WO2024104027A1 - 一种天线及基站 - Google Patents

一种天线及基站 Download PDF

Info

Publication number
WO2024104027A1
WO2024104027A1 PCT/CN2023/124658 CN2023124658W WO2024104027A1 WO 2024104027 A1 WO2024104027 A1 WO 2024104027A1 CN 2023124658 W CN2023124658 W CN 2023124658W WO 2024104027 A1 WO2024104027 A1 WO 2024104027A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
antenna
protective cover
radiator
feeding
Prior art date
Application number
PCT/CN2023/124658
Other languages
English (en)
French (fr)
Inventor
肖伟宏
李亮
廖志强
李剑荣
张耀辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024104027A1 publication Critical patent/WO2024104027A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present application relates to the field of communication technology, and specifically to an antenna and a base station.
  • Base station antennas face problems such as how to improve the radiation efficiency of antennas, how to reduce the wind load of antennas, and how to increase the antenna surface diameter.
  • the development of base station antenna technology also needs to consider whether it can meet the requirements of energy conservation and low carbon. How to reduce carbon emissions in the antenna field by changing the size of base station antennas is also crucial.
  • the present application provides an antenna and a base station to improve the radiation efficiency of the antenna, save electrical energy, and further reduce carbon emissions.
  • the antenna in the solution does not need to be provided with a radome, which simplifies the structure of the antenna and helps to reduce the wind load of the antenna.
  • the present application provides an antenna, which includes a power divider and a radiating unit.
  • the power divider includes a cavity and a feeding network, and the feeding network is arranged in the cavity, so that the cavity can protect the feeding network.
  • the radiating unit includes a radiator, a feeding component and a protective cover. Specifically, the radiator is used to radiate and receive signals, and the feeding component is connected between the feeding network and the radiator to realize the feeding of the radiating unit.
  • the radiator and the protective cover are fixedly arranged, and the feeding component is located in the protective cover.
  • the protective cover is fixedly connected to the cavity, and the protective cover and the surface of the cavity form a closed accommodating cavity, and the feeding component is located in the accommodating cavity.
  • the feeding component of the radiating unit is directly connected to the feeding network located in the cavity, so that the coaxial line cascade in the antenna can be reduced, which is conducive to achieving high-efficiency radiation. Furthermore, the input power required by the antenna is reduced when the same coverage signal strength is required, thereby saving electric energy and further reducing carbon emissions.
  • the antenna may not include a radome.
  • the accommodating cavity can protect the feeding components, and the cavity can protect the feeding network, so a radome may not be provided.
  • This solution simplifies the structure of the antenna, which is beneficial for reducing the wind load of the antenna, thereby making the antenna less susceptible to the limitations of the space on the roof.
  • the size of the antenna can be relatively increased according to demand, that is, the number of radiating units of the antenna can be increased, thereby enhancing the performance benefits of the antenna.
  • the cost of the antenna can also be reduced.
  • the accommodating cavity meets the preset protection level, that is, the accommodating cavity has a certain waterproof and dustproof capability, so that the feeding component can be protected in the accommodating cavity.
  • the protection level of the above-mentioned accommodating cavity is equal to or higher than IP24, thereby providing better protection for the feeding components of the antenna, so as to effectively protect the internal circuit without the protection of the antenna cover.
  • the antenna may further include a balun, which is connected between the radiator and the cavity to achieve grounding of the radiator.
  • the balun is also located in the accommodating cavity, and the accommodating cavity can also provide protection for the balun.
  • the power divider further comprises a phase shifting device for changing the phase of the antenna signal radiation.
  • the phase shifting device is specifically arranged in the cavity, and the cavity can protect the phase shifting device.
  • the phase shifting device is arranged in the cavity.
  • the radiator and the protective cover When the radiator and the protective cover are fixed, the radiator and the protective cover can be formed into an integral structure, so that the fixing structure between the radiator and the protective cover is more reliable and has better sealing performance.
  • the radiator may be a patch radiator or a vibrator radiator.
  • Various types of radiators are applicable to the technical solution provided in the present application.
  • the radiator is at least partially located outside the protective cover, and in order to protect the radiator, the surface of the radiator located outside the protective cover is wrapped with a protective layer, so that the entire radiator itself can be protected.
  • the protective cover may have a connecting portion, and the protective cover is fixedly connected to the cavity via the connecting portion, thereby improving the reliability of the connection between the protective cover and the cavity.
  • a sealing member is further provided between the connecting portion and the cavity, which can further improve the sealing performance of the protective cover and the cavity surface.
  • connection portion is a first convex edge of the protective cover
  • the cavity has a second convex edge
  • the first convex edge and the second convex edge are fixedly connected.
  • the first flange and the second flange are connected by screws or bolts, so that the protective cover and the cavity can be detachably connected, and the installation and removal process is relatively simple.
  • the above-mentioned feeding network includes a first feeding line and a second feeding line, and the feeding component includes a first feeding part and a second feeding part.
  • the above-mentioned cavity includes a first through hole and a second through hole, and the first through hole and the second through hole are separated by a preset distance.
  • the first feeding line is connected to the first feeding part through the first through hole
  • the second feeding line is connected to the second feeding part through the second through hole.
  • the first through hole and the second through hole are separated by a preset distance, and it can be considered that there is a stratum between the first through hole and the second through hole, so that the transmission path of the signal of the radiation unit in the two polarization directions is highly isolated, reducing mutual crosstalk.
  • the antenna in the technical solution of the present application further includes a reflector, which is installed between the cavity and the radiation unit and has a hollow structure, thereby reducing the wind load generated by the reflector and the wind load of the entire antenna.
  • the reflector and the cavity may be connected via an insulating connector, thereby reducing interference with the antenna signal.
  • the present application further provides a base station, which includes a mounting frame and the antenna of the first aspect, wherein the antenna is mounted on the mounting frame.
  • the solution improves the radiation efficiency of the antenna of the base station, saves electrical energy, and further reduces carbon emissions.
  • FIG1 is a schematic diagram of a communication system architecture applicable to an embodiment of the present application.
  • FIG2 is a schematic diagram of a possible structure of a base station in an embodiment of the present application.
  • FIG3 is a schematic diagram of a possible composition of an antenna in an embodiment of the present application.
  • FIG4 is a schematic diagram of a lateral structure of an antenna in an embodiment of the present application.
  • FIG5 is a schematic diagram of a structure of a radiation unit in an embodiment of the present application.
  • FIG6 is a schematic diagram of an exploded structure of an antenna in an embodiment of the present application.
  • FIG7 is another lateral structural schematic diagram of the antenna in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a top-down structure of an antenna in an embodiment of the present application.
  • Figure 1 exemplarily shows a schematic diagram of a communication system architecture applicable to the embodiment of the present application.
  • the communication system can be a base station antenna feed system.
  • the application scenario may include a base station and a terminal. Wireless communication can be achieved between the base station and the terminal.
  • the base station can be located in a base station subsystem (base station subsystem, BBS), a terrestrial radio access network (UMTS terrestrial radio access network, UTRAN) or an evolved terrestrial radio access network (evolved universal terrestrial radio access, E-UTRAN), and is used to provide cell coverage of wireless signals to achieve communication between terminal devices and wireless networks.
  • BBS base station subsystem
