WO2022141200A1 - 一种锂离子电池用水性粘接剂及其制备方法、锂离子电池极片 - Google Patents

一种锂离子电池用水性粘接剂及其制备方法、锂离子电池极片 Download PDF

Info

Publication number
WO2022141200A1
WO2022141200A1 PCT/CN2020/141412 CN2020141412W WO2022141200A1 WO 2022141200 A1 WO2022141200 A1 WO 2022141200A1 CN 2020141412 W CN2020141412 W CN 2020141412W WO 2022141200 A1 WO2022141200 A1 WO 2022141200A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmaps
aqueous binder
segment
lithium ion
ion battery
Prior art date
Application number
PCT/CN2020/141412
Other languages
English (en)
French (fr)
Inventor
卓海涛
黄书
陈少军
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2020/141412 priority Critical patent/WO2022141200A1/zh
Publication of WO2022141200A1 publication Critical patent/WO2022141200A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the invention relates to the technical field of lithium ion batteries, in particular to an aqueous adhesive for lithium ion batteries, a preparation method thereof, and a lithium ion battery pole piece.
  • a lithium-ion battery is a secondary battery (rechargeable battery) that mainly relies on the movement of lithium ions between the positive and negative electrodes to work. Because lithium-ion batteries have the advantages of high capacity, many cycles, large storage capacity, small size, high energy density, long cycle life, green environmental protection, wide operating temperature range and high safety, they are widely used in aerospace, tablet computers. , electric bicycles and electric vehicles.
  • the binder is an important part of the positive and negative plates of lithium ion batteries, which directly affects the performance of the battery. Since the binder is usually a polymer structure, for some binders, there is a problem of poor conductivity. Therefore, if the amount is large, the resistance will also be large, which will affect the battery. capacity and cycle rate; if the dosage is small, it may lead to powder removal and poor battery cycle performance.
  • the technical problem to be solved by the present invention is to overcome the defect of poor conductivity of the lithium ion battery binder in the prior art, thereby providing an aqueous binder for lithium ion batteries and a preparation method thereof, and a lithium ion battery electrode piece.
  • the technical scheme provided by the present invention is:
  • the present invention provides an aqueous binder for lithium ion batteries, which comprises polyrotaxane and a linear polymer with DMAPS segment, wherein the polyrotaxane is composed of cyclodextrin and polyethylene glycol through supramolecular self-assembly, End capped.
  • the molar ratio of the polyethylene glycol to the cyclodextrin is 1: (1-20), and the mass ratio of the polyethylene glycol to the DMAPS segment is 1: (1-100).
  • the molecular weight of the polyethylene glycol is 500-10000; and/or,
  • the cyclodextrin is alpha-cyclodextrin; and/or,
  • the end group of the polyrotaxane is selected from the group represented by the following formula (1) or formula (2):
  • the linear polymer with DMAPS segment has the structure shown in the following formula (3):
  • n, x are positive integers
  • the R 1 is selected from at least one of -H, -CH 3 , -COOLi, -CH 2 COOLi;
  • the R 2 is selected from at least one of -H or -CH 3 ;
  • the R3 is selected from -H , -CH3 , -COOCH3 , -COOCH2CH3 , -C6H6 , -COOCH2CH2CH2CH3 , -COOCH2CH ( CH2CH3 ) CH At least one of 2 CH 2 CH 2 CH 3 .
  • the DMAPS accounts for 1-50wt.% of the total mass of the linear polymer
  • the polyacrylate segment accounts for 1-20 wt.% of the total mass of the linear polymer
  • the mass fraction of the (CHR 1 -CR 2 R 3 ) x segment in the linear polymer segment is 30-98 wt. %.
  • the present invention also provides a method for preparing the aqueous binder described in any one of the above-mentioned schemes, characterized in that it comprises the following steps:
  • the polyrotaxane is mixed with the linear polymer with the DMAPS segment to obtain the aqueous binder emulsion;
  • the aqueous binder emulsion is dried at 100-130° C. for 6-12 hours to obtain the aqueous binder.
  • the solid content of the aqueous binder emulsion is 1-50 wt.%.
  • the polyrotaxane is prepared according to the following steps:
  • the end-capping monomer is added for capping to form a polyrotaxane.
  • the linear polymer with DMAPS segment is prepared according to the following steps:
  • the DMAPS monomer was added to deionized water, and the initiator, acrylic monomer and (CHR 1 -CR 2 R 3 ) x segment monomer were added after the oxygen was driven out by protective gas, and the monomer dripping time was 1-6 hours , and then fully reacted at 60-90 °C to obtain linear polymers with DMAPS segments.
  • the present invention also provides a lithium ion battery pole piece, comprising:
  • a conductive agent, an electrode material, and the aqueous binder according to any one of the above-mentioned solutions, wherein the aqueous binder is used for bonding the conductive agent and the electrode material.
  • the electrode material is a graphite negative electrode material, and the addition amount of the aqueous binder is 1.0-3wt.% of the total mass of the lithium ion battery pole piece; and/or,
  • the electrode material is a silicon-based negative electrode material, and the addition amount of the aqueous binder is 2-20wt.% of the total mass of the lithium ion battery pole piece
  • the electrode material is a positive electrode material, and the addition amount of the aqueous binder is 1.0-3 wt.% of the total mass of the lithium ion battery pole piece.
  • the present invention also provides a method for preparing a lithium ion battery pole piece as described in any one of the above solutions, comprising the following steps:
  • polyrotaxane, linear polymer with DMAPS segment, electrode material, and conductive agent are mixed and dried at 100-130° C. for 6-12 hours.
  • the water-based binder for lithium ion batteries provided by the present invention, by introducing the zwitterionic structure of DMAPS, makes the same structural unit of the polymer structure contain both anions and cations, and can form a unique supramolecular switch structure with dynamic reversibility.
  • the characteristics of the linear polymer can be combined with polyrotaxane to form a supramolecular with a pulley structure, which can improve the elasticity and mechanical properties of the supramolecular, thereby improving the stability of the supramolecular, and the formed supramolecular structure is highly ordered and It has a 3D network structure. Therefore, the formed supramolecular structure has good flexibility and self-healing function.
  • zwitterions can promote electron delocalization, while sulfonic acid groups are easily attacked by electrophilic groups. It interacts with lithium ions with low electron cloud density. Therefore, the presence of zwitterions can promote the dissociation of lithium salts and form new lithium ion migration channels, thereby achieving the effect of improving ionic conductivity.
  • the binder has high elasticity, high ionic conductivity, excellent mechanical properties and self-healing function, which can improve the ionic conductivity and cycle stability of the electrode.
  • the water-based adhesive provided by the present invention is limited by parameters such as the type and content of each segment in the water-based adhesive, so that the obtained water-based adhesive has excellent flexibility and elasticity, and has good performance. self-healing function.
  • the preparation method of the water-based binder provided by the present invention has a simple preparation process and is beneficial to large-scale production.
  • the preparation method of the aqueous binder provided by the present invention the preparation process of the polyrotaxane is simple and stable, which is beneficial to large-scale production.
  • the preparation method of the water-based binder provided by the present invention is soap-free emulsion polymerization, no external emulsifier is added in the preparation process, which is conducive to improving the stability of the emulsion, the operation is simple, and the cost is low. Inexpensive and conducive to large-scale production.
  • the lithium ion battery pole piece provided by the present invention can improve the ionic conductivity and cycle stability of the battery pole piece by selecting an aqueous binder with excellent elasticity, mechanical properties, stability, flexibility and electrochemical performance, At the same time, the amount of binder added can also be reduced.
