WO2024027465A1 - 一种天线系统及基站 - Google Patents

一种天线系统及基站 Download PDF

Info

Publication number
WO2024027465A1
WO2024027465A1 PCT/CN2023/106544 CN2023106544W WO2024027465A1 WO 2024027465 A1 WO2024027465 A1 WO 2024027465A1 CN 2023106544 W CN2023106544 W CN 2023106544W WO 2024027465 A1 WO2024027465 A1 WO 2024027465A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
disposed
frequency selection
selection surface
radiating unit
Prior art date
Application number
PCT/CN2023/106544
Other languages
English (en)
French (fr)
Inventor
肖伟宏
崔鹤
魏剑峰
蒲涛
孙朋朋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024027465A1 publication Critical patent/WO2024027465A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • the present application relates to the technical field of communication equipment, and in particular, to an antenna system and a base station.
  • base stations can support more and more communication frequency bands.
  • base stations may be equipped with 2G (2nd-Generation wireless telephone technology, second-generation mobile phone communication technology) equipment and 3G (3rd-Generation mobile) equipment at the same time.
  • This application provides an antenna system and a base station to simplify the structure of the antenna system and improve the integration of the antenna installed in the base station.
  • the present application provides an antenna system, which includes a first antenna and a second antenna.
  • the first antenna and the second antenna are stacked, and the second antenna is arranged on the back side of the first antenna, that is to say, the second antenna is arranged on the side away from the first antenna that radiates signals.
  • the above-mentioned first antenna includes a first radiating unit, a first frequency selection surface and a first feed network.
  • the first radiating unit is arranged on one side of the first frequency selection surface, and the second antenna is arranged on the first frequency selection surface away from the first frequency selection surface.
  • the above-mentioned first frequency selective surface can reflect the radiation signal of the first antenna and transmit the radiation signal of the second antenna, so that the above-mentioned two antennas can be stacked to reduce the antenna space occupied by the antenna system.
  • the above-mentioned first frequency selective surface includes a plurality of first strip structures and a plurality of second strip structures.
  • the first strip structures and the second strip structures are metal strip structures, and the plurality of first strip structures and a plurality of The second strip structures intersect to form a plurality of grids, thereby forming a first frequency selective surface.
  • the above-mentioned first feed network includes a first structure, and the first structure is arranged in a first strip structure.
  • the structure of the first antenna can be simplified and the first frequency selection surface can be reduced.
  • the size of the antenna is increased to improve the miniaturization of the first antenna, which in turn helps reduce the size of the antenna system and improves the antenna integration of the base station. This solution can also reduce the space occupied by the antenna system to reduce the wind load of the antenna system.
  • the first antenna since there is no need to set up a phase shifter cavity, the first antenna has no obstruction to the second antenna, so there is no limit to the size of the second antenna.
  • the size of the second antenna can be larger than the first antenna, enriching the application scenarios of the antenna system. .
  • the above-mentioned first feed network further includes a second structure, and the second structure is provided in the second strip structure. That is to say, both the first strip-like structure and the second strip-like structure of the first frequency selection surface can be used to set the first frequency selection surface.
  • the above-mentioned first structure and second structure may be different structures, or they may be different parts of the same structure, and they are only distinguished according to their installation positions.
  • the above-mentioned first frequency selection surface further includes a metal patch, and the metal patch is arranged in the grid.
  • the metal patch by arranging the metal patch, the bandwidth of the signal reflected by the first frequency selection surface can be increased, and the signal reflection efficiency of the first frequency selection surface can be improved.
  • each grid can be provided with metal patches, thereby improving the filtering effect and signal uniformity of the first frequency selection surface.
  • the first strip structure may have a groove, and the first structure is disposed in the groove.
  • the above-mentioned groove can shield the signal of the first structure located therein, reduce signal leakage, and improve signal transmission efficiency.
  • the above-mentioned second strip-shaped structure has a groove, and the second structure is arranged in the groove.
  • the groove can shield signals from the second structure located therein, reduce signal leakage, and improve signal transmission efficiency.
  • the above-mentioned first strip structure has a cavity, and the first structure is arranged in the cavity.
  • the above-mentioned cavity can shield the signal of the first structure located therein, reduce signal leakage, and improve signal transmission efficiency.
  • the above-mentioned second strip-shaped structure may also have a cavity, and the second structure is disposed in the cavity.
  • the cavity can shield signals from the second structure located within it, reduce signal leakage, and improve signal transmission efficiency.
  • the above-mentioned first structure only needs to be disposed on the first frequency selection surface. Specifically, it can be disposed on the side of the first frequency selection surface facing the first radiating unit; it can also be disposed on the side of the first frequency selecting surface away from the first radiating unit. ; Or, it can also be provided on both sides of the first frequency selection surface, that is to say, the first structure can be provided on both sides of the first frequency selection surface. Therefore, the area where the first feed network is disposed can be enlarged. In addition to the first feed network, if other feed networks are included, they can also be disposed on the first frequency selection surface.
  • the second structure can also be provided on the side of the first frequency selection surface facing the first radiating unit; or, it can be provided on the side of the first frequency selection surface facing away from the first radiating unit; or, it can also be provided on the side of the first frequency selection surface facing away from the first radiating unit.
  • the second structure can be provided on both sides of a frequency selection surface, that is to say, both sides of the first frequency selection surface.
  • the above-mentioned first structure may include a first power dividing line, and the first power dividing line is provided in the first strip structure.
  • the second structure may also include a first power dividing line, and the first power dividing line is provided in the second strip structure.
  • the above-mentioned first power branching line is used to feed the first radiating unit to realize the signal transmission capability of the first radiating unit.
  • first structure may further include a first sliding medium, which is slidably disposed between the first power dividing line and the first strip structure.
  • second structure may also include a first sliding medium, and the first sliding medium is slidably disposed between the first power dividing line and the second strip structure.
  • the first sliding medium and the first power dividing line can realize phase shifting of the first radiating unit, which is equivalent to a phase shifter and can enrich the functions of the first antenna.
  • the first antenna further includes a second radiating unit and a second feed network, and the second radiating unit and the first radiating unit are disposed on the same side of the first frequency selection surface.
  • the above-mentioned second feed network includes a third structure, and the third structure is disposed on the first frequency selection surface.
  • the third structure may be specifically provided on the first strip-shaped structure or the second strip-shaped structure, or both the first strip-shaped structure and the second strip-shaped structure may be provided with the above-mentioned third structure.
  • the working frequency band of the above-mentioned first radiating unit is different from the working frequency band of the second radiating unit.
  • the first antenna in this solution is a multi-frequency antenna, which can realize signal radiation in multiple frequency bands.
  • the above-mentioned first antenna may also include a second frequency selective surface.
  • the second frequency selection surface is disposed on a side of the first frequency selection surface away from the first radiating unit.
  • the second frequency selective surface can reflect the radiation signals of the first radiating unit and the second radiating unit, and can transmit the radiation signal of the second antenna.
  • the first frequency selection surface and the second frequency selection surface cooperate to increase the reflection bandwidth of the first frequency selection surface and the second frequency selection surface, improve the working bandwidth of the entire first antenna, and improve the communication of the first antenna. efficiency.
  • the above-mentioned first antenna may further include a third radiating unit, a third frequency selective surface and a third feeding network.
  • the working frequency band of the first radiating unit is different from the working frequency band of the third radiating unit, so the first antenna is a multi-frequency antenna.
  • the third radiating unit and the first radiating unit are disposed on the same side of the first frequency selection surface, and the third frequency selection surface is disposed on a side of the first frequency selection surface away from the first radiating unit.
  • the third frequency selective surface can reflect the radiation signals of the first radiating unit and the third radiating unit, and can transmit the radiation signal of the second antenna.
  • the above-mentioned third feed network includes a fourth structure, and the fourth structure is disposed on the third frequency selective surface.
  • the above-mentioned first antenna further includes a reflecting plate, which is used to reflect the radiation signal of the first radiating unit.
  • the reflective plate can reflect signals in all frequency bands, and can be a metal plate. This solution can reduce the area of the first frequency selection surface of the first antenna and reduce the cost of the first antenna.
  • the above-mentioned first antenna is a passive antenna
  • the second antenna is an active antenna. This solution can make full use of the antenna space of the base station to improve the antenna integration of the base station.
  • the first antenna and the second antenna may be two independent antennas.
  • the first antenna includes a first radome
  • the second antenna includes a second radome
  • the first radome and the second radome have independent features. of the inner cavity. This makes the antenna system more flexible, and the first antenna or the second antenna can be replaced according to needs.
  • the first antenna and the second antenna may be integrated into one body.
  • the antenna system further includes a third radome, and the first antenna and the second antenna are disposed in the inner cavity of the third radome. Thereby improving the integration level of the antenna system.
  • this application also provides a base station, which includes a mounting frame and the antenna system of the first aspect, and the antenna system is installed on the mounting frame.
  • the base station can integrate more antennas, thereby improving the antenna integration level of the base station.
  • Figure 1 is a schematic diagram of a system architecture applicable to the embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a base station in an embodiment of the present application.
  • FIG. 3 is a partial structural schematic diagram of an antenna in an embodiment of the present application.
  • Figure 4 is a lateral structural schematic diagram of the antenna system in the embodiment of the present application.
  • Figure 5 is a partial structural schematic diagram of the first antenna in the embodiment of the present application.
  • Figure 6 is a partially enlarged structural schematic diagram of the first antenna in the embodiment of the present application.
  • Figure 7 is another partially enlarged structural schematic diagram of the first antenna in the embodiment of the present application.
  • Figure 8 is another schematic structural diagram of a base station in an embodiment of the present application.
  • Figure 9 is another schematic structural diagram of a base station in an embodiment of the present application.
  • Figure 10 is another schematic structural diagram of a base station in an embodiment of the present application.
  • Figure 11 is another schematic structural diagram of a base station in an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of the first frequency selection surface in the embodiment of the present application.
  • Figure 13 is a top view structural diagram of the first antenna in the embodiment of the present application.
  • Figure 14 is a schematic structural diagram of the first frequency selection surface in the embodiment of the present application.
  • Figure 15 is another structural schematic diagram of the first frequency selection surface in the embodiment of the present application.
  • Figure 16 is a schematic cross-sectional view of the first strip structure in the embodiment of the present application.
  • Figure 17 is another schematic cross-sectional view of the first strip structure in the embodiment of the present application.
  • Figure 18 is another schematic cross-sectional view of the first strip structure in the embodiment of the present application.
  • Figure 19 is another partial structural diagram of the first antenna in the embodiment of the present application.
  • Figure 20 is another structural schematic diagram of the first antenna in the embodiment of the present application.
  • Figure 21 is another structural schematic diagram of the first antenna in the embodiment of the present application.
  • Figure 22 is another structural schematic diagram of the first antenna in the embodiment of the present application.
  • Figure 23 is another structural schematic diagram of the first antenna in the embodiment of the present application.
  • Figure 24 is another structural schematic diagram of the first antenna in the embodiment of the present application.
  • Figure 25 is another top structural schematic diagram of the first antenna in the embodiment of the present application.
  • Figure 1 is a schematic diagram of a system architecture applicable to the embodiment of the present application.
  • the application scenario may include a base station and a terminal. Wireless communication can be achieved between the base station and the terminal.
  • the base station can also be called access network equipment, and can be located in the base station subsystem (base btation bubsystem, BBS), terrestrial wireless access network (UMTS terrestrial radio access network, UTRAN) or evolved terrestrial wireless access network (evolved universal terrestrial radio access, E-UTRAN), used for signal cell coverage to achieve communication between terminal equipment and wireless networks.