  • UMTS terrestrial radio access network UTRAN
  • E-UTRAN evolved terrestrial radio access network
  • the base station may be a base transceiver station (BTS) in a global system for mobile communication (GSM) or a code division multiple access (CDMA) system, or a node B (NB) in a wideband code division multiple access (WCDMA) system, or an evolutionary node B (eNB or eNodeB) in a long term evolution (LTE) system, or a wireless controller in a cloud radio access network (CRAN) scenario.
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • NB node B
  • WCDMA wideband code division multiple access
  • eNB or eNodeB evolutionary node B
  • LTE long term evolution
  • CRAN cloud radio access network
  • the base station may also be a relay station, an access point, an on-board device, a wearable device, a g-node (gNodeB or gNB) in a new radio (NR) system, or a base station in a future evolved network, etc., which is not limited in the embodiments of the present application.
  • gNodeB or gNB g-node
  • NR new radio
  • FIG2 shows a possible structural diagram of a base station.
  • the base station may generally include structures such as an antenna 1, a mounting bracket 2, and an antenna adjustment bracket 3.
  • the antenna 1 may be mounted on the mounting bracket 2 via the antenna adjustment bracket 3 to facilitate the reception or transmission of signals by the antenna 1.
  • the embodiment shown in FIG2 is only an optional implementation method.
  • the antenna and base station in the embodiment of the present application may be different from the embodiment shown in FIG2, and the present application does not limit this.
  • the base station may further include a radio frequency processing unit 4 and a baseband processing unit 5.
  • the radio frequency processing unit 4 may be used to perform frequency selection, amplification, and down-conversion processing on the signal received by the antenna 1, and convert it into an intermediate frequency signal or a baseband signal and send it to the baseband processing unit 5, or the radio frequency processing unit 4 may be used to convert the baseband processing unit 5 or the intermediate frequency signal into an electromagnetic wave through the antenna 1 after up-conversion and amplification processing and send it out.
  • the baseband processing unit 5 may be connected to the feeding network of the antenna 1 through the radio frequency processing unit 4.
  • the radio frequency processing unit 4 may also be called a remote radio unit (RRU), or may also be a radio frequency module in an active antenna unit (AAU), and the baseband processing unit 5 may also be called a baseband unit (BBU).
  • RRU remote radio unit
  • AAU active antenna unit
  • BBU baseband unit
  • the RF processing unit 4 may be integrally provided with the antenna 1, and the baseband processing unit 5 may be located at the far end of the antenna 1. In some other embodiments, the RF processing unit 4 and the baseband processing unit 5 may be simultaneously located at the far end of the antenna 1.
  • the RF processing unit 4 and the baseband processing unit 5 may be connected via a cable 6.
  • FIG3 is a schematic diagram of a possible composition of an antenna in an embodiment of the present application
  • FIG4 is a schematic diagram of a lateral structure of an antenna in an embodiment of the present application.
  • the antenna 1 includes a power divider 11 and a radiating unit 12.
  • the radiating unit 12 may also be referred to as an antenna vibrator, a vibrator, etc., which can effectively send or receive antenna signals.
  • the frequencies of different radiating units 12 may be the same or different.
  • the power divider 11 includes a cavity 111 and a feeding network 112, and the feeding network 112 is arranged in the cavity 111, so that the cavity 111 can protect the feeding network.
  • the radiating unit 12 is connected to the feeding network 112, and the feeding network 112 is used to feed the radiating unit 12.
  • the feeding network 112 is usually composed of a controlled impedance transmission line, and the feeding network 112 can feed the signal to the radiating unit 12 according to a certain amplitude and phase, or send the signal received by the radiating unit 12 to the baseband processing unit of the base station according to a certain amplitude and phase.
  • the feed network 112 can be used to achieve different radiation beam directions, or be connected to a calibration network to obtain the calibration signal required by the system.
  • Some modules for expanding performance may also be set in the feed network 112, such as a combiner, which can be used to combine signals of different frequencies into one channel and transmit them through the radiation unit 12; or when used in reverse, it can be used to divide the signal received by the radiation unit 12 into multiple channels according to different frequencies and transmit them to the baseband processing unit for processing, and for example, a filter is used to filter out interference signals.
  • a plurality of radiation units 12 can form a radiation unit array and work in the form of an array.
  • FIG5 is a schematic diagram of a structure of a radiation unit in an embodiment of the present application.
  • the radiation unit 12 of the antenna 1 includes a radiator 121, a feeding component 122 and a protective cover 123.
  • the feeding component 122 is connected between the feeding network 112 and the radiator 121. Specifically, one end of the feeding component 122 can be connected to the feeding network 112, and the other end can be connected to the radiator 121.
  • the feeding component 122 can be in the form of a wire.
  • the radiator 121 and the protective cover 123 are fixedly arranged to form a whole, and the feeding component 122 is located inside the protective cover 123.
  • the protective cover 123 is fixedly connected to the cavity 111, so that the radiation unit 12 is fixed to the cavity 111, and the protective cover 123 and the surface of the cavity 111 form a receiving cavity, so that the feeding component 122 is located in the receiving cavity.
  • the feeding component 122 of the radiation unit 12 is directly connected to the feeding network 112 located in the cavity 111, so the coaxial line cascade in the antenna 1 can be reduced, which is conducive to achieving high-efficiency radiation.
  • the antenna 1 requires less input power when the same coverage signal strength is required, thereby saving electrical energy and further reducing carbon emissions.
  • the electrical connection lines or circuit interfaces in the antenna 1 have high requirements for dust and water resistance, and therefore need to be protected.
  • the feeding component 122 of each radiation unit 12 can be protected by the accommodating cavity, and the feeding network 112 can be protected by the cavity, so that the feeding component 122 and the feeding network 112 can be independently protected, so that the radiation unit 12 does not include an antenna cover.
  • the scheme simplifies the structure of the antenna 1, which is beneficial to reduce the wind load of the antenna 1, so that the antenna 1 is not easily restricted by the space of the roof.
  • the size of the antenna 1 can be relatively increased according to demand, that is, the number of radiation units 12 of the antenna 1 can be increased, thereby enhancing the performance benefits of the antenna 1.
  • the technical solution of the present application is of greater significance.
  • the antenna in the embodiment of the present application does not have a antenna cover, and can also achieve the purpose of weight reduction and cost reduction.
  • the accommodating cavity meets a preset protection level, so that the accommodating cavity can be dustproof and waterproof to a certain extent, so that the feeding component 122 can be protected in the accommodating cavity.
  • the above-mentioned accommodating cavity satisfies a preset protection level, which may specifically be an IP (Ingress Protection) level.
  • IP level is a protection level for the enclosure of electrical equipment against the intrusion of foreign objects, and its source is the International Electrotechnical Commission standard IEC 60529.
  • IEC 60529. International Electrotechnical Commission standard
  • the format of the IP level is IPXX, where XX is two Arabic numerals, and the first marked number indicates the contact protection and foreign object protection level.
  • the first marking number 0 means "no protection, no special protection”
  • the first marking number 1 means "preventing the intrusion of objects larger than 50mm, preventing the human body from accidentally touching the internal parts of electrical equipment”
  • the first marking number 2 means “preventing the intrusion of objects larger than 12mm, preventing fingers from touching the internal parts of electrical equipment”
  • the first marking number 3 means “preventing all intrusion of objects larger than 2.5mm, preventing the intrusion of tools, wires or objects with a diameter larger than 2.5mm”
  • the first marking number 4 means "preventing the intrusion of objects larger than 1.0mm, preventing the intrusion of mosquitoes, flies, insects or objects with a diameter larger than 1.0mm”
  • the first marking number 5 means “dustproof, cannot completely prevent dust intrusion, but the amount of dust entering will not affect the normal operation of the electrical equipment”
  • the first marking number 6 means “dust-tight, completely preventing dust intrusion”.