  • the lithium ion battery pole piece provided by the present invention when the electrode material in the battery pole piece is a graphite negative electrode, by selecting the water-based binder provided by this application, the dosage of the binder can be significantly reduced, and the dosage of the binder is the lowest Can be as low as 1.0 wt.%.
  • the aqueous binder can make up for the slow ion diffusion rate caused by the one-dimensional lithium ion migration channel of lithium iron phosphate, etc. Therefore, the cycle rate of the lithium iron phosphate cathode is increased by 10-100 times, and the cycle life of the electrode is prolonged.
  • the lithium ion battery pole piece provided by the present invention when the electrode material of the battery pole piece is a silicon-based negative electrode, by using the aqueous binder provided by the application, on the one hand, the ionic conductivity of the electrode can be improved by 10- 100 times, on the other hand, the reversible supramolecular switch structure due to the formation of zwitterions in the aqueous binder can change with the repeated volume expansion/contraction of the Si-based anode due to de/lithium intercalation, and the resulting The stress is released, forming the self-healing function of the counter electrode, maintaining the stability and integrity of the electrode during the cycle process, and then improving the electrochemical performance of the silicon-based anode, especially the cycle stability.
  • Example 1 is the surface SEM images of the silicon-based negative electrodes of Example 24 of the present invention and Comparative Example 11 before and after cycling;
  • FIG. 2 is a comparison diagram of the expansion ratios of the pole pieces after cycling of the silicon-based negative electrodes in Examples 23-29 and Comparative Examples 11-13 of the present invention.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • the present embodiment relates to a water-based binder, and its raw materials are prepared according to the following steps:
  • the present embodiment relates to a water-based binder, and its raw materials are prepared according to the following steps:
  • the present embodiment relates to a water-based binder, and its raw materials are prepared according to the following steps:
  • the present embodiment relates to a water-based binder, and its raw materials are prepared according to the following steps:
  • the present embodiment relates to a water-based binder, and its raw materials are prepared according to the following steps:
  • the present embodiment relates to a water-based binder, and its raw materials are prepared according to the following steps:
  • the present embodiment relates to a water-based binder, and its raw materials are prepared according to the following steps:
  • the present embodiment relates to a water-based binder, and its raw materials are prepared according to the following steps:
  • the present embodiment relates to a water-based binder, and its raw materials are prepared according to the following steps:
  • the present embodiment relates to a water-based binder, and its raw materials are prepared according to the following steps:
  • the present embodiment relates to a water-based binder, and its raw materials are prepared according to the following steps:
  • Examples 12-16 relate to a lithium ion battery pole piece, using LiFePO 4 as the positive electrode material, the aqueous binder provided in Examples 1-5 as the positive electrode binding material, and carbon black as the conductive agent.
  • the battery pole pieces are prepared according to the following steps:
  • the mixed raw materials were prepared into positive pole pieces, and then the pole pieces were vacuum-dried at 130° C. to remove water for 8 hours.
  • Examples 17-22 relate to a lithium ion battery pole piece, using graphite as the negative electrode material, the aqueous binder provided in Examples 1-5 and Example 10 as the negative electrode binding material, and carbon black as the conductive agent.
  • the battery pole pieces are prepared according to the following steps:
  • the mixed raw material was prepared into a positive electrode piece, and then the pole piece was vacuum-dried at 120°C to remove water for 8 hours.
  • Embodiments 23-29 relate to a lithium-ion battery pole piece, which uses carbon-silicon composite material (theoretical specific capacity is 1000mAh.g -1 ) as the negative electrode material, and uses the aqueous binder provided in Embodiment 1 and Embodiment 6-11 as the negative electrode material. It is a negative electrode binder, and carbon black is a conductive agent.
  • the battery pole pieces are prepared according to the following steps:
  • the mixed raw materials were prepared into a positive electrode piece, and then the pole piece was vacuum-dried at 110 ° C to remove water for 8 hours.
  • This comparative example relates to a water-based adhesive, which is prepared according to the following steps:
  • This comparative example relates to a water-based adhesive, which is prepared according to the following steps:
  • PEG and CD with a molecular weight of 1000 were fully stirred according to a molar ratio of 1:5 (ie, 0.2 g PEG and 1.0 g CD) for self-assembly, and then glutathione was added to cap the solution for later use.
  • 5g of lithium acrylate monomer and 400g of deionized water were added to the reaction kettle, the stirring speed was 200 rpm, and at a temperature of 50 °C, high-purity N2 was introduced to drive oxygen for 0.5 hours, 0.5g of ammonium persulfate was added, and 0.5 g of ammonium persulfate was added dropwise.
  • the mixed monomer composed of 40g styrene and 55g butyl acrylate was added dropwise for 6 hours until all the monomers were dripped, and then continued to stir for 3 hours to fully react. After the reaction was completed, the residual monomer was removed under reduced pressure, and the prepared 1.2
  • the gPEG/CD segment was fully stirred and passed through a 200-mesh filter cloth to obtain an aqueous zwitterionic supramolecular binder with a solid content of 20%.
  • This comparative example relates to a water-based adhesive, which is the commercially available SBR of this rubber grown by Sumitomo Corporation of Japan, trade name: SN-307.
  • This comparative example relates to a water-based adhesive, which is commercially available polyvinylidene fluoride PVDF from Arkema China Co., Ltd.
  • Comparative Examples 5-7 relate to a lithium ion battery pole piece, using LiFePO 4 as the positive electrode material, the aqueous binder provided in Comparative Examples 1, 2, and 4 as the positive electrode binding material, and carbon black as the conductive agent.
  • the battery pole pieces are prepared according to the following steps:
  • Comparative Examples 8-10 relate to a lithium ion battery pole piece, using graphite as the negative electrode material, the aqueous binder provided in Comparative Examples 1-3 as the negative electrode binding material, and carbon black as the conductive agent.
  • the battery pole pieces are prepared according to the following steps:
  • the mixed raw material was prepared into a positive electrode piece, and then the pole piece was vacuum-dried at 100 ° C to remove water for 10 hours.
  • Comparative example 11-13 relates to a lithium ion battery pole piece, which uses carbon-silicon composite material (theoretical specific capacity is 1000mAh.g -1 ) as the negative electrode material, and the water-based binder provided in comparative example 1-3 is used as the negative electrode bonding agent.
  • agent, carbon black is a conductive agent.
  • the battery pole pieces are prepared according to the following steps:
  • the mixed raw materials were prepared into a positive electrode piece, and then the pole piece was vacuum-dried at 130 ° C to remove water for 8 hours.
  • the battery pole pieces provided in Examples 12-29 and Comparative Examples 5-13 were assembled into lithium ion button cells (half cells) for constant current charge and discharge tests, and LiPF 6 was dissolved in EC/L at a concentration of 1 mol/liter.
  • Table 1 shows the results of the capacity efficiency, capacity retention rate and ionic conductivity of the first charge and discharge of the battery pole pieces provided by each embodiment and comparative example.
  • Examples 1 and 6-11, Examples 23-29 prepared with the binder described in Comparative Examples 1-3, and Comparative Examples 11-13 show the expansion ratio of the pole pieces after the negative electrode cycle is shown in Figure 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种锂离子电池用水性粘结剂及其制备方法、锂离子电池极片,涉及锂离子电池技术领域,粘结剂包括交联的聚轮烷以及具有DMAPS链段的线型高分子,聚轮烷由环糊精与聚乙二醇超分子自组装后封端得到,通过引入DMAPS的两性离子结构,使粘结剂的同一结构单元同时包含阴、阳离子,可形成独特的超分子开关结构,具有动态可逆的特点,且线型高分子经与聚轮烷交联后可形成滑轮结构,结构高度有序且为3D网络结构,具有良好的柔韧性以及自修复功能,同时两性离子能促进电子离域,磺酸基团易受亲电子基团的进攻,更易与低电子云密度的锂离子发生相互作用,起到促进锂盐离解,形成新的锂离子迁移通道,从而达到提高离子导电率的作用。