  • base station subsystem base btation bubsystem
  • UMTS terrestrial radio access network UTRAN
  • E-UTRAN evolved terrestrial wireless access network
  • the base station can be a base transceiver station (BTS) in the global system for mobile communication (GSM) or code division multiple access (CDMA) system, or it can be a broadband code division multiple access station. It can also be a NodeB (NB) in a wideband code division multiple access (WCDMA) system, or an evolutionary NodeB (eNB or eNodeB) in a long term evolution (LTE) system, or It can be a wireless controller in a cloud radio access network (CRAN) scenario.
  • BTS base transceiver station
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • NB NodeB
  • WCDMA wideband code division multiple access
  • eNB or eNodeB evolution NodeB
  • LTE long term evolution
  • CRAN cloud radio access network
  • the base station can also be a relay station, an access point, a vehicle-mounted device, a wearable device, a g-node (gNodeB or gNB) in a new radio (NR) system or an access network device in a future evolved network, etc.
  • gNodeB or gNB g-node
  • NR new radio
  • FIG. 2 is a schematic diagram of a possible structure of a base station in an embodiment of the present application.
  • a base station may generally include an antenna 01, a mounting frame 02 and other structures.
  • the antenna 01 is installed on the mounting bracket 02 to facilitate the reception or transmission of the antenna 01 signal.
  • the above-mentioned mounting frame 02 may be a pole or an iron tower.
  • Figure 2 only illustrates the components that a base station may include, and a positional relationship of each component. In other embodiments, the base station may also include other components, or the positional relationship of the components may be different from that shown in Figure 2 .
  • the base station may also include a radio frequency remote unit 03 and a baseband processing unit 04.
  • the baseband processing unit 04 can be connected to the antenna 01 through the radio frequency remote unit 03.
  • the baseband processing unit 04 can be connected to the feed network of the antenna 01 through the radio frequency remote unit 03 .
  • the remote radio unit 03 can also be called a remote radio unit (RRU), and the baseband processing unit 04 can also be called a baseband unit (BBU).
  • RRU remote radio unit
  • BBU baseband unit
  • the radio frequency remote unit 03 and the baseband processing unit 04 can also be located at the far end of the antenna 01 at the same time.
  • the radio frequency remote unit 03 and the baseband processing unit 04 can be connected through a cable 05 . It should be noted that Figure 2 is only an example of the positional relationship between the radio frequency remote unit 03 and the antenna 01.
  • FIG. 3 is a schematic diagram of the composition of an antenna according to a possible embodiment of the present application.
  • the antenna 01 may include a radome 011 , a radiation unit 012 , a reflection plate 013 and a feed network 014 .
  • the above-mentioned radome 011 has good electromagnetic wave penetration characteristics in terms of electrical properties, and can withstand the influence of harsh external environments in terms of mechanical properties, thereby protecting the antenna 01 from the influence of the external environment.
  • the above-mentioned radiating unit 012 may also be called an antenna element, an oscillator, etc., and it can effectively transmit or receive antenna signals.
  • the reflective plate 013 may also be called a bottom plate, an antenna panel, a reflective surface, etc., and may be made of metal.
  • antenna 01 receives a signal
  • the reflection plate 013 can reflect and focus the signal from antenna 01 at the receiving point.
  • the radiating unit 012 is usually placed on the side of the reflective plate 013, which can not only greatly enhance the signal receiving or transmitting capabilities of the antenna 01, but also block and shield the radiation from the back of the reflective plate 013 (the back of the reflective plate 013 in this application refers to the
  • the reflective plate 013 is used to set the interference signal on the side opposite to the radiation unit 012).
  • the radiating unit 012 is connected to the feed network 014.
  • the feed network 014 is usually composed of a controlled impedance transmission line.
  • the feed network 014 can feed the signal to the radiation unit 012 according to a certain amplitude and phase, or send the received signal to the baseband processing of the base station according to a certain amplitude and phase.
  • the feed network 014 can achieve different radiation beam directions through the transmission component 0141, or be connected to the calibration network 0142 to obtain the calibration signals required by the system.
  • a phase shifter 0143 may be included in the feed network 014 to change the maximum direction of antenna signal radiation.
  • Some modules for extending performance may also be provided in the feed network 014, such as a combiner 0144, which can be used to combine signals of different frequencies into one channel and transmit them through the radiating unit 012; or when used in reverse, it can be used to combine the radiation
  • the signal received by unit 012 is divided into multiplexes according to different frequencies and transmitted to the baseband processing unit 04 for processing, such as filter 0145, which is used to filter out interference signals.
  • Frequency Selective Surface is a two-dimensional periodic array structure. It is essentially a spatial filter that interacts with electromagnetic waves to show obvious bandpass or bandstop filtering. characteristic.
  • the frequency selective surface can transmit or reflect waves of different frequencies, thus having a specific frequency selective effect.
  • FIG. 4 is a lateral structural diagram of an antenna system in an embodiment of the present application.
  • the antenna system 100 includes a first antenna 110 and a second antenna 120 .
  • the first antenna 110 and the second antenna 120 are stacked, and the second antenna 120 is disposed on the back side of the first antenna 110 .
  • the back side of the first antenna 110 refers to the side away from the first antenna 110 that radiates signals. This solution is beneficial to reducing the space occupied by the antenna system 100 and improving the antenna integration of the base station.
  • the above-mentioned first antenna 110 includes a first radiating unit 1 , a first frequency selective surface 2 and a first feeding network 3 .
  • the above-mentioned first radiating unit 1 is disposed on one side of the first frequency selecting surface 2.
  • the first frequency selecting surface 2 is used to reflect the signal of the first radiating unit 1 and is equivalent to the reflecting plate of the first antenna.
  • the above-mentioned second antenna 120 is disposed on the side of the first frequency selection surface 2 facing away from the first radiation unit 1 .
  • the first antenna 110 may be a passive antenna, so that there is no shielding effect on the signal of the second antenna 120 and the communication effect of the second antenna 120 can be ensured.
  • the second antenna 120 may be an active antenna or a passive antenna, and this application does not limit this.
  • the first antenna 110 is a passive antenna
  • the second antenna 120 is an active antenna.
  • the above-mentioned active antenna may also be provided with a heat sink 121 for dissipating heat for the active antenna. Since the antennas are stacked, the active antenna can only be placed at the rear (the side closer to the mounting bracket) and cannot be placed in the front. Therefore, this solution can make full use of the antenna space of the base station to improve the antenna integration of the base station.
  • the operating frequency band of the second antenna 120 can be made smaller than the operating frequency band of the first antenna 110 , so that the first frequency selection surface 2 can reflect the signal of the operating frequency band of the first antenna 110 and transmit the signal of the second antenna 120 . signals in the working frequency band.
  • FIG. 5 is a partial structural schematic diagram of the first antenna in the embodiment of the present application. Please refer to Figures 4 and 5.
  • the above-mentioned first frequency selection surface 2 is a first frequency selection surface 2 made of metal material.
  • the first frequency selection surface 2 includes a plurality of first strip structures 21 and a plurality of second strip structures 22.
  • the plurality of first strip structures 21 and the plurality of second strip structures 22 form a plurality of grids.
  • the overlapping area of the above-mentioned first strip structure 21 and the second strip structure 22 can be shared. For example, in the embodiment shown in Figure 5, the square area where the first strip structure 21 and the second strip structure 22 intersect.
  • the square area is a common overlapping area, that is to say, the square area belongs to both the first strip structure 21 and the second strip structure 22 .
  • the first feed network 3 includes a first structure 31 disposed on the above-mentioned first strip structure 21 .
  • the first structure 31 of the first feed network 3 is disposed on the first frequency selection surface 2, and there is no need to provide an additional phase shifter cavity to carry the above-mentioned first feed network 3. Therefore, the first feed network 3 can be simplified.
  • the structure of an antenna reduces the size of the first antenna, thereby reducing the size of the antenna system, improving the miniaturization of the antenna system, and is conducive to improving the antenna integration of the base station.
  • This solution can also reduce the space occupied by the antenna system to reduce the wind load of the antenna system.
  • the first antenna 110 since there is no need to provide a phase shifter cavity, the first antenna 110 has no obstruction to the second antenna 120. Therefore, there is no limit to the size of the second antenna 120.
  • the size of the second antenna 120 can be larger than the first antenna 110. Enrich the application scenarios of the antenna system 100.
  • the first radiation unit 1 is located on the dielectric plate 14 .
  • the first radiation unit 1 may be a dual-polarized radiation unit, that is to say, it includes two polarized radiation arms 13 .
  • one polarized radiation arm 13 is formed on one side surface of the dielectric plate 14 (as shown in FIG. 5 ), and the other polarized radiation arm 13 is formed on the other side surface of the dielectric plate 14 (not shown in the figure). ).
  • the above-mentioned first antenna 110 may further include a guide piece 4 , which is located on the side of the first radiating unit 1 away from the first frequency selection surface 2 . It is used to improve the electrical performance indicators of the first radiating unit 1, such as scattering (scatter, S) parameters, horizontal beam width (horizontal beam width, HBW) and other radiation indicators.
  • scattering scatter, S
  • horizontal beam width horizontal beam width, HBW
  • the first feed network 3 may further include a second structure 32 , and the second structure 32 is disposed on the second strip structure 22 . That is to say, the first feed network 3 can be provided in the first strip structure 21 or the second strip structure 22, or the first feed network 3 can be set in both the first strip structure 21 and the second strip structure 22. 3. It can be designed according to specific needs. In the embodiment of the present application, at least part of the structure of the first feed network 3 is arranged on the first strip structure 21 or the second strip structure 22 , then the first feed network 3 will not damage the first frequency selection surface 2 structure to ensure that the first frequency selective surface 2 can reflect the radiation signal of the first radiation unit 1 and transmit the radiation signal of the second antenna 120 .
  • the second antenna 120 also includes a radiation unit and a reflective plate, and the radiation signal is radiated by the radiation unit. Since this application does not limit the specific structure of the second antenna 120, it will not be described in detail here.
  • FIG. 6 is a partially enlarged structural schematic diagram of the first antenna in the embodiment of the present application
  • FIG. 7 is another partially enlarged structural schematic diagram of the first antenna in the embodiment of the present application.
  • the first structure 31 may include a first power dividing line 33
  • the first power dividing line 33 is provided in the first strip structure 21
  • the above-mentioned second structure 32 may also include a first power dividing line 33, and the first structure 31 and the second structure 32 may be the same first power dividing line 33, which is not limited in this application.
  • the first structure 31 refers to the A feed network 3 is disposed on the part of the first strip structure 21, and the second structure 32 refers to the part of the first feed network 3 disposed on the second strip structure 22.
  • the two may be the same structure, or even the third
  • the first structure 31 and the second structure 32 may be an integral structure, but are distributed at different positions on the first frequency selection surface 2 .
  • the first frequency selection surface 2 can be provided with an insulation structure (not shown in the figure), and the above-mentioned first power dividing line 33 is provided in the insulation structure, thereby insulating the first power dividing line 33 from the first frequency selection surface 2 .
  • the above-mentioned first radiation unit 1 includes a first signal layer 11 and a first ground layer 12 .
  • the first signal layer 11 is electrically connected to the above-mentioned first power branching line 33 to realize the power feeding of the first radiating unit 1 .
  • the first ground layer 12 is electrically connected to the above-mentioned first frequency selection surface 2 to realize the grounding of the first radiating unit 1 , and can also make the first radiating unit 1 fixedly connected to the first frequency selection surface 2 .
  • the first power splitter line 33 in the embodiment of the present application may be a microstrip line, which facilitates the preparation of the first power splitter line 33 and occupies less space.
  • the first structure 31 may also include a plurality of first sliding media 34 .
  • the first sliding medium 34 is slidably disposed between the first power dividing line 33 and the first strip structure 21 and is used to adjust the phase of the first radiating unit 1 electrically connected to the first power dividing line 33 to achieve the first Phase shifting function of feed network 3.
  • the first frequency selection surface 2 is the reference ground of the first power dividing line 33
  • the first sliding medium 34 is disposed between the first power dividing line 33 and the first frequency selection surface 2, then it can be considered that the above
  • the first power branch line 33 and the first sliding medium 34 are equivalent to phase shifters in the first feed network 3 .
  • the first antenna can have a phase-shifting function, and the first sliding medium 34 does not need to use an additional structure.
  • the first sliding medium 34 can be provided directly by using the first frequency selection surface 2 . It is also beneficial to reduce the size of the first antenna, reduce the size of the antenna system, improve the antenna integration of the base station, and reduce the wind load of the antenna system.
  • the second structure 32 may include a plurality of first sliding media 34.
  • the first sliding media 34 are disposed between the first power dividing line 33 and the second strip-shaped structure 22 for adjusting the first power dividing line.
