求的基础上,能够降低制造成本,提高转矩密度,并且方便安装制造。同时,采用三维气隙结构和控制方法等创新方法,能够提升电机的转矩密度和降低力矩波动。然而,通过改变电机拓扑结构的方法,弧线永磁同步电机在转矩密度、力矩波动等方面仍有可进一步优化的空间。
发明内容
技术问题:本发明的目的是提出一种非对称双三相弧线永磁同步电机,该电机采用弧线结构,提升了电机的转矩密度与功率密度,节省制造成本,方便制造、运输以及安装;该非对称双三相弧线永磁同步电机具有较高的转矩密度、运行效率,较低的转矩脉动,以及良好的运行平稳性、可靠性,可应用于低速大转矩直接驱动场合以及大口径天文望远镜驱动场合。
技术方案:为了进一步提高大口径天文望远镜用电机的驱动能力、运行的平稳性及可靠性,本发明提出一种非对称双三相弧线永磁同步电机,三组定子组合在圆周上均匀排布,定子组合中两种定子模块不均匀排列形成非对称结构,以降低电机的力矩波动;在此基础上,在每个定子铁心的端部增加辅助齿,齿顶施加低磁能积的永磁体,使电机磁路完整,降低端部效应所带来的力矩波动,提高电机的平稳性。两种定子模块线圈采用集中绕组方式连接,减小线圈的端部,降低电机的损耗;同时,同一个定子组合内定子电枢线圈各自连接成三相,不同种定子电枢线圈连接成双三相,提高电机的容错能力,能够实现冗余运行,提升电机运行的可靠性。转子采用“V”型永磁体排布方式,并在永磁体加增加隔磁桥,提高气隙磁密,降低漏磁,有效地提升电机的转矩密度。
本发明的一种非对称双三相弧线永磁同步电机包括定子组合和转子两部分,三个定子组合在转子外的圆周上形成弧线结构,每一个定子组合包含一个12槽定子模块和一个9槽定子模块并排设置在转子外的圆周上;12槽定子模块包含12槽定子铁心、12槽电枢线圈、12槽辅助齿以及12槽低磁能积永磁体;12槽电枢线圈位于12槽定子铁心内的12个槽内,12槽辅助齿位于12槽定子铁心两侧,12槽低磁能积永磁体位于12槽辅助齿的齿顶;9槽定子模块包含9槽定子铁心、9槽电枢线圈、9槽辅助齿以及9槽低磁能积永磁体,9槽电枢线圈位于9槽定子铁心内的槽内,9槽辅助齿位于9槽定子铁心的两侧,9槽低磁能积永磁体位于9槽辅助齿的齿顶;12槽定子模块与转子形成12槽10极单元电机,9槽定子模块块与转子形成9槽8极单元电机;定子组合与转子共同构成双三相电机;转子包含转子永磁体、隔磁桥和转子铁心,转子永磁体内置于转子铁心内在圆周上均匀排布,相邻两转子永磁体极性相反,构成一对极,圆周上形成120对极,永磁体间施加隔磁桥。
其中,
所述的三个定子组合在转子外的圆周上均匀阵列,呈弧线型排列,与转子共同构成弧线电机。
所述的每一个定子组合包含一个12槽定子模块和一个9槽定子模块两种定子模 块组成;三个定子组合中的同种模块在圆周上均匀排列,不同种模块在圆周上不均匀排列,形成不同模块不均匀排列的非对称结构。
同一个定子组合内定子12槽电枢线圈和9槽电枢线圈各自连接成三相,该两种定子电枢线圈连接成双三相,定子组合与转子共同构成双三相电机。
所述的12槽电枢线圈和9槽电枢线圈均采用集中绕组。
12槽定子铁心与9槽定子铁心在两侧端部分别有12槽辅助齿和9槽辅助齿,在12槽辅助齿和9槽辅助齿的齿顶,分别放置有12槽低磁能积永磁体和9槽低磁能积永磁体。
转子永磁体采用内置式V型排列,转子永磁体中两个永磁体极性相反,两个永磁体间施加由非导磁材料或空气组成的隔磁桥。
12槽定子铁心、9槽定子铁心和转子铁心均由硅钢片等高性能导磁材料叠压而成。
转子永磁体由钕铁硼构成;12槽低磁能积永磁体和9槽低磁能积永磁体(8)由铝镍钴磁材料构成。
隔磁桥由隔磁材料或空气构成。