Description

一种锂离子电池用水性粘接剂及其制备方法、锂离子电池极片 技术领域
本发明涉及锂离子电池技术领域,具体涉及一种锂离子电池用水性粘接剂及其制备方法、锂离子电池极片。
背景技术
锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。由于锂离子电池具有容量高、循环次数多、储电量大、体积小、能量密度高、循环寿命长、绿色环保、使用温度范围宽以及安全性高等优点,因此被广泛应用至航天航空、平板电脑、电动自行车和电动汽车等领域。
粘结剂是锂离子电池正负极片的重要组成部分,其直接影响着电池的性能。由于粘结剂通常都是高分子结构,对于一些粘结剂而言,其存在导电性较差的问题,因此,在使用时,若用量较大,则电阻也会较大,从而会影响电池的容量和循环倍率;若用量较小,则可能会导致脱粉、电池循环性能较差等情况。
因此,开发一种安全环保,正、负极材料均可使用,且具有高离子导电率和优异的机械性能的粘结剂是市场的迫切需求。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中的锂离子电池粘结剂导电性较差的缺陷,从而提供一种锂离子电池用水性粘结剂及其制备方法、锂离子电池极片。
为解决上述技术问题,本发明所提供的技术方案为:
本发明提供一种锂离子电池用水性粘结剂,包括聚轮烷以及具有DMAPS链段的线型高分子,所述聚轮烷由环糊精与聚乙二醇经超分子自组装后经封端得到。
可选的,所述水性粘结剂中,所述聚乙二醇与环糊精的摩尔比为1:(1-20),所述聚乙二醇与所述DMAPS链段的质量比为1:(1-100)。
可选的,所述聚乙二醇的分子量为500-10000;和/或,
所述环糊精为α-环糊精;和/或,
所述聚轮烷的端基选自下式(1)或式(2)所示的基团:
Figure PCTCN2020141412-appb-000001
可选的,所述具有DMAPS链段的线型高分子具有如下式(3)所示的结构:
Figure PCTCN2020141412-appb-000002
其中,m,n,x为正整数;
所述R 1选自-H、-CH 3、-COOLi、-CH 2COOLi中的至少一种;
所述R 2选自-H或-CH 3中的至少一种;
所述R 3选自-H、-CH 3、-COOCH 3、-COOCH 2CH 3、-C 6H 6、-COOCH 2CH 2CH 2CH 3、-COOCH 2CH(CH 2CH 3)CH 2CH 2CH 2CH 3中的至少一种。
可选的,以所述具有DMAPS链段的线型高分子的总质量计,
所述DMAPS占所述线型高分子总质量的1-50wt.%;
所述聚丙烯酸酯链段占所述线型高分子总质量的1-20wt.%;
所述(CHR 1-CR 2R 3) x链段占所述线型高分子链段的质量分数为30-98wt.%。
本发明还提供一种制备如上述所有方案中任一项所述的水性粘结剂的方法,其特征在于,包括以下步骤:
在保护气体气氛下,将聚轮烷与具有DMAPS链段的线型高分子混合得到水性粘结剂乳液;
将水性粘结剂乳液在100-130℃下烘干6-12h,得到所述水性粘结剂。
可选的,所述水性粘结剂乳液的固含量为1-50wt.%。
可选的,所述聚轮烷按照以下步骤制备得到:
将聚乙二醇与环糊精在100-500转/分下搅拌进行自组装后,再加入封端单体进行封端,形成聚轮烷。
可选的,所述具有DMAPS链段的线型高分子按照以下步骤制备得到:
将DMAPS单体加入至去离子水中,经保护气体驱氧后加入引发剂、丙烯酸单体以及(CHR 1-CR 2R 3) x链段的单体,单体滴加时间为1-6小时,然后在60-90℃下,充分反应得到具有DMAPS链段的线型高分子。
本发明还提供一种锂离子电池极片,包括:
导电剂、电极材料以及如上述所有方案中任一项所述的水性粘结剂,所述水性粘接剂用于粘接所述导电剂与电极材料。
可选的,
所述电极材料为石墨负极材料,所述水性粘结剂的添加量为锂离子电池极片总质量的1.0-3wt.%;和/或,
所述电极材料为硅基负极材料,所述水性粘结剂的添加量为锂离子电池极片总质量的2-20wt.%
所述电极材料为正极材料,所述水性粘结剂的添加量为锂离子电池极片总质量的1.0-3wt.%。
本发明还提供一种如上述所有方案中任一项所述的锂离子电池极片的制备方法,包括以下步骤:
在保护气体气氛下,将聚轮烷、具有DMAPS链段的线型高分子、电极材料、以及导电剂混合后在100-130℃下烘干6-12h。
本发明技术方案,具有如下优点:
1.本发明提供的锂离子电池用水性粘结剂,通过引入DMAPS的两性离子结构,使得高分子结构的同一结构单元上同时包含阴离子和阳离子,可形成独特的超分子开关结构,具有动态可逆的特点,线型高分子经与聚轮烷可形成具有滑轮结构的超分子,从而可以提高超分子的弹性和力学性能,进而提高超分子的稳定性,而且形成的超分子结构高度有序且具有3D的网状结构,因此,形成的超分子结构具有良好的柔韧性以及自修复功能,另外,两性离子能够促进电子离域,而磺酸基团易受亲电子基团的进攻,更容易与低电子云密度的锂离子发生相互作用,因此,两性离子的存在能起到促进锂盐离解,形成新的锂离子迁移通道,从而达到提高离子导电率的作用,即本发明提供的水性粘结剂具有高弹性、高离子导电率、优异的机械性能以及自修复功能,能提高电极的离子导电率和循环稳定性。