  • the line 33 is electrically connected to the phase of the first radiating unit 1 , thereby realizing the phase shifting function of the first feed network 3 . No further details will be given here.
  • Figure 8 is another schematic structural diagram of a base station in an embodiment of the present application.
  • Figure 8 shows a scenario in which the above-mentioned antenna system 100 is applied to a base station.
  • the antenna system 100 in the embodiment shown in Figure 8 is equivalent to the embodiment shown in Figure 2 Antenna 01 in .
  • the second antenna 120 is disposed on the side of the first antenna 110 facing the mounting bracket 02 .
  • the first frequency selective surface 2 can be used to reflect the radiation signal of the first radiation unit 1 and transmit the radiation signal of the second antenna 120 .
  • the first antenna 110 does not need to be equipped with a phase shifter cavity and other structures, and the first frequency selection surface 2 can transmit the radiation signal of the second antenna 120 , that is to say, the first frequency selection surface 2 can transmit the operation of the second antenna 120 electromagnetic waves in the frequency range. Therefore, the first antenna 110 has no interference with the signal of the second antenna 120, and the size limit of the second antenna 120 is small.
  • the second antenna 120 can be set according to actual needs, and the second antenna 120 can be completely set on the first antenna 110.
  • the antenna space occupied by the second antenna 120 is smaller than the antenna space occupied by the first antenna 110, as shown in Figure 8; or Figure 9 is another structural schematic diagram of a base station in an embodiment of the present application, as shown in Figure As shown in Figure 9, in another embodiment, the antenna space occupied by the second antenna 120 can be made closer to the antenna space occupied by the first antenna 110; or, Figure 10 is another example of the base station in the embodiment of the present application. A schematic structural diagram is shown in Figure 10. In another embodiment, the antenna space occupied by the second antenna 120 can be larger than the antenna space occupied by the first antenna 110. This solution is conducive to enriching the application scenarios of the antenna system 100 and is not limited by the size of the first antenna provided at the front end.
  • the first antenna 110 includes a first radome 111
  • the second antenna 120 includes a second radome 122
  • the first radome 111 and the second radome 122 have mutually independent inner cavities, so that the first antenna 110 and the second antenna 120 are independent and decoupled from each other.
  • This solution is conducive to improving the flexibility of the installation of the antenna system 100.
  • the first antenna 110 or the second antenna 120 can be replaced according to needs, and it is also conducive to maintaining the first antenna 110 and the second antenna 120 respectively.
  • FIG 11 is another structural schematic diagram of a base station in an embodiment of the present application.
  • the antenna system 100 can also include a third radome 130, the first antenna 110 and the second antenna 130.
  • the antennas 120 are arranged in the inner cavity of the third radome 130 .
  • the first antenna 110 and the second antenna 120 are disposed in the same radome, that is to say, the first antenna 110 and the second antenna 120 are integrated into a whole. This solution is beneficial to improving the overall quality of the antenna system 100 properties for easy installation and removal.
  • Figure 12 is a schematic structural diagram of the first frequency selection surface in the embodiment of the present application.
  • first strip structure 21 and the second strip structure 22 of the first frequency selection surface 2 are specifically set, the relative Adjacent first strip structures 21 are spaced apart by a first distance a, and adjacent second strip structures 22 are spaced apart by a second distance b.
  • the above-mentioned first distance a and the second distance b may be equal, that is to say, the grid of the first frequency selection surface 2 is a square grid. Therefore, the first frequency selection surface 2 in the embodiment of the present application has better symmetry, which is beneficial to improving the signal reflection effect of the first frequency selection surface 2 and making it more uniform.
  • first distance a and second distance b may also be different, which will not be described in detail in this application.
  • Figure 13 is a top view structural diagram of the first antenna 110 in the embodiment of the present application.
  • the first strip structure 21 of the first frequency selection surface 2 extends along the first direction X
  • the second strip structure 22 extends along the second direction Y.
  • the above-mentioned first direction X and second direction Y may be consistent with the arrangement direction of the first radiation units 1 .
  • the above-mentioned first radiating unit 1 is arranged into a radiating unit array, and the extending direction of the radiating unit array is consistent with the first direction X; the first antenna 110 may also include multiple radiating unit arrays, then the adjacent radiating unit arrays
  • the first radiation units 1 are arranged along the second direction Y.
  • the first antenna 110 includes a plurality of first radiating units 1, and the plurality of first radiating units 1 are arranged along the first direction X and the second direction Y respectively.
  • This solution can make the extension direction of the first power dividing line 33 provided in the first strip structure 21 or the second strip structure 22 consistent with the arrangement direction of the first radiating units 1, which facilitates wiring.
  • the first radiation units 1 are arranged in a matrix, so that the first direction X and the second direction Y are perpendicular.
  • the first direction X and the second direction Y can also be made non-perpendicular.
  • Figure 14 is a schematic structural diagram of the first frequency selection surface in the embodiment of the present application, as shown in Figures 12 and 14.
  • the above-mentioned first frequency selection surface 2 also includes a metal patch 23.
  • the patch 23 is arranged in the above-mentioned grid. In this embodiment, by providing the metal patch 23 , the bandwidth of the signal reflected by the first frequency selection surface 2 can be increased, and the signal reflection efficiency of the first frequency selection surface 2 can be improved.
  • the shape and form of the metal patch 23 are not limited.
  • the metal patch 23 can be a sheet-shaped solid structure, as shown in Figure 12; or another
  • the above-mentioned metal patch 23 may also be a hollow frame structure, as shown in Figure 14 .
  • the above-mentioned metal patch 23 may include multiple substructures. As shown in FIGS. 6 and 7 , the metal patch 23 in each grid includes four substructures, and the four substructures are symmetrically arranged in the grid.
  • the shapes of the metal patches 23 in different grids can be the same or different. In specific embodiments, when the shapes of the metal patches 23 in different grids are the same, all metals included in the first frequency selection surface 2 can be If the shapes of the patches 23 are consistent, it is beneficial to improve the symmetry of the first frequency selection surface 2 .
  • the first frequency selective surface 2 may include a single layer of metal patches 23, or may include at least two layers of metal patches 23. Specifically, the above metal patches 23 may be prepared according to actual requirements.
  • the above-mentioned metal patch 23 may be a flat metal patch 23, or may have a bent portion.
  • the metal patch 23 has a bent portion similar to origami. Specifically, the shape of the metal patch 23 and whether it is bent can be designed according to the frequency bandwidth of reflection and transmission of the first frequency selected surface 2 .
  • a metal patch 23 can be provided in each grid of the first frequency selection surface 2, thereby improving the filtering effect and signal uniformity of the first frequency selection surface 2.
  • the specific arrangement manner of the metal patch 23 is not limited in this application.
  • the above-mentioned metal patch 23 can be connected to the first strip structure 21, or to the second strip structure 22, or to Both the first strip-like structure 21 and the second strip-like structure 22 are connected.
  • the above-mentioned first frequency selection surface 2 may further include a dielectric layer, and the above-mentioned metal patch 23 is formed on the dielectric layer.
  • the first strip structure 21 and the second strip structure 22 can also be formed on the dielectric layer.
  • the metal patch 23 may not be connected to either the first strip structure 21 or the second strip structure 22 .
  • FIG. 15 is another schematic structural diagram of the first frequency selection surface in the embodiment of the present application
  • FIG. 16 is a schematic cross-sectional view of the first strip structure in the embodiment of the present application.
  • the above-mentioned first strip structure 21 has a groove 24 .
  • the above-mentioned groove 24 is U-shaped in cross section perpendicular to the extending direction of the first strip structure 21 .
  • the first structure 31 is disposed in the above-mentioned groove 24.
  • the first power dividing line 33 is disposed in the above-mentioned groove 24, or the first power dividing line 33 and the first sliding medium 34 are both disposed in the above-mentioned groove 24.
  • the groove 24 includes a first bottom wall 241 and a first side wall 242.
  • the above-mentioned first power dividing line 33 is disposed in the groove 24, so the two first side walls 242 of the groove 24 can be connected from the first The side of the power branch line 33 shields the signal, thereby reducing the leakage of the signal transmitted by the first power branch line 33 and improving the signal transmission efficiency.
  • the above-mentioned second strip-shaped structure 22 may also have a groove 24.
  • the above-mentioned groove 24 has a U-shaped cross section along the direction perpendicular to the extension direction of the second strip-shaped structure 22.
  • the second structure 32 may be disposed in the groove 24 , for example, the first power dividing line 33 is disposed in the groove 24 , or both the first power dividing line 33 and the first sliding medium 34 are disposed in the groove 24 Inside.
  • the groove 24 includes a first bottom wall 241 and a first side wall 242.
  • the first power dividing line 33 is disposed in the groove 24, and the first side wall 242 of the groove 24 can be connected from the first power dividing line 33.
  • 33 sideways shields the signal, thereby reducing the leakage of the signal transmitted by the first power branch line 33 to improve the signal transmission efficiency.
  • the entire extension direction of the above-mentioned first strip structure 21 can be the groove 24
  • the entire extension direction of the second strip structure 22 can be the groove 24
  • the first strip-shaped structure 21 can also have multiple grooves 24 along the extending direction
  • the second strip-shaped structure 22 can have multiple grooves 24 along the extending direction.
  • the overlapping area of the first strip structure 21 and the second strip structure 22 can be a flat structure, and the first strip structure 21 is between two adjacent second strip structures 22.
  • the area of the second strip-shaped structure 22 between the two adjacent first strip-shaped structures 21 is the groove 24 .
  • a part of the first power dividing line 33 can be arranged in the first strip structure 21 and the other part is arranged in the second strip structure 22 .
  • the first power dividing line 33 33 can be bent in the overlapping area of the first strip structure 21 and the second strip structure 22.
  • Figure 17 is another schematic cross-sectional view of the first strip structure in the embodiment of the present application.
  • the above-mentioned first strip structure 21 can also have a cavity 25.
  • the cavity 25 includes a second bottom wall 251, a top wall 252 and two second side walls 253.
  • the second bottom wall 251, a second side wall 253, the top wall 252 and the other second side wall 253 are connected in sequence to form the above-mentioned Cavity 25.
  • the first structure 31 is disposed in the cavity 25.
  • the first power dividing line 33 is disposed in the cavity 25, or both the first power dividing line 33 and the first sliding medium 34 are disposed in the cavity.
  • each wall of the cavity 25 can shield the signal, thereby further reducing the leakage of the signal transmitted by the first power branch line 33 and improving the signal transmission efficiency.
  • the above-mentioned second strip structure 22 may also have a cavity 25.
  • the cavity 25 also includes a second bottom wall 251, a top wall 252 and two second side walls 253.
  • the wall 251, a second side wall 253, the top wall 252 and the other second side wall 253 are connected in sequence to form the above-mentioned cavity 25.
  • the second structure 32 is disposed in the cavity 25.
  • the first power dividing line 33 is disposed in the cavity 25, or the first power dividing line 33 and the first sliding medium 34 are both disposed in the cavity.
  • each wall of the cavity 25 can shield the signal, thereby further reducing the leakage of the signal transmitted by the first power branch line 33 and improving the signal transmission efficiency.
  • the entire extending direction of the first strip-shaped structure 21 can be the cavity 25, and the entire extending direction of the second strip-shaped structure 22 can also be the cavity 25.
  • the first strip structure 21 can also have multiple cavities 25 along the extension direction
  • the second strip structure 22 can have multiple cavities 25 along the extension direction.
  • the first strip structure 21 has multiple cavities 25 along the extension direction.
  • the area where the strip-shaped structure 21 and the second strip-shaped structure 22 overlap may be a flat plate structure.
  • the area of the first strip-shaped structure 21 between the two adjacent second strip-shaped structures 22 is the cavity 25.
  • the area of the strip structure 22 between two adjacent first strip structures 21 is a cavity 25 .
  • the first power dividing line 33 and the first sliding medium 34 are arranged on the first frequency selection surface 2, there is no restriction on the arrangement method of the first power dividing line 33 and the first sliding medium 34, as long as The first power branching line 33 is provided on the first frequency selection surface 2 without damaging the signal reflection and transmission performance of the first frequency selection surface 2 .
  • the first power dividing line 33 and the first sliding medium 34 are disposed in the groove 24 .
  • the first power dividing line 33 is in the shape of a strip.
  • the surface of the larger side of the first power dividing line 33 can be arranged parallel to the bottom wall of the groove 24, and the first sliding medium 34 is arranged between the first power dividing line 33 and the bottom wall. between them, as shown in Figure 16.
  • the surface of the larger side of the first power dividing line 33 can be arranged parallel to the side wall of the groove 24 , and the first sliding medium 34 is arranged on the first power dividing line 33 and the first side wall 242, as shown in Figure 18.
  • the first structure 31 is disposed on the side of the first frequency selection surface 2 facing the first radiating unit 1 .