  • the second marking number indicates the waterproof protection level. Specifically, the second marking number 0 indicates “no protection, no special protection”; the second marking number 1 indicates “preventing water intrusion, preventing vertical dripping water drops”; the second marking number 2 indicates “still preventing water intrusion when tilted 15 degrees, when the electrical equipment is tilted 15 degrees, it can still prevent water dripping"; the second marking number 3 indicates “preventing water intrusion from jets, preventing rainwater, or water sprayed at a vertical angle of less than 50 degrees”; the second marking number 4 indicates “preventing water intrusion from splashing, preventing water splashing from all directions”; the second marking number 5 indicates “preventing water intrusion from big waves, preventing water intrusion from big waves or water jets from water holes”; the second marking number 6 indicates “preventing water intrusion from big waves, electrical equipment immersed in water under a certain time or water pressure conditions, can still ensure the normal operation of the equipment”; the second marking number 7 indicates “preventing water intrusion from invading water, electrical equipment can be submerged in
  • the protection level of the accommodation cavity formed by the protective cover 123 and the surface of the cavity 111 can be higher than or equal to IP24, so as to provide better protection for the feeding component 122 of the antenna. In this way, the internal circuit can be more effectively protected without the protection of the antenna cover.
  • the protection level of the accommodation cavity can be IP34, IP44, IP45, IP46, IP55, IP56, IP57, IP64, IP66 or IP67, etc.
  • the antenna 1 further includes a balun 124, which is connected between the radiator 121 and the ground to achieve grounding of the radiator 121.
  • the balun 124 can be connected to the radiator 121 at one end and connected to the surface of the cavity 111 at the other end, that is, the cavity 111 can be used as the ground of the antenna, and the present application does not make specific restrictions.
  • the balun 124 can also be located in the accommodating cavity, so that the accommodating cavity can also protect the balun 124 and the interface where the balun 124 is connected to other lines.
  • the power divider 11 may further include a phase shifter, which is used to change the phase of the antenna signal radiation.
  • the phase shifter is specifically arranged in the cavity 111, and the cavity 111 can protect the phase shifter.
  • the radiator 121 and the protective cover 123 can be an integrally formed structure.
  • the fixing structure between the radiator 121 and the protective cover 123 is more reliable and has better sealing.
  • the radiator 121 and the protective cover 123 can be prepared by injection molding.
  • the radiator 121 and the protective cover 123 can also be fixed by bonding, hot-melt connection or detachable connection, and this application does not limit this.
  • At least part of the structure of the radiator 121 is located outside the protective cover 123, and the surface of the radiator 121 located outside the protective cover 123 is wrapped with a protective layer, so that the radiator 121 can be protected from corrosion and water.
  • the protective layer can be formed by coating the surface of the radiator 121, such as coating a coating such as polyester paint.
  • a protective layer can be attached to the surface of the radiator 121 or a protective layer can be set, etc., and this application does not limit this.
  • the radiator 121 may be a patch radiator or a vibrator radiator, and the technical solution of the present application may be adopted in both cases.
  • the protective cover 123 when the protective cover 123 is fixedly connected to the cavity 111, the protective cover 123 may have a connecting portion 1231.
  • the connection portion 1231 is fixedly connected to the cavity 111.
  • the protective cover 123 having the connection portion 1231 is conducive to simplifying the connection method between the protective cover 123 and the cavity 111.
  • a sealing member can be provided between the connection portion 1231 and the cavity 111 to further improve the sealing level of the accommodating cavity formed by the protective cover 123 and the surface of the cavity 111.
  • the sealing member can be a sealing ring or a sealing strip, etc., and this application does not make specific restrictions.
  • FIG6 is a schematic diagram of an exploded structure of an antenna in an embodiment of the present application.
  • the connecting portion 1231 is the first flange of the protective cover 123, that is, the protective cover 123 has a first flange, and the first flange is used as the connecting portion 1231 for fixed connection with the cavity 111.
  • the cavity 111 has a second flange 1111, and the first flange and the second flange 1111 are fixedly connected. This solution is conducive to simplifying the connection between the protective cover 123 and the cavity 111.
  • a through hole can be prepared on the first flange, and a through hole can also be prepared on the second flange 1111, and a bolt can be used to pass through the through hole of the first flange and the through hole of the second flange 1111 to connect the first flange and the second flange 1111.
  • a through hole can also be prepared on the first flange, and a threaded hole can be prepared on the second flange 1111, and a screw can be used to pass through the through hole of the first flange and screw into the threaded hole, thereby simplifying the structure of the antenna 1 and reducing the volume of the antenna 1.
  • other connection methods may also be used to achieve the connection between the protective cover 123 and the cavity 111, such as snap connection, etc., and the present application does not impose any limitation on this.
  • the cavity 111 includes a first through hole 1112 and a second through hole 1113, and the first through hole 1112 and the second through hole 1113 are separated by a preset distance, that is, the first through hole 1112 and the second through hole 1113 are not connected.
  • the feeding network 112 may include a first feeder and a second feeder, and the feeding component 122 of the radiation unit 12 includes a first feeder and a second feeder. The first feeder is connected to the first feeder through the first through hole 1112, and the second feeder is connected to the second feeder through the second through hole 1113.
  • the first feeder and the second feeder may also be linear structures, and the connection point between the first feeder and the first feeder may be located in the accommodating cavity or in the cavity 111. Similarly, the connection point between the second feeder and the second feeder may also be located in the accommodating cavity or in the cavity 111.
  • This application does not limit this.
  • the first through hole 1112 and the second through hole 1113 are separated by a preset distance, so it can be considered that there is a ground layer between the first through hole 1112 and the second through hole 1113, so that the transmission path of the radiation unit 12 in the two polarization directions of the signal is highly isolated and the mutual crosstalk is reduced.
  • FIG. 7 is another schematic diagram of the lateral structure of the antenna in the embodiment of the present application.
  • the antenna 1 further includes a reflector 13, which is installed between the cavity 111 and the radiation unit 12.
  • the reflector 13 may also be called a bottom plate, an antenna panel or a reflection surface, etc., and may be made of metal.
  • the reflector 13 may reflect the antenna signal to the target coverage area.
  • the reflector 13 may reflect and transmit the signal incident on the reflector 13.
  • the radiation unit 12 is usually placed on one side of the reflector 13, which can not only greatly enhance the receiving or transmitting capability of the antenna signal, but also block and shield the interference of other radio waves from the back side of the reflector 13 (the back side of the reflector 13 in the present application refers to the side opposite to the reflector 13 for setting the radiation unit 12) on the reception of the antenna signal.
  • Figure 8 is a schematic diagram of a top-down structure of the antenna in an embodiment of the present application.
  • the above-mentioned reflector 13 can specifically have a hollow structure 131, so as to reduce the wind load generated by the reflector 13 and reduce the wind load of the entire antenna 1, which is beneficial to increase the size of the antenna 1 and increase the number of radiation units 12 of the antenna 1 to enhance the performance benefits of the antenna 1.
  • an insulating connector can be used to connect the reflector 13 with the cavity 111, thereby reducing interference with the antenna signal.
  • the above-mentioned insulating connector can be a flexible member, and the reflector 13 is tied to the cavity 111 by using the flexible member to simplify the installation structure. And there is no need to destroy the structure of the cavity 111 itself.
  • a hook can be set on the outer wall of the cavity 111, so that the flexible member is hung on the above-mentioned hook.
  • the reflection plate may further have a hole, and structures such as the balun 124 of the vibrator may pass through the hole to be connected to the power divider 11 .