有益效果:由于该电机为弧线结构,并且采用不同种定子模块非对称排列,并且转子采用“V”型永磁体排布,因此这种磁非对称双三相弧线永磁同步电机具有如下优点:电机采用弧线结构,提升了电机的转矩密度与功率密度,节省制造成本,方便制造、运输以及安装;同一个定子组合内不同种定子模块不均匀排布,使得电机高次谐波在空间上相互抵消,降低弧线电机因定子端部所引起的力矩波动;在此基础上,在定子铁心端部增加辅助齿,并在齿顶施加低磁能积永磁体,使得电机磁路完整,进一步降低电机的力矩波,提升电机运行的平稳性;同一个定子组合内定子电枢线圈各自连接成三相,两种定子电枢线圈连接成双三相,定子组合与转子共同构成双三相电机,提高了电机的容错能力,可实现冗余运行,提升了电机运行的可靠性;定子模块线圈均采用集中绕组,有效的减小了线圈端部,降低损耗,提升电机效率;转子上采用“V”型永磁体排布,能够提升气隙磁密,进而提升电机的输出转矩,在永磁体间施加隔磁桥,阻隔极间漏磁,提高了永磁体的利用率,提高电机的转矩密度。因此,该非对称双三相弧线永磁同步电机具有较高的转矩密度、运行效率,较低的转矩脉动,以及良好的运行平稳性、可靠性,可应用于低速大转矩直接驱动场合以及大口径天文望远镜驱动场合。
附图说明
图1为非对称双三相弧线永磁同步电机结构示意图;
图2为非对称双三相弧线型永磁同步电机定子组合部分示意图;
图3为非对称双三相弧线型永磁同步电机12槽定子模块部分示意图;
图4为非对称双三相弧线永磁同步电机9槽定子模块部分示意图;
图5为非对称双三相弧线永磁同步电机转子部分示意图;
其中有:定子组合I、12槽定子模块II、9槽定子模块III、转子IV;
12槽定子铁心1、12槽电枢线圈2、12槽辅助齿3、12槽低磁能积永磁体4、9槽定子铁心5、9槽电枢线圈6、9槽辅助齿7、9槽低磁能积永磁体8、转子永磁体9、隔磁桥10、转子铁心11。
具体实施方式
所述的非对称双三相弧线永磁同步电机,其具体实施方式如图1所示,主要包括定子组合I、转子IV两部分。
定子组合部分如图2所示,由12槽定子模块II和9槽定子模块III组成。
12槽定子模块部分如图3所示,由12槽定子铁心1、12槽电枢线圈2、12槽辅助齿3和12槽低磁能积永磁体4构成。
9槽定子模块部分如图4所示,由9槽定子铁心5、9槽电枢线圈6、9槽辅助齿7和9槽低磁能积永磁体8构成。
转子部分如图5所示,由“V”型排布永磁体9、隔磁桥10和转子铁心11构成。
所述的非对称双三相弧线永磁同步电机,该电机采用弧线结构,在满足电机输出力矩情况下,取三组定子组合I,在圆周上均匀排布,互相相隔120°,相对位置保持不变,一个定子组合由一个12槽定子模块1和一个9槽定子模块5构成,该设计提升了电机的转矩密度与功率密度,节省制造成本,方便制造,运输以及安装。
所述的非对称双三相弧线永磁同步电机,采用两种定子模块,即12槽定子模块1和9槽定子模块5;在圆周上,3个定子组合I在圆周上均匀排布,在同一个定子组合I内,12槽定子模块II和9槽定子模块III的间的角度可以调整,并且可以可根据得到空载反电势最高、力矩波动最小的原则计算该角度,形成不同种定子模块不均匀排列的非对称结构,在空间上消除高次谐波,降低由弧线型电机端部所带来的转矩脉动,提高电机运行的平稳性,有利于对该弧线型电机进行精准控制。
所述的非对称双三相弧线型永磁同步电机,在12槽定子铁心1与9槽定子铁心5的端部跟别增加12槽辅助齿3与9槽辅助齿7,能够使得定子模块端部磁路完整,降低由端部效应引起的转矩脉动;同时,在其辅助齿顶分别施加12槽低磁能积永磁体 4和9槽低磁能积永磁体8,整理定子端部磁力线,进一步提升辅助齿的作用,使电机运行更加平稳,所采用永磁体的磁能积低,能够尽量降低对电机气隙与定子磁路的影响,其中低磁能积永磁体可以采用如铝镍钴等永磁材料。
所述的非对称双三相弧线型永磁同步电机,其中12槽定子铁心1和9槽定子铁心5均由高性能导磁材料叠压而成,如十号钢或硅钢片等;12槽电枢线圈2和9槽电枢线圈6均采用集中绕组,线圈端部小,降低了损耗,提升电机运行效率,节省成本,同时线圈采用铜材料,导电性好且导热系数大。
所述的非对称双三相弧线永磁同步电机,同一个定子组合I内12槽电枢线圈2和9槽电枢线圈6各自连接成三相,两种定子电枢线圈连接成双三相,定子组合I与转子IV共同构成双三相电机,在保证电机转矩密度不变的情况下,提高电机的容错性及可靠性,电机故障时,电机能够实现冗余运行;各三相间不相互匝链,有助于对电机精准控制,能够实现电机冗余运行,在电机相故障及模块故障时,能够实现绕组切换,保证电机平稳可靠运行;所构成的双三相,有利于升高电磁转矩的脉动频率,降低转矩脉动,进而降低低速运行中的振动和噪音。