  • the first power dividing line 33 is provided on the side of the first frequency selection surface 2 facing the first radiating unit 1 , thereby facilitating the connection between the first radiating unit 1 and the first power dividing line 33 .
  • the first power dividing line 33 is disposed in the groove 24 , that is to say, the first strip structure 21 has the groove 24 .
  • the groove 24 can be located on the side of the first frequency selection surface 2 facing the first radiating unit 1 , or in other words, the opening of the groove 24 can be located on the side of the first frequency selecting surface 2 facing the first radiating unit 1 .
  • the second structure 32 is disposed on the side of the first frequency selection surface 2 facing the first radiating unit 1 .
  • the first power dividing line 33 is provided on the side of the first frequency selection surface 2 facing the first radiating unit 1 , thereby facilitating the connection between the first radiating unit 1 and the first power dividing line 33 .
  • the first power dividing line 33 is disposed in the groove 24 , that is to say, the second strip structure 22 has the groove 24 .
  • the groove 24 can be located on the side of the first frequency selection surface 2 facing the first radiating unit 1 , or in other words, the opening of the groove 24 can be located on the side of the first frequency selecting surface 2 facing the first radiating unit 1 .
  • Figure 19 is another partial structural diagram of the first antenna 110 in the embodiment of the present application.
  • the above-mentioned first structure 31 can also be disposed on the above-mentioned first frequency selection surface 2 The side facing away from the first radiating unit 1 .
  • the first power dividing line 33 is provided on the side of the first frequency selection surface 2 facing away from the first radiation unit 1 .
  • the first strip structure 21 has the groove 24 .
  • the groove 24 can be located on the side of the first frequency selection surface 2 away from the first radiating unit 1 , or in other words, the opening of the groove 24 can be located on the side of the first frequency selection surface 2 facing the first radiating unit 1 .
  • the above-mentioned second structure 32 is disposed on the side of the above-mentioned first frequency selection surface 2 facing away from the first radiating unit 1 .
  • the first power dividing line 33 is provided on the side of the first frequency selection surface 2 facing away from the first radiation unit 1 .
  • the second strip structure 22 has the groove 24 .
  • the groove 24 can be located on the side of the first frequency selection surface 2 facing away from the first radiating unit 1 , or in other words, the opening of the groove 24 can be located on the side of the first frequency selecting surface 2 facing away from the first radiating unit 1 .
  • Figure 20 is another schematic structural diagram of the first antenna 110 in the embodiment of the present application.
  • the above-mentioned first structure 31 can also be disposed on the first frequency selection surface 2 away from the first frequency selection surface 2.
  • One side of a radiating unit 1 and the first frequency selective surface 2 face the side of the first radiating unit 1 .
  • the first feed network 3 can be provided on both sides of the first frequency selection surface 2 .
  • the first clause Both sides of the structure 21 have grooves 24, so that the first power dividing line 33 and the first sliding medium 34 are disposed in the grooves 24 on both sides. This application will not elaborate on this.
  • This solution can increase the space for setting up the first feed network 3 when there are more first radiating units 1 connected to the first feed network 3, or not only the first feed network 3 but also the first feed network 3 can be set up on the first frequency selection surface 2
  • This solution can be adopted when there are other feed networks, that is, all feed networks are arranged on the first frequency selection surface 2 .
  • the above-mentioned second structure 32 can also be disposed on the side of the first frequency selection surface 2 away from the first radiating unit 1 and on the side of the first frequency selection surface 2 facing the first radiating unit 1 .
  • the arrangement method is the same as or similar to the above-mentioned first structure 31 and will not be described again here.
  • Figure 21 is another structural schematic diagram of the first antenna in the embodiment of the present application.
  • the first power dividing line 33 when the first power dividing line 33 is provided on both sides of the first frequency selection surface 2
  • the first power dividing lines 33 located on both sides of the first frequency selection surface 2 can be connected, so that the first power dividing lines 33 located on both sides of the first frequency selection surface 2 form an integral feed network.
  • structures such as conductive vias can also be used to realize the electrical connection of the first power dividing lines 33 located on both sides of the first frequency selection surface 2 .
  • Figure 22 is another schematic structural diagram of the first antenna in the embodiment of the present application.
  • the first antenna 110 may also include a second radiation unit 5 and a second feed network 6 , the second radiating unit 5 and the first radiating unit 1 are disposed on the same side of the first frequency selection surface 2 .
  • the above-mentioned second feed network 6 includes a third structure, which is also provided on the first frequency selective surface 2 .
  • the above-mentioned third structure includes a second power dividing line.
  • the above-mentioned second radiating unit 5 includes a second signal layer and a second ground layer.
  • the second signal layer of the second radiating unit 5 is electrically connected to the second power dividing line, thereby realizing the power feeding of the second radiating unit 5; the second radiating unit
  • the second ground layer of 5 is electrically connected to the first frequency selection surface 2, thereby realizing the grounding of the second radiating unit 5, and the second radiating unit 5 can also be fixedly connected to the first frequency selection surface 2.
  • the above-mentioned first frequency selection surface 2 can also be used to reflect the signal of the second radiation unit 5 , that is to say, the first frequency selection surface 2 is also equivalent to the reflection plate of the second radiation unit 5 .
  • the working frequency band of the above-mentioned first radiating unit 1 is different from the working frequency band of the second radiating unit 5, so the first antenna 110 in this embodiment is a multi-frequency antenna to achieve communication of signals in different frequency bands.
  • At least part of the structure of the above-mentioned second feed network 6 is also disposed on the first frequency selective surface 2. Therefore, there is no need to provide an additional cavity for carrying the above-mentioned second feed network 6. Therefore, even if the first antenna 110 is a multi-frequency antenna, the technical solution of the present application can simplify the structure of the first antenna, reduce the size of the first antenna, reduce the size of the antenna system, improve the antenna integration of the base station, and reduce the cost of the antenna system. of wind load.
  • the third structure can be specifically provided on the first strip-shaped structure 21 or the second strip-shaped structure 22 , or can be provided on the first strip-shaped structure 21 or the second strip-shaped structure 22 .
  • the structure and arrangement of the third structure are similar to the first structure 31 and the second structure 32 in the above embodiment, and will not be described again here.
  • Figure 23 is another structural schematic diagram of the first antenna in the embodiment of the present application.
  • the first antenna 110 when the first antenna 110 includes the first radiating unit 1 and the second radiating unit 5,
  • the first antenna 110 may further include a second frequency selection surface 7 , and the second frequency selection surface 7 is disposed on a side of the first frequency selection surface 2 away from the first radiating unit 1 . That is to say, the first antenna 110 includes two overlapping frequency selective surfaces, and the above-mentioned second frequency selective surface 7 is also used to reflect the signal of the first radiating unit 1 and the signal of the second radiating unit 5 .
  • the first frequency selection surface 2 and the second frequency selection surface 7 cooperate to jointly reflect the signals of the first radiating unit 1 and the second radiating unit 5, which is beneficial to improving the first frequency selection surface 2 and the second frequency selection.
  • the reflection bandwidth of surface 7 increases the working bandwidth of the entire first antenna and improves the communication efficiency of the first antenna.
  • the structure can be relatively simple, as long as it can reflect and transmit signals in different frequency bands.
  • Figure 24 is another schematic structural diagram of the first antenna in an embodiment of the present application.
  • the first antenna 110 may also include a third radiation unit 8 and a third frequency selection surface 9 and a third feed network 10.
  • the above-mentioned third radiating unit 8 and the first radiating unit 1 are disposed on the same side of the first frequency selection surface 2
  • the third frequency selection surface 9 is disposed on the side of the first frequency selection surface 2 away from the first radiating unit 1 .
  • the working frequency band of the above-mentioned first radiating unit 1 is different from the working frequency band of the third radiating unit 8, so the first antenna 110 in this embodiment is also a multi-frequency antenna and can transmit signals in different frequency bands.
  • the above-mentioned third feed network 10 includes a fourth structure, and the fourth structure is arranged on the third frequency selection surface 9.
  • the above-mentioned fourth structure includes a third power dividing line, and the third power dividing line is arranged on the third frequency selection surface 9.
  • the above-mentioned third radiating unit 8 includes a third signal layer and a third ground layer.
  • the third signal layer of the third radiating unit 8 is electrically connected to the third power dividing line, thereby realizing the power feeding of the third radiating unit 8; the third radiating unit 8
  • the third ground layer of 8 is electrically connected to the third frequency selection surface 9, thereby realizing the grounding of the third radiating unit 8, and the third radiating unit 8 can also be fixedly connected to the third frequency selection surface 9.
  • the above-mentioned third frequency selection surface 9 is used to reflect the signal of the first radiation unit 1 and the signal of the third radiation unit 8, and the first frequency selection surface 2 is used to reflect the signal of the first radiation unit 1 and the signal of the third radiation unit 8. .
  • the first frequency selection surface 2 and the third frequency selection surface 9 cooperate to jointly reflect the signals of the first radiating unit 1 and the third radiating unit 8, which is beneficial to improving the reflection of the first frequency selection surface 2 and the third frequency selection surface 9. bandwidth, improve the working bandwidth of the entire first antenna 110, and improve the communication efficiency of the first antenna 110.
  • the structure and arrangement of the above-mentioned fourth structure can be similar to the first structure 31 and the second structure 32 in the above-mentioned embodiment, which will not be discussed here. Let’s not elaborate.
  • the first feed network 3 is disposed on the first frequency selection surface 2
  • the third feed network 10 is disposed on the third frequency selection surface 9. This allows more space (or area) for disposing the feed network. , it can also reduce crosstalk between different power distribution lines and improve signal transmission efficiency.
  • the first frequency selection surface 2 has a through hole, and the third signal layer and the third ground layer of the third radiating unit 8 are arranged through the through hole, so that the third signal
  • the third ground layer may be electrically connected to the third power branch line located on the third frequency selection surface 9
  • the third ground layer may be electrically connected to the third frequency selection surface 9 .
  • the specific structures of the second frequency selection surface 7 and the third frequency selection surface 9 in the above embodiment can be the same as or similar to the first frequency selection surface 2. Of course, they can also be different. This application will not do this. limit. It is only necessary that the first frequency selection surface 2 , the second frequency selection surface 7 and the third frequency selection surface 9 can transmit the radiation signal of the second antenna 120 .
  • Figure 25 is another schematic structural diagram of the first antenna in the embodiment of the present application.
  • the first antenna 110 may also include a reflection plate 20, which can reflect all frequency bands.
  • the signal can be a metal plate.
  • the first frequency selective surface 2 and the reflective plate 20 included in the first antenna 110 are both used to reflect the radiation signal of the first antenna 110 .
  • a part of the radiating unit included in the first antenna 110 is disposed on the first frequency selection surface 2 , and the other part is disposed on the reflecting plate 20 .
  • the above-mentioned radiation unit may also include a second radiation unit 5 or a third radiation unit 8 .
  • part of the first power dividing lines 33 can also be provided on the reflective plate 20 , which is not limited in this application.
  • This solution can reduce the area of the first frequency selection surface 2 of the first antenna 110 and reduce the cost of the first antenna 110 .
  • the second antenna 120 is arranged opposite to the first frequency selection surface 2 , and the metal reflective plate does not block the second antenna 120 , thereby ensuring that the radiation signal of the second antenna 120 can be radiated through the first antenna 110 .
  • the above-mentioned reflection plate 20 and the first frequency selection surface 2 may be located on the same plane, or may be located on different surfaces, which is not limited in this application.
  • the plane where the second frequency selection surface 7 is located can also be provided with a reflective plate.
  • a reflective plate that is on the same plane as the second frequency selection surface 7 and a reflective plate that is on the same plane as the first frequency selection surface 2 can be arranged correspondingly.
  • the plane where the third frequency selection surface 9 is located may also be provided with a reflective plate.
  • a reflective plate that is on the same plane as the third frequency selection surface 9 and a reflective plate that is on the same plane as the first frequency selection surface 2 can be arranged correspondingly.
  • the first radiating unit 1 , the second radiating unit 5 and the third radiating unit 8 in any of the above embodiments may be active or passive, which is not limited in this application.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种天线系统及基站,该天线系统包括第一天线和第二天线。第一天线包括第一辐射单元、第一频率选择表面和第一馈电网络,第一辐射单元设置于第一频率选择表面的一侧,第二天线设置于第一频率选择表面背离第一辐射单元的一侧。第一频率选择表面包括多个第一条状结构和多个第二条状结构,第一条状结构和第二条状结构为金属条状结构,多个第一条状结构与多个第二条状结构相交形成多个网格。第一馈电网络包括第一结构,第一结构设置于第一条状结构。无需额外设置移相器腔体用于承载上述第一馈电网络,可以简化第一天线的结构,减小第一天线的体积,以提升第一天线的小型化程度,进而简化天线系统的结构,提升基站的安装天线的集成度。