2.本发明提供的水性粘结剂,通过对水性粘结剂中各链段的种类、含量等的参数进行限定,从而使得得到的水性粘接剂具有优异的柔韧性以及弹性,并且具有良好的自修复功能。
3.本发明提供的水性粘结剂的制备方法,制备工艺简单,有利于规模生产。
4.本发明提供的水性粘结剂的制备方法,聚轮烷的制备工艺简单稳定,有利于规模生产。
5.本发明提供的水性粘结剂的制备方法,具有DMAPS链段的高分子的制备 方法为无皂乳液聚合,制备过程中无外加乳化剂,有利于提高乳液的稳定性,操作简单,成本低廉,有利于规模生产。
6.本发明提供的锂离子电池极片,通过选用具有优异弹性、力学性能、稳定性、柔韧性以及电化学性能的水性粘结剂,可以提高电池极片的离子导电率以及循环稳定性,同时还可以降低粘结剂的添加量。
7.本发明提供的锂离子电池极片,当电池极片中的电极材料为石墨负极时,通过选用本申请提供的水性粘结剂,可以显著降低粘结剂的用量,粘结剂用量最低可低至1.0wt.%。
8.本发明提供的锂离子电池极片,当电池极片的电极材料为磷酸铁锂正极材料时,水性粘结剂可弥补磷酸铁锂的一维锂离子迁移通道导致的离子扩散速率慢等缺陷,从而使得磷酸铁锂正极的循环倍率提高10-100倍,延长电极的循环寿命。
9.本发明提供的锂离子电池极片,当电池极片的电极材料为硅基负极时,通过配合使用本申请提供的水性粘结剂,一方面,可以使电极的离子导电率提高10-100倍,另一方面,由于水性粘结剂中两性离子形成的可逆超分子开关结构可随着硅基负极由于脱/嵌锂而引起的反复体积膨胀/收缩而变化,并对此过程产生的应力进行释放,形成对电极的自修复功能,保持电极在循环过程中的稳定和完整,进而改善硅基负极的电化学性能,尤其是提高循环稳定性。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的实施例24以及对比例11的硅基负极循环前后的表面SEM图;
图2为本发明实施例23-29、对比例11-13中的硅基负极循环后极片膨胀率对比图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
本实施例涉及一种水性粘结剂,其原料按照如下步骤制备得到:
S1、制备聚轮烷:将分子量1000的PEG和CD按照摩尔比1:5(即0.2gPEG和1.0gCD)充分搅拌进行自组装,再加入谷胱甘肽封端备用。
S2、制备具有DMAPS链段的线型高分子:将5g丙烯酸锂单体和400g去离子水加入反应釜中,搅拌速度为200转/分,在50℃的温度下,通入高纯N 2驱氧0.5小时,加入过硫酸铵0.5g,滴加40g苯乙烯、5gDMAPS和50g丙烯酸丁酯组成的混合单体,滴加6小时至单体全部滴完,再继续搅拌3小时至充分反应,反应完全后减压除去残余单体。
S3、混合:往步骤S2得到的具有DMAPS链段的线型高分子中加入步骤S1制备的1.2gPEG/CD链段并充分搅拌,过200目滤布,制得固含量为20%的水性两性离子型超分子粘结剂乳液。
实施例2
本实施例涉及一种水性粘结剂,其原料按照如下步骤制备得到:
S1、制备聚轮烷:将分子量1000的PEG和CD按照摩尔比1:5(即0.2gPEG和1.0gCD)充分搅拌进行自组装,再加入谷胱甘肽封端备用。
S2、制备具有DMAPS链段的线型高分子:将5g丙烯酸锂和5g丙烯酸单体和100g去离子水加入反应釜中,搅拌速度为250转/分,在70℃的温度下,通入高纯N 2驱氧0.5小时,加入过硫酸铵0.5g,滴加40g苯乙烯、5gDMAPS和45g丙烯酸异辛酯组成的混合单体,滴加5小时至单体全部滴完,再继续搅拌2小时至充分反应,反应完全后减压除去残余单体。
S3、混合:往步骤S2得到的具有DMAPS链段的线型高分子中加入步骤S1制备的1.2gPEG/CD链段并充分搅拌,过300目滤布,制得固含量为50%的水性两性离子型超分子粘结剂乳液。
实施例3
本实施例涉及一种水性粘结剂,其原料按照如下步骤制备得到:
S1、制备聚轮烷:将分子量3000的PEG和CD按照摩尔比1:5(即0.6gPEG和1.0gCD)充分搅拌进行自组装,再加入谷胱甘肽封端备用。
S2、制备具有DMAPS链段的线型高分子:将5g丙烯酸锂和5g丙烯酸单体和400g去离子水加入反应釜中,搅拌速度为200转/分,在50℃的温度下,通入高纯N 2驱氧0.5小时,加入过硫酸铵0.5g,滴加30g苯乙烯、50g丙烯酸丁酯和10gDMAPS组成的混合单体,滴加6小时至单体全部滴完,再继续搅拌3小时至充分反应,反应完全后减压除去残余单体。
S3、混合:往步骤S2得到的具有DMAPS链段的线型高分子中加入步骤S1制备的1.6gPEG/CD链段并充分搅拌,过200目滤布,制得固含量为20%的水性两性离子型超分子粘结剂乳液。
实施例4
本实施例涉及一种水性粘结剂,其原料按照如下步骤制备得到:
S1、制备聚轮烷:将分子量3000的PEG和CD按照摩尔比1:7(即0.6gPEG和1.4gCD)充分搅拌进行自组装,再加入谷胱甘肽封端备用。
S2、制备具有DMAPS链段的线型高分子:将5g丙烯酸锂和5g丙烯酸单体和400g去离子水加入反应釜中,搅拌速度为200转/分,在80℃的温度下,通入高纯N 2驱氧0.5小时,加入过硫酸铵0.5g,滴加30g苯乙烯、45g丙烯酸丁酯和15gDMAPS组成的混合单体,滴加3小时至单体全部滴完,再继续搅拌1小时至充分反应,反应完全后减压除去残余单体。
