WO2022140999A1 - 基站天线 - Google Patents

基站天线 Download PDF

Info

Publication number
WO2022140999A1
WO2022140999A1 PCT/CN2020/140423 CN2020140423W WO2022140999A1 WO 2022140999 A1 WO2022140999 A1 WO 2022140999A1 CN 2020140423 W CN2020140423 W CN 2020140423W WO 2022140999 A1 WO2022140999 A1 WO 2022140999A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiation
base station
sub
module
Prior art date
Application number
PCT/CN2020/140423
Other languages
English (en)
French (fr)
Inventor
张徇
李文翱
李建平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/140423 priority Critical patent/WO2022140999A1/zh
Priority to CN202080108022.3A priority patent/CN116724465A/zh
Priority to EP20967349.0A priority patent/EP4250485A4/en
Publication of WO2022140999A1 publication Critical patent/WO2022140999A1/zh
Priority to US18/342,696 priority patent/US20230344113A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • the present application relates to the field of antenna technologies, and in particular, to a base station antenna.
  • the base station antenna is a key part of the wireless communication system, and the performance of the base station antenna directly determines the communication quality of the wireless system.
  • the antenna unit is fed in the form of 1toN power division in the vertical dimension, forming a 1toN module.
  • the 1toN module contains N identical antenna units, and the unit radiation phase slopes are the same.
  • the radiation phase of each antenna unit must satisfy a certain relationship, that is, the length of the feeder between the 1toN power division input port and each antenna unit must satisfy a certain relationship (equal length, linear increase or linear decrease) .
  • a certain relationship equal length, linear increase or linear decrease
  • the length of the feeder connected to the antenna unit close to the power division input port may be extended to the distance from the power division input port.
  • the lengths of the feeders connected to the far antenna units are the same, this will cause difficulties in the layout of the feeders and increase the loss of the feeder network.
  • the so-called feeder network is a network formed by the layout of many feeders.
  • the present application provides a base station antenna, which can simplify the routing layout of the feeder in the base station antenna and reduce the loss of the feeder network under the condition of ensuring the normal radiation of the base station antenna.
  • the application provides an antenna base station, the antenna base station includes a feeding mechanism and at least one antenna module, each antenna module includes at least two antenna units, each antenna unit has a first sub-radiation phase slope, and each In the antenna unit: each antenna unit is connected to the feeding mechanism through a one-to-one corresponding feeding line, and each feeding line has a second sub-radiation phase slope.
  • each one-to-one correspondence between the antenna elements and the feed line forms a radiation element, and each radiation element has a radiation phase slope equal to the first sub-radiation phase slope of the antenna element and the one-to-one corresponding feed line. Sum of the second sub-radiation phase slopes of the wire.
  • the antenna base station changes the type or form of the antenna unit in the antenna module, so that there is a difference between the first sub-radiation phase slopes between the antenna units in the antenna module, Thereby, the second sub-radiation phase slopes of feed lines connected to different antenna elements can be different.
  • the lengths of the feed lines connected to the antenna units in each antenna module can be different. Specifically, the feed lines connected to the antenna units close to the feeding mechanism can be set to be shorter, and the antennas farther from the feeding mechanism can be set shorter.
  • the feeder to which the unit is connected can be set to be longer.
  • the antenna base station provided by the present application can simplify and shorten the length of the feeder line in a specific feeder network, and under the condition of ensuring the normal radiation of the antenna base station, the purpose of simplifying the routing layout of the feeder line in the antenna and reducing the loss of the feeder network is achieved. .
  • different types of antenna units can be selected to make the first sub-radiation phase slopes of the antenna units in the antenna module different.
  • the types of the two antenna units may be selected to be different, so that the two antenna units have different first sub-radiation phase slopes.
  • the multiple antenna units in the antenna module can be selected to be of the same type, and the main body of the antenna units is kept the same, but the guide pieces and/or the radiating arms of the antenna units are different, so that at least The first sub-radiation phase slopes are different between the two antenna elements.
  • the phase difference at the center frequency of the antenna units with different first sub-radiation phase slopes can be set to be greater than or equal to 180°.
  • each antenna unit in the antenna module can be set as a ⁇ 45° dual-polarized antenna to increase the coverage area of the base station antenna.
  • the antenna module when the antenna module is specifically set, whether there is a downtilt angle between the antenna units in the antenna module can be set according to requirements. Specifically, when the first preset value is 0, there is no difference in the radiation phase slopes between the radiation units, and there is no downtilt angle between the antenna units; when the first preset value is greater than 0, the radiation phase slopes between the radiation units do not exist. There is a difference in the radiation phase slope, and there is a downtilt angle between the antenna elements. Certainly, when the first preset value is greater than 0, the size of the downtilt angle between the antenna units can be adjusted by changing the size of the first preset value.
  • the power feeding can be carried out through various structures, including at least the following methods:
  • the power feeding mechanism includes a power feeding port, and the antenna units in the antenna module are connected to the power feeding port through feeding lines corresponding to the antenna units one-to-one.
  • the structure of the antenna units in the antenna module can be adjusted so that the first There is a difference between the phase slopes of one sub-radiation, so that the second sub-radiation phase slope can be different between the feeders.
  • the antenna units at different positions from the feed port can be connected by feed lines of different lengths, so that the length of the feed lines in a specific feed network can be simplified and shortened.
  • the antenna unit that is closer to the feed port is connected to the feed port by using a shorter feed line; the antenna unit that is farther away from the feed port is connected to the feed port by using a longer feed line.
  • the purpose of simplifying the routing layout of the feeder in the antenna and reducing the loss of the feeder network can be achieved under the condition of ensuring the normal radiation of the antenna base station.
  • the feeding mechanism includes a feeding port, a phase shifter and a connecting wire, wherein: the antenna unit in the antenna module is connected to the feeding port through a feeding wire corresponding to the antenna unit one-to-one, and the phase shifter is provided with a plurality of an output port, and the feed port connected to each antenna module is connected to an output port through a connection line corresponding to the feed port one-to-one, and the connection line has a third self-radiation phase slope. It is worth noting that the output ports connected to each feed port are different.
  • each pair of one-to-one corresponding antenna modules and connecting lines the sum of the radiation phase slopes of the radiating elements in the antenna module forms the module radiation phase slope, and the sum of the module radiation phase slope and the third sub-radiation phase slope forms the Total Radiation Phase Slope. And the difference between the total radiation phase slope formed by each antenna module and its one-to-one corresponding connection line satisfies the second preset value.
  • connection lines here are also used as routing lines in the feed network, so that the connection lines and the feed lines are expressed in different ways here.
  • the length of the connecting wire, the structure of the antenna unit in the antenna module, and the length of the feeder corresponding to the antenna unit can be adjusted so that the difference between the total radiation phase slope formed by the antenna module and the connecting wire corresponding to it one-to-one can be adjusted.
  • the second preset value is satisfied.
  • the lengths of the feeders can be different, and the lengths of the connecting wires can also be different, so that the length of the feeders in a specific feeder network can be simplified.
  • the antenna module that is closer to the output port uses a shorter connecting wire to connect the feeder ports corresponding to the antenna modules one-to-one; the antenna module that is farther from the output port uses a longer connecting wire to connect to the antenna.
  • the purpose of simplifying the routing layout of the feeder in the antenna and reducing the loss of the feeder network can be achieved under the condition of ensuring the normal radiation of the antenna base station.
  • whether there is a downtilt angle between the antenna modules can be set as required. Specifically, when the second preset value satisfied by the difference between the total radiation phase slopes is set to 0, there is no downtilt angle between the antenna modules; when the second preset value satisfied by the difference between the total radiation phase slopes is set greater than When 0, there is a downtilt angle between the antenna modules. Of course, when the second preset value is greater than 0, the size of the downtilt angle between the antenna modules can be adjusted by changing the size of the second preset value.
  • a dielectric substrate may be provided to carry the antenna module.
  • the dielectric substrate has a first surface and a second surface, the first surface is provided with a feeding port, and the second surface is provided with a signal ground layer; the antenna module is provided on the dielectric substrate, and the antenna unit in the antenna module is connected to the Signal underlying connection.
  • the feed line is a microstrip line formed on the dielectric substrate, and the feed line connects the feed port and the antenna unit to realize signal transmission between the antenna unit and the feed port.
  • the feeding mechanism includes a phase shifter, the antenna unit in the antenna module is connected to an output port of the phase shifter through a feed line corresponding to the antenna unit one-to-one, and each antenna unit is connected to a different output port.
  • the structure of the antenna units in the antenna module can be adjusted so that the first sub-radiation phase slope of the antenna unit There is a difference between the feeders, so that the second sub-radiation phase slopes can be different between the feeders.
  • the antenna units at different positions from the feed port can be connected by feed lines of different lengths, thereby simplifying and shortening the length of the feed lines in a specific feed network.
  • the antenna unit that is closer to the output port is connected to the output port by using a shorter feeder line; the antenna unit that is farther away from the output port is connected to the output port using a longer feeder line.
  • the purpose of simplifying the routing layout of the feeder in the antenna and reducing the loss of the feeder network can be achieved under the condition of ensuring the normal radiation of the antenna base station.
  • a reflector may also be provided. Specifically, the reflector may be provided on the side of the antenna unit away from the radiation direction of the antenna unit. In order to support and fix the antenna module, and reflect electromagnetic waves to ensure the normal radiation of the antenna unit.
  • FIG. 1 is a schematic diagram of a system architecture to which an embodiment of the present application is applicable;
  • Fig. 2 is the internal structure diagram of the base station antenna in the prior art in Fig. 1;
  • Fig. 3 is the structure of the base station antenna in Fig. 1 in the prior art
  • FIG. 4 is a schematic structural diagram of a 1to3 module in the antenna array in FIG. 3;
  • FIG. 5 is a structural diagram of a base station antenna provided in Embodiment 1 of the present application.
  • Fig. 6 is the partial structure schematic diagram of the antenna module in Fig. 5;
  • FIG. 7 is another structural diagram of the base station antenna provided in Embodiment 1 of the present application.
  • FIG. 8 is a schematic structural diagram of an antenna module in a conventional design corresponding to Embodiment 1 of the present application;
  • Fig. 9 is the structural schematic diagram showing the single-side polarization of an antenna module in the structure shown in Fig. 8;
  • FIG. 10 is a schematic diagram of the phase slope of the conventionally arranged antenna module corresponding to the structure in FIG. 9;
  • FIG. 11 is a phase slope diagram corresponding to the antenna module in Embodiment 1 of the present application.
  • FIG. 12 is a structural diagram of a base station antenna provided in Embodiment 2 of the present application.
  • FIG. 13 is a schematic structural diagram of a single-side polarization of an antenna module in the structure shown in FIG. 12;
  • FIG. 14 is a schematic structural diagram of a conventionally arranged antenna module corresponding to the structure in FIG. 13;
  • FIG. 15 is a schematic diagram of the phase slope of the conventionally arranged antenna module corresponding to the structure in FIG. 14;
  • FIG. 17 is a structural diagram of a base station antenna provided in Embodiment 3 of the present application.
  • FIG. 19 is a structural diagram of a base station antenna provided in Embodiment 4 of the present application.
  • the base station antenna provided in the embodiments of the present application may be applicable to various communication systems, such as: a fifth generation (5th Generation, 5G) communication system or a new radio (new radio, NR) system, a 6G communication system, a long term evolution (long term evolution) LTE) system, global system of mobile communication (GSM) system, code division multiple access (CDMA) system, wideband code division multiple access (WCDMA) ) system, general packet radio service (GPRS) system, LTE time division duplex (TDD) system, universal mobile telecommunication system (UMTS), global interconnection microwave connection It can also be a communication system in other unlicensed frequency bands, which is not limited.
  • 5G fifth generation
  • 5G fifth generation
  • 6G communication system a new radio (new radio, NR) system
  • 6G communication system a long term evolution (long term evolution) LTE) system
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • FIG. 1 exemplarily shows a schematic diagram of a system architecture to which the embodiments of the present application are applied.
  • the system architecture may include radio access network devices, such as but not limited to the base station 001 shown in FIG. 1 .
  • the radio access network equipment may be located in a base station subsystem (BSS), a terrestrial radio access network (UMTS terrestrial radio access network, UTRAN) or an evolved terrestrial radio access network (Evolved universal terrestrial radio access, E- UTRAN), it is used for cell coverage of wireless signals to realize the connection between the terminal equipment and the radio frequency end of the wireless network.
  • BSS base station subsystem
  • UMTS terrestrial radio access network UTRAN
  • Evolved universal terrestrial radio access Evolved universal terrestrial radio access
  • the base station 001 may be a base station (base transceiver station, BTS) in a GSM or CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station (evolutional NodeB) in an LTE system , eNB or eNodeB), can also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario, or the base station 001 can also be a relay station, an access point, a vehicle-mounted device, a wearable device, and future A base station in a 5G network or a base station in a future evolved PLMN network, etc., are not limited in the embodiments of the present application.
  • a possible structure of a base station 001 may include a base station antenna 01 , a transceiver 02 and a baseband processing unit 03 .
  • the transceiver 02 can be connected to the antenna port M of the base station antenna 01, so that the base station antenna 01 can receive the transmission signal sent by the transceiver 02 through its antenna port M and radiate it out through the radiator of the base station antenna 01, or the base station antenna 01 can The received signal received by the radiator of the antenna 01 is sent to the transceiver 02 .
  • the transceiver 02 may be a remote radio frequency unit
  • the baseband processing unit 03 may be a baseband unit
  • the base station antenna 01 is usually integrated with the remote radio frequency unit in the same device, which is called an active antenna processing unit (active antenna unit, AAU).