Description

一种天线系统及基站
相关申请的交叉引用
本申请要求在2022年07月30日提交中国专利局、申请号为202210911464.2、申请名称为“一种天线系统及基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信设备技术领域,尤其涉及到一种天线系统及基站。
背景技术
随着无线通信技术的发展,基站能够支持的通信频段越来越多,例如,基站可能同时设置有2G(2nd-Generation wireless telephone technology,第二代手机通信技术)设备、3G(3rd-Generation mobile communication technology,第三代移动通信技术)设备、4G(4th Generation mobile communication technology,第四代移动通信技术)设备和5G(5th-Generation Mobile Communication Technology,第五代移动通信技术)设备。因此基站天线的结构越来越复杂,单个天面的天线集成度也越来越高。为了提升基站天线的集成度,基站天线小型化的需求越来越迫切。
发明内容
本申请提供了一种天线系统及基站,以简化天线系统的结构,提升基站安装天线的集成度。
第一方面,本申请提供了一种天线系统,该天线系统包括第一天线和第二天线。上述第一天线和第二天线叠置,第二天线设置于第一天线的背侧,也就是说第二天线设置于背离第一天线辐射信号的一侧。上述第一天线包括第一辐射单元、第一频率选择表面和第一馈电网络,第一辐射单元设置于第一频率选择表面的一侧,第二天线则设置于第一频率选择表面背离第一辐射单元的一侧。上述第一频率选择表面可以反射第一天线的辐射信号,透射第二天线的辐射信号,从而可以实现上述两个天线的叠置,以减小天线系统占用的天面空间。上述第一频率选择表面包括多个第一条状结构和多个第二条状结构,第一条状结构和第二条状结构为金属条状结构,多个第一条状结构与多个第二条状结构相交形成多个网格,从而形成第一频率选择表面。上述第一馈电网络包括第一结构,该第一结构设置于第一条状结构。由于第一馈电网络的第一结构设置于第一频率选择表面,无需额外设置移相器腔体用于承载上述第一馈电网络,因此,可以简化第一天线的结构,减小第一天线的体积,以提升第一天线的小型化程度,进而有利于减小天线系统的体积,提升基站的天线集成度。该方案也可以减小天线系统占用的天面空间,以降低天线系统的风载。此外,由于无需设置移相器腔体,第一天线对于第二天线无遮挡,因此对第二天线的尺寸也无限制,可以使第二天线的尺寸大于第一天线,丰富天线系统的应用场景。
另一种技术方案中,上述第一馈电网络还包括第二结构,第二结构设置于第二条状结构。也就是说,第一频率选择表面的第一条状结构和第二条状结构都可以用于设置第一频率选择表面。上述第一结构和第二结构可以使不同的结构,也可以是同一结构的不同部分,只不过是根据设置位置来进行区分的。
具体设置上述第一频率选择表面时,上述第一频率选择表面还包括金属贴片,该金属贴片设置于网格内。该方案中,通过设置金属贴片,可以提升第一频率选择表面反射信号的带宽,且可以提升第一频率选择表面的信号反射效率。
具体设置金属贴片时,可以使每个网格内均设置有金属贴片,从而提升第一频率选择表面的滤波效果以及信号均匀性。
上述第一条状结构可以具有凹槽,上述第一结构设置于凹槽内。上述凹槽可以屏蔽位于其内的第一结构的信号,减少信号泄漏,提升信号的传输效率。
相类似的,上述第二条状结构具有凹槽,第二结构设置于凹槽内。该凹槽可以屏蔽位于其内的第二结构的信号,减少信号泄漏,提升信号的传输效率。
另一种技术方案中,上述第一条状结构具有空腔,第一结构设置于空腔内。同样,上述空腔可以屏蔽位于其内的第一结构的信号,减少信号泄漏,提升信号的传输效率。
此外,上述第二条状结构也可以具有空腔,第二结构设置于空腔内。该空腔可以屏蔽位于其内的第二结构的信号,减少信号泄漏,提升信号的传输效率。
上述第一结构只要设置于第一频率选择表面即可,具体可以设置于第一频率选择表面朝向第一辐射单元的一侧;也可以设置于第一频率选择表面背离第一辐射单元的一侧;或者,还可以设置于第一频率选择表面的两侧,也就是说第一频率选择表面的两侧都可以设置第一结构。从而可以扩大设置第一馈电网络的面积,除了第一馈电网络以外,如果包括其它馈电网络,也可以设置于上述第一频率选择表面。
相类似的,第二结构也可以设置于第一频率选择表面朝向第一辐射单元的一侧;或者,设置于第一频率选择表面背离第一辐射单元的一侧;或者,还可以设置于第一频率选择表面的两侧,也就是说第一频率选择表面的两侧都可以设置第二结构。
具体的技术方案中,上述第一结构可以包括第一功分线,该第一功分线设置于第一条状结构。相类似的,第一馈电网络包括第二结构时,第二结构也可以包括第一功分线,该第一功分线设置于第二条状结构。上述第一功分线用于为第一辐射单元馈电,以实现第一辐射单元的信号传输能力。
此外,上述第一结构还可以包括第一滑动介质,该第一滑动介质滑动设置于第一功分线与第一条状结构之间。相类似的,第一馈电网络包括第二结构时,上述第二结构也可以包括第一滑动介质,该第一滑动介质滑动设置于第一功分线与第二条状结构之间。本申请实施例中,第一滑动介质与第一功分线可以实现第一辐射单元的移相,相当于移相器,可以丰富第一天线的功能。
另一种技术方案中,上述第一天线还包括第二辐射单元和第二馈电网络,上述第二辐射单元与第一辐射单元设置于第一频率选择表面的同一侧。上述第二馈电网络包括第三结构,第三结构设置于第一频率选择表面。相类似的,第三结构具体可以设置于第一条状结构或者第二条状结构,或者第一条状结构和第二条状结构都设置有上述第三结构。上述第一辐射单元的工作频段与第二辐射单元的工作频段不同。该方案中的第一天线为多频天线,可以实现多个频段的信号辐射。
进一步的技术方案中,上述第一天线还可以包括第二频率选择表面。该第二频率选择表面设置于第一频率选择表面背离第一辐射单元的一侧。该第二频率选择表面可以反射第一辐射单元和第二辐射单元的辐射信号,且可以透射第二天线的辐射信号。该方案中,第一频率选择表面与第二频率选择表面配合,可以提升第一频率选择表面和第二频率选择表面的反射的带宽,提升整个第一天线的工作带宽,提升第一天线的通信效率。
再一种技术方案中,上述第一天线还可以包括第三辐射单元、第三频率选择表面和第三馈电网络。第一辐射单元的工作频段与第三辐射单元的工作频段不同,从而第一天线为多频天线。上述第三辐射单元与第一辐射单元设置于第一频率选择表面的同一侧,且第三频率选择表面设置于第一频率选择表面背离第一辐射单元的一侧。该第三频率选择表面可以反射第一辐射单元和第三辐射单元的辐射信号,且可以透射第二天线的辐射信号。该方案也可以提升第一频率选择表面和第三频率选择表面的反射的带宽,提升整个第一天线的工作带宽,提升第一天线的通信效率。上述第三馈电网络包括第四结构,该第四结构设置于第三频率选择表面。
此外,上述第一天线还包括反射板,该反射板用于反射第一辐射单元的辐射信号。该反射板可以反射全部频段的信号,具体可以为金属板。该方案可以减小第一天线的第一频率选择表面的面积,降低第一天线的成本。
具体的技术方案中,上述第一天线为无源天线,第二天线为有源天线。该方案可以充分利用基站的天面空间,以提升基站的天线集成度。
上述第一天线和第二天线可以为两个独立的天线,具体的,上述第一天线包括第一天线罩,第二天线包括第二天线罩,第一天线罩和第二天线罩具有相互独立的内腔。从而使得天线系统较为灵活,可以根据需求更换第一天线或者第二天线。
或者,上述第一天线和第二天线还可以集成为一体,具体的,天线系统还包括第三天线罩,上述第一天线和第二天线设置于该第三天线罩的内腔。从而提升天线系统的集成度。
第二方面,本申请还提供了一种基站,该基站包括安装架和上述第一方面的天线系统,上述天线系统安装于安装架。该基站可以集成更多的天线,从而可以提升基站的天线集成度。
附图说明
图1为本申请实施例适用的一种系统架构示意图;
图2为本申请实施例中基站的一种结构示意图;
图3为本申请实施例中的天线的一种局部结构示意图;
图4为本申请实施例中天线系统的一种侧向结构示意图;
图5为本申请实施例中第一天线的一种局部结构示意图;
图6为本申请实施例中第一天线的一种局部放大结构示意图;
图7为本申请实施例中第一天线的另一种局部放大结构示意图;
图8为本申请实施例中基站的另一种结构示意图;
图9为本申请实施例中基站的另一种结构示意图;
图10为本申请实施例中基站的另一种结构示意图;
图11为本申请实施例中基站的另一种结构示意图;
图12为本申请实施例中第一频率选择表面的一种结构示意图;
图13为本申请实施例中第一天线的一种俯视结构示意;
图14为本申请实施例中第一频率选择表面的一种结构示意图;
图15为本申请实施例中第一频率选择表面的另一种结构示意图;
图16为本申请实施例中第一条状结构的一种截面示意图;
图17为本申请实施例中第一条状结构的另一种截面示意图;
图18为本申请实施例中第一条状结构的另一种截面示意图;
图19为本申请实施例中第一天线的另一种局部结构示意图;
图20为本申请实施例中第一天线的另一种结构示意图;
图21为本申请实施例中第一天线的另一种结构示意图;
图22为本申请实施例中第一天线的另一种结构示意图;
图23为本申请实施例中第一天线的另一种结构示意图;
图24为本申请实施例中第一天线的另一种结构示意图;
图25为本申请实施例中第一天线的另一种俯视结构示意图。
附图标记:
01-天线;                            011-天线罩;
012-辐射单元;                       013-反射板;
014-馈电网络;                       0141-传动部件;
0142-校准网络;                      0143-移相器;
0144-合路器;                        0145-滤波器;
02-安装架;                          03-射频拉远单元;
04-基带处理单元;                    05-电缆线;
100-天线系统;                       110-第一天线;
111-第一天线罩;                     120-第二天线;
121-散热器;                         122-第二天线罩;
130-第三天线罩;                     1-第一辐射单元;
11-第一信号层;                      12-第一地层;
13-辐射臂;                          14-介质板;
2-第一频率选择表面;                 21-第一条状结构;
22-第二条状结构;                    23-金属贴片;
24-凹槽;                            241-第一底壁;
242-第一侧壁;                       25-空腔;
251-第二底壁;                       252-顶壁;
253-第二侧壁;                       26-探针;
3-第一馈电网络;                     31-第一结构;
32-第二结构;                        33-第一功分线;
34-第一滑动介质;                    4-引向片;
5-第二辐射单元;                     6-第二馈电网络;
7-第二频率选择表面;                 8-第三辐射单元;
9-第三频率选择表面;                 10-第三馈电网络;
20-反射板;                          X-第一方向;
Y-第二方向;                         a-第一距离;
b-第二距离。
具体实施方式
为了方便理解本申请实施例提供的通信装置及基站,下面介绍一下其应用场景。图1为本申请实施例适用的一种系统架构示意图,如图1所示,该应用场景可以包括基站和终端。基站和终端之间可以实现无线通信。该基站亦可以称为接入网设备,可以位于基站子系统(base btation bubsystem,BBS)、陆地无线接入网(UMTS terrestrial radio access network,UTRAN)或者演进的陆地无线接入网(evolved universal terrestrial radio access,E-UTRAN)中,用于进行信号的小区覆盖以实现终端设备与无线网络之间的通信。具体来说,基站可以是全球移动通信系统(global system for mobile comunication,GSM)或(code division multiple access,CDMA)系统中的基地收发台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的节点B(NodeB,NB),还可以是长期演进(long term evolution,LTE)系统中的演进型节点B(evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。或者该基站也可以为中继站、接入点、车载设备、可穿戴设备以及新无线(new radio,NR)系统中的g节点(gNodeB或者gNB)或者未来演进的网络中的接入网设备等,本申请实施例并不限定。
基站配备有天线来实现信号在空间中的传输。图2为本申请实施例中基站的一种可能的结构示意图,如图2所示,基站通常可以包括天线01和安装架02等结构。其中,天线01安装于安装架02上,以便于天线01信号的接收或者发射。具体的,上述安装架02可以为抱杆或者铁塔等。图2仅仅示例了基站可能包括的组件,以及各个组件的一种位置关系。在其它实施例中,基站还可能包括其它的组件,或者组件的位置关系与图2所示不同。
另外,基站还可以包括射频拉远单元03和基带处理单元04。如图2所示,基带处理单元04可通过射频拉远单元03与天线01连接。基带处理单元04可通过射频拉远单元03与天线01的馈电网络连接。在一些实施方式中,射频拉远单元03又可称为射频拉远单元(remote radio unit,RRU),基带处理单元04又可称为基带单元(baseband unit,BBU)。
在一种可能的实施例中,如图2所示,射频拉远单元03和基带处理单元04还可以同时位于天线01的远端。射频拉远单元03与基带处理单元04可以通过电缆线05连接。需要说明的是,图2只是射频拉远单元03与天线01的位置关系的一个示例。
更为具体地,可一并参照图2和图3,图3为本申请一种可能的实施例的天线的组成示意图。其中,如图3所示,天线01可以包括天线罩011、辐射单元012、反射板013和馈电网络014。上述天线罩011在电气性能上具有良好的电磁波穿透特性,机械性能上能经受外部恶劣环境的影响,从而可起到保护天线01免受外部环境影响的作用。上述辐射单元012也可以称为天线振子、振子等,它能有效地发送或接收天线信号。在天线01中,不同辐射单元012的频率可以相同或者不同。反射板013也可以称为底板、天线面板或者反射面等,其可以是金属材质。天线01接收信号时,反射板013可以把天线01的信号反射聚集在接收点上。辐射单元012通常放置于反射板013一侧,这不但可以大大增强天线01信号的接收或发射能力,还能够起到阻挡、屏蔽来自反射板013背面(本申请中反射板013的背面是指与反射板013用于设置辐射单元012相背的一侧)的干扰信号。