所述的非对称双三相弧线永磁同步电机,转子永磁体9沿圆周均匀排布,每块永磁体所对应的圆心角相等,相邻两永磁体极性相同,组成“V”型,相邻两组“V”型永磁体极性相反,形成一对极,交替排列,转子永磁体9在一个圆周上形成120对极;能够提高气隙磁密,进而提升电机的输出转矩;永磁体材质均为高性能永磁体,如钕铁硼等,永磁材料稳定性好,矫顽力大,剩磁高,易加工,且漏磁较小。
所述的非对称双三相弧线永磁同步电机,在转子“V”永磁体间及相邻“V”型永磁体间施加隔磁桥,阻隔极间漏磁,有利于提高永磁体的利用率,提升电机的转矩密度,隔磁桥由隔磁材料或空气组成。
所述的非对称双三相弧线永磁同步电机,采用两种定子模块,并且不同种模块的槽数不同,与转子共同构成不同极槽配合的单元模块化电机,单元模块化电机的极槽配合有多种组合,本实施例中优选12槽10极和9槽8极单元模块化电机的组合。
所述的非对称双三相弧线永磁同步电机,旋转运行范围有限,绕有线圈的定子模块可以作为转子,嵌有永磁体的转子可以作为定子。
所述的非对称双三相弧线型永磁同步电机,通过增加极数降低电机转速,可以输出较大转矩,本实施例中转子永磁体极对数优选120对极。
所述的非对称双三相弧线永磁同步电机可应用于大口径天文望远镜驱动场合、风力发电系统等低速大转矩直驱场合。

Claims (10)

  1. 一种非对称双三相弧线永磁同步电机,其特征在于:该电机包括定子组合(I)和转子(IV)两部分,三个定子组合(I)在转子(IV)外的圆周上形成弧线结构,每一个定子组合(I)包含一个12槽定子模块(II)和一个9槽定子模块(III)并排设置在转子(IV)外的圆周上;12槽定子模块包含12槽定子铁心(1)、12槽电枢线圈(2)、12槽辅助齿(3)以及12槽低磁能积永磁体(4);12槽电枢线圈(2)位于12槽定子铁心(1)内的12个槽内,12槽辅助齿(3)位于12槽定子铁心(1)两侧,12槽低磁能积永磁体(4)位于12槽辅助齿(3)的齿顶;9槽定子模块包含9槽定子铁心(5)、9槽电枢线圈(6)、9槽辅助齿(7)以及9槽低磁能积永磁体(8),9槽电枢线圈(6)位于9槽定子铁心(5)内的槽内,9槽辅助齿(7)位于9槽定子铁心(5)的两侧,9槽低磁能积永磁体(8)位于9槽辅助齿(7)的齿顶;12槽定子模块(II)与转子(IV)形成12槽10极单元电机,9槽定子模块(III)块与转子(IV)形成9槽8极单元电机;定子组合(I)与转子(IV)共同构成双三相电机;转子(IV)包含转子永磁体(9)、隔磁桥(10)和转子铁心(11),转子永磁体(9)内置于转子铁心(11)内在圆周上均匀排布,相邻两转子永磁体(9)极性相反,构成一对极,圆周上形成120对极,永磁体间施加隔磁桥(10)。
  2. 根据权利要求1所述的非对称双三相弧线永磁同步电机,其特征在于所述的三个定子组合(I)在转子(IV)外的圆周上均匀阵列,呈弧线型排列,与转子(IV)共同构成弧线电机。
  3. 根据权利要求1所述的非对称双三相弧线永磁同步电机,其特征在于所述的每一个定子组合(I)包含一个12槽定子模块(II)和一个9槽定子模块(III)两种定子模块组成;三个定子组合(I)中的同种模块在圆周上均匀排列,不同种模块在圆周上不均匀排列,形成不同模块不均匀排列的非对称结构。
  4. 根据权利要求1所述的非对称双三相弧线永磁同步电机,其特征在于同一个定子组合(I)内定子12槽电枢线圈(2)和9槽电枢线圈(6)各自连接成三相,该两种定子电枢线圈连接成双三相,定子组合(I)与转子(IV)共同构成双三相电机。
  5. 根据权利要求1所述的非对称双三相弧线永磁同步电机,其特征在于所述的12槽电枢线圈(2)和9槽电枢线圈(6)均采用集中绕组。