  • the baseband unit can be used to process the baseband signal to be sent and transmit it to the remote radio frequency unit, or receive the received signal sent by the remote radio frequency unit (that is, the received radio frequency signal received by the base station antenna 01 during the signal reception process passes through the remote radio frequency unit.
  • the baseband signal obtained after the conversion processing of the end radio frequency unit) and processing.
  • the remote radio frequency unit can convert the baseband signal to be sent sent by the baseband unit into a transmit radio frequency signal (including performing necessary signal processing on the baseband signal to be sent, such as signal amplification, etc.), and then transmit the radio frequency signal through the base station antenna 01
  • the antenna port M is sent to the base station antenna 01, and the base station antenna 01 radiates the transmitted radio frequency signal.
  • the remote radio frequency unit may also receive the received radio frequency signal sent by the antenna port M of the base station antenna 01, convert it into a received baseband signal, and send it to the baseband unit.
  • FIG. 1 only illustrates the connection relationship between one transceiver 02 and one antenna port M of the base station antenna 01 .
  • the number of antenna ports M in the base station antenna 01 may also be at least two, and the number of transceivers 02 may also be at least two, wherein each antenna port M may be connected to a transceiver
  • a plurality of transceivers 02 can be connected to the same baseband processing unit 03.
  • FIG. 1 also exemplarily shows a possible deployment scenario of the base station antenna 01 provided by the embodiment of the present application.
  • the deployment scenario may include the base station antenna 01, the feeder 04, the pole 05, and the antenna adjustment bracket 06. Joint seal 07 and grounding device 08.
  • the end of the base station antenna 01 close to the antenna port M can be fixedly connected to the pole 05, and the end of the base station antenna 01 away from the antenna port M can be flexibly connected to the pole 05 through the antenna adjustment bracket 06, so that the position of the base station antenna 01 can be adjusted through the antenna bracket. 06 to adjust.
  • the feeder 04 drawn from the antenna port M of the base station antenna 01 is connected to the transceiver 02 , and the feeder 04 can also extend to the grounding pipe to connect to the grounding device 08 .
  • the connection between the antenna port M and the feeder 04 and the connection between the feeder 04 and the grounding pipe can be sealed through the joint seal 07 .
  • FIG. 1 only shows the deployment mode of the base station antenna 01 including one antenna.
  • the base station antenna 01 may also include multiple antennas installed around the pole 05, and the installation positions of the multiple antennas may be the same, It can also be different. When the installation positions are different, multiple antennas can form different beam coverages.
  • FIG. 2 is an internal structure diagram of the base station antenna 01 in FIG. 1 in the prior art.
  • the base station antenna 01 contains at least one independent array composed of one or more radiators 011 and a metal reflector 012, wherein the frequencies of the radiators 011 can be the same or different, and the radiators 011 are usually placed on the metal reflector.
  • the metal reflector 012 is arranged on the side of the radiator 011 away from the radiation direction.
  • At least one individual array receives or transmits radio frequency signals through respective feed networks.
  • the feed network can realize different radiation beam directions through the transmission components and the transmission components in the calibration network 014, or connect with the transmission components and the calibration network in the calibration network 014 to obtain the calibration signal required by the system.
  • the feed network may also include a combiner or a filter 015 and other modules for extending performance, which are connected to the antenna port M.
  • FIG. 3 shows the structure of the base station antenna 01 in FIG. 1 in the prior art.
  • the dielectric substrate 2 ′ shown in FIG. 3 can be placed on the metal reflector shown in FIG. 2 . 012, and a plurality of 1to3 modules N' are formed on the dielectric substrate 2'.
  • the 1to3 module N' includes a plurality of radiators 011 as shown in FIG. 2 .
  • the dielectric substrate 2' is formed by injection molding of high performance plastics.
  • Fig. 4 is a schematic structural diagram of a 1to3 module N' in Fig. 3.
  • a 1to3 module N' specifically includes a plurality of antenna units formed by patches (in Fig. 4, 1a', 1b ', 1c'), feeder 3' and power division main feed input 4'. Since the three antenna units (1a', 1b', 1c') are in the same patch unit form, they have the same first sub-radiation phase slope.
  • the main feed input port 4' is closer to the left antenna unit 1a' and farther from the rightmost antenna unit 1c'. Consistently, the feeder 3' of the leftmost antenna unit 1a' has undergone a certain bending and winding. Since the space allocated by each 1to3 module N' in the base station antenna 01 is limited, such bending and winding will make the layout of the feeder 3' difficult, and the loss of the feeder network will increase.
  • the present application provides a base station antenna, which is used to simplify the wiring layout of the feeder network in the base station antenna and reduce the loss of the feeder network under the condition of ensuring the normal radiation of the base station antenna.
  • references in this specification to "one embodiment” or “some embodiments” and the like mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • FIG. 5 shows a structural diagram of a base station antenna 01 provided in Embodiment 1 of the present application.
  • the base station antenna 01 includes two antenna modules D, a dielectric substrate 2 and a reflector 5 , and the two antenna modules D form an antenna line array.
  • each antenna module D is specifically a 1to3 module, that is, each antenna module D includes three antenna units.
  • the antenna module D may also include other numbers of modules, which will not be repeated here.
  • the above-mentioned dielectric substrate 2 has a first surface and a second surface, the first surface is provided with a feeding port 4 serving as a feeding mechanism, and the second surface is provided with a signal ground layer.
  • the feed port 4 can be used as the main feed port of the 1to3 module. It should be understood that the 1to3 module means that the energy transmitted at the feed port 4 is transmitted to the three antenna units after power distribution.
  • the base station antenna 01 is not limited to include only two antenna modules D, and the two antenna modules D here are only for schematic illustration, and other numbers of antenna modules D can also be provided according to requirements, which will not be repeated here.
  • the structure shown in FIG. 5, specifically, includes an antenna unit 1a, an antenna unit 1b, and an antenna unit 1c, wherein the three antenna units are fixed on the first surface of the dielectric substrate 2, and the antenna unit 1a is connected to the antenna unit 1a through the feeder 3a.
  • the feeding port 4 is connected, the antenna unit 1b is connected to the feeding port 4 through the feeding line 3b, the antenna unit 1c is connected to the feeding port 4 through the feeding line 3c, and the feeding line 3a, the feeding line 3b and the feeding line 3c are formed in the medium.
  • the microstrip line of the substrate 2 , the antenna unit 1 a , the antenna unit 1 b and the antenna unit 1 c are all connected to the signal bottom layer of the dielectric substrate 2 .
  • the reflector 5 is arranged on the side of the antenna module D away from the radiation direction of the antenna unit 1a, the antenna unit 1b and the antenna unit 1c, so as to support and fix the antenna module D, and reflect electromagnetic waves to ensure that the antenna unit 1a, the antenna unit 1b and the Normal radiation of antenna element 1c.
  • FIG. 6 is a schematic diagram of a partial structure of the antenna module D in FIG. 5 .
  • the electromagnetic signal is input from the feeding port 4.
  • the electromagnetic signal is fed to the antenna unit 1a, the antenna unit 1a, the antenna unit 3c, and the feeding line 3a, 3b and 3c according to a certain amplitude and phase, respectively.
  • 1b and the antenna unit 1c are fed to form electromagnetic radiation of the 1to3 module.
  • the feed port 4 , the feed line 3 a , the feed line 3 b and the feed line 3 c form a feed network for one antenna module D monopole.
  • the antenna units are ⁇ 45° dual-polarized radiation.
  • each polarization of the antenna unit 1a needs to be connected to a separate feeding network. Therefore, symmetrical feeding networks may be respectively provided on the dielectric substrates 2 on both sides of the antenna unit 1a, as shown in FIG. 7 .
  • the product of the frequency and the wavelength of the electromagnetic wave is a fixed value (the speed of light), that is, the electromagnetic wave with a high frequency corresponds to a shorter wavelength, and the electromagnetic wave with a low frequency corresponds to a longer wavelength.
  • the electromagnetic wave with a high frequency corresponds to a shorter wavelength
  • the electromagnetic wave with a low frequency corresponds to a longer wavelength.
  • the phase of the electromagnetic wave changes periodically in the range of 0 to 360 degrees.
  • the number of wavelengths traveled by electromagnetic waves with high frequency is greater than the number of wavelengths traveled by electromagnetic waves with low frequency, so the phase change of electromagnetic waves with high frequency is larger, that is, the phase change is more quick.
  • the corresponding relationship between the phase change and the frequency can be drawn with a slanted line, that is, the phase slope can be obtained.
  • the antenna unit 1a is used as an example to illustrate: when the root of the antenna unit 1a is fed, the electromagnetic wave propagates on the structure of the antenna unit 1a itself, and then radiates to free space, and observes at a certain point in space From the relationship between the frequency and the phase of the electromagnetic wave, the phase slope of the first sub-radiation of the antenna unit 1a can be obtained.
  • the first sub-radiation phase slopes of the antenna units 1a are the same; when different antenna units 1a and antennas are selected in the antenna module D
  • the unit 1b is used, the first sub-radiation phase slopes of the antenna unit 1a and the antenna unit 1b are different.
  • the antenna unit 1a and the antenna unit 1c are completely the same antenna unit, but the antenna unit 1b is completely different from the antenna unit 1a and the antenna unit 1c.
  • the antenna module D it may be set that the phase difference between the antenna unit 1a (or the antenna unit 1c) and the antenna unit 1b at the center frequency is greater than or equal to 180°.
  • the antenna unit 1a and the antenna unit 1c shown in FIG. 6 have the same first sub-radiation phase slope, while the first sub-radiation phase slope of the antenna unit 1b is the same as that of the antenna unit 1a and the antenna unit 1c.
  • the first sub-radiation phase slopes are different.
  • the antenna unit 1a and the feeder 3a form a radiation unit, and the radiation unit has a first radiation phase slope, and the first radiation phase slope is equal to the first sub-radiation phase slope of the antenna unit 1a and the sum of the second sub-radiation phase slopes of the feeder 3a; similarly, the antenna element 1b and the feeder 3b form a radiation element, the radiation element has a second radiation phase slope, and the second radiation phase slope is equal to the antenna element 1b
  • the antenna unit 1c and the feeder 3c form a radiation unit, the radiation unit has a third radiation phase slope, and the third radiation phase slope is equal to the sum of the first sub-radiation phase slope of the antenna element 1c and the second sub-radiation phase slope of the feeder 3c.
  • the phase slope of the electromagnetic wave radiated by each radiating element must satisfy a certain relationship.
  • the first embodiment of the present application it is exemplified that there is no difference between the radiation phase slopes of each radiating element in the antenna module D, that is, the above-mentioned first radiation phase slope, second radiation phase slope, and third radiation phase slope.
  • the difference is 0 (ie, the first preset value is 0).
  • the first sub-radiation phase slope of the antenna unit 1b is different from the first sub-radiation phase slope of the antenna unit 1a and the antenna unit 1, so the second sub-radiation phase slope of the feeder 3b can be different from that of the feeder 3a and the feeder 3c.
  • the corresponding second sub-radiation phase slopes are different. Since the length of the feeder affects the second sub-radiation phase slope of the feeder, the length of the feeder 3b can be shortened relative to the lengths of the feeders 3a and 3c as shown in FIG. 6 .
  • the antenna unit 1b is selected to be of a different type from the antenna unit 1a and the antenna unit 1c, and the first sub-radiation phase slope of the antenna unit is adjusted so that the feeder 3a, the feeder 3b and the feeder
  • the second sub-radiation phase slopes corresponding to the wires 3c respectively may be different.
  • the first sub-radiation phase slope of the antenna unit 1b and the second sub-radiation phase slope of the feeder 3b can achieve a complementary effect, that is, after the antenna unit 1b is matched with the feeder 3b, the The second radiation phase slope is consistent with the first radiation phase slope and the third radiation phase slope, so as to ensure that the antenna module D performs normal electromagnetic radiation.
  • FIG. 8 shows a schematic structural diagram of an antenna module in a conventional design corresponding to each setting condition of the first embodiment of the present application.
  • Figure 9 is a schematic structural diagram of an antenna module D' in the structure shown in Figure 8 when one side is polarized. Please refer to FIG. 9 in conjunction with FIG. 8, the antenna module D' includes an antenna unit 1a', an antenna unit 1b' and an antenna unit 1c', wherein the antenna unit 1a', the antenna unit 1b' and the antenna unit 1c' have the same structure.
  • the first sub-radiation phase slopes of the antenna element 1a', the antenna element 1b' and the antenna element 1c' are the same.
  • the first preset value is 0, so the feeder 3a', the feeder 3b' and the feeder 3c' are connected to the antenna unit 1a', the antenna unit 1b' and the antenna unit 1c' It should also have the same second sub-radiation phase slope, ie the lengths of the feeder 3a', the feeder 3b' and the feeder 3c' need to be kept equal.
  • the feeder 3b' connected to the antenna unit 1b' needs to undergo a relatively complex winding to satisfy the constraint that the second sub-radiation phase slopes of the feeders are consistent. condition.
  • the winding operation of the feeder 3b' will make the layout of the feeder network more difficult, increase the design complexity of the antenna module, and due to the lengthened winding of the feeder 3b', the feeder 3b 'The loss will increase, and eventually the loss of the radiating element will increase and the radiation efficiency will decrease.
  • FIG. 10 is a schematic diagram of the phase slope corresponding to the conventionally arranged antenna module D' in FIG. 9 .
  • the phase slope x' is the first sub-radiation phase slope of the antenna unit 1a', the antenna unit 1b' and the antenna unit 1c' (they coincide)
  • the slope y' is the feeder 3a', the feeder 3b' and the second sub-radiation phase slope of the feeder 3c' (the lengths of the three striplines are equal, and the oblique lines overlap)
  • the slash z' is the radiation phase slope of the radiation unit finally formed after the three feeder striplines are matched with the three antenna units,
  • the three are also completely coincident, which means that the antenna module D' can radiate normally without down-tilt angle.
  • FIG. 11 is a phase slope diagram of the antenna module corresponding to Embodiment 1 of the present application, that is, the phase slope diagram of the structure shown in FIG. 6 .
  • the oblique line x1 is the first sub-radiation phase slope corresponding to the antenna unit 1a and the antenna unit 1c (because the two are the same, the first sub-radiation phase slope lines of the two overlap), and the oblique line y1 is the feeder 3a and the feeder The second sub-radiation phase slope of 3c (because the two have the same length, the second sub-radiation phase slope lines of the two coincide).
  • the two oblique lines of the oblique line x1 and the oblique line y1 are respectively consistent with the oblique line x' and the oblique line y' shown in FIG. 10 .
  • the oblique line x2 is the first sub-radiation phase slope corresponding to the antenna unit 1b