Landscapes

  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种天线及基站,该天线包括功分器和辐射单元。功分器包括腔体和馈电网络,馈电网络设置于腔体内。辐射单元包括辐射体、馈电部件和保护罩。馈电部件连接于馈电网络与辐射体之间,以实现辐射单元的馈电。辐射体与保护罩固定设置,馈电部件位于上述保护罩内。保护罩与腔体固定连接,保护罩与腔体的表面形成容置腔,则馈电部件位于容置腔内。容置腔满足预设防护等级,则使得馈电部件在上述容置腔内可以得到保护。辐射单元的馈电部件直接与位于腔体内的馈电网络连接,因此,可以减少天线中同轴线级联,有利于实现高效率辐射。该天线在同等覆盖信号强度的要求时需要的输入功率就减小,从而实现电能源的节省,进一步使得碳排放减少。

Description

一种天线及基站
相关申请的交叉引用
本申请要求在2022年11月18日提交中华人民共和国知识产权局、申请号为202211448384.4、发明名称为“一种天线及基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体为一种天线及基站。
背景技术
随着无线通信技术的发展,基站天线的性能需求也越来越高。基站天线面临着包括如何提升天线的辐射效率、如何降低天线的风载、如何提升天线的天面口径等问题。此外,随着全球范围内对节能低碳的牵引,基站天线技术的发展也需要考虑是否能满足节能低碳的要求。如何通过改变基站天线的尺寸,以减少天线领域的碳排放也至关重要。
发明内容
本申请提供一种天线及基站,以提升天线的辐射效率,实现电能源的节省,进一步使得碳排放减少。此外,该方案中的天线无需设置天线罩,简化了天线的结构,有利于减小天线的风载。
第一方面,本申请提供了一种天线,该天线包括功分器和辐射单元。上述功分器包括腔体和馈电网络,馈电网络设置于腔体内,从而腔体可以保护上述馈电网络。上述辐射单元包括辐射体、馈电部件和保护罩。具体的,上述辐射体用于辐射和接收信号,馈电部件连接于馈电网络与辐射体之间,以实现辐射单元的馈电。上述辐射体与保护罩固定设置,馈电部件位于上述保护罩内。上述保护罩与腔体固定连接,保护罩与腔体的表面形成密闭容置腔,则馈电部件位于容置腔内。辐射单元的馈电部件直接与位于腔体内的馈电网络连接,因此,可以减少天线中同轴线级联,有利于实现高效率辐射。进一步的,该天线在同等覆盖信号强度的要求时需要的输入功率就减小,从而实现电能源的节省,进一步使得碳排放减少。
具体的技术方案中,上述天线可以不包括天线罩。该方案中的天线,容置腔可以保护馈电部件,腔体可以保护馈电网络,因此,可以不设置天线罩。该方案简化了天线的结构,有利于减小天线的风载,从而可以使得天线不易受天面空间的限制。同等条件下,可以根据需求相对地增大天线的尺寸,也即增加天线的辐射单元数量,从而增强天线的性能收益。此外,还可以降低天线的成本。
具体设置上述容置腔时,上述容置腔满足预设防护等级,也就是说,容置腔具有一定的防水和防尘能力,则使得馈电部件在上述容置腔内可以得到保护。
具体的技术方案中,上述容置腔的防护等级等于或者高于IP24。从而向天线的馈电部件提供较好的保护。以利于在没有天线罩的保护下,仍然可以较为有效的保护内部线路。
上述天线还可以包括巴伦,该巴伦连接于辐射体与腔体之间,用于实现辐射体的接地。该巴伦也位于上述容置腔内,则容置腔对巴伦也可以提供保护。
进一步的技术方案中,上述,功分器还包括移相装置,用来改变天线信号辐射的相位。移相装置具体设置于腔体内,则腔体可以保护移相装置。移相装置设置于腔体内。
具体实现上述辐射体与保护罩固定时,还可以使上述辐射体与保护罩为一体成型结构。使得辐射体与保护罩之间的固定结构较为可靠,且密封性较好。
本申请对于辐射体的具体结构不做限制,例如,上述辐射体可以为贴片式辐射体,或者,还可以为振子式辐射体。各种类型的辐射体都适用本申请提供的技术方案。
具体的技术方案中,上述辐射体至少部分位于保护罩的外部,为了保护辐射体,上述辐射体位于保护罩外部的区域的表面包裹有保护层。从而使得整个辐射体本身都可以得到保护。
为了实现保护罩与腔体的连接,可以使上述保护罩具有连接部,保护罩通过连接部与腔体固定连接。从而提升保护罩与腔体连接的可靠性。
一种技术方案中,上述连接部与腔体之间还设置有密封件,该方案可以进一步提升保护罩与腔体表 面形成的容置腔的密封等级。
具体的技术方案中,上述连接部为保护罩的第一凸沿,腔体具有第二凸沿,第一凸沿和第二凸沿固定连接。该方案有利于简化保护罩与腔体之间的连接方式,提升保护罩与腔体的连接强度。
上述第一凸沿和第二凸沿通过螺钉或者螺栓连接,从而可以实现保护罩与腔体的可拆卸连接,且安装和拆卸的过程较为简单。
当上述辐射单元为双极化辐射单元时,上述馈电网络包括第一馈电线和第二馈电线,馈电部件包括第一馈电部和第二馈电部。上述腔体包括第一通孔和第二通孔,第一通孔和第二通孔间隔预设距离,第一馈电线与第一馈电部通过第一通孔连接,第二馈电线与第二馈电部通过第二通孔连接。该方案中,第一通孔和第二通孔间隔预设距离,则可以认为上述第一通孔和第二通孔之间具有地层,使得辐射单元在两个极化方向的信号的传输路径实现高隔离,减少相互串扰。
本申请技术方案中的天线还包括反射板,该反射板安装于腔体与辐射单元之间,反射板具有镂空结构。从而减小反射板产生的风载,减小整个天线的风载。
为了实现上述反射板与腔体的安装,可以使反射板与腔体通过绝缘连接件连接,从而减少对天线信号的干扰。
第二方面,本申请还提供了一种基站,该基站包括安装架,以及上述第一方面的天线,上述天线安装于安装架。该方案以提升基站的天线的辐射效率,实现电能源的节省,进一步使得碳排放减少。
附图说明
图1为本申请实施例适用的一种通信系统架构示意图;
图2为本申请实施例中基站的一种可能的结构示意图;
图3为本申请实施例中天线的一种可能的组成示意图;
图4为本申请实施例中天线的一种侧向结构示意图;
图5为本申请实施例中辐射单元的一种结构示意图;
图6为本申请实施例中天线的一种爆炸结构示意图;
图7为本申请实施例中天线的另一种侧向结构示意图;
图8为本申请实施例中天线的一种俯向结构示意图。
附图标记:
1-天线;
11-功分器;
111-腔体;
1111-第二凸沿;
1112-第一通孔;
1113-第二通孔;
112-馈电网络;
12-辐射单元;
121-辐射体;
122-馈电部件;
123-保护罩;
1231-连接部;
124-巴伦;
13-反射板;
131-镂空结构;
2-安装架;
3-天线调整支架;
4-射频处理单元;
5-基带处理单元;
6-电缆线。
具体实施方式