S3、混合:往步骤S2得到的具有DMAPS链段的线型高分子中加入步骤S1制备的2.0gPEG/CD链段并充分搅拌,过200目滤布,制得固含量为20%的水性两性离子型超分子粘结剂乳液。
实施例5
本实施例涉及一种水性粘结剂,其原料按照如下步骤制备得到:
S1、制备聚轮烷:将分子量3000的PEG和CD按照摩尔比1:7(即3gPEG和7gCD)充分搅拌进行自组装,再加入谷胱甘肽封端备用。
S2、制备具有DMAPS链段的线型高分子:将5g丙烯酸锂和10g丙烯酸单体和390g去离子水加入反应釜中,搅拌速度为200转/分,在80℃的温度下,通入高纯N 2驱氧0.5小时,加入过硫酸铵0.5g,滴加30g苯乙烯、40g丙烯酸丁酯和15gDMAPS组成的混合单体,滴加3小时至单体全部滴完,再继续搅拌1小时至充分反应,反应完全后减压除去残余单体。
S3、混合:往步骤S2得到的具有DMAPS链段的线型高分子中加入步骤S1制备的10gPEG/CD链段并充分搅拌,过200目滤布,制得固含量为20%的水性两性离子型超分子粘结剂乳液。
实施例6
本实施例涉及一种水性粘结剂,其原料按照如下步骤制备得到:
S1、制备聚轮烷:将分子量1000的PEG和CD按照摩尔比1:5(即0.2gPEG和1.0gCD)充分搅拌进行自组装,再加入谷胱甘肽封端备用。
S2、制备具有DMAPS链段的线型高分子:将5g丙烯酸锂和5g丙烯酸单体和400g去离子水加入反应釜中,搅拌速度为200转/分,在50℃的温度下,通入高纯N 2驱氧0.5小时,加入过硫酸铵0.5g,滴加30g苯乙烯、40g丙烯异辛酯和20gDMAPS组成的混合单体,滴加6小时至单体全部滴完,再继续搅拌3小时至充分反应,反应完全后减压除去残余单体。
S3、混合:往步骤S2得到的具有DMAPS链段的线型高分子中加入步骤S1制备的1.2gPEG/CD链段并充分搅拌,过200目滤布,制得固含量为20%的水性两性离子型超分子粘结剂乳液。
实施例7
本实施例涉及一种水性粘结剂,其原料按照如下步骤制备得到:
S1、制备聚轮烷:将分子量8000的PEG和CD按照摩尔比1:15(即4gPEG和7.5gCD)充分搅拌进行自组装,再加入谷胱甘肽封端备用。
S2、制备具有DMAPS链段的线型高分子:将5g丙烯酸锂和10g丙烯酸单体和390g去离子水加入反应釜中,搅拌速度为200转/分,在50℃的温度下,通入高纯N 2驱氧0.5小时,加入过硫酸铵0.5g,滴加20g苯乙烯、40g丙烯酸丁酯25gDMAPS组成的混合单体,滴加6小时至单体全部滴完,再继续搅拌3小时至充分反应,反应完全后减压除去残余单体。
S3、混合:往步骤S2得到的具有DMAPS链段的线型高分子中加入步骤S1制备的11.5gPEG/CD链段并充分搅拌,过200目滤布,制得固含量为20%的水性两性离子型超分子粘结剂乳液。
实施例8
本实施例涉及一种水性粘结剂,其原料按照如下步骤制备得到:
S1、制备聚轮烷:将分子量10000的PEG和CD按照摩尔比1:20(即10gPEG和20gCD)充分搅拌进行自组装,再加入谷胱甘肽封端备用。
S2、制备具有DMAPS链段的线型高分子:将15g丙烯酸单体和370g去离子水加入反应釜中,搅拌速度为200转/分,在50℃的温度下,通入高纯N 2驱氧0.5小时,加入过硫酸铵0.5g,滴加10g苯乙烯、20g丙烯酸丁酯、15g丙烯异辛酯和40gDMAPS组成的混合单体,滴加6小时至单体全部滴完,再继续搅拌3小时至充分反应,反应完全后减压除去残余单体。
S3、混合:往步骤S2得到的具有DMAPS链段的线型高分子中加入步骤S1制备的30gPEG/CD链段并充分搅拌,过200目滤布,制得固含量为20%的水性两性离子型超分子粘结剂乳液。
实施例9
本实施例涉及一种水性粘结剂,其原料按照如下步骤制备得到:
S1、制备聚轮烷:将分子量10000的PEG和CD按照摩尔比1:10(即45gPEG和45gCD)充分搅拌进行自组装,再加入谷胱甘肽封端备用。
S2、制备具有DMAPS链段的线型高分子:将20g甲基丙烯酸单体和310g去离子水加入反应釜中,搅拌速度为300转/分,在70℃的温度下,通入高纯N 2驱氧1小时,加入过硫酸铵0.4g,滴加5g丙烯酸丁酯、35g丙烯酸异辛酯和40gDMAPS组成的混合单体,滴加5小时至单体全部滴完,再继续搅拌4小时至充分反应,反应完全后减压除去残余单体。
S3、混合:往步骤S2得到的具有DMAPS链段的线型高分子中加入步骤S1制备的90gPEG/CD链段并充分搅拌,过300目滤布,制得固含量为50%的水性两性离子型超分子粘结剂乳液。
实施例10
本实施例涉及一种水性粘结剂,其原料按照如下步骤制备得到:
S1、制备聚轮烷:将分子量500的PEG和CD按照摩尔比1:1(即0.35gPEG和0.7gCD)充分搅拌进行自组装,再加入谷胱甘肽封端备用。
S2、制备具有DMAPS链段的线型高分子:然后将5g丙烯酸锂单体和400g去离子水加入反应釜中,搅拌速度为200转/分,在50℃的温度下,通入高纯N 2驱氧0.5小时,加入过硫酸铵0.5g,滴加40g苯乙烯、5gDMAPS和50g丙烯酸丁酯组成的混合单体,滴加6小时至单体全部滴完,再继续搅拌3小时至充分反应,反应完全后减压除去残余单体。