  6. 根据权利要求1所述的非对称双三相弧线永磁同步电机,其特征在于12槽定 子铁心(1)与9槽定子铁心(5)在两侧端部分别有12槽辅助齿(3)和9槽辅助齿(7),在12槽辅助齿(3)和9槽辅助齿(7)的齿顶,分别放置有12槽低磁能积永磁体(4)和9槽低磁能积永磁体(8)。
  7. 根据权利要求1所述的非对称双三相弧线永磁同步电机,其特征在于转子永磁体(9)采用内置式V型排列,转子永磁体(9)中两个永磁体极性相反,两个永磁体间施加由非导磁材料或空气组成的隔磁桥(10)。
  8. 根据权利要求1所述的非对称双三相弧线永磁同步电机,其特征在于12槽定子铁心(1)、9槽定子铁心(5)和转子铁心(11)均由硅钢片等高性能导磁材料叠压而成。
  9. 根据权利要求1所述的非对称双三相弧线永磁同步电机,其特征在于转子永磁体(9)由钕铁硼构成;12槽低磁能积永磁体(4)和9槽低磁能积永磁体(8)由铝镍钴磁材料构成。
  10. 根据权利要求1所述的非对称双三相弧线永磁同步电机,其特征在于隔磁桥由隔磁材料或空气构成。
PCT/CN2018/088138 2018-02-26 2018-05-24 一种非对称双三相弧线永磁同步电机 WO2019161624A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810159260.1A CN108429420B (zh) 2018-02-26 2018-02-26 一种非对称双三相弧线永磁同步电机
CN201810159260.1 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019161624A1 true WO2019161624A1 (zh) 2019-08-29

Family

ID=63157229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088138 WO2019161624A1 (zh) 2018-02-26 2018-05-24 一种非对称双三相弧线永磁同步电机

Country Status (2)

Country Link
CN (1) CN108429420B (zh)
WO (1) WO2019161624A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114006509A (zh) * 2021-11-15 2022-02-01 洛阳永磁重型机械设备有限公司 一种直联悬挂式永磁低速同步矿用提升设备现场装配方法
CN114157063A (zh) * 2021-11-15 2022-03-08 哈尔滨理工大学 一种非对称永磁辅助同步磁阻电机
CN114567094A (zh) * 2021-12-20 2022-05-31 哈尔滨理工大学 一种新型混合励磁异步起动永磁同步电机定转子结构
CN116231893A (zh) * 2023-05-08 2023-06-06 河北辰昊传动设备有限公司 一种定子带缺口的永磁同步电机及直驱驱动系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546764B (zh) * 2018-11-05 2021-03-09 东南大学 一种单元组合式可模块化电机
CN109617350B (zh) * 2019-01-14 2021-03-30 哈尔滨工程大学 一种多单元永磁电机最小单元四对极不对称设计结构
CN109713867B (zh) * 2019-01-14 2021-03-30 哈尔滨工程大学 一种多单元永磁电机最小单元五对极不对称设计结构
CN110829767A (zh) * 2019-11-26 2020-02-21 奇瑞汽车股份有限公司 一种弧形驱动电机
CN111030329A (zh) * 2019-11-29 2020-04-17 北京自动化控制设备研究所 多相永磁容错伺服电机