为了方便理解本申请实施例提供的天线及通信系统,下面介绍一下其应用场景。图1示例性示出了本申请实施例适用的一种通信系统架构示意图,如图1所示,该通信系统可以为基站天馈系统。该应用场景可以包括基站和终端。基站和终端之间可以实现无线通信。该基站可以位于基站子系统(base station subsystem,BBS)、陆地无线接入网(UMTS terrestrial radio access network,UTRAN)或者演进的陆地无线接入网(evolved universal terrestrial radio access,E-UTRAN)中,用于进行无线信号的小区覆盖以实现终端设备与无线网络之间的通信。具体来说,基站可以是全球移动通信系统(global system for mobile communication,GSM)或(code division multiple access,CDMA)系统中的基地收发台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的节点B(NodeB,NB),还可以是长期演进(long term evolution,LTE)系统中的演进型节点B(evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。或者该基站也可以为中继站、接入点、车载设备、可穿戴设备以及新无线(new radio,NR)系统中的g节点(gNodeB或者gNB)或者未来演进的网络中的基站等,本申请实施例并不限定。
图2示出了基站的一种可能的结构示意图。基站通常可以包括天线1、安装架2、天线调整支架3等结构。天线1可通过天线调整支架3安装于安装架2,以便于天线1信号的接收或者发射。当然,图2所示的实施例仅仅作为一种可选的实现方式,具体实施时,本申请实施例中的天线及基站可能与图2所示的实施例不同,本申请不做限制。
另外,基站还可以包括射频处理单元4和基带处理单元5。例如,射频处理单元4可用于对天线1接收到的信号进行选频、放大以及下变频处理,并将其转换成中频信号或基带信号发送给基带处理单元5,或者射频处理单元4用于将基带处理单元5或中频信号经过上变频以及放大处理通过天线1转换成电磁波发送出去。基带处理单元5可通过射频处理单元4与天线1的馈电网络连接。在一些实施方式中,射频处理单元4又可称为射频拉远单元(remote radio unit,RRU),或者,还可能是有源天线单元(Active Antenna Unit,AAU)中的射频模块,基带处理单元5又可称为基带单元(baseband unit,BBU)。
在一种可能的实施例中,如图2所示,射频处理单元4可与天线1一体设置,基带处理单元5位于天线1的远端。在另外一些实施例中,还可以使射频处理单元4和基带处理单元5同时位于天线1的远端。射频处理单元4与基带处理单元5可以通过电缆线6连接。
图3为本申请实施例中天线的一种可能的组成示意图,图4为本申请实施例中天线的一种侧向结构示意图。如图2、图3和图4所示,该天线1包括功分器11和辐射单元12。上述辐射单元12也可以称为天线振子、振子等,它能有效地发送或接收天线信号。在天线1中,不同辐射单元12的频率可以相同或者不同。上述功分器11包括腔体111和馈电网络112,上述馈电网络112上设置于腔体111内,从而腔体111可以保护馈电网络。辐射单元12与馈电网络112相连接,馈电网络112用于为辐射单元12馈电。具体的,上述馈电网络112通常由受控的阻抗传输线构成,馈电网络112可把信号按照一定的幅度、相位馈送到辐射单元12,或者将辐射单元12接收到的信号按照一定的幅度、相位发送到基站的基带处理单元。具体地,在一些实施方式中,馈电网络112可以用于实现不同辐射波束方向,或者与校准网络连接以获取系统所需的校准信号。在馈电网络112中还可能设置一些用于扩展性能的模块,例如合路器,可用于把不同频率的信号合成一路,通过辐射单元12发射;或者反向使用时,可以用于将辐射单元12接收到的信号,根据不同的频率分成多路传输到基带处理单元进行处理,又例如滤波器,用于滤除干扰信号。具体的实施例中,多个辐射单元12可以形成辐射单元阵列,以阵列的形式工作。
图5为本申请实施例中辐射单元的一种结构示意图,如图4和图5所示,本申请实施例中,天线1的辐射单元12包括辐射体121、馈电部件122和保护罩123。上述馈电部件122连接于馈电网络112与辐射体121之间,具体的,可以使上述馈电部件122的一端与馈电网络112连接,另一端与辐射体121连接。上述馈电部件122具体可以为导线的形式。上述辐射体121与保护罩123固定设置,形成一个整体,馈电部件122位于保护罩123内部。具体的,上述保护罩123与腔体111固定连接,使得辐射单元12固定于腔体111,且上述保护罩123与腔体111的表面形成容置腔,从而馈电部件122位于容置腔内。该实施例中,辐射单元12的馈电部件122直接与位于腔体111内的馈电网络112连接,因此,可以减少天线1中同轴线级联,有利于实现高效率辐射。进一步的,该天线1在同等覆盖信号强度的要求时需要的输入功率就减小,从而实现电能源的节省,进一步使得碳排放减少。
天线1中进行电连接的线路或者电路接口等对于防尘防水的需求较高,因此需要进行保护。该方案 中,每个辐射单元12的馈电部件122可以被容置腔保护,馈电网络112可以被腔体保护,则馈电部件122以及馈电网络112都可以得到独立的保护,从而,可以使得辐射单元12不包括天线罩。如此,该方案简化了天线1的结构,有利于减小天线1的风载,从而可以使得天线1不易受天面空间的限制。同等条件下,可以根据需求相对地增大天线1的尺寸,也即增加天线1的辐射单元12数量,从而增强天线1的性能收益。特别对于海域等空间较大且风力较大的区域,本申请的技术方案具有更加重要的意义。此外,本申请实施例的天线没有天线罩,还可以实现减重和降低成本的目的。
具体形成上述容置腔时,上述容置腔满足预设防护等级,使得容置腔能够进行一定程度的防尘和防水,则使得馈电部件122在上述容置腔内可以得到保护。
具体的实施例中,上述容置腔满足预设防护等级具体可以为IP(Ingress Protection)等级,IP等级是针对电气设备外壳对异物侵入的防护等级,来源是国际电工委员会的标准IEC 60529。在这个标准中,针对电气设备外壳对异物的防护,IP等级的格式为IPXX,其中XX为两个阿拉伯数字,第一标记数字表示接触保护和外来物保护等级。具体的,第一个标记数字为0表示“无防护,无特殊的防护”;第一个标记数字为1表示“防止大于50mm之物体侵入,防止人体因不慎碰到电气设备内部零件”;第一个标记数字为2表示“防止大于12mm之物体侵入,防止手指碰到电气设备内部零件”;第一个标记数字为3表示“防止大于2.5mm之物全侵入,防止直径大于2.5mm的工具,电线或物体侵入”;第一个标记数字为4表示“防止大于1.0mm之物体侵入,防止直径大于1.0mm的蚊蝇、昆虫或物体侵入”;第一个标记数字为5表示“防尘,无法完全防止灰尘侵入,但侵入灰尘量不会影响电气正常运作”;第一个标记数字为6表示“尘密,完全防止灰尘侵入”。第二标记数字表示防水保护等级,具体的,第二个标记数字为0表示“无防护,无特殊的防护”;第二个标记数字为1表示“防止滴水侵入,防止垂直滴下之水滴”;第二个标记数字为2表示“倾斜15度时仍防止滴水侵入,当电气设备倾斜15度时,仍可防止滴水”;第二个标记数字为3表示“防止喷射的水侵入,防止雨水、或垂直入夹角小于50度方向所喷射之水”;第二个标记数字为4表示“防止飞溅的水侵入,防止各方向飞溅而来的水侵入”;第二个标记数字为5表示“防止大浪的水侵入,防止大浪或喷水孔急速喷出的水侵入”;第二个标记数字为6表示“防止大浪的水侵入,电气设备浸入水中在一定时间或水压的条件下,仍可确保设备正常运作”;第二个标记数字为7表示“防止侵水的水侵入电气设备无期限的沉没水中在一定水压的条件下,仍可确保设备正常运作”;第二个标记数字为8表示“防止沉没的影响”。