  • the oblique line y2 is the second sub-radiation phase slope corresponding to the feeder 3b. It can be seen from Figure 11 that the oblique line x2 is below the oblique line x1, which means that the radiation phase of the antenna unit 1b is much delayed compared with the antenna unit 1a and the antenna unit 1c. In order to make up for the phase lag, the feeder 3b needs to be shortened. , so that the phase of the feeder 3b is ahead of the feeder 3a and the feeder 3c, that is, the oblique line y2 is above the oblique line y1.
  • the second radiation phase slope of the radiation unit formed by the antenna unit 1b with the feeder 3b is consistent with the first radiation phase slope and the third radiation phase slope, that is, the three coincide as a slope z, so as to ensure Antenna module D radiates normally.
  • the feeder 3b in the first embodiment of the present application is simplified and shortened. Based on this, the layout design of the 1to3 module in the entire base station antenna 01 can be greatly simplified, and the loss of the feeder network will be reduced. At the same time, the good radiation characteristics of the antenna module D will not be affected.
  • FIG. 12 is a structural diagram of a base station antenna 01 according to Embodiment 2 of the present application.
  • two groups of identical antenna modules D form an array unit E1 along the direction P.
  • each antenna module D is a 1to2 module.
  • the same array element E1, array element E2, array element E3 and array element E4 form an antenna array.
  • the second embodiment is an antenna array, which can be used in a MIMO (multiple-input multiple-output, multiple-input multiple-output) antenna system.
  • MIMO multiple-input multiple-output, multiple-input multiple-output
  • each antenna module D includes an antenna unit 1a and an antenna unit 1b, and the antenna unit 1a is connected with a feeder 3a, and the antenna unit 1b The feeder 3b is connected.
  • the dielectric substrate 2 is not provided, and the reflector 5 is provided on the antenna module D away from the antenna unit 1a and the antenna unit 1b. side of the radiation direction.
  • the dielectric substrate 2 may also be provided in the second embodiment, and here it is only shown that the dielectric substrate 2 is not provided, which will not be repeated here.
  • the second embodiment since the second embodiment is shown without the dielectric substrate 2, there needs to be a gap between the antenna unit 1a and the reflector 5, and the value of the gap can be 1 mm for example.
  • the gap value can be changed according to design requirements, and details are not repeated here.
  • a gap is also required between the antenna unit 1b and the reflector 5, and the value of the gap can be exemplarily 1 mm. The gap value can be changed according to design requirements, and details are not described here.
  • FIG. 13 is an enlarged schematic view of the structure in FIG. 12 . Specifically, only the feeding network of the monopole of the antenna module D is shown in FIG. 13 . As shown in FIG. 13 , the antenna unit 1a and the antenna unit 1b are the same type of antenna units, exemplarily in the form of crossed dipoles, but the specific structures of the two are different.
  • the main body portion 11a of the antenna unit 1a is the same as the main body portion 11b of the antenna unit 1b, but the shape, size and height of the radiation arm 12a of the antenna unit 1a and the radiation arm 12b of the antenna unit 1b are different, and the antenna unit 1a
  • the structure and shape of the guide piece 13a of the antenna unit 1b are also different from that of the guide piece 13b of the antenna unit 1b. Due to the difference between the antenna unit 1a and the antenna unit 1b, the first sub-radiation phase slope of the antenna unit 1a is different from the first sub-radiation phase slope of the antenna unit 1b.
  • the antenna unit 1a and the feeder 3a form a radiation unit, and the radiation unit has a first radiation phase slope; the antenna unit 1b and the feeder 3b form a radiation unit, and the radiation unit has a second radiation phase slope.
  • the difference between the first radiation phase slope and the second radiation phase slope is set not to be 0, that is, the first preset value is greater than 0.
  • the phase of the antenna unit 1a and the antenna unit 1b in the second embodiment of the present application is preset to a fixed tilt angle.
  • the length of the feeder affects the second sub-radiation phase slope of the feeder, the length of the feeder 3a can be shortened relative to the feeder 3b as shown in FIG. 13 .
  • FIG. 14 shows a conventional design method corresponding to the second embodiment.
  • the main body 11a', radiating arm 12a' and guide piece 13a' of the antenna unit 1a' are identical to the main body 11b', radiating arm 12b' and guide piece 13b' of the antenna unit 1b'. which have a consistent first radiation phase slope. Since the positions of the antenna unit 1a' and the antenna unit 1b' are different from the main feed port, the length of the feeder 3b' is longer. In order to meet the phase requirement of the fixed inclination angle, the feeder 3a' needs to be wound to a certain extent to ensure the relative relationship with the feeder 3b', which will cause difficulties in the layout of the feeder network and increase the loss.
  • the feeder 3a in the second embodiment of the present application is simplified and shortened. Based on this, the layout design of the entire 1to2 module can be greatly simplified, and the loss of the feeder network can be reduced. The good radiation characteristics of the antenna module D will not be affected.
  • Fig. 15 is a schematic diagram corresponding to the phase slope of the antenna module D' conventionally arranged in the prior art in Fig. 14 .
  • the oblique line x' is the first sub-radiation phase slope of the antenna unit 1a' and the antenna unit 1b' (because the two are the same, the first sub-radiation phase slope lines of the two coincide);
  • the oblique line y1' is the feed line 3a'
  • the second sub-radiation phase slope of , the oblique line z2' is the second radiation phase slope of the radiation unit finally formed by the antenna unit 1b' and the feeder 3b'.
  • the phases of the antenna unit 1a and the antenna unit 1b in Embodiment 2 of the present application are preset to a fixed inclination angle, so the oblique line z1' and the oblique line z2' do not overlap.
  • phase difference value between the oblique line z1' and the oblique line z2' is consistent with the phase difference value between the oblique line y1' and the oblique line y2', and the entire phase difference value makes the final radiation
  • the beam has a certain inclination angle.
  • FIG. 16 is a phase slope diagram of the antenna module corresponding to the second embodiment of the present application.
  • the oblique line x1' in Fig. 16 is the first sub-radiation phase slope of the antenna unit 1a' in the prior art
  • the oblique line y1' is the second sub-radiation phase slope corresponding to the feeder 3a'. It is worth noting that the oblique line x1' is consistent with the oblique line x' in Fig. 15
  • the oblique line y1' is consistent with the oblique line y1' in Fig. 15 .
  • the oblique line y1 is the second sub-radiation phase slope corresponding to the feeder 3a in the second embodiment of the application . It can be seen that the radiation phase of the antenna unit 1a is significantly delayed relative to the antenna unit 1a'.
  • the feeder 3a should be ahead of the feeder 3a' in phase, that is, the feeder 3a should be shortened to ensure that the antenna
  • the radiation phase slope of the radiating element formed by the unit 1a with the feeder 3a is consistent with the radiation phase slope of the radiating element formed by the antenna unit 1a' with the feeder 3a', that is, the effect of the slash z1', so that the antenna module D can finally follow the Preset fixed inclination angle for radiation.
  • the feeder 3a in the second embodiment of the present application is simplified and shortened. Based on this, the wiring layout design of the entire 1to2 module can be greatly simplified, and the loss of the feeder network can be reduced. The good radiation characteristics of the antenna module D will not be affected.
  • the radiating arm 12a of the antenna unit 1a in the antenna module D in FIG. 13 can be set to be different from the radiating arm 12b of the antenna unit 1b; 13b is different.
  • this structure only changes the guide piece or the radiation arm, so it is not repeated here.
  • FIG. 17 is a structural diagram of the base station antenna 01 in FIG. 1 according to Embodiment 3 of the present application.
  • the difference between the third embodiment of the present application and the first embodiment is that only one antenna module D is included.
  • the antenna module D includes an antenna unit 1a, an antenna unit 1b and an antenna unit 1c.
  • the antenna module D is not limited to only include the above three antenna units, and is only illustratively described here.
  • the phase shifter 6a and the phase shifter 6b are used as feeding mechanisms to feed the two poles of the above-mentioned three antenna units.
  • only a schematic diagram illustrates the feeding structure of the phase shifter 6b.
  • the antenna unit 1 a , the antenna unit 1 b and the antenna unit 1 c are located on the front of the reflector 5
  • the phase shifter 6 a and the phase shifter 6 b are located on the back of the reflector 5 .
  • the "front side” here refers to the side of the reflector 5 facing the radiation direction of the antenna module D
  • the "reverse side” refers to the side of the reflector 5 away from the radiation direction of the antenna module D.
  • the antenna unit 1b and the antenna unit 1c are of the same type, but the shape and size of the radiating arm and guide plate can be different, while the antenna unit 1a, the antenna unit 1b and the antenna unit 1c are of different types, and the final performance is three
  • the antenna elements have different first sub-radiation phase slopes.
  • the phase shifter 6b has an output port 61b, an output port 62b and an output port 63b, wherein the output port 61b is connected to the antenna unit 1a through the feeder 3a, the output port 62b is electrically connected to the antenna unit 1b through the feeder 3b, and the output port 63b is connected to the antenna unit 1a.
  • the antenna unit 1c is connected by a feeder 3c.
  • the output port 61b, the output port 62b and the output port 63b are the same polarization of the three antenna units for feeding, and the feeding line 3a, the feeding line 3b and the feeding line 3c are coaxial feeding lines.
  • the antenna unit 1a and the feeder 3a form a radiation unit
  • the antenna unit 1b and the feeder 3b form a radiation unit
  • the antenna unit 1c and the feeder 3c form a radiation unit.
  • the feeding mechanism is the phase shifter 6b
  • the output phase of the phase shifter 6b can be changed as required, which means that the radiating elements in the antenna module D can be radiated in the manner described in the first embodiment of the present application to achieve equal phase No tilt angle radiation (ie, the first preset value is 0), or, as the radiation method described in Embodiment 2 of the present application, specific tilt angle radiation with unequal phases (ie, the first preset value is greater than 0) can be implemented.
  • the down-tilt angle (ie, the first preset value) is set in the range of 0-12 degrees.
  • the three radiation elements in the antenna module D need to have the same radiation phase slope.
  • the antenna unit 1a, the antenna unit 1b and the antenna unit 1c have different first sub-radiation phase slopes.
  • the feeder 3a, the feeder 3b and feeder 3c may have different second sub-radiation phase slopes.
  • the lengths of the corresponding feeder 3a, feeder 3b and feeder 3c can be optimized according to the relative positions of the antenna unit 1a, the antenna unit 1b and the antenna unit 1c from the phase shifter 6b. Under the condition of ensuring normal radiation, the purpose of simplifying the wiring layout of the feeder network and reducing the loss of the antenna module D.
  • FIG. 18 is a phase slope diagram corresponding to the structure in FIG. 17 .
  • the oblique lines x1, x2, and x3 are the first sub-radiation phase slopes corresponding to the antenna unit 1a, the antenna unit 1b, and the antenna unit 1c, respectively, and the oblique lines y1, y2, and y3 are the feeder lines 3a, 3b, and 3c, respectively.
  • the second sub-radiation phase slope.
  • the downtilt angle of the antenna module D starts from 0 degrees. Therefore, it is necessary to fill up the third antenna unit 1a, the antenna unit 1b, and the antenna unit 1c at 0 degrees, that is, when the antenna module D has no downtilt.
  • the linear relationship between the oblique lines x1, x2 and x3 is opposite to that of the oblique lines y1, y2 and y3, and the phase oblique line z can also be obtained by combining them in pairs, that is, three first sub-radiations with different first sub-radiations can be obtained.
  • the antenna unit with phase slope is matched with three feed lines with different second sub-radiation phase slopes, so that the radiation units inside the antenna module D have the same radiation phase slope when tilted down by 0 degrees. After the phase relationship is complemented by 0 degrees, when the phase shifter 6b is tilted downward, the antenna module D can perform normal downward radiation.
  • FIG. 19 is a structural diagram of the base station antenna 01 in FIG. 1 according to Embodiment 4 of the present application. As shown in FIG. 19 , compared with the structure shown in Embodiment 4 of the present application and the structure shown in Embodiment 3 of the present application in FIG.
  • Embodiment 4 of the present application there is an antenna mode Group D1, antenna module D2, antenna module D3 these three antenna modules, wherein, the antenna module D1 includes an antenna unit 11a and an antenna unit 11b, the antenna unit 11a is connected to the feed port 41 through the feeder 31a, and the antenna unit 11b
  • the power feeding port 41 is connected to the power feeding port 41 through the feeding wire 31b, and at the same time, the feeding port 41 is connected to the output port 61b of the phase shifter 6b by the connecting wire 71b
  • the antenna module D2 includes the antenna unit 12a and the antenna unit 12b, and the antenna unit 12a is connected by the feeding wire 32a is connected to the feeding port 42, the antenna unit 12b is connected to the feeding port 42 through the feeding line 32b, and at the same time, the feeding port 42 is connected to the output port 62b of the phase shifter 6b through the connecting wire 72b
  • the antenna module D3 includes the antenna unit 13a and The antenna unit 13b, the antenna unit 13a
  • the antenna element 11a and the feed line 31a form a radiation element with a first radiation phase slope; the antenna element 11b and the feed line 31b form a radiation element with a second radiation phase slope.
  • the antenna module D1 has a first module radiation phase slope, and the first module radiation phase slope is equal to the sum of the first radiation phase slope and the second radiation phase slope.
  • the antenna module D2 has the radiation phase slope of the second module, and the antenna module D3 has the phase slope of the third module.
  • the sum of the module radiation phase slope of the antenna module and the third sub-radiation phase slope of the connecting line forms the total radiation phase slope.
  • the phase slope of the first module of the antenna module D1 and the third sub-radiation phase slope of the connecting line 71b form a first total radiation phase slope
  • the phase slope of the second module of the antenna module D2 is the same as the phase slope of the connecting line 72b.
  • the third sub-radiation phase slope forms the second total radiation phase slope
  • the third module phase slope of the antenna module D3 and the third sub-radiation phase slope of the connecting line 73b form the third total radiation phase slope.
  • the second total radiation phase slope and the third total radiation phase slope satisfies the second preset value of 0, there is no downtilt angle between the antenna modules; when the second preset value When greater than 0, there is a downtilt angle between the antenna modules.
  • the module radiation phase slope of the antenna module can be adjusted to make the third radiation phase slope of the connecting line different, so as to adjust the relationship between the feed port and the phase shifter.
  • the length of the connecting wire between the output ports can be optimized according to the relative position of the phase shifter 6b, so as to finally ensure the normal radiation of the antenna, and simplify the wiring of the feeding network layout to reduce antenna loss.
  • the first sub-radiation phase slope can be changed by adjusting the structures of the antenna unit 11a and the antenna unit 11b, or by adjusting the feeder 31a and the length of the feed line 31b to change the second sub-radiation phase slope, so that the first radiation phase slope and the second radiation phase slope change, thereby changing the module radiation phase slope of the antenna module D1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种基站天线,该基站天线包括馈电机构和至少一个天线模组,每个天线模组包括至少两个天线单元,每个天线单元具有第一子辐射相位斜率;每个天线模组中:至少两个天线单元的第一子辐射相位斜率不同,且每个天线单元通过与其一一对应的馈电线连接馈电机构,馈电线具有第二子辐射相位斜率;每对一一对应的天线单元与馈电线形成一个辐射单元,每一个辐射单元的辐射相位斜率为第一子辐射相位斜率与第二子辐射相位斜率之和;每个天线模组中辐射单元的辐射相位斜率间的差值满足第一预设值。本申请提供的天线基站可以精简缩短特定的馈电网络线长,在保证天线基站正常辐射的情况下,达到简化天线内馈电网络的走线布局并降低馈电网络损耗的目的。