CN112165191A (zh) * 2020-09-27 2021-01-01 杨培应 一种新型定子转子节能机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174783A (zh) * 2007-10-31 2008-05-07 中国科学院国家天文台南京天文光学技术研究所 弧线驱动大口径天文望远镜
CN101174784A (zh) * 2007-10-31 2008-05-07 中国科学院国家天文台南京天文光学技术研究所 用于大型天文望远镜的超低速精密弧线电机
CN102064647A (zh) * 2010-12-31 2011-05-18 中国科学院光电技术研究所 一种用于光电跟踪设备多定子弧线电机
CN102185449A (zh) * 2011-02-23 2011-09-14 华北电力大学 三段圆弧磁极结构的自起动永磁电机
CN104104168A (zh) * 2014-07-16 2014-10-15 东南大学 一种内置永磁式无刷直流电机的定子转子结构
CN204316210U (zh) * 2014-12-06 2015-05-06 大洋电机新动力科技有限公司 一种电机转子及其应用的永磁同步电机
CN104852537A (zh) * 2015-05-28 2015-08-19 东南大学 一种天文望远镜用三维气隙哈尔巴赫永磁弧形电机及其控制方法
JP2017201849A (ja) * 2016-05-02 2017-11-09 パナソニックIpマネジメント株式会社 埋め込み永久磁石式同期電動機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515329A (zh) * 2015-12-10 2016-04-20 北京理工大学 混合励磁的弧形永磁电机
CN206595868U (zh) * 2017-02-15 2017-10-27 中山市溢丰达机械设备有限公司 弧形永磁电机
CN106981963B (zh) * 2017-05-17 2019-07-05 北京航空航天大学 基于电磁感应驱动的弧线电机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174783A (zh) * 2007-10-31 2008-05-07 中国科学院国家天文台南京天文光学技术研究所 弧线驱动大口径天文望远镜
CN101174784A (zh) * 2007-10-31 2008-05-07 中国科学院国家天文台南京天文光学技术研究所 用于大型天文望远镜的超低速精密弧线电机
CN102064647A (zh) * 2010-12-31 2011-05-18 中国科学院光电技术研究所 一种用于光电跟踪设备多定子弧线电机
CN102185449A (zh) * 2011-02-23 2011-09-14 华北电力大学 三段圆弧磁极结构的自起动永磁电机
CN104104168A (zh) * 2014-07-16 2014-10-15 东南大学 一种内置永磁式无刷直流电机的定子转子结构
CN204316210U (zh) * 2014-12-06 2015-05-06 大洋电机新动力科技有限公司 一种电机转子及其应用的永磁同步电机
CN104852537A (zh) * 2015-05-28 2015-08-19 东南大学 一种天文望远镜用三维气隙哈尔巴赫永磁弧形电机及其控制方法
JP2017201849A (ja) * 2016-05-02 2017-11-09 パナソニックIpマネジメント株式会社 埋め込み永久磁石式同期電動機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114006509A (zh) * 2021-11-15 2022-02-01 洛阳永磁重型机械设备有限公司 一种直联悬挂式永磁低速同步矿用提升设备现场装配方法