可以使上述保护罩123与腔体111的表面形成的容置腔的防护等级高于或者等于IP24,从而向天线的馈电部件122提供较好的保护。以利于在没有天线罩的保护下,仍然可以较为有效的保护内部线路。具体的实施例中,上述容置腔的防护等级可以为IP34、IP44、IP45、IP46、IP55、IP56、IP57、IP64、IP66或者IP67等等。
在一些实施例中,如图4所示,上述天线1还包括巴伦124,该巴伦124连接于辐射体121与地之间,用于实现辐射体121的接地。具体的,该巴伦124可以一端与辐射体121连接,另一端与腔体111表面连接,也就是说,可以利用腔体111作为该天线的地,本申请不做具体限制。可选的,巴伦124也可以位于容置腔内,从而容置腔也可以保护巴伦124以及巴伦124与其它线路连接的接口。
在一些实施例中,上述功分器11还可以包括移相装置,该移相装置用来改变天线信号辐射的相位。移相装置具体设置于腔体111内,则腔体111可以保护移相装置。
具体实现上述辐射体121与保护罩123固定时,可以使上述辐射体121与保护罩123为一体成型结构。从而使得辐射体121与保护罩123之间的固定结构较为可靠,且密封性较好。具体的,上述辐射体121为金属材质,保护罩123为塑料等绝缘材质,则可以采用注塑成型的工艺制备形成上述辐射体121与保护罩123。当然,在其它实施例中还可以采用粘接、热熔连接或者可拆卸连接等工艺实现辐射体121与保护罩123的固定设置,本申请对此不做限制。
上述辐射体121至少部分结构位于保护罩123的外部,辐射体121位于保护罩123外部的区域的表面包裹有保护层,从而可以对辐射体121进行防腐蚀和防水等保护。具体的实施例中,上述保护层可以在辐射体121表面涂布形成,例如涂布聚酯漆等涂层。或者,其它实施例中,还可以在辐射体121的表面粘贴保护层或者套设保护层等,本申请对此不做限制。
本申请对上述辐射体121的具体结构不做限制。例如,辐射体121可以为贴片式辐射体,也可以为振子式辐射体,都可以采用本申请的技术方案。
在一些实现方式中,实现保护罩123与腔体111固定连接时,可以使保护罩123具有连接部1231, 该连接部1231与腔体111固定连接。该方案中,保护罩123具有连接部1231有利于简化保护罩123与腔体111的连接方式。此外,上述连接部1231与腔体111之间可以通过设置密封件,进一步提升保护罩123与腔体111表面形成的容置腔的密封等级。具体的,上述密封件可以为密封圈或者密封胶条等,本申请不做具体限制。
图6为本申请实施例中天线的一种爆炸结构示意图,请参考图4和图6,在一些实现方式中,上述连接部1231为保护罩123的第一凸沿,也就是说,保护罩123具有第一凸沿,该第一凸沿作为连接部1231,用于与腔体111固定连接。相应的,上述腔体111具有第二凸沿1111,上述第一凸沿和第二凸沿1111固定连接。该方案有利于简化保护罩123与腔体111之间的连接方式。例如,可以在第一凸沿制备通孔,在第二凸沿1111也制备通孔,利用螺栓穿过上述第一凸沿的通孔和第二凸沿1111的通孔以连接第一凸沿和第二凸沿1111。或者,还可以在上述第一凸沿制备通孔,而在第二凸沿1111制备螺纹孔,利用螺钉穿过上述第一凸沿的通孔并旋进螺纹孔,从而简化天线1的结构,减小天线1的体积。当然,还可以采用其它的连接方式实现保护罩123与腔体111的连接,例如卡接等,本申请对此不做限制。
请继续参考图4,在一些实现方式中,上述腔体111包括第一通孔1112和第二通孔1113,该第一通孔1112和第二通孔1113间隔预设距离,也就是说第一通孔1112和第二通孔1113不相连通。对于辐射单元12为双极化辐射单元的情况,上述馈电网络112可以包括第一馈电线和第二馈电线,辐射单元12的馈电部件122包括第一馈电部和第二馈电。上述第一馈电线与第一馈电部通过第一通孔1112连接,第二馈电线与第二馈电部通过第二通孔1113连接。具体的实施例中,上述第一馈电部和第二馈电部也可以为线状结构,上述第一馈电线与第一馈电部的连接点可以位于容置腔也可以位于腔体111,同样,第二馈电线与第二馈电部的连接点也可以位于容置腔或者位于腔体111,本申请对此不做限制。该方案中,第一通孔1112和第二通孔1113间隔预设距离,则可以认为上述第一通孔1112和第二通孔1113之间具有地层,使得辐射单元12在两个极化方向的信号的传输路径实现高隔离,减少相互串扰。
进一步的,图7为本申请实施例中天线的另一种侧向结构示意图,如图7所示,在一些实施例中,上述天线1还包括反射板13,该反射板13安装于腔体111与辐射单元12之间。反射板13也可以称为底板、天线面板或者反射面等,其可以是金属材质。天线1接收信号时,反射板13可以把天线信号反射到目标覆盖区域。天线1发射信号时,反射板13可以将射至反射板13的信号反射并发射出去。辐射单元12通常放置于反射板13一侧表面,这不但可以大大增强天线信号的接收或发射能力,还能够起到阻挡、屏蔽来自反射板13背面(本申请中反射板13的背面是指与反射板13用于设置辐射单元12相背的一侧)的其它电波对天线信号接收的干扰作用。
图8为本申请实施例中天线的一种俯向结构示意图,如图8所示,上述反射板13具体可以具有镂空结构131,从而减小反射板13产生的风载,减小整个天线1的风载,有利于增大天线1的尺寸,增多天线1的辐射单元12数量,以增强天线1的性能收益。
具体设置上述反射板时,可以利用绝缘连接件实现反射板13与腔体111的连接,从而减少对天线信号的干扰。具体的,上述绝缘连接件可以为柔性件,利用该柔性件将反射板13绑缚于腔体111上,以简化安装结构。且无需破坏腔体111本身的结构。变了便于实现上述柔性件的绑缚,可以在腔体111的外壁设置挂钩,使得柔性件挂于上述挂钩。
具体的实施例中,上述反射板还可以具有孔位,振子的巴伦124等结构可以穿过该孔位与功分器11连接。
以上实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
本申请中出现的“具体的”、“具体设置”和“具体设计”等涉及到“具体”字样的实施例,均指代可选的实施例,也就是说,该实施例是在本申请发明构思下一种可能的具体实施例,但是还包括其它可能的实施例。
在本申请中描述的参考“一个实施例”或“具体的实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
上述各个实施例可以为单独的实施例,也可以进行结合。例如将各个实施例中至少两个实施例中的技术特征结合形成新的实施例,本申请对此不做限制。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (16)