Description

基站天线 技术领域
本申请涉及天线技术领域,具体涉及一种基站天线。
背景技术
基站天线是无线通信系统中的关键部分,基站天线性能优劣直接决定无线系统的通信质量。在许多基站天线中,尤其是大规模多输入多输出基站天线中,天线单元在垂直维度以1toN功分的形式进行馈电,形成1toN模组。该1toN模组内包含N个相同的天线单元,其单元辐射相位斜率一致。
为保证基站天线的正常辐射,各天线单元的辐射相位要满足一定的关系,即1toN功分输入口到各个天线单元之间的馈线长度必须满足一定的关系(等长、线性递增或者线性递减)。而实际布局时,由于各个天线单元距离功分输入口的位置不一致,为满足各馈线长度的关系,会出现距离功分输入口近的天线单元连接的馈线长度要延长至与距离功分输入口远的天线单元连接的馈线长度一致的情况,这会造成馈线布局困难,且馈电网络损耗增大,所谓馈电网络是诸多馈线走向布局构成的网络。
因此,如何在保证基站天线正常辐射的情况下,简化基站天线内馈线的走线布局并降低馈电网络损耗是亟待解决的问题。
发明内容
本申请提供一种基站天线,可以在保证基站天线正常辐射的情况下,简化基站天线内馈线的走线布局并降低馈电网络的损耗。
本申请提供了一种天线基站,该天线基站包括馈电机构和至少一个天线模组,每个天线模组包括至少两个天线单元,每个天线单元具有第一子辐射相位斜率,且每个天线单元中:每个天线单元通过与其一一对应的馈电线连接馈电机构,每根馈电线具有第二子辐射相位斜率。具体来说,每对一一对应的天线单元与馈电线形成一个辐射单元,每个辐射单元具有辐射相位斜率,该辐射相位斜率等于天线单元的第一子辐射相位斜率与与其一一对应的馈电线的第二子辐射相位斜率之和。应理解,可以通过调整天线模组内不同天线单元的第一子辐射相位斜率,以及,调节与每个天线单元连接的馈电线的第二子辐射相位斜率,使得每个天线模组中的辐射单元间辐射相位斜率间的差值满足第一预设值。
本申请提供的天线基站在满足第一预设值的前提下,通过改变天线模组内天线单元的种类或形式,使得天线模组内天线单元间的第一子辐射相位斜率间存在差值,从而使得与不同天线单元连接的馈电线的第二子辐射相位斜率可以不同。基于此,每个天线模组内的天线单元连接的馈电线的长度可以不同,具体来说,距离馈电机构近的天线单元连接的馈电线可以设置的较短,距离馈电机构远的天线单元连接的馈电线可以设置的较长。明显的,本申请提供的天线基站可以精简缩短特定的馈电网络中的馈线线长,在保证天线基站正常辐射的情况下,达到简化天线内馈线的走线布局并降低馈电网络损耗的目的。
在设置天线模组内的天线单元时,一个具体的可实施方式中,可以通过选取不同类型的天线单元使得天线模组内的天线单元的第一子辐射相位斜率不同。示例性的,当天线模 组仅包含两个天线单元时,可以选取两个天线单元的种类不同,以使得两个天线单元具有不同的第一子辐射相位斜率。另一个具体的可实施方式中,可以将天线模组内的多个天线单元选取为同一类型,保持天线单元的主体部相同,但设置天线单元的引向片和/或辐射臂不同,使得至少两个天线单元间的第一子辐射相位斜率不同。在具体设置每个天线模组中具有不同第一子辐射相位斜率的天线单元时:可以设置第一子辐射相位斜率不同的天线单元在中心频点的相位差值大于等于180°。此外,可以设置天线模组内每个天线单元为±45°双极化天线,以增大基站天线的覆盖面积。
值得注意的是,在具体设置天线模组时,可以根据需求设置天线模组内的天线单元间是否有下倾角。具体来说,当第一预设值为0时,各辐射单元间的辐射相位斜率不存在差值,天线单元间不存在下倾角;当第一预设值大于0时,各辐射单元间的辐射相位斜率存在差值,天线单元间存在下倾角。当然,当第一预设值大于0时,可以通过改变第一预设值的大小,调节天线单元间下倾角的大小。
在设置馈电机构时,可以具体通过多种结构进行馈电,至少包括以下方式:
方式一,馈电机构包括馈电口,天线模组中的天线单元通过与该天线单元一一对应的馈电线连接馈电口。
具体来说,在天线单元与其一一对应的馈电线形成的辐射单元的辐射相位斜率间差值满足第一预设值的前提下,可以调节天线模组内天线单元结构,使得天线单元的第一子辐射相位斜率间存在差异,从而使得馈电线间的第二子辐射相位斜率可以不同。基于此,使得距馈电口不同位置的天线单元可以采用不同长度的馈电线连接,从而可以精简缩短特定的馈电网络中的馈线线长。示例性的,距离馈电口较近的天线单元采用较短的馈电线连接馈电口;距离馈电口较远的天线单元采用较长的馈电线连接馈电口。
采用方式一中的结构,可以在保证天线基站正常辐射的情况下,达到简化天线内馈线的走线布局并降低馈电网络损耗的目的。
方式二,馈电机构包括馈电口、移相器和连接线,其中:天线模组中的天线单元通过与该天线单元一一对应的馈电线连接馈电口,移相器设有多个输出口,且每个天线模组连接的馈电口通过与该馈电口一一对应的连接线连接一个输出口,连接线具有第三自辐射相位斜率。值得注意的是,各馈电口所连接的输出口不同。每对一一对应的天线模组与连接线中:天线模组内各辐射单元的辐射相位斜率之和形成模组辐射相位斜率,而模组辐射相位斜率与第三子辐射相位斜率之和形成总辐射相位斜率。且各天线模组与与其一一对应的连接线形成的总辐射相位斜率之差满足第二预设值。应理解,这里的连接线也作为馈电网络中的走线,以便区分连接线和馈电线此处表述方式不同而已。
具体来说,可以调节连接线长度、天线模组内天线单元的结构以及与天线单元一一对应的馈电线长度,使得天线模组与与其一一对应的连接线形成的总辐射相位斜率之差满足第二预设值。基于此,馈电线间的长度可以不同,连接线的长度也可以不同,从而可以精简缩短特定的馈电网络中的馈线线长。示例性的,距离输出口较近的天线模组采用较短的连接线连接与天线模组一一对应的馈电口;距离输出口较远的天线模组采用较长的连接线连接与天线模组一一对应的馈电口。
采用方式二中的结构,可以在保证天线基站正常辐射的情况下,达到简化天线内馈线的走线布局并降低馈电网络损耗的目的。
在具体设置时,可以根据需求设置天线模组间是否有存在下倾角。具体来说,当设置 总辐射相位斜率间差值满足的第二预设值为0时,天线模组间不存在下倾角;当设置总辐射相位斜率间差值满足的第二预设值大于0时,天线模组间存在下倾角。当然,当第二预设值大于0时,可以通过改变第二预设值的大小,调节天线模组间下倾角大小。
对于上述实施方式一和实施方式二中的结构来说,可以设置介质基板承载天线模组。示例性的,该介质基板具有第一表面和第二表面,第一表面设有馈电口,第二表面设有信号地层;天线模组设于介质基板,且天线模组中的天线单元与信号底层连接。值得注意的是,馈电线为形成在介质基板上的微带线,该馈电线连接馈电口和天线单元,以实现天线单元与馈电口间的信号传输。
方式三,馈电机构包括移相器,天线模组中的天线单元通过与该天线单元一一对应的馈电线连接移相器的一个输出口,且每个天线单元连接的输出口不同。
具体来说,在天线模组内各辐射单元的辐射相位斜率间差值满足第一预设值的前提下,可以调节天线模组内天线单元的结构,使得天线单元的第一子辐射相位斜率间存在差异,从而使得馈电线间的第二子辐射相位斜率可以不同。基于此,距馈电口不同位置的天线单元可以采用不同长度的馈电线连接,从而可以精简缩短特定的馈电网络中的馈线线长。示例性的,距离输出口较近的天线单元采用较短的馈电线连接输出口;距离输出口较远的天线单元采用较长的馈电线连接输出口。
采用方式三中的结构,可以在保证天线基站正常辐射的情况下,达到简化天线内馈线的走线布局并降低馈电网络损耗的目的。
在上述实施方式一、实施方式二和实施方式三的基础上,还可以设置反射板,具体来说,将反射板设置在天线单元背离天线单元辐射方向的一侧。以对天线模组进行支撑固定,并反射电磁波,保证天线单元的正常辐射。
附图说明
图1为本申请实施例适用的一种系统架构示意图;
图2为图1中基站天线在现有技术中的内部架构图;
图3为图1中基站天线在现有技术中的结构;
图4为图3中天线阵列内的一个1to3模组的结构示意图;
图5为本申请实施例一提供的基站天线的结构图;
图6为图5中天线模组的局部结构示意图;
图7为本申请实施例一提供的基站天线的又一结构图;
图8为对应本申请实施例一的常规设计中的天线模组的结构示意图;
图9为图8中示出结构内一个天线模组单侧极化的结构示意图;
图10为对应图9中结构的常规设置的天线模组的相位斜率示意图;
图11为对应本申请实施例一中天线模组的相位斜率图;
图12为本申请实施例二提供的基站天线的结构图;
图13为图12示出结构内一个天线模组单侧极化的结构示意图;
图14为对应图13中结构的常规设置的天线模组的结构示意图;
图15为对应图14中结构的常规设置的天线模组的相位斜率示意图;
图16为对应本申请实施例一中天线模组的相位斜率图;
图17为本申请实施例三提供的基站天线的结构图;
图18为对应本申请实施例三中天线模组的相位斜率图;
图19为本申请实施例四提供的基站天线的结构图。
具体实施方式
本申请实施例提供的基站天线可以适用于各种通信系统,例如:第五代(5th Generation,5G)通信系统或新无线(new radio,NR)系统、6G通信系统、长期演进(long term evolution,简称LTE)系统、全球移动通讯(global system of mobile communication,简称GSM)系统、码分多址(code division multiple access,简称CDMA)系统、宽带码分多址(wideband code division multiple access,简称WCDMA)系统、通用分组无线业务(general packet radio service,简称GPRS)系统、LTE时分双工(time division duplex,简称TDD)系统、通用移动通信系统(universal mobile telecommunication system,简称UMTS)、全球互联微波接入(worldwide interoperability for microwave access,简称WiMAX)通信系统等,当然也可以为其它非授权频段的通信系统,不作限定。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行具体描述。应理解,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
图1示例性示出本申请实施例适用的一种系统架构示意图,如图1所示,该系统架构中可以包括无线接入网设备,如包括但不限于图1所示的基站001。该无线接入网设备可以位于基站子系统(base station subsystem,BSS)、陆地无线接入网(UMTS terrestrial radio access network,UTRAN)或者演进的陆地无线接入网(evolved universal terrestrial radio access,E-UTRAN)中,用于进行无线信号的小区覆盖以实现终端设备与无线网络射频端之间的衔接。具体来说,基站001可以是GSM或CDMA系统中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该基站001也可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的基站或者未来演进的PLMN网络中的基站等,本申请实施例并不限定。
如图1所示,基站001的一种可能的结构可以包括基站天线01、收发信机02和基带处理单元03。其中,收发信机02可以与基站天线01的天线端口M连接,从而基站天线01可以通过其天线端口M接收收发信机02发送的发送信号并经由基站天线01的辐射体辐射出去,或将基站天线01的辐射体接收的接收信号发送至收发信机02。
在实施中,收发信机02可以是远端射频单元,基带处理单元03可以是基带单元,基站天线01通常还与远端射频单元集成在同一个器件中,该器件称为有源天线处理单元(active antenna unit,AAU)。在该场景下,基带单元可用于对待发送的基带信号进行处理并传输至远端射频单元,或者接收远端射频单元发送的接收信号(即信号接收过程中基站天线01接收的接收射频信号经过远端射频单元的转化处理后得到的基带信号)并进行处理。远端射频单元可将基带单元发送的待发送的基带信号转换成发送射频信号(包括对待发送的基带信号进行必要的信号处理,如进行信号放大等),之后可将发送射频信号通过基站天线01的天线端口M发送至基站天线01,由基站天线01对该发送射频信号进行辐射。或者,远端射频单元还可接收基站天线01的天线端口M发送的接收射频信号,将其转化为接收基带信号后发送至基带单元。