CN114157063A (zh) * 2021-11-15 2022-03-08 哈尔滨理工大学 一种非对称永磁辅助同步磁阻电机
CN114006509B (zh) * 2021-11-15 2023-06-30 洛阳永磁重型机械设备有限公司 一种直联悬挂式永磁低速同步矿用提升设备现场装配方法
CN114567094A (zh) * 2021-12-20 2022-05-31 哈尔滨理工大学 一种新型混合励磁异步起动永磁同步电机定转子结构
CN116231893A (zh) * 2023-05-08 2023-06-06 河北辰昊传动设备有限公司 一种定子带缺口的永磁同步电机及直驱驱动系统

Also Published As

Publication number Publication date
CN108429420B (zh) 2020-02-18
CN108429420A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
WO2019161624A1 (zh) 一种非对称双三相弧线永磁同步电机
US8089192B2 (en) Three-phase square-wave permanent magnet brushless DC motor
CN108011484B (zh) 一种磁齿轮复合电机
CN108809023B (zh) 一种盘式三自由度磁悬浮开关磁阻电机
KR101894211B1 (ko) 교류 영구자석 스위치드 릴럭턴스 전동모터
CN110165852B (zh) 一种双定子相组集中绕线聚磁式永磁直线电机
US20210320575A1 (en) Three-degree-of-freedom bearingless switch reluctance motor excited by constant current source
CN103490572A (zh) 一种三自由度磁悬浮开关磁阻电机
KR20120011314A (ko) 회전 전기 기계, 직동 전기 기계 및 풍력 발전 시스템
CN107181382B (zh) 一种转子错角定子隔磁式轴向永磁辅助双凸极电机
CN110752728B (zh) 一种L型双层Halbach磁通切换永磁电机
CN108847725B (zh) 一种定子永磁式薄片型无轴承开关磁阻电机
CN104821697A (zh) 电动汽车驱动用容错式四相开关磁阻电动机
CN106374705B (zh) 轴向磁通永磁电机
WO2020001294A1 (zh) 一种五自由度无轴承开关磁阻电机
CN110212665B (zh) 一种混合式转子连续极永磁同步电机及降低其转矩脉动的方法
CN108809030B (zh) 一种外绕组控制的两自由度无轴承开关磁阻电机
CN110022043A (zh) 一种整数槽分布绕组虚拟极轮辐式永磁同步电机及其低脉动设计方法
CN111313576B (zh) 一种模块化永磁电机
CN111245187B (zh) 一种环形绕组双转子磁通反向电机
CN108809021B (zh) 一种双薄片式五自由度无轴承开关磁阻电机
CN104779755B (zh) 一种模块化双定子永磁直线电机及由其构成的电机模组
CN107579638B (zh) 一种双定子聚磁-磁阻混合转子电机
Wei et al. Presentation of a double-stator axial-flux permanent-magnet disk motor with soft magnetic composite cores and its cogging torque reduction
CN204046380U (zh) 一种旋转直线永磁电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907448

Country of ref document: EP

Kind code of ref document: A1