请继续参考图3,在基站中,辐射单元012与馈电网络014相连接。馈电网络014通常由受控的阻抗传输线构成,馈电网络014可把信号按照一定的幅度、相位馈送到辐射单元012,或者将接收到的信号按照一定的幅度、相位发送到基站的基带处理单元04。具体地,在一些实施方式中,馈电网络014可以通过传动部件0141实现不同辐射波束指向,或者与校准网络0142连接以获取系统所需的校准信号。在馈电网络014中可以包括移相器0143,以用来改变天线信号辐射的最大方向。在馈电网络014中还可能设置一些用于扩展性能的模块,例如合路器0144,可用于把不同频率的信号合成一路,通过辐射单元012发射;或者反向使用时,可以用于将辐射单元012接收到的信号,根据不同的频率分成多路传输到基带处理单元04进行处理,又例如滤波器0145,用于滤除干扰信号。
为方便理解,首先说明一下,频率选择表面(Frequency Selective Surface,简称FSS)是一种二维周期阵列结构,本质是一个空间滤波器,与电磁波相互作用表现出明显的带通或带阻的滤波特性。频率选择表面可对不同频率的波进行透射或者反射,从而具有特定的频率选择作用。
图4为本申请实施例中天线系统的一种侧向结构示意图,请参考图4,一种实施例中,天线系统100包括第一天线110和第二天线120。具体的实施例中,上述第一天线110和第二天线120层叠设置,第二天线120设置于第一天线110的背侧。上述第一天线110的背侧指的是背离第一天线110辐射信号的一侧。该方案有利于减小天线系统100占用的空间,提升基站的天线集成度。上述第一天线110包括第一辐射单元1、第一频率选择表面2和第一馈电网络3。上述第一辐射单元1设置于第一频率选择表面2的一侧,第一频率选择表面2用于反射第一辐射单元1的信号,相当于第一天线的反射板。上述第二天线120设置于第一频率选择表面2背离第一辐射单元1的一侧。
具体的实施例中,上述第一天线110可以为无源天线,从而对第二天线120的信号无屏蔽效果,可以保证第二天线120的通信效果。对于第二天线120,可以为有源天线,也可以为无源天线,本申请对此不做限制。
图4所示的实施例中,上述第一天线110为无源天线,第二天线120为有源天线。具体的,由于有源天线的发热量较高,因此,上述有源天线还可以设置散热器121,用于为有源天线散热。由于天线层叠设置时,有源天线只能设置在后方(更靠近安装架的一侧),而不能设置于前方。因此,该方案可以充分利用基站的天面空间,以提升基站的天线集成度。
具体的实施例中,可以使第二天线120的工作频段小于第一天线110的工作频段,以使得第一频率选择表面2可以反射第一天线110的工作频段的信号,透射第二天线120的工作频段的信号。
图5为本申请实施例中第一天线的一种局部结构示意图,请参考图4和图5,上述第一频率选择表面2为金属材质制备的第一频率选择表面2,第一频率选择表面2包括多个第一条状结构21,以及多个第二条状结构22。多个第一条状结构21与多个第二条状结构22形成多个网格。上述第一条状结构21和第二条状结构22交叠的区域可以共用,例如图5所示的实施例中,第一条状结构21和第二条状结构22交叉的正方形区域,该正方形区域即为共用的交叠区域,也就是说,该正方形区域既属于第一条状结构21,又属于第二条状结构22。第一馈电网络3包括第一结构31,该第一结构31设置于上述第一条状结构21。本申请实施例中,第一馈电网络3的第一结构31设置于第一频率选择表面2,无需额外设置移相器腔体用于承载上述第一馈电网络3,因此,可以简化第一天线的结构,减小第一天线的体积,进而减小天线系统的体积,提升天线系统的小型化程度,有利于提升基站的天线集成度。该方案也可以减小天线系统占用的天面空间,以降低天线系统的风载。此外,由于无需设置移相器腔体,第一天线110对于第二天线120无遮挡,因此,对第二天线120的尺寸也无限制,可以使第二天线120的尺寸大于第一天线110,丰富天线系统100的应用场景。
图5所示的实施例中,第一辐射单元1位于介质板14,具体的,第一辐射单元1可以为双极化辐射单元,也就是说包括两个极化的辐射臂13。其中,一个极化的辐射臂13形成于介质板14的一侧表面(如图5所示),另一个极化的辐射臂13形成于介质板14的另一侧表面(图中未示出)。
如图4和图5所示的实施例中,上述第一天线110还可以包括引向片4,该引向片4位于第一辐射单元1背离第一频率选择表面2的一侧。用于改善第一辐射单元1的电气性能指标,例如散射(scatter,S)参数、水平波瓣宽度(horizontal beam width,HBW)等辐射指标。
请继续参考图5,具体的实施例中,上述第一馈电网络3还可以包括第二结构32,该第二结构32设置于第二条状结构22。也就是说,可以在第一条状结构21或者第二条状结构22设置第一馈电网络3,也可以在第一条状结构21和第二条状结构22都设置第一馈电网络3,具体根据需求设计即可。本申请实施例中,将第一馈电网络3的至少部分结构设置于第一条状结构21或者第二条状结构22,则第一馈电网络3不会破坏第一频率选择表面2的结构,以保证第一频率选择表面2可以反射第一辐射单元1的辐射信号,透射第二天线120的辐射信号。具体的,上述第二天线120也包括辐射单元和反射板,上述辐射信号由辐射单元辐射。由于本申请对第二天线120的具体结构不做限制,因此,在此也不作详述。
图6为本申请实施例中第一天线的一种局部放大结构示意图,图7为本申请实施例中第一天线的另一种局部放大结构示意图。请参考图4~图7,具体的实施例中,上述第一结构31可以包括第一功分线33,则该第一功分线33设置于第一条状结构21。上述第二结构32也可以包括第一功分线33,且第一结构31和第二结构32可以为同一根第一功分线33,本申请对此不做限制。换个角度理解,第一结构31指的是第 一馈电网络3设置于第一条状结构21的部分,第二结构32指的是第一馈电网络3设置于第二条状结构22的部分,两者可以为同一结构,甚至,第一结构31和第二结构32可以为一体结构,只不过分布于第一频率选择表面2的不同位置。
具体可以使第一频率选择表面2设置有绝缘结构(图中未示出),上述第一功分线33设置于绝缘结构,从而使得第一功分线33与第一频率选择表面2绝缘。上述第一辐射单元1包括第一信号层11和第一地层12。第一信号层11与上述第一功分线33电连接,从而实现第一辐射单元1的馈电。第一地层12与上述第一频率选择表面2电连接,以实现第一辐射单元1的接地,还可以使第一辐射单元1固定连接于第一频率选择表面2。
具体的实施例中,本申请实施例中的第一功分线33可以为微带线,从而便于制备第一功分线33,且占用空间较少。
请继续参考图4~图7,具体的实施例中,一种实施例中,第一结构31还可以包括多个第一滑动介质34。该第一滑动介质34滑动设置于第一功分线33与第一条状结构21之间,用于调节与第一功分线33电连接的第一辐射单元1的相位,从而实现第一馈电网络3的移相功能。具体的,可以认为第一频率选择表面2为第一功分线33的参考地,则第一滑动介质34设置于第一功分线33与第一频率选择表面2之间,则可以认为上述第一功分线33和第一滑动介质34相当于第一馈电网络3中的移相器。本实施例中,可以使得第一天线具有移相的功能,且第一滑动介质34的设置也无需利用额外的结构,直接利用第一频率选择表面2就可以设置上述第一滑动介质34。同样有利于减小第一天线的体积,减小天线系统的体积,提升基站的天线集成度,降低天线系统的风载。
相类似的,第二结构32可以包括多个第一滑动介质34,该第一滑动介质34设置于第一功分线33与第二条状结构22之间,用于调节与第一功分线33电连接的第一辐射单元1的相位,从而实现第一馈电网络3的移相功能。此处不进行赘述。
图8为本申请实施例中基站的另一种结构示意图,图8示出了上述天线系统100应用于基站的场景,图8所示实施例中的天线系统100相当于图2所示实施例中的天线01。上述第二天线120设置于第一天线110朝向安装架02的一侧。本申请实施例中,第一频率选择表面2可以用于反射第一辐射单元1的辐射信号,且透射第二天线120的辐射信号。由于第一天线110无需设置移相器腔体等结构,且第一频率选择表面2可以透射第二天线120的辐射信号,也就是说,第一频率选择表面2可以透射第二天线120的工作频段的电磁波。因此,第一天线110对于第二天线120的信号无干扰,则对于第二天线120的尺寸限制较小,可以根据实际需求设置第二天线120,可以第二天线120完全设置于第一天线110的背侧,第二天线120占用的天面空间小于第一天线110占用的天面空间,如图8所示;或者,图9为本申请实施例中基站的另一种结构示意图,如图9所示,另一种实施例中,还可以使第二天线120占用的天面空间与第一天线110占用的天面空间较为接近;或者,图10为本申请实施例中基站的另一种结构示意图,如图10所示,另一种实施例中,还可以使第二天线120占用的天面空间大于第一天线110占用的天面空间。该方案有利于丰富天线系统100的应用场景,不必受设置在前端的第一天线的尺寸限制。
图8~图10所示的实施例中,上述第一天线110包括第一天线罩111,第二天线120包括第二天线罩122。且第一天线罩111和第二天线罩122具有相互独立的内腔,使得第一天线110和第二天线120相互独立和解耦。该方案有利于提升天线系统100设置的灵活性,根据需求更换第一天线110或者第二天线120,也有利于分别维护第一天线110和第二天线120。
图11为本申请实施例中基站的另一种结构示意图,如图11所示,另一种实施例中,还可以使天线系统100包括第三天线罩130,上述第一天线110和第二天线120都设置于第三天线罩130的内腔。该实施例中,第一天线110和第二天线120设置于同一个天线罩内,也就是说,第一天线110和第二天线120集成为一个整体,该方案有利于提升天线系统100的整体性,以便于安装和拆卸。
图12为本申请实施例中第一频率选择表面的一种结构示意图,如图12所示,具体设置第一频率选择表面2的第一条状结构21和第二条状结构22时,相邻的第一条状结构21之间间隔第一距离a,相邻的第二条状结构22之间间隔第二距离b。上述第一距离a和第二距离b可以相等,也就是说,第一频率选择表面2的网格为正方形网格。因此,本申请实施例中的第一频率选择表面2的对称性较好,从而有利于提升第一频率选择表面2的对于信号的反射效果也较为均匀。此外,如果第一频率选择表面2背离第一辐射单元1的一侧设置有其它辐射单元时,第一频率选择表面2透射上述其它辐射单元的信号的效果也较为均匀。在其它实施例中,上述第一距离a和第二距离b也可以不等,本申请不做详述。
图13为本申请实施例中第一天线110的一种俯视结构示意,如图13所示,一种实施例中,第一频率选择表面2的第一条状结构21沿第一方向X延伸,第二条状结构22沿第二方向Y延伸。上述第一方向X和第二方向Y可以与第一辐射单元1的排列方向一致。例如,上述第一辐射单元1排列成辐射单元阵列,该辐射单元阵列的延伸方向与第一方向X一致;第一天线110还可以包括多个辐射单元阵列,则相邻的辐射单元阵列中的第一辐射单元1沿第二方向Y排布。或者说,第一天线110包括多个第一辐射单元1,多个第一辐射单元1分别沿第一方向X排列和第二方向Y排列。该方案可以使设置于第一条状结构21或第二条状结构22的第一功分线33的延伸方向与第一辐射单元1的排列方向一致,便于进行布线。具体的实施例中,上述第一辐射单元1按照矩阵排布,可以使上述第一方向X与第二方向Y垂直。当然,在其它实施例中,也可以使第一方向X与第二方向Y不垂直。
图14为本申请实施例中第一频率选择表面的一种结构示意图,如图12和图14所示,进一步的实施例中,上述第一频率选择表面2还包括金属贴片23,该金属贴片23设置于上述网格内。该实施例中,通过设置金属贴片23,可以提升第一频率选择表面2反射信号的带宽,且可以提升第一频率选择表面2的信号反射效率。
本申请实施例中,金属贴片23的形状和形态不做限制,例如,一种实施例中,上述金属贴片23可以为片状的实心结构,如图12所示;或者,另一种实施例中,上述金属贴片23还可以为中空的框结构,如图14所示。再或者,上述金属贴片23可以包括多个子结构,如图6和图7所示,每个网格内的金属贴片23包括四个子结构,且四个子结构对称设置于网格内。
不同网格内的金属贴片23的形状可以相同也可以不同,具体的实施例中,当不同网格内的金属贴片23的形状相同时,可以使得第一频率选择表面2包括的所有金属贴片23的形状一致,则有利于提升第一频率选择表面2的对称性。
第一频率选择表面2中可以包括单层的金属贴片23,也可以包括至少两层金属贴片23,具体可以根据实际需求来制备上述金属贴片23。
上述金属贴片23可以为平面的金属贴片23,也可以就有弯折部分。金属贴片23具有弯折部分类似于折纸。具体可以根据第一频率选择表面2反射和透射的频率带宽来设计金属贴片23的形状以及是否弯折等。
具体的实施例中,可以使第一频率选择表面2的每个网格内均设置有金属贴片23,从而提升第一频率选择表面2的滤波效果以及信号均匀性。
不同的实施例中,金属贴片23的具体设置方式本申请不做限制,例如,上述金属贴片23具体可以与第一条状结构21连接,或者与第二条状结构22连接,或者与第一条状结构21和第二条状结构22都有连接。
上述第一频率选择表面2还可以包括介质层,上述金属贴片23形成于该介质层。当然,上述第一条状结构21和第二条状结构22也可以形成于上述介质层。该实施例中,金属贴片23还可以与第一条状结构21和第二条状结构22均不连接。
图15为本申请实施例中第一频率选择表面的另一种结构示意图,图16为本申请实施例中第一条状结构的一种截面示意图。请结合图4、图15和图16,一种具体的实施例中,上述第一条状结构21具有凹槽24。具体的,上述凹槽24沿垂直于第一条状结构21延伸方向的截面为U形。第一结构31设置于上述凹槽24内,例如,第一功分线33设置于上述凹槽24内,或者第一功分线33和第一滑动介质34都设置于上述凹槽24内。该方案中,凹槽24包括第一底壁241和第一侧壁242,上述第一功分线33设置于凹槽24内,则凹槽24的两个第一侧壁242可以从第一功分线33的侧向屏蔽信号,从而减少第一功分线33传输的信号的泄漏,以提升信号的传输效率。
此外,相类似的,上述第二条状结构22也可以具有凹槽24,具体的,上述凹槽24沿垂直于第二条状结构22延伸方向的截面为U形。第二结构32可以设置于上述凹槽24内,例如,上述第一功分线33设置于该凹槽24内,或者第一功分线33和第一滑动介质34都设置于上述凹槽24内。同样,该凹槽24包括第一底壁241和第一侧壁242,上述第一功分线33设置于凹槽24内,则凹槽24的第一侧壁242可以从第一功分线33的侧向屏蔽信号,从而减少第一功分线33传输的信号的泄漏,以提升信号的传输效率。
具体的实施例中,如图15所示,可以使上述第一条状结构21整个延伸方向均为凹槽24,第二条状结构22整个延伸方向均为凹槽24。或者,另一种具体的实施例中,如图5~图7所示,还可以使得第一条状结构21沿延伸方向具有多个凹槽24,第二条状结构22沿延伸方向具有多个凹槽24,具体的,第一条状结构21和第二条状结构22交叠的区域可以为平板结构,第一条状结构21在相邻的两个第二条状结构22之间 的区域为凹槽24,第二条状结构22在相邻的两个第一条状结构21之间的区域为凹槽24。图5~图7所示的实施例中,可以使第一功分线33的一部分设置于第一条状结构21,另一部分设置于第二条状结构22,具体的,第一功分线33可以在第一条状结构21与第二条状结构22交叠区域进行弯折。
图17为本申请实施例中第一条状结构的另一种截面示意图,如图17所示,另一种实施例中,还可以使上述第一条状结构21具有空腔25,该空腔25包括第二底壁251、顶壁252和两个第二侧壁253,上述第二底壁251、一个第二侧壁253、顶壁252和另一个第二侧壁253依次连接形成上述空腔25。第一结构31设置于上述空腔25内,例如,上述第一功分线33设置于上述空腔25内,或者,上述第一功分线33和第一滑动介质34都设置于上述空腔25内。则上述空腔25的各个壁可以屏蔽信号,从而进一步的减少第一功分线33传输的信号的泄漏,以提升信号的传输效率。