应理解,图1仅示意出一个收发信机02和基站天线01的一个天线端口M的连接关系。在其它可选地实施方式中,基站天线01中的天线端口M的数量也可以为至少两个,收发信机02的数量也可以为至少两个,其中每个天线端口M可以连接至一个收发信机02,多个收发信机02可以连接至同一基带处理单元03。
图1还示例性示出本申请实施例提供的基站天线01的一种可能的部署场景,如图1所示,该部署场景中可以包括基站天线01、馈线04、抱杆05、天线调整支架06、接头密封件07和接地装置08。其中,基站天线01靠近天线端口M的一端可以固定连接抱杆05,基站天线01远离天线端口M的一端可以通过天线调整支架06活动连接抱杆05,从而基站天线01的位置可以通过天线调整支架06进行调节。基站天线01的天线端口M处引出的馈线04连接至收发信机02,该馈线04还可以延伸至接地管道以连接接地装置08。其中,天线端口M和馈线04的连接处、以及,馈线04和接地管道的连接处,都可以通过接头密封件07实现密封连接。应理解,图1仅示出包括一个天线的基站天线01的部署方式,在其它场景中,基站天线01也可以包括环绕抱杆05所安装的多个天线,多个天线的安装位置可以相同,也可以不同,当安装位置不同时,多个天线可以形成各自不同的波束覆盖范围。
图2为图1中基站天线01在现有技术中的内部架构图。如图2所示基站天线01内含有一个或多个辐射体011和金属反射板012所组成的至少一个独立阵列,其中辐射体011的频率可以相同或者不同,辐射体011通常放置于金属反射板012上方,即金属反射板012设于辐射体011背离辐射方向的一侧。至少一个独立阵列通过各自的馈电网络接收或发射射频信号。馈电网络可以通过传动部件和校准网络中014中的传动部件实现不同辐射波束指向,或者与传动部件和校准网络中014中的校准网络连接以获取系统所需的校准信号。馈电网络除包含移相器013外,还可能存在合路器或者滤波器015等用于扩展性能的模块连接于天线端口M。
图3为图1中基站天线01在现有技术中的结构,在具体设置基站天线01时,可以将图3中所示出的介质基板2’置于图2中所示出的金属反射板012上,且在介质基板2’上形成多个1to3模组N’。应理解,该1to3模组N’包括多个如图2所示出的辐射体011。此外,值得注意的是,介质基板2’由高性能塑料注塑成型形成。
图4为图3中一个1to3模组N’的结构示意图,如图4所示出的结构,一个1to3模组N’具体包括贴片形成的多个天线单元(图4中以1a’、1b’、1c’示出)、馈电线3’和功分主馈输入口4’。由于三个天线单元(1a’、1b’、1c’)采用相同的贴片单元形式,所以具有一致的第一子辐射相位斜率。
请继续参考图4所示的结构,主馈输入口4’距离左侧天线单元1a’较近,而距离最右侧天线单元1c’较远,为了保证三个天线单元之间馈电相位的一致性,最左侧天线单元1a’的馈电线3’经过了一定的折弯绕线。由于每个1to3模组N’在基站天线01内所分得空间有限,这样的折弯绕线会造成馈电线3’布局困难,且馈电网络损耗增大。
有鉴于此,本申请提供一种基站天线,用以在保证基站天线正常辐射的情况下,简化基站天线内馈电网络的走线布局并降低馈电网络损耗。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种 表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
图5示出了本申请实施例一提供的基站天线01的结构图。如图5所示出的结构,基站天线01包括两个天线模组D、介质基板2和反射板5,两个天线模组D形成一个天线线阵。示例性的,每个天线模组D具体为一个1to3模组,即每个天线模组D包括三个天线单元。当然,天线模组D还可包括其他数量的模组,在此不再赘述。上述介质基板2具有第一表面和第二表面,第一表面设有作为馈电机构的馈电口4,第二表面设有信号地层。值得注意的是,该馈电口4可以作为1to3模组的主馈口。应理解,1to3模组是指馈电口4处传输的能量经过功率分配后,分别传输至三个天线单元。此外,基站天线01并不限于仅包括两个天线模组D,此处两个天线模组D仅为示意性说明,还可根据需求设置其他数目的天线模组D,在此不再赘述。
如图5所示出的结构,具体来说,包括天线单元1a、天线单元1b和天线单元1c,其中,三个天线单元固定在介质基板2的第一表面,天线单元1a通过馈电线3a与馈电口4连接,天线单元1b通过馈电线3b与馈电口4连接,天线单元1c通过馈电线3c与馈电口4连接,且馈电线3a、馈电线3b以及馈电线3c为形成于介质基板2的微带线,天线单元1a、天线单元1b以及天线单元1c均与介质基板2的信号底层连接。反射板5设置在天线模组D背离天线单元1a、天线单元1b以及天线单元1c辐射方向的一侧,以对天线模组D进行支撑固定,并反射电磁波,保证天线单元1a、天线单元1b以及天线单元1c的正常辐射。
图6为图5中天线模组D的局部结构示意图。如图6所示出的结构,电磁信号从馈电口4输入,经过功率分配后,按照一定的幅度、相位经由馈电线3a、馈电线3b以及馈电线3c,分别给天线单元1a、天线单元1b以及天线单元1c进行馈电,形成1to3模组电磁辐射。应理解,图6结构中馈电口4、馈电线3a、馈电线3b以及馈电线3c形成针对一个天线模组D单极的馈电网络。
值得注意的是,由于在绝大多数基站天线01中,天线单元都是±45°双极化辐射,以天线单元1a为例,天线单元1a的每个极化需要连接单独的馈电网络,因而天线单元1a两侧的介质基板2上可以分别设有对称的馈电网络,具体如图7所示。
由基本的电磁理论可知,电磁波的频率与波长的乘积为固定数值(光速),即频率高的电磁波对应波长较短,频率低的电磁波对应波长较长。而对于所有频率的电磁波而言,一个波长对应360度的相位变化,且电磁波的相位在0~360范围内周期性变化。对于一段固定长度的馈电线而言,频率高的电磁波,其传播时走过的波长数量大于频率低的电磁波走过的波长数,因此频率高的电磁波相位变化量更大,即其相位改变更快。这种相位变化量与频率的对应关系,用斜线画出来,即可以得到相位斜率。
为了更清晰的解释上述理论,这里以天线单元1a为例进行说明:当在天线单元1a根部馈电时,电磁波在天线单元1a本身结构上传播,然后辐射至自由空间,在空间的某一点观察电磁波的频率和相位的关系,即可以得到天线单元1a的第一子辐射相位斜率。一般来讲,在相同的观察点,当天线模组D内均选取天线单元1a时,各天线单元1a的第一子辐射相位斜率相同;当天线模组D内选取不同的天线单元1a和天线单元1b时,天线单元1a和天线单元1b的第一子辐射相位斜率不同。
请继续参考图6所示出的结构,1to3模组包含的3个天线单元中,天线单元1a和天线单元1c是完全相同的天线单元,但天线单元1b与天线单元1a和天线单元1c完全不同。示例性的,可以在设置天线模组D时,设定:天线单元1a(或天线单元1c)与天线单元1b在中心频点的相位差值大于等于180°。结合上述分析可知,图6中所示出的天线单元1a和天线单元1c具有一致的第一子辐射相位斜率,而天线单元1b的第一子辐射相位斜率与天线单元1a和天线单元1c具有的第一子辐射相位斜率不同。
图6中所示出的结构中,天线单元1a与馈电线3a形成一个辐射单元,该辐射单元具有第一辐射相位斜率,且该第一辐射相位斜率等于天线单元1a的第一子辐射相位斜率与馈电线3a的第二子辐射相位斜率之和;同样的,天线单元1b与馈电线3b形成一个辐射单元,该辐射单元具有第二辐射相位斜率,且该第二辐射相位斜率等于天线单元1b的第一子辐射相位斜率与馈电线3b的第二子辐射相位斜率之和;天线单元1c与馈电线3c形成一个辐射单元,该辐射单元具有第三辐射相位斜率,且该第三辐射相位斜率等于天线单元1c的第一子辐射相位斜率与馈电线3c的第二子辐射相位斜率之和。
由电磁学的基本常识可知,要获得良好的宽带天线辐射,各辐射单元所辐射的电磁波相位斜率要满足一定的关系。在本申请实施例一中,示例性设置天线模组D中各辐射单元的辐射相位斜率间无差值,即上述的第一辐射相位斜率、第二辐射相位斜率以及第三辐射相位斜率间的差值为0(即第一预设值为0)。
由于第一辐射相位斜率、第二辐射相位斜率以及第三辐射相位斜率间的差值为0,且图6中所示出的天线单元1a和天线单元1c具有一致的第一子辐射相位斜率,而天线单元1b的第一子辐射相位斜率与天线单元1a和天线单元1所具有的第一子辐射相位斜率不同,所以馈电线3b的第二子辐射相位斜率可以与馈电线3a和馈电线3c分别对应的第二子辐射相位斜率不同。由于馈电线的长度影响馈电线的第二子辐射相位斜率,则可以如图6中所出的结构,将馈电线3b的长度相对馈电线3a和馈电线3c的长度缩短。
具体来说,本申请实施例一中将天线单元1b选取为不同于天线单元1a以及天线单元1c的类型,通过调整天线单元的第一子辐射相位斜率,使得馈电线3a、馈电线3b以及馈电线3c分别对应的第二子辐射相位斜率可以不同。通过优化设计,本申请实施例中可以使得天线单元1b的第一子辐射相位斜率与馈电线3b的第二子辐射相位斜率达到互补效果,即可以保证天线单元1b搭配馈电线3b后,其第二辐射相位斜率与第一辐射相位斜率和第三辐射相位斜率一致,以保证天线模组D进行正常的电磁辐射。
为充分说明本申请实施例一与现有技术的不同及带来的收益,图8示出常规设计中对应本申请实施一中各设置条件的天线模组的结构示意图。如图9为图8中示出结构内一个天线模组D’单侧极化时的结构示意图。请结合图8参见图9,天线模组D’包括天线单元1a’、天线单元1b’以及天线单元1c’,其中,天线单元1a’、天线单元1b’以及天线单元1c’结构相同。由于天线单元1a’、天线单元1b’以及天线单元1c’的结构相同,所以天线单元 1a’、天线单元1b’以及天线单元1c’的第一子辐射相位斜率相同。如前所述,本申请实施例中第一预设值为0,因此天线单元1a’、天线单元1b’以及天线单元1c’相连接的馈电线3a’、馈电线3b’以及馈电线3c’也应该具有相同的第二子辐射相位斜率,即馈电线3a’、馈电线3b’以及馈电线3c’的长度需保持相等。
而由于天线单元1b’距离馈电口4’相对较近,因此天线单元1b’连接的馈电线3b’需要经过相对复杂的绕线来满足各馈电线的第二子辐射相位斜率一致这一约束条件。如图9中所示出的结构,馈电线3b’的绕线操作会使得馈电网络布局难度加大,增加天线模组的设计复杂度,并且由于馈电线3b’绕线加长,馈电线3b’损耗会增加,最终致使辐射单元的损耗增大,辐射效率下降。
图10为对应图9中常规设置的天线模组D’的相位斜率示意图。图10中相位斜线x’是天线单元1a’、天线单元1b’以及天线单元1c’的第一子辐射相位斜率(三者重合),斜线y’是馈电线3a’、馈电线3b’以及馈电线3c’的第二子辐射相位斜率(三条带线长度相等,斜线重合),斜线z’是三条馈电带线搭配三个天线单元后最终形成的辐射单元的辐射相位斜率,三者也完全重合,表示天线模组D’可以进行正常无下倾角的辐射。
图11所示是本申请实施例一对应的天线模组的相位斜率图,即图6所示结构的相位斜率图。其中斜线x1是天线单元1a和天线单元1c对应的第一子辐射相位斜率(由于二者相同,故二者的第一子辐射相位斜率线重合),斜线y1是馈电线3a和馈电线3c的第二子辐射相位斜率(由于二者长度相同,故二者的第二子辐射相位斜率线重合)。值得注意的是,斜线x1和斜线y1这两条斜线分别与图10中所出的斜线x’和斜线y’一致。
请继续参考图11,斜线x2为天线单元1b对应的第一子辐射相位斜率,斜线y2为馈电线3b对应的第二子辐射相位斜率。由图11可以看出,斜线x2在斜线x1的下方,代表天线单元1b与天线单元1a和天线单元1c相比辐射相位滞后很多,为了弥补其相位的滞后,需要将馈电线3b进行缩短,使得馈电线3b的相位相比馈电线3a和馈电线3c超前,即斜线y2在斜线y1上方。经过合理的优化设计,使得天线单元1b搭配馈电线3b后形成的辐射单元的第二辐射相位斜率与第一辐射相位斜率和第三辐射相位斜率一致,即三者重合为斜线z,从而保证天线模组D正常辐射。
由上述分析可进一步发现,本申请实施例一内馈电线3b被精简缩短,基于此,整个基站天线01内的1to3模组的走线布局设计可以大幅简化,而且馈电网络的损耗会降低,同时天线模组D的良好辐射特性不会受到影响。