S3、混合:往步骤S2得到的具有DMAPS链段的线型高分子中加入步骤S1制备的1.05gPEG/CD链段并充分搅拌,过200目滤布,制得固含量为20%的水性两性离子型超分子粘结剂乳液。
实施例11
本实施例涉及一种水性粘结剂,其原料按照如下步骤制备得到:
S1、制备聚轮烷:将分子量15000的PEG和CD按照摩尔比1:25(即37.5gPEG和62.5gCD)充分搅拌进行自组装,再加入谷胱甘肽封端备用。
S2、制备具有DMAPS链段的线型高分子:将20g甲基丙烯酸单体和300g去离子水加入反应釜中,搅拌速度为300转/分,在70℃的温度下,通入高纯N 2驱氧1小时,加入过硫酸铵0.4g,滴加5g丙烯酸丁酯、35g丙烯酸异辛酯和40gDMAPS组成的混合单体,滴加5小时至单体全部滴完,再继续搅拌4小时至充分反应,反应完全后减压除去残余单体。
S3、混合:往步骤S2得到的具有DMAPS链段的线型高分子中加入步骤S1制备的100gPEG/CD链段并充分搅拌,过300目滤布,制得固含量为50%的水性两性离子型超分子粘结剂乳液。
实施例12-16
实施例12-16涉及一种锂离子电池极片,以LiFePO 4为正极材料,实施例1-5提供的水性粘结剂为正极粘结材料,碳黑为导电剂。
电池极片按照如下步骤制备得到:
按照质量比LiFePO 4:粘结剂乳液:碳黑导电剂SP=92.5:2.5:5混合原料制备成正极极片,然后将极片在130℃下真空干燥除水8小时。
实施例17-22
实施例17-22涉及一种锂离子电池极片,以石墨为负极材料,实施例1-5以及实施例10提供的水性粘结剂为负极粘结材料,碳黑为导电剂。
电池极片按照如下步骤制备得到:
按照质量比石墨负极材料:碳黑导电剂SP:粘结剂=96.5:2.0:1.5混合原料制备成正极极片,然后将极片在120℃下真空干燥除水8小时。
实施例23-29
实施例23-29涉及一种锂离子电池极片,以碳硅复合材料(理论比容量为1000mAh﹒g -1)为负极材料,以实施例1、实施例6-11提供的水性粘结剂为负极粘接剂,碳黑为导电剂。
电池极片按照如下步骤制备得到:
按照质量比硅碳负极材料:碳黑导电剂SP:粘结剂=90.5:5.0:5.0混合原料制备成正极极片,然后将极片在110℃下真空干燥除水8小时。
对比例1
本对比例涉及一种水性粘接剂,按照如下步骤制备得到:
将5g丙烯酸锂单体和400g去离子水加入反应釜中,搅拌速度为200转/分,在50℃的温度下,通入高纯N 2驱氧0.5小时,加入过硫酸铵0.5g,滴加40g苯乙烯和55g丙烯酸丁酯组成的混合单体,滴加6小时至单体全部滴完,再继续搅拌3小时至充分反应,反应完全后减压除去残余单体,过200目滤布,制得固含量为20%的水性两性离子型超分子粘结剂乳液。
对比例2
本对比例涉及一种水性粘接剂,按照如下步骤制备得到:
首先将分子量1000的PEG和CD按照摩尔比1:5(即0.2gPEG和1.0gCD)充分搅拌进行自组装,再加入谷胱甘肽封端备用。将5g丙烯酸锂单体和400g去离子水加入反应釜中,搅拌速度为200转/分,在50℃的温度下,通入高纯N2驱氧0.5小时,加入过硫酸铵0.5g,滴加40g苯乙烯和55g丙烯酸丁酯组成的混合单体,滴加6小时至单体全部滴完,再继续搅拌3小时至充分反应,反应完全后减压除去残余单体,后加入已制备的1.2gPEG/CD链段并充分搅拌,过200目滤布,制得固含量为20%的水性两性离子型超分子粘结剂。
对比例3
本对比例涉及一种水性粘接剂,其为市购的日本住友公司生长的本橡胶SBR,商品牌号:SN-307。
对比例4
本对比例涉及一种水性粘接剂,其为市购的阿科玛中国有限公司的聚偏二氟乙烯PVDF。
对比例5-7
对比例5-7涉及一种锂离子电池极片,以LiFePO 4为正极材料,对比例1、2、4提供的水性粘结剂为正极粘结材料,碳黑为导电剂。
电池极片按照如下步骤制备得到:
按照质量比LiFePO 4:粘结剂乳液:碳黑导电剂SP=92.5:2.5:5混合原料制备成正极极片,然后将极片在100℃下真空干燥除水10小时。
对比例8-10
对比例8-10涉及一种锂离子电池极片,以石墨为负极材料,对比例1-3提供的水性粘结剂为负极粘结材料,碳黑为导电剂。
电池极片按照如下步骤制备得到:
按照质量比石墨负极材料:碳黑导电剂SP:粘结剂=96.5:2.0:1.5混合原料制备成正极极片,然后将极片在100℃下真空干燥除水10小时。
对比例11-13
对比例11-13涉及一种锂离子电池极片,以碳硅复合材料(理论比容量为1000mAh﹒g -1)为负极材料,以对比例1-3提供的水性粘结剂为负极粘接剂,碳 黑为导电剂。
电池极片按照如下步骤制备得到:
按照质量比硅碳负极材料:碳黑导电剂SP:粘结剂=90.5:5.0:5.0混合原料制备成正极极片,然后将极片在130℃下真空干燥除水8小时。
效果例
将实施例12-29以及对比例5-13的提供的电池极片组装成锂离子扣式电池(半电池)进行恒流充放电测试,将LiPF 6按1摩尔/升的浓度溶解在EC/DEC/EMC=2:3:1的混合溶剂中形成非水电解液,其中EC为碳酸乙烯酯,EMC为碳酸甲基乙基酯,DEC为碳酸二乙酯;充电倍率为0.5C,放电电流为0.5C。