此外,相类似的,上述第二条状结构22也可以具有空腔25,同样,该空腔25也包括第二底壁251、顶壁252和两个第二侧壁253,上述第二底壁251、一个第二侧壁253、顶壁252和另一个第二侧壁253依次连接形成上述空腔25。第二结构32设置于上述空腔25内,例如,上述第一功分线33设置于上述空腔25内,或者,上述第一功分线33和第一滑动介质34都设置于上述空腔25内。则上述空腔25的各个壁可以屏蔽信号,从而进一步的减少第一功分线33传输的信号的泄漏,以提升信号的传输效率。
同样,具体的实施例中,可以使上述第一条状结构21整个延伸方向均为空腔25,第二条状结构22整个延伸方向也均为空腔25。或者,另一种具体的实施例中,还可以使得第一条状结构21沿延伸方向具有多个空腔25,第二条状结构22沿延伸方向具有多个空腔25,具体的,第一条状结构21和第二条状结构22交叠的区域可以为平板结构,第一条状结构21在相邻的两个第二条状结构22之间的区域为空腔25,第二条状结构22在相邻的两个第一条状结构21之间的区域为空腔25。
具体的实施例中,在第一频率选择表面2设置第一功分线33和第一滑动介质34时,第一功分线33和第一滑动介质34的设置方式不做限制,只需使第一功分线33设置于第一频率选择表面2,且不会破坏第一频率选择表面2对于信号的反射和透射性能即可。以第一条状结构21具有凹槽24为例,第一功分线33和第一滑动介质34设置于上述凹槽24。具体的,上述第一功分线33为带状。则一种实施例中,可以使第一功分线33面积较大的一侧的表面与凹槽24的底壁平行设置,且第一滑动介质34设置于第一功分线33与底壁之间,如图16所示。或者,另一种实施例中,还可以使第一功分线33面积较大的一侧的表面与凹槽24的侧壁平行设置,且第一滑动介质34设置于第一功分线33与第一侧壁242之间,如图18所示。
图15所示的实施例中,上述第一结构31设置于上述第一频率选择表面2朝向第一辐射单元1的一侧。例如,第一功分线33设置于第一频率选择表面2朝向第一辐射单元1的一侧,从而便于实现第一辐射单元1与第一功分线33的连接。此时,若第一功分线33设置于凹槽24内,也就是说,第一条状结构21具有凹槽24。则可以使凹槽24位于第一频率选择表面2朝向第一辐射单元1的一侧,或者说,使凹槽24的开口位于第一频率选择表面2朝向第一辐射单元1的一侧。
或者,上述第二结构32设置于上述第一频率选择表面2朝向第一辐射单元1的一侧。例如,第一功分线33设置于第一频率选择表面2朝向第一辐射单元1的一侧,从而便于实现第一辐射单元1与第一功分线33的连接。此时,若第一功分线33设置于凹槽24内,也就是说,第二条状结构22具有凹槽24。则可以使凹槽24位于第一频率选择表面2朝向第一辐射单元1的一侧,或者说,使凹槽24的开口位于第一频率选择表面2朝向第一辐射单元1的一侧。
图19为本申请实施例中第一天线110的另一种局部结构示意图,如图19所示,另一种实施例中,还可以使上述第一结构31设置于上述第一频率选择表面2背离第一辐射单元1的一侧。例如,第一功分线33设置于第一频率选择表面2背离第一辐射单元1的一侧。同样,若第一功分线33设置于凹槽24内,也就是说,第一条状结构21具有凹槽24。则可以使凹槽24位于第一频率选择表面2背离第一辐射单元1的一侧,或者说,使凹槽24的开口位于第一频率选择表面2朝向第一辐射单元1的一侧。
或者,上述第二结构32设置于上述第一频率选择表面2背离第一辐射单元1的一侧。例如,第一功分线33设置于第一频率选择表面2背离第一辐射单元1的一侧。此时,若第一功分线33设置于凹槽24内,也就是说,第二条状结构22具有凹槽24。则可以使凹槽24位于第一频率选择表面2背离第一辐射单元1的一侧,或者说,使凹槽24的开口位于第一频率选择表面2背离第一辐射单元1的一侧。
图20为本申请实施例中第一天线110的另一种结构示意图,如图20所示,再一种实施例中,还可以使上述第一结构31设置于第一频率选择表面2背离第一辐射单元1的一侧和第一频率选择表面2朝向第一辐射单元1的一侧。也就是说,第一频率选择表面2的两侧都可以设置第一馈电网络3。例如,第一条状 结构21的两侧都具有凹槽24,使得第一功分线33和第一滑动介质34设置于两侧的凹槽24内。本申请对此不做详述。该方案可以增加设置第一馈电网络3的空间,当第一馈电网络3连接的第一辐射单元1较多,或者在第一频率选择表面2不仅仅设置第一馈电网络3还设置有其它馈电网络时,都可以采用此方案,也就是将全部的馈电网络都设置于第一频率选择表面2。
或者,也可以使上述第二结构32设置于第一频率选择表面2背离第一辐射单元1的一侧、和第一频率选择表面2朝向第一辐射单元1的一侧。与上述第一结构31的设置方式相同或类似,此处不进行赘述。
图21为本申请实施例中第一天线的另一种结构示意图,如图21所示,再一种实施例中,当第一频率选择表面2的两侧都设置有第一功分线33时,可以利用探针26连接位于第一频率选择表面2两侧的第一功分线33,使得位于第一频率选择表面2两侧的第一功分线33形成一个整体的馈电网络。另一种实施例中,还可以利用导电通孔等结构实现位于第一频率选择表面2两侧的第一功分线33的电连接。
图22为本申请实施例中第一天线的另一种结构示意图,如图22所示,另一种实施例中,第一天线110还可以包括第二辐射单元5和第二馈电网络6,该第二辐射单元5与第一辐射单元1设置于第一频率选择表面2的同一侧。上述第二馈电网络6包括第三结构,该第三结构也设置于第一频率选择表面2。例如,上述第三结构包括第二功分线。上述第二辐射单元5包括第二信号层和第二地层,第二辐射单元5的第二信号层与第二功分线电连接,从而实现第二辐射单元5的馈电;第二辐射单元5的第二地层与第一频率选择表面2电连接,从而实现第二辐射单元5的接地,还可以使第二辐射单元5固定连接于上述第一频率选择表面2。上述第一频率选择表面2还可以用于反射第二辐射单元5的信号,也就是说,第一频率选择表面2还相当于第二辐射单元5的反射板。上述第一辐射单元1的工作频段与第二辐射单元5工作频段不同,则该实施例中的第一天线110为多频天线,以实现不同频段的信号的通信。上述第二馈电网络6的至少部分结构也设置于第一频率选择表面2,因此,也无需额外设置腔体用于承载上述第二馈电网络6。因此,即使第一天线110为多频天线,本申请技术方案也可以简化第一天线的结构,减小第一天线的体积,减小天线系统的体积,提升基站的天线集成度,降低天线系统的风载。
相类似的,该第三结构具体可以设置于第一条状结构21,也可以设置于第二条状结构22,或者,可以设置于第一条状结构21或者第二条状结构22。该第三结构的结构和设置方式都类似于上述实施例中的第一结构31和第二结构32,此处不进行赘述。
图23为本申请实施例中第一天线的另一种结构示意图,如图23所示,另一种实施例中,当第一天线110包括第一辐射单元1和第二辐射单元5,为多频天线时,第一天线110还可以包括第二频率选择表面7,上述第二频率选择表面7设置于第一频率选择表面2背离第一辐射单元1的一侧。也就是说,该第一天线110包括两个叠置的频率选择表面,上述第二频率选择表面7也用于反射第一辐射单元1的信号和第二辐射单元5的信号。该实施例中,第一频率选择表面2与第二频率选择表面7配合,共同反射第一辐射单元1和第二辐射单元5的信号,有利于提升第一频率选择表面2和第二频率选择表面7的反射的带宽,提升整个第一天线的工作带宽,提升第一天线的通信效率。
该实施例中,由于第二频率选择表面7无需设置馈电网络,因此,结构可以相对简单一些,只要能够反射和透射不同频段的信号即可。
图24为本申请实施例中第一天线的另一种结构示意图,如图24所示,另一种实施例中,第一天线110还可以包括第三辐射单元8、第三频率选择表面9和第三馈电网络10。上述第三辐射单元8与第一辐射单元1设置于第一频率选择表面2的同一侧,第三频率选择表面9设置于第一频率选择表面2背离第一辐射单元1的一侧。上述第一辐射单元1的工作频段与第三辐射单元8的工作频段不同,则该实施例中的第一天线110也为多频天线,可以传输不同频段的信号。上述第三馈电网络10包括第四结构,该第四结构设置于第三频率选择表面9,例如,上述第四结构包括第三功分线,该第三功分线设置于第三频率选择表面9。上述第三辐射单元8包括第三信号层和第三地层,第三辐射单元8的第三信号层与第三功分线电连接,从而实现第三辐射单元8的馈电;第三辐射单元8的第三地层与第三频率选择表面9电连接,从而实现第三辐射单元8的接地,还可以使第三辐射单元8固定连接于上述第三频率选择表面9。上述第三频率选择表面9用于反射第一辐射单元1的信号和第三辐射单元8的信号,第一频率选择表面2用于反射第一辐射单元1的信号和第三辐射单元8的信号。第一频率选择表面2与第三频率选择表面9配合,共同反射第一辐射单元1和第三辐射单元8的信号,有利于提升第一频率选择表面2和第三频率选择表面9的反射的带宽,提升整个第一天线110的工作带宽,提升第一天线110的通信效率。
上述第四结构的结构和设置方式都可以类似于上述实施例中的第一结构31和第二结构32,此处不进 行赘述。
该实施例中,第一馈电网络3设置于第一频率选择表面2,第三馈电网络10设置于第三频率选择表面9,则可以具有较多的空间(或者面积)设置馈电网络,还可以减少不同的功分线之间的串扰,提升信号的传输效率。
具体实现图24所示的实施例时,上述第一频率选择表面2具有通孔,则第三辐射单元8的第三信号层和第三地层穿过上述通孔设置,以使的第三信号层可以与位于第三频率选择表面9的第三功分线电连接,第三地层与第三频率选择表面9电连接。
值得说明的是,上述实施例中的第二频率选择表面7和第三频率选择表面9的具体结构可以与第一频率选择表面2相同或者类似,当然,也可以不同,本申请对此不做限制。只需第一频率选择表面2、第二频率选择表面7和第三频率选择表面9都可以透射第二天线120的辐射信号即可。
图25为本申请实施例中第一天线的另一种俯视结构示意图,如图25所示,本申请实施例中,第一天线110还可以包括反射板20,该反射板20可以反射全部频段的信号,具体可以为金属板。该第一天线110包括的第一频率选择表面2和反射板20都用于反射第一天线110的辐射信号。第一天线110包括的辐射单元中的一部分设置于第一频率选择表面2,另一部分设置于反射板20。上述辐射单元除了包括第一辐射单元以外,还可以包括第二辐射单元5或者第三辐射单元8。该实施例中,部分第一功分线33还可以设置于反射板20,本申请对此不做限制。该方案可以减小第一天线110的第一频率选择表面2的面积,降低第一天线110的成本。此时,第二天线120与第一频率选择表面2相对设置,金属反射版对第二天线120无遮挡,从而保证第二天线120的辐射信号可以穿过第一天线110进行辐射。具体的,上述该反射板20与第一频率选择表面2可以位于同一平面,也可以位于不同的表面,本申请对此不做限制。
相类似的,当第一天线110包括第二频率选择表面7时,还可以使第二频率选择表面7所在的平面也设置有反射板。具体应用时,可以使与第二频率选择表面7在同一平面的反射板,和与第一频率选择表面2在同一平面的反射板对应设置。
此外,当第一天线110包括第三频率选择表面9时,还可以使第三频率选择表面9所在的平面也设置有反射板。具体应用时,可以使与第三频率选择表面9在同一平面的反射板,和与第一频率选择表面2在同一平面的反射板对应设置。
上述任一实施例中的第一辐射单元1、第二辐射单元5和第三辐射单元8可以是有源的,也可以是无源的,本申请对此不做限制。
本申请实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“具体的实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种天线系统,其特征在于,包括第一天线和第二天线,所述第一天线包括第一辐射单元、第一频率选择表面和第一馈电网络,所述第一辐射单元设置于所述第一频率选择表面的一侧,所述第二天线设置于所述第一频率选择表面背离所述第一辐射单元的一侧;
    所述第一频率选择表面包括多个第一条状结构和多个第二条状结构,所述第一条状结构和所述第二条状结构为金属条状结构,多个所述第一条状结构与多个所述第二条状结构相交形成多个网格,所述第一馈电网络包括第一结构,所述第一结构设置于所述第一条状结构。
  2. 如权利要求1所述的天线系统,其特征在于,所述第一馈电网络还包括第二结构,所述第二结构设置于所述第二条状结构。
  3. 如权利要求1或2所述的天线系统,其特征在于,所述第一频率选择表面还包括金属贴片,所述金属贴片设置于所述网格内。
  4. 如权利要求3所述的天线系统,其特征在于,每个所述网格内均设置有所述金属贴片。
  5. 如权利要求1所述的天线系统,其特征在于,所述第一条状结构具有凹槽,所述第一结构设置于所述凹槽内。
  6. 如权利要求2所述的天线系统,其特征在于,所述第二条状结构具有凹槽,所述第二结构设置于所述凹槽内。
  7. 如权利要求1所述的天线系统,其特征在于,所述第一条状结构具有空腔,所述第一结构设置于所述空腔内。
  8. 如权利要求2所述的天线系统,其特征在于,所述第二条状结构具有空腔,所述第二结构设置于所述空腔内。
  9. 如权利要求1~8任一项所述的天线系统,其特征在于,所述第一结构设置于所述第一频率选择表面朝向所述第一辐射单元的一侧,和/或,所述第一结构设置于所述第一频率选择表面背离所述第一辐射单元的一侧。
  10. 如权利要求2所述的天线系统,其特征在于,所述第二结构设置于所述第一频率选择表面朝向所述第一辐射单元的一侧,和/或,所述第二结构设置于所述第一频率选择表面背离所述第一辐射单元的一侧。
  11. 如权利要求1~10任一项所述的天线系统,其特征在于,所述第一结构包括第一功分线,所述第一功分线设置于所述第一条状结构。
  12. 如权利要求11所述的天线系统,其特征在于,所述第一结构还包括第一滑动介质,所述第一滑动介质滑动设置于所述第一功分线与所述第一条状结构之间。
  13. 如权利要求1~12任一项所述的天线系统,其特征在于,所述第一天线还包括第二辐射单元和第二馈电网络,所述第二辐射单元与所述第一辐射单元设置于所述第一频率选择表面的同一侧,所述第二馈电网络包括第三结构,所述第三结构设置于所述第一频率选择表面;所述第一辐射单元的工作频段与所述第二辐射单元的工作频段不同。
  14. 如权利要求13所述的天线系统,其特征在于,所述第一天线还包括第二频率选择表面,所述第二频率选择表面设置于所述第一频率选择表面背离所述第一辐射单元的一侧。
  15. 如权利要求1~14任一项所述的天线系统,其特征在于,所述第一天线还包括第三辐射单元、第三频率选择表面和第三馈电网络,所述第三辐射单元与所述第一辐射单元设置于所述第一频率选择表面的同一侧,所述第三频率选择表面设置于所述第一频率选择表面背离所述第一辐射单元的一侧;
    所述第三馈电网络包括第四结构,所述第四结构设置于所述第三频率选择表面;所述第一辐射单元的工作频段与所述第三辐射单元的工作频段不同。
  16. 如权利要求1~15任一项所述的天线系统,其特征在于,所述第一天线还包括反射板,所述反射板用于反射所述第一辐射单元的辐射信号。
  17. 如权利要求1~16任一项所述的天线系统,其特征在于,所述第一天线为无源天线,所述第二天线为有源天线。
  18. 如权利要求1~17任一项所述的天线系统,其特征在于,所述第一天线包括第一天线罩,所述第二天线包括第二天线罩,所述第一天线罩和所述第二天线罩具有相互独立的内腔。
  19. 如权利要求1~18任一项所述的天线系统,其特征在于,还包括第三天线罩,所述第一天线和所述第二天线设置于所述第三天线罩的内腔。
  20. 一种基站,其特征在于,安装架和包括如权利要求1~19任一项所述的天线系统,所述天线系统安装于所述安装架。
PCT/CN2023/106544 2022-07-30 2023-07-10 一种天线系统及基站 WO2024027465A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210911464.2 2022-07-30
CN202210911464.2A CN117525819A (zh) 2022-07-30 2022-07-30 一种天线系统及基站