  1. 一种天线,其特征在于,包括功分器和辐射单元,所述功分器包括腔体和馈电网络,所述馈电网络设置于所述腔体内,所述辐射单元包括辐射体、馈电部件和保护罩,所述馈电部件连接于所述馈电网络与所述辐射体之间;
    所述辐射体与所述保护罩固定设置,所述保护罩与所述腔体固定连接,所述保护罩与所述腔体的表面形成密闭容置腔,所述容置腔满足预设防护等级,所述馈电部件位于所述容置腔内。
  2. 如权利要求1所述的天线,其特征在于,所述天线不包括天线罩。
  3. 如权利要求1或2所述的天线,其特征在于,所述容置腔满足预设防护等级。
  4. 如权利要求3所述的天线,其特征在于,所述容置腔的所述预设防护等级等于或者高于IP24。
  5. 如权利要求1~4任一项所述的天线,其特征在于,还包括巴伦,所述巴伦连接于所述辐射体与所述腔体之间,用于实现所述辐射体的接地,所述巴伦位于所述容置腔内。
  6. 如权利要求1~5任一项所述的天线,其特征在于,所述功分器还包括移相装置,所述移相装置设置于所述腔体内。
  7. 如权利要求1~6任一项所述的天线,其特征在于,所述辐射体与所述保护罩为一体成型结构。
  8. 如权利要求1~7任一项所述的天线,其特征在于,所述辐射体为贴片式辐射体或者振子式辐射体。
  9. 如权利要求1~8任一项所述的天线,其特征在于,所述辐射体至少部分位于所述保护罩的外部,所述辐射体位于所述保护罩外部的区域的表面包裹有保护层。
  10. 如权利要求1~9任一项所述的天线,其特征在于,所述保护罩具有连接部,所述保护罩通过所述连接部与所述腔体固定连接。
  11. 如权利要求10所述的天线,其特征在于,所述连接部与所述腔体之间设置有密封件。
  12. 如权利要求10或11所述的天线,其特征在于,所述连接部为所述保护罩的第一凸沿,所述腔体具有第二凸沿,所述第一凸沿和所述第二凸沿固定连接。
  13. 如权利要求1~12任一项所述的天线,其特征在于,所述馈电网络包括第一馈电线和第二馈电线,所述辐射单元为双极化辐射单元,所述馈电部件包括第一馈电部和第二馈电部;所述腔体包括第一通孔和第二通孔,所述第一通孔和所述第二通孔间隔预设距离,所述第一馈电线与所述第一馈电部通过所述第一通孔连接,所述第二馈电线与所述第二馈电部通过所述第二通孔连接。
  14. 如权利要求1~13任一项所述的天线,其特征在于,还包括反射板,所述反射板安装于所述腔体与所述辐射单元之间,所述反射板具有镂空结构。
  15. 如权利要求14所述的天线,其特征在于,所述反射板与所述腔体通过绝缘连接件连接。
  16. 一种基站,其特征在于,包括安装架,以及如权利要求1~15任一项所述的天线,所述天线安装于所述安装架。
PCT/CN2023/124658 2022-11-18 2023-10-16 一种天线及基站 WO2024104027A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211448384.4A CN118073815A (zh) 2022-11-18 2022-11-18 一种天线及基站
CN202211448384.4 2022-11-18