各实施例和对比例提供的电池极片的首次充放电的容量效率、容量保持率和离子导电率结果见表1。
实施例6及对比例1所述粘结剂制备的实施例24和对比例11电极提供的电池中的硅基负极循环前后的SEM图见图1,其中图1(a)为对比例11提供的新电极的SEM图,图1(b)为实施例24提供的新电极的SEM图,图1(c)为对比例11提供的电极循环后的SEM图,图1(d)为实施例24提供的电极循环后的SEM图。
实施例1和6-11、对比例1-3所述粘结剂制备的实施例23-29和对比例11-13负极循环后极片膨胀率见图2。
表1.各实施例及对比例提供的电池的结果
Figure PCTCN2020141412-appb-000003
Figure PCTCN2020141412-appb-000004
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由 此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种锂离子电池用水性粘结剂,其特征在于,包括聚轮烷以及具有DMAPS链段的线型高分子,所述聚轮烷由环糊精与聚乙二醇经超分子自组装后经封端得到。
  2. 根据权利要求1所述的水性粘结剂,其特征在于,所述水性粘结剂中,所述聚乙二醇与环糊精的摩尔比为1:(1-20),所述聚乙二醇与所述DMAPS链段的质量比为1:(1-100)。
  3. 根据权利要求1或2所述的水性粘结剂,其特征在于,所述聚乙二醇的分子量为500-10000;和/或,
    所述环糊精为α-环糊精;和/或,
    所述聚轮烷的端基选自下式(1)或式(2)所示的基团:
    Figure PCTCN2020141412-appb-100001
  4. 根据权利要求1所述的水性粘结剂,其特征在于,所述具有DMAPS链段的线型高分子具有如下式(3)所示的结构:
    Figure PCTCN2020141412-appb-100002
    其中,m,n,x为正整数;
    所述R 1选自-H、-CH 3、-COOLi、-CH 2COOLi中的至少一种;
    所述R 2选自-H或-CH 3中的至少一种;
    所述R 3选自-H、-CH 3、-COOCH 3、-COOCH 2CH 3、-C 6H 6、-COOCH 2CH 2CH 2CH 3、-COOCH 2CH(CH 2CH 3)CH 2CH 2CH 2CH 3中的至少一种。
  5. 根据权利要求4所述的水性粘结剂,其特征在于,以所述具有DMAPS链段的线型高分子的总质量计,
    所述DMAPS占所述线型高分子总质量的1-50wt.%;
    所述聚丙烯酸酯链段占所述线型高分子总质量的1-20wt.%;
    所述(CHR 1-CR 2R 3) x链段占所述线型高分子链段的质量分数为30-98wt.%。
  6. 一种制备如权利要求1-5中任一项所述的水性粘结剂的方法,其特征在于,包括以下步骤:
    在保护气体气氛下,将聚轮烷与具有DMAPS链段的线型高分子混合,得到水性粘结剂乳液;
    将水性粘结剂乳液在100-130℃下烘干6-12h,得到所述水性粘接剂。
  7. 根据权利要求6所述的制备方法,其特征在于,所述聚轮烷按照以下步骤制备得到:
    将聚乙二醇与环糊精在100-500转/分下搅拌进行自组装后,再加入封端单体进行封端,形成聚轮烷。
  8. 根据权利要求7所述的制备方法,其特征在于,所述具有DMAPS链段的线型高分子按照以下步骤制备得到:
    将DMAPS单体加入至去离子水中,经保护气体驱氧后加入引发剂、丙烯酸单体以及(CHR 1-CR 2R 3) x链段的单体,单体滴加时间为1-6小时,然后在60-90℃下,充分反应得到具有DMAPS链段的线型高分子。
  9. 一种锂离子电池极片,其特征在于,包括:
    导电剂、电极材料以及如权利要求1-5中任一项所述的水性粘结剂或按照权利要求6-8中任一项所述的制备方法制备得到的水性粘结剂,所述水性粘接剂用于粘接所述导电剂与电极材料。
  10. 根据权利要求9所述的锂离子电池极片,其特征在于,
    所述电极材料为石墨负极材料,所述水性粘结剂的添加量为锂离子电池极片总质量的1.0-3wt.%;和/或,
    所述电极材料为硅基负极材料,所述水性粘结剂的添加量为锂离子电池极 片总质量的2-20wt.%
    所述电极材料为正极材料,所述水性粘结剂的添加量为锂离子电池极片总质量的1.0-3wt.%。
PCT/CN2020/141412 2020-12-30 2020-12-30 一种锂离子电池用水性粘接剂及其制备方法、锂离子电池极片 WO2022141200A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141412 WO2022141200A1 (zh) 2020-12-30 2020-12-30 一种锂离子电池用水性粘接剂及其制备方法、锂离子电池极片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141412 WO2022141200A1 (zh) 2020-12-30 2020-12-30 一种锂离子电池用水性粘接剂及其制备方法、锂离子电池极片