Publications (1)

Publication Number Publication Date
WO2024027465A1 true WO2024027465A1 (zh) 2024-02-08

Family

ID=89757247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106544 WO2024027465A1 (zh) 2022-07-30 2023-07-10 一种天线系统及基站

Country Status (2)

Country Link
CN (1) CN117525819A (zh)
WO (1) WO2024027465A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599974A (zh) * 2021-03-02 2021-04-02 摩比科技(深圳)有限公司 低频辐射单元及可分离的多频基站天线
WO2021103032A1 (zh) * 2019-11-30 2021-06-03 华为技术有限公司 一种天线系统及基站
US20210391647A1 (en) * 2020-06-10 2021-12-16 Commscope Technologies Llc Base station antenna with frequency selective surface
CN114094347A (zh) * 2020-08-24 2022-02-25 华为技术有限公司 多频段天线系统和基站
CN114824794A (zh) * 2022-05-24 2022-07-29 罗森伯格技术有限公司 信号发射装置以及天线系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021103032A1 (zh) * 2019-11-30 2021-06-03 华为技术有限公司 一种天线系统及基站
US20210391647A1 (en) * 2020-06-10 2021-12-16 Commscope Technologies Llc Base station antenna with frequency selective surface
CN114094347A (zh) * 2020-08-24 2022-02-25 华为技术有限公司 多频段天线系统和基站
CN112599974A (zh) * 2021-03-02 2021-04-02 摩比科技(深圳)有限公司 低频辐射单元及可分离的多频基站天线
CN114824794A (zh) * 2022-05-24 2022-07-29 罗森伯格技术有限公司 信号发射装置以及天线系统

Also Published As

Publication number Publication date
CN117525819A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
WO2018230039A1 (ja) アンテナ装置
US20220085511A1 (en) Antenna element and electronic device
WO2021013010A1 (zh) 天线单元和电子设备
US20230344113A1 (en) Base station antenna
US20240339749A1 (en) Antenna system and communication device
US20240313427A1 (en) Antenna and communication system
US20240283138A1 (en) Antenna system and base station antenna feeder system
WO2024027465A1 (zh) 一种天线系统及基站
CN111864343A (zh) 电子设备
WO2024131483A1 (zh) 一种馈电装置、天线装置及通信设备
US11848507B2 (en) Radiating element, antenna array, and network device
CN112103625A (zh) 一种高隔离、低副瓣MassiveMIMO天线阵列及组阵方法
WO2024061009A1 (zh) 天线装置及通信设备
WO2023051472A1 (zh) 一种天线及基站天馈系统
WO2023231761A1 (zh) 天线、通信设备和通信系统
WO2024104027A1 (zh) 一种天线及基站
WO2023231752A1 (zh) 一种天线及基站
WO2023109846A1 (zh) 一种天线系统及基站天馈系统
US20240128643A1 (en) Antenna and base station
WO2023231751A1 (zh) 天线阵列、天线和网络设备
CN211700577U (zh) Mimo天线阵列及通信设备
WO2024021780A1 (zh) 一种天线和通信设备
WO2024027426A1 (zh) 基站天线和通信设备
Alieldin Smart Base Station Antennas for MIMO and 5G Mobile Communications
US20230299491A1 (en) Antenna module and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849174

Country of ref document: EP

Kind code of ref document: A1