图12为本申请实施例二提供的基站天线01的结构图。如图12中所示出的结构,两组相同的天线模组D沿方向P形成一个阵列单元E1。示例性的,每个天线模组D为一个1to2模组。且在沿方向O,相同的阵列单元E1、阵列单元E2、阵列单元E3和阵列单元E4形成一个天线阵列。应理解,实施例二是一个天线面阵,可用于MIMO(multiple-input multiple-output,多输入多输出)天线系统。
以图12所示出的天线阵列E1中的一个天线模组D为例进行具体说明,每个天线模组D包括天线单元1a和天线单元1b,天线单元1a连接有馈电线3a,天线单元1b连接有馈电线3b,相比图5所示出的实施方式一中的结构,实施方式二中并未设置介质基板2,且反射板5设置在天线模组D背离天线单元1a以及天线单元1b辐射方向的一侧。应理解,实施方式二中也可设置介质基板2,此处仅以未设置介质基板2示出,在此不再赘述。
值得注意的是,由于实施方式二中以未设置介质基板2示出,则天线单元1a与反射板 5间需要具有间隙,该间隙值示例性的可为1mm。当然,该间隙值可以根据设计需求更改,在此不再赘述。同样的,天线单元1b与反射板5间也需要具有间隙,该间隙值示例性的可为1mm。而该间隙值可以根据设计需求更在,在此不再赘述。
图13为图12中结构的放大示意图,具体来说,图13中仅示出了天线模组D单极的馈电网络。如图13所示出的结构,天线单元1a与天线单元1b为同类型的天线单元,示例性的为交叉偶极子形式,不过二者的具体结构不同。具体来说,天线单元1a的主体部11a与天线单元1b的主体部11b相同,但是,天线单元1a的辐射臂12a与天线单元1b的辐射臂12b的形状、尺寸和高度不同,且天线单元1a的引向片13a与天线单元1b的引向片13b的结构和形状也不同。由于天线单元1a与天线单元1b存在差异,则天线单元1a的第一子辐射相位斜率与天线单元1b的第一子辐射相位斜率不同。
本申请实施例二中天线单元1a与馈电线3a形成一个辐射单元,该辐射单元具有第一辐射相位斜率;天线单元1b与馈电线3b形成一个辐射单元,该辐射单元具有第二辐射相位斜率。且实施例二中设置第一辐射相位斜率与第二辐射相位斜率的差值不为0,即第一预设值大于0。换句话说,相比本申请实施例一中的技术方案,本申请实施方式二中的天线单元1a与天线单元1b的相位预置为固定倾角。
在满足第一辐射相位斜率与第二辐射相位斜率的差值的前提下,由于图13中所示出的天线单元1a和天线单元1b的第一子辐射相位斜率不同,所以馈电线3a的第二子辐射相位斜率可以与馈电线3b的第二子辐射相位斜率不同。由于馈电线的长度影响馈电线的第二子辐射相位斜率,则可以如图13中所出的结构,将馈电线3a的长度相对馈电线3b缩短。
为充分说明本申请实施例二与现有技术的不同及带来的收益,图14中示出了与本实施例二对应的常规设计方式。在常规设计中,天线单元1a’的主体部11a’、辐射臂12a’以及引向片13a’和天线单元1b’的主体部11b’、辐射臂12b’以及引向片13b’完全相同,二者具有一致的第一辐射相位斜率。由于天线单元1a’和天线单元1b’距离主馈口的位置远近不同,所以馈电线3b’长度较长。为满足固定倾角的相位需求,馈电线3a’需要经过一定的绕线才能保证与馈电线3b’的相对关系,这样会造成馈电网络布局困难,损耗增大。
相比图14中所示出的结构,本申请实施方式二中馈电线3a被精简缩短,基于此,整个1to2模组的走线布局设计可以大幅简化,而且馈电网络的损耗会降低,同时天线模组D良好辐射特性不会受到影响。
图15为对应图14中现有技术中常规设置的天线模组D’的相位斜率示意图。斜线x’为天线单元1a’和天线单元1b’的第一子辐射相位斜率(由于二者相同,故二者的第一子辐射相位斜率线重合);斜线y1’是馈电线3a’的第二子辐射相位斜率,斜线y2’是馈电线3b’的第二子辐射相位斜率;斜线z1’是天线单元1a’搭配馈电线3a’最终形成的辐射单元的第一辐射相位斜率,斜线z2’是天线单元1b’搭配馈电线3b’最终形成的辐射单元的第二辐射相位斜率。由于第一预设值不为0,本申请实施方式二中的天线单元1a与天线单元1b的相位预制为固定倾角,所以斜线z1’和斜线z2’不重合。
值得注意的是,斜线z1’和斜线z2’两者之间的相位差值与斜线y1’和斜线y2’两者之间的相位差值一致,整个相位差值使得最终辐射的波束具有一定的倾角。
图16为本申请实施例二对应的天线模组的相位斜率图。图16中斜线x1’为现有技术中天线单元1a’的第一子辐射相位斜率,斜线y1’为馈电线3a’对应的第二子辐射相位斜率。值得注意的是,斜线x1’与图15中的斜线x’一致,斜线y1’与图15中的斜线y1’一致。图 16中所示出的斜线x1为本申请实施例二中天线单元1a对应的第一子辐射相位斜率,斜线y1为本申请实施例二中馈电线3a对应的第二子辐射相位斜率。可以看出天线单元1a相对于天线单元1a’辐射相位明显滞后,为达到与常规设计同样的辐射效果,馈电线3a要相比馈电线3a’相位超前,即馈电线3a要进行缩短,保证天线单元1a搭配馈电线3a后形成辐射单元的辐射相位斜率与天线单元1a’搭配馈电线3a’后形成辐射单元的辐射相位斜率一致,即斜线z1’的效果,使得天线模组D最终可以按照预置的固定倾角进行辐射。
相比图15中所示出的结构,本申请实施方式二中馈电线3a被精简缩短,基于此,整个1to2模组的走线布局设计可以大幅简化,而且馈电网络的损耗会降低,同时天线模组D良好辐射特性不会受到影响。
当然,可以仅设置图13中天线模组D内的天线单元1a的辐射臂12a与天线单元1b的辐射臂12b不同;或者,设置天线单元1a的引向片13a与天线单元1b的引向片13b不同,由于此结构与本申请实施例二中的结构相比,仅改变了引向片或者辐射臂,故在此不再赘述。
图17为本申请实施例三提供的图1中基站天线01的结构图。如图17所示出的结构,本申请实施方式三与实施方式一的区别在于,仅包含一个天线模组D。示例性的,该天线模组D包括天线单元1a、天线单元1b以及天线单元1c。应理解,天线模组D并不限于仅包含上述三个天线单元,此处仅做示例性说明。此外,本申请实施例三中移相器6a和移相器6b作为馈电机构为上述三个天线单元的两极进行馈电,此处仅示意图示例出移相器6b的馈电结构。
请继续参考图17,天线单元1a、天线单元1b以及天线单元1c位于反射板5的正面,移相器6a和移相器6b位于反射板5的背面。应理解,这里的“正面”指反射板5朝向天线模组D辐射方向的一侧,“反面”指反射板5背离天线模组D辐射方向的一侧。
具体来说,天线单元1b以及天线单元1c的类型相同,但其辐射臂、引向片形状尺寸可以不同,而天线单元1a与天线单元1b以及天线单元1c的类型不同,最终的表现是三个天线单元具有不同的第一子辐射相位斜率。移相器6b具有输出口61b、输出口62b和输出口63b,其中,输出口61b与天线单元1a通过馈电线3a连接,输出口62b与天线单元1b通过馈电线3b电气连接,输出口63b与天线单元1c通过馈电线3c连接。其中,输出口61b、输出口62b和输出口63b为三个天线单元的同一个极化进行馈电,馈电线3a、馈电线3b以及馈电线3c为同轴馈电线。
应理解,天线单元1a与馈电线3a形成一个辐射单元、天线单元1b与馈电线3b形成一个辐射单元,天线单元1c和馈电线3c形成一个辐射单元。当馈电机构为移相器6b时,移相器6b的输出相位可以根据需要变化,意味着天线模组D中各辐射单元间可以如本申请实施例一中描述的辐射方式,实现等相位无倾角辐射(即第一预设值为0),或者,可以如本申请实施例二中描述的辐射方式,实现不等相位的特定倾角辐射(即第一预设值大于0)。示例性的,设置下倾角(即第一预设值)范围为0-12度。在天线模组D为0度下倾时,天线模组D内的三个辐射单元间需要具有相同的辐射相位斜率。
在传统的设计方法中,采用三个相同的天线单元,且各天线单元连接的馈电线具有相同长度。而本申请实施例三中,天线单元1a与天线单元1b和天线单元1c具有不同的第一子辐射相位斜率,在满足各辐射单元的辐射相位斜率相同的情况下,馈电线3a、馈电线3b和馈电线3c可以具有不同的第二子辐射相位斜率。基于此,本申请实施方式三中可以根据 天线单元1a与天线单元1b和天线单元1c距离移相器6b相对位置的远近来优化对应馈电线3a、馈电线3b以及馈电线3c的长短,最终在保证正常辐射的情况下,简化馈电网络走线布局,降低天线模组D损耗的目的。
图18为对应图17中结构的相位斜率图。斜线x1、x2以及x3分别为天线单元1a、天线单元1b、天线单元1c对应的第一子辐射相位斜率,斜线y1、y2以及y3分别为馈电线3a、馈电线3b以及馈电线3c的第二子辐射相位斜率。本实施例三中天线模组D下倾角从0度开始,因此需要在0度,即天线模组D无下倾时补齐天线单元1a、天线单元1b、天线单元1c三个天线单元的第一子辐射相位斜率差值。从图18中可以看出,斜线x1、x2以及x3与斜线y1、y2以及y3的线性关系相反,其两两组合后可以同样得到相位斜线z,即三个具有不同第一子辐射相位斜率的天线单元搭配三条具有不同第二子辐射相位斜率的馈电线,可以使得在0度下倾时,天线模组D内部的辐射单元具有相同的辐射相位斜率。在0度补齐相位关系后,当移相器6b下倾时,天线模组D可以进行正常的下倾辐射。
图19为本申请实施例四提供的图1中基站天线01的结构图。如图19所示出的结构,本申请实施例四所示出的结构与如图17中本申请实施例三所示出的结构相比,存在以下不同:本申请实施方式四中存在天线模组D1、天线模组D2、天线模组D3这三个天线模组,其中,天线模组D1包括天线单元11a和天线单元11b,天线单元11a通过馈电线31a连接馈电口41,天线单元11b通过馈电线31b连接馈电口41,同时,该馈电口41通过连接线71b连接移相器6b的输出口61b;天线模组D2包括天线单元12a和天线单元12b,天线单元12a通过馈电线32a连接馈电口42,天线单元12b通过馈电线32b连接馈电口42,同时,该馈电口42通过连接线72b连接移相器6b的输出口62b;天线模组D3包括天线单元13a和天线单元13b,天线单元13a通过馈电线33a连接馈电口43,天线单元13b通过馈电线33b连接馈电口43,同时,该馈电口43通过连接线73b连接移相器6b的输出口63b。应理解,连接线71b、连接线72b以及连接线73b也为馈电网络中的走线,此处为了与各馈电线进行区分,故命名为连接线。
具体来说,天线单元11a和馈电线31a形成一个辐射单元,该辐射单元具有第一辐射相位斜率;天线单元11b和馈电线31b形成一个辐射单元,该辐射单元具有第二辐射相位斜率。天线模组D1具有第一模组辐射相位斜率,该第一模组辐射相位斜率等于第一辐射相位斜率与第二辐射相位斜率之和。同理的,天线模组D2具有第二模组辐射相位斜率,天线模组D3具有第三模组相位斜率。
每对一一对应的天线模组与连接线中,天线模组的模组辐射相位斜率与连接线的第三子辐射相位斜率之和形成总辐射相位斜率。具体来说,天线模组D1的第一模组相位斜率与连接线71b的第三子辐射相位斜率形成第一总辐射相位斜率;天线模组D2的第二模组相位斜率与连接线72b的第三子辐射相位斜率形成第二总辐射相位斜率;天线模组D3的第三模组相位斜率与连接线73b的第三子辐射相位斜率形成第三总辐射相位斜率。应理解。当第一总辐射相位斜率、第二总辐射相位斜率以及第三总辐射相位斜率的差值满足的第二预设值为0时,各天线模组间无下倾角;当第二预设值大于0时,各天线模组间存在下倾角。
值得注意的是,在满足第二预设值的前提下,可以通过调节天线模组的模组辐射相位斜率,使得连接线的第三辐射相位斜率不同,以调节馈电口和移相器的输出口之间的连接线的长度。具体来说,可以根据距离移相器6b相对位置的远近来优化对应的连接线71b、 连接线72b以及连接线73b的长短,最终可以达到保证天线正常辐射的情况下,简化馈电网络走线布局,降低天线损耗的目的。
在调节天线模组的模组辐射相位斜率时,以天线模组D1为例,可以通过调节天线单元11a和天线单元11b的结构,以改变第一子辐射相位斜率,或者,通过调节馈电线31a和馈电线31b的长度来改变第二子辐射相位斜率,使得第一辐射相位斜率和第二辐射相位斜率变化,从而改变天线模组D1的模组辐射相位斜率。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (12)