Publications (1)

Publication Number Publication Date
WO2022141200A1 true WO2022141200A1 (zh) 2022-07-07

Family

ID=82258791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141412 WO2022141200A1 (zh) 2020-12-30 2020-12-30 一种锂离子电池用水性粘接剂及其制备方法、锂离子电池极片

Country Status (1)

Country Link
WO (1) WO2022141200A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117229755A (zh) * 2023-08-30 2023-12-15 中国科学院重庆绿色智能技术研究院 一种具有稀土催化功能的水溶性超分子粘结剂及其制备方法和在锂硫电池中的应用
CN117810455A (zh) * 2024-03-01 2024-04-02 深圳市华明胜科技有限公司 一种粘结性强的石墨负极材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1214062A (zh) * 1996-03-19 1999-04-14 美国3M公司 从两性离子材料制得的导电粘合剂
US6447952B1 (en) * 1999-06-07 2002-09-10 Eltron Research, Inc. Polymer electrolytes
US20190051902A1 (en) * 2017-08-14 2019-02-14 Nanotek Instruments, Inc. Alkali Metal-Sulfur Secondary Battery Containing a Protected Sulfur Cathode Material and Manufacturing Method
US20200112027A1 (en) * 2016-12-28 2020-04-09 Korea Advanced Institute Of Science And Technology Rotaxane polymer binder for lithium secondary battery, electrode comprising same, and secondary battery comprising same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1214062A (zh) * 1996-03-19 1999-04-14 美国3M公司 从两性离子材料制得的导电粘合剂
US6447952B1 (en) * 1999-06-07 2002-09-10 Eltron Research, Inc. Polymer electrolytes
US20200112027A1 (en) * 2016-12-28 2020-04-09 Korea Advanced Institute Of Science And Technology Rotaxane polymer binder for lithium secondary battery, electrode comprising same, and secondary battery comprising same
US20190051902A1 (en) * 2017-08-14 2019-02-14 Nanotek Instruments, Inc. Alkali Metal-Sulfur Secondary Battery Containing a Protected Sulfur Cathode Material and Manufacturing Method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117229755A (zh) * 2023-08-30 2023-12-15 中国科学院重庆绿色智能技术研究院 一种具有稀土催化功能的水溶性超分子粘结剂及其制备方法和在锂硫电池中的应用
CN117810455A (zh) * 2024-03-01 2024-04-02 深圳市华明胜科技有限公司 一种粘结性强的石墨负极材料及其制备方法
CN117810455B (zh) * 2024-03-01 2024-05-24 深圳市华明胜科技有限公司 一种粘结性强的石墨负极材料及其制备方法

Similar Documents

Publication Publication Date Title
US9437872B2 (en) Negative electrode for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
JP6355163B2 (ja) リチウムイオン電池
US11145852B2 (en) Anode active material and anode using same, electrochemical device and electronic device
JP5648828B2 (ja) リチウムイオン二次電池
TW200926479A (en) Electrolytic solution and lithium battery employing the same
US20200403244A1 (en) Binder, composition, electrode material, and method for making electrode material
TW200816542A (en) Secondary battery of improved high-rate discharging properties
KR101774263B1 (ko) 이차전지용 바인더 및 이를 포함하는 이차전지
WO2022141200A1 (zh) 一种锂离子电池用水性粘接剂及其制备方法、锂离子电池极片
EP3922652B1 (en) Composition, slurry for positive electrode, and battery
WO2020162503A1 (ja) 組成物、正極用スラリー及び電池
KR102419750B1 (ko) 리튬 이온 배터리 내 신규한 실리콘/그래핀 애노드를 위한 전도성 중합체 결합제
WO2019006560A1 (en) POLYMERS COMPRISING IMIDAZOLE DERIVATIVES AND THEIR USE IN ELECTROCHEMICAL CELLS
JP2003331838A (ja) リチウム二次電池
KR102512063B1 (ko) 이차 전지용 음극 합제, 이차 전지용 음극 및 이차 전지
CN116396323A (zh) 偶氮苯类电解质、合成方法及应用与固态电池及制备方法
CN113270584B (zh) 一种离子型超分子粘结剂、制备方法和应用
US20210296651A1 (en) Copolymer for binder for non-aqueous battery electrode, and slurry for producing non-aqueous battery electrode
JP7049625B2 (ja) 負極用バインダー組成物、負極用スラリー、負極及びナトリウムイオン電池
CN114142039B (zh) 一种粘结剂及包括该粘结剂的锂离子电池
CN112310478B (zh) 一种电解液及其电化学装置
CN115621465B (zh) 一种改性硅基负极材料、其制备方法以及锂离子电池
CN117363275B (zh) 一种耐高压共聚物粘结剂及其制备方法和锂离子电池
CN114464959B (zh) 锂离子电池
WO2024077507A1 (zh) 粘结组合物、电极浆料、电极极片、二次电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/10/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20967541

Country of ref document: EP

Kind code of ref document: A1