Publications (1)

Publication Number Publication Date
WO2024104027A1 true WO2024104027A1 (zh) 2024-05-23

Family

ID=91083786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/124658 WO2024104027A1 (zh) 2022-11-18 2023-10-16 一种天线及基站

Country Status (2)

Country Link
CN (1) CN118073815A (zh)
WO (1) WO2024104027A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041835A (ja) * 2004-07-26 2006-02-09 Broad Wireless Kk 広帯域ループアンテナ
US20120098725A1 (en) * 2010-10-22 2012-04-26 Spx Corporation Broadband Clover Leaf Dipole Panel Antenna
CN111048896A (zh) * 2019-12-25 2020-04-21 京信通信技术(广州)有限公司 通信系统、天线及其馈电结构
CN112952389A (zh) * 2021-01-29 2021-06-11 杭州永谐科技有限公司上海分公司 一种阶梯式超宽带螺旋天线
WO2021258705A1 (zh) * 2020-06-24 2021-12-30 京信通信技术(广州)有限公司 高频辐射单元、多频共轴辐射装置及天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041835A (ja) * 2004-07-26 2006-02-09 Broad Wireless Kk 広帯域ループアンテナ
US20120098725A1 (en) * 2010-10-22 2012-04-26 Spx Corporation Broadband Clover Leaf Dipole Panel Antenna
CN111048896A (zh) * 2019-12-25 2020-04-21 京信通信技术(广州)有限公司 通信系统、天线及其馈电结构
WO2021258705A1 (zh) * 2020-06-24 2021-12-30 京信通信技术(广州)有限公司 高频辐射单元、多频共轴辐射装置及天线
CN112952389A (zh) * 2021-01-29 2021-06-11 杭州永谐科技有限公司上海分公司 一种阶梯式超宽带螺旋天线

Also Published As

Publication number Publication date
CN118073815A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
CN104868228A (zh) 双极化天线及天线阵列
US10333210B2 (en) Low profile high performance integrated antenna for small cell base station
KR102664005B1 (ko) 안테나 및 전자 장치
WO2021017777A1 (en) Antenna device and electronic device
KR20170134371A (ko) 레이더 리플렉터를 갖는 다기능 안테나 시스템
CN111864362A (zh) 天线模组及电子设备
US20230344113A1 (en) Base station antenna
KR100399619B1 (ko) 다 측방향 측대파 억압형 지향성 안테나
WO2024104027A1 (zh) 一种天线及基站
WO2023088446A1 (zh) 一种天线及通信系统
CN214378818U (zh) 一种外置式多端口5g宽频段全向型防水天线
US11646502B2 (en) Multi-band base station antenna
CN210926296U (zh) 基站天线装置及移动通信网络系统
CN113161720B (zh) 具有高隔离度和低交叉极化电平的天线、基站和终端
CN210468134U (zh) 一种3.5g高增益基站天线
CN216354781U (zh) 通信天线和通信天线装置
WO2023109765A1 (zh) 一种天线系统和通信设备
WO2024050703A1 (zh) 一种天线及通信设备
WO2024027465A1 (zh) 一种天线系统及基站
WO2023051471A1 (zh) 一种天线系统及基站天馈系统
CN216529338U (zh) 一种双极化Wi-Fi天线
WO2023109846A1 (zh) 一种天线系统及基站天馈系统
WO2024021780A1 (zh) 一种天线和通信设备
WO2023123342A1 (en) Base station antennas with external pim shielding structures and related devices
US20240128643A1 (en) Antenna and base station