  1. 一种基站天线,其特征在于,包括馈电机构和至少一个天线模组,每个所述天线模组包括至少两个天线单元,每个天线单元具有第一子辐射相位斜率;每个所述天线模组中:
    至少两个所述天线单元的第一子辐射相位斜率不同,且每个所述天线单元通过与其一一对应的馈电线连接所述馈电机构,所述馈电线具有第二子辐射相位斜率;每对一一对应的天线单元与馈电线形成一个辐射单元,每一个所述辐射单元的辐射相位斜率为第一子辐射相位斜率与第二子辐射相位斜率之和;每个所述天线模组中辐射单元的辐射相位斜率间的差值满足第一预设值。
  2. 如权利要求1所述的基站天线,其特征在于,每个所述天线模组包括至少两种类型的天线单元。
  3. 如权利要求1所述的基站天线,其特征在于,每个所述天线模组内包括的各天线单元的类型相同;
    每个所述天线单元包括主体部、引向片和辐射臂;每个所述天线模组中包括的各所述天线单元间的所述主体部相同,所述引向片和/或所述辐射臂不同。
  4. 如权利要求1-3任一项所述的基站天线,其特征在于,所述第一预设值为0;或者所述第一预设值大于0。
  5. 如权利要求1-4任一项所述的基站天线,其特征在于,所述馈电机构包括馈电口,所述天线模组中的天线单元通过与所述天线单元一一对应的馈电线连接所述馈电口。
  6. 如权利要求1-4任一项所述的基站天线,其特征在于,所述馈电机构包括馈电口、移相器和连接线,所述天线模组中的天线单元通过与其一一对应的馈电线连接所述馈电口;
    所述移相器设有多个输出口,每个所述天线模组连接的馈电口通过与所述馈电口一一对应的连接线连接一个所述输出口,且各所述馈电口连接的输出口不同;所述连接线具有第三子辐射相位斜率;每对一一对应的天线模组与连接线中:所述天线模组内各辐射单元的辐射相位斜率之和形成模组辐射相位斜率;所述模组辐射相位斜率与所述第三子辐射相位斜率之和形成总辐射相位斜率,且各天线模组与连接线形成的总辐射相位斜率之差满足第二预设值。
  7. 如权利要求6所述的基站天线,其特征在于,所述第二预设值为0;或者所述第二预设值大于0。
  8. 如权利要求5或6所述的基站天线,其特征在于,还包括介质基板,所述介质基板具有第一表面和第二表面,所述第一表面设有所述馈电口,所述第二表面设有信号地层;所述天线模组设于所述介质基板,且所述天线单元与所述信号底层连接。
  9. 如权利要求1-4任一项所述的基站天线,其特征在于,所述馈电机构包括移相器,所述移相器设有多个输出口;所述天线模组中的天线单元通过与所述天线单元一一对应的馈电线连接所述输出口,且所述天线模组中的各天线单元连接的输出口不同。
  10. 如权利要求1-9任一项所述的基站天线,其特征在于,还包括反射板,所述反射板位于所述天线单元背离所述天线单元的辐射方向的一侧。
  11. 如权利要求1-10所述的基站天线,其特征在于,每个所述天线模组中:第一子辐射相位斜率不同的天线单元在中心频点的相位差值大于等于180°。
  12. 如权利要求1-11任一项所述的基站天线,其特征在于,所述天线单元为±45°双极化天线。
PCT/CN2020/140423 2020-12-28 2020-12-28 基站天线 WO2022140999A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/140423 WO2022140999A1 (zh) 2020-12-28 2020-12-28 基站天线
CN202080108022.3A CN116724465A (zh) 2020-12-28 2020-12-28 基站天线
EP20967349.0A EP4250485A4 (en) 2020-12-28 2020-12-28 BASE STATION ANTENNA
US18/342,696 US20230344113A1 (en) 2020-12-28 2023-06-27 Base station antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/140423 WO2022140999A1 (zh) 2020-12-28 2020-12-28 基站天线

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/342,696 Continuation US20230344113A1 (en) 2020-12-28 2023-06-27 Base station antenna

Publications (1)

Publication Number Publication Date
WO2022140999A1 true WO2022140999A1 (zh) 2022-07-07

Family

ID=82259865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140423 WO2022140999A1 (zh) 2020-12-28 2020-12-28 基站天线

Country Status (4)

Country Link
US (1) US20230344113A1 (zh)
EP (1) EP4250485A4 (zh)
CN (1) CN116724465A (zh)
WO (1) WO2022140999A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024051767A1 (zh) * 2022-09-08 2024-03-14 华为技术有限公司 天线结构件、天线和基站

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115207616A (zh) * 2021-04-13 2022-10-18 康普技术有限责任公司 辐射元件和多频带基站天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4633258A (en) * 1984-06-07 1986-12-30 Spar Aerospace Limited Phase slope equalizer
US5838282A (en) * 1996-03-22 1998-11-17 Ball Aerospace And Technologies Corp. Multi-frequency antenna
US20080258993A1 (en) * 2007-03-16 2008-10-23 Rayspan Corporation Metamaterial Antenna Arrays with Radiation Pattern Shaping and Beam Switching
CN103956575A (zh) * 2014-04-28 2014-07-30 零八一电子集团有限公司 大型x波段宽带频相扫天线阵列
CN105977583A (zh) * 2016-06-28 2016-09-28 华为技术有限公司 一种移相器及馈电网络

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7358922B2 (en) * 2002-12-13 2008-04-15 Commscope, Inc. Of North Carolina Directed dipole antenna
KR101494956B1 (ko) * 2013-02-08 2015-02-23 주식회사 에이스테크놀로지 기지국 통신 시스템에 최적화된 어레이 안테나

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4633258A (en) * 1984-06-07 1986-12-30 Spar Aerospace Limited Phase slope equalizer
US5838282A (en) * 1996-03-22 1998-11-17 Ball Aerospace And Technologies Corp. Multi-frequency antenna
US20080258993A1 (en) * 2007-03-16 2008-10-23 Rayspan Corporation Metamaterial Antenna Arrays with Radiation Pattern Shaping and Beam Switching
CN103956575A (zh) * 2014-04-28 2014-07-30 零八一电子集团有限公司 大型x波段宽带频相扫天线阵列
CN105977583A (zh) * 2016-06-28 2016-09-28 华为技术有限公司 一种移相器及馈电网络

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4250485A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024051767A1 (zh) * 2022-09-08 2024-03-14 华为技术有限公司 天线结构件、天线和基站

Also Published As

Publication number Publication date
CN116724465A (zh) 2023-09-08
US20230344113A1 (en) 2023-10-26
EP4250485A4 (en) 2024-01-17
EP4250485A1 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
EP3120416B1 (en) Compact antenna array using virtual rotation of radiating vectors
US8872715B2 (en) Backhaul radio with a substrate tab-fed antenna assembly
US8175648B2 (en) Super economical broadcast system and method
US20230344113A1 (en) Base station antenna
WO2022042206A1 (zh) 多频段天线系统和基站
US20120077504A1 (en) Super Economical Broadcast System
WO2021194832A1 (en) Radiating elements having angled feed stalks and base station antennas including same
CN112290193B (zh) 毫米波模组、电子设备及毫米波模组的调节方法
WO2013017104A1 (zh) 多模天线与基站
WO2022062472A1 (zh) 一种有源阵列天线及移动通信基站
CN112436277B (zh) 阵列天线
WO2023274173A1 (zh) 一种天线结构、基站天线及基站
CN110797636A (zh) 双极化天线及其低频辐射单元
US11646502B2 (en) Multi-band base station antenna
CN211829185U (zh) 基站天线
WO2023051471A1 (zh) 一种天线系统及基站天馈系统
WO2023231752A1 (zh) 一种天线及基站
WO2023231761A1 (zh) 天线、通信设备和通信系统
WO2024027465A1 (zh) 一种天线系统及基站
WO2024067021A1 (zh) 移相器、基站天线及基站
CN210692768U (zh) 基站天线和多频带基站天线
WO2023109765A1 (zh) 一种天线系统和通信设备
CN220553598U (zh) 一种天线单元、天线及基站
WO2023207916A1 (zh) 基站天线以及基站
WO2022120858A1 (zh) 一种阵列天线及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967349

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080108022.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2020967349

Country of ref document: EP

Effective date: 20230619

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023012978

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023012978

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230628

NENP Non-entry into the national phase

Ref country code: DE