WO2023088446A1 - 一种天线及通信系统 - Google Patents

一种天线及通信系统 Download PDF

Info

Publication number
WO2023088446A1
WO2023088446A1 PCT/CN2022/132991 CN2022132991W WO2023088446A1 WO 2023088446 A1 WO2023088446 A1 WO 2023088446A1 CN 2022132991 W CN2022132991 W CN 2022132991W WO 2023088446 A1 WO2023088446 A1 WO 2023088446A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
element array
radiating element
radiation
communication system
Prior art date
Application number
PCT/CN2022/132991
Other languages
English (en)
French (fr)
Inventor
李波杰
龚志
肖伟宏
张关喜
王迪
李向华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023088446A1 publication Critical patent/WO2023088446A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Definitions

  • the present application relates to the technical field of communication, specifically an antenna and a communication system.
  • the communication system can support more and more communication frequency bands, so the structure of the antenna of the communication system is becoming more and more complex, and the integration degree of the antenna is also getting higher and higher.
  • due to restrictions such as wind loads it is difficult to further increase the frontal size of the antenna, resulting in a small number of radiation elements integrated in the antenna, and the strength and range of radiated signals are also limited, making it difficult to improve the performance of the communication system.
  • the present application provides an antenna and a communication system, so as to improve the coverage of the antenna and improve the performance of the antenna without increasing the wind load and installation space of the antenna.
  • the present application provides an antenna, which includes a front mounting surface, a side mounting surface, a radiating element array, and a circuit module.
  • the aforementioned radiating element array includes a front radiating element array and a side radiating element array.
  • the front radiating unit array is installed on the front installation surface
  • the side radiating unit array is installed on the side installation surface.
  • the above-mentioned front mounting surface is a surface for installing the front radiating element array
  • the side mounting surface is a surface for installing the side radiating element array.
  • the angle on the side away from the front radiation element array and the side radiation element array is a first angle, and the angle of the first angle is less than 180°.
  • the above-mentioned front mounting surface and side mounting surface are not located on the same plane, but are located on two different planes forming a first included angle. Therefore, the projected area of the radiating element array of the antenna on the plane where the normal installation surface is located is reduced, which is beneficial to reduce the wind load of the antenna.
  • the embodiment of the present application can set a larger number of radiating element arrays, thereby improving the coverage of the antenna and improving the performance of the antenna.
  • the first included angle may be less than or equal to 90°.
  • the wind load of the antenna can be reduced to a large extent, and in addition, the coverage effect of the radiated signal in the area on the back side of the positive radiating unit can be better taken into account.
  • the antenna further includes a front mounting plate and a side mounting plate, the above-mentioned front mounting surface is located on the front mounting plate, and the side mounting surface is located on the side mounting plate.
  • the front radiating element array and the side radiating element array can be directly installed on the above-mentioned front mounting plate and side mounting plate.
  • the above-mentioned front mounting plate includes a reflection plate
  • the side mounting plate includes a reflection plate
  • the front mounting plate and the side mounting plate can be made of metal materials and serve as reflection plates; or, the surface of the front mounting plate and the side mounting plate can be coated to prepare a reflection plate, which is not covered by this application. limit.
  • the orthographic projection of the side radiating unit array on the front installation board is at least partly located on the front installation board.
  • the front radiating element array and the side radiating element array can be separated by the front mounting plate, so as to reduce the crosstalk between the two.
  • the orthographic projection of the above-mentioned side radiating element array on the front mounting plate may also not be located on the above-mentioned front mounting plate at all, which is beneficial to reduce the wind load of the antenna.
  • the edge of the front mounting plate may have a first folded portion, and the first folded portion is located on a side of the front mounting plate where the array of positive radiation elements is installed.
  • the edge of the side mounting plate has a second folded portion, and the second folded portion is located on a side where the side mounting plate is installed with the side radiation element array. This solution can reduce the intensity of the signal radiated backward by the antenna behind the side mounting plate, and improve the front-to-back ratio of the antenna.
  • only the front mounting plate may have the first folded portion, or only the side mounting plate may have the second folded portion, or, the front mounting plate may also have the first folded portion, and the side mounting plate may have the first folded portion.
  • the panel has a second fold. It can be designed according to actual needs.
  • the above-mentioned antenna also includes a mounting part, the mounting part is arranged on the side of the positive mounting surface away from the positive radiation element array, the mounting part has a connector, the connecting head is used to connect with the pole, and the connecting head is connected to the positive mounting surface The distance is greater than the distance between any position on the side mounting surface and the positive mounting surface.
  • the connectors are located on the outside of all front and side mounting surfaces, so multiple antennas can be installed on the same pole to reduce the space occupied by the antennas.
  • the front installation surface and the side installation surface of the antenna can be arranged in one radome, and the radiation element array in the radome can be installed on the pole as a whole.
  • the above-mentioned antenna may include a front installation surface and two side installation surfaces, the above-mentioned two side installation surfaces are respectively arranged on two opposite sides of the front installation surface, and the front installation surface is provided with a positive radiation unit
  • An array, an array of side radiating elements is arranged on the side radiating surface.
  • side radiation element arrays are arranged on both sides of the front radiation element array. This solution can greatly improve the performance of the antenna while ensuring that the space occupied by the front mounting surface of the antenna is certain.
  • the number of the side radiating element arrays is less than that of the front radiating element arrays, and the size of the side mounting surfaces on both sides is smaller, which is beneficial to thinning the thickness of the antenna and reducing the profile of the antenna.
  • the above-mentioned circuit module specifically includes an electric bridge, the electric bridge includes an input port and an output port, the input port is connected to the radio frequency port, and the output port of the electric bridge is respectively connected to the front radiating element array and the side radiating element array.
  • the power sharing of the front radiating element array and the side radiating element array can be realized by using the electric bridge, so that the whole antenna can work as a whole.
  • the above-mentioned antenna can be an active antenna or a passive antenna.
  • the antenna includes a radio frequency single board and a radiator.
  • the radiator is arranged on the side of the radio frequency single board away from the front mounting surface.
  • the array and the side radiating element array are connected to the radio frequency single board. Using one radio frequency single board to connect all the radiating element arrays is beneficial to simplify the structure of the antenna, and also facilitates the calibration and cooperation among different radiating element arrays.
  • the antenna may also include a front installation surface and a side installation surface, and then the side radiation element array is only provided on one side of the front radiation element array. to improve signal strength and coverage on that side.
  • the foregoing antenna may be an active antenna or a passive antenna, which is not limited in the present application.
  • the above-mentioned positive radiating element array can also be connected to an antenna port, and the side radiating element array is also connected to an antenna port, and one end of the above-mentioned circuit module is connected to the antenna port connected to the above-mentioned positive radiating element array and the side radiating element array
  • the antenna port is connected to the other end, and the other end is used to connect to the radio frequency port.
  • the circuit module connects the front radiating element array and the side radiating element array to the same driving terminal, so that the above-mentioned front radiating element array and the side radiating element array can be driven simultaneously.
  • radio frequency ports are also different in different types of antennas.
  • the radio frequency port is the port corresponding to the radio frequency module of the active antenna; when the antenna is a passive module, the radio frequency port is the remote radio unit the RF port.
  • At least one antenna port among the antenna ports is electrically connected to at least two radio frequency ports among the plurality of radio frequency ports through a circuit module.
  • the circuit module can be used to redistribute the power input from the radio frequency port, so as to realize the power sharing of each sub-array of the antenna. Therefore, this solution can allocate the input power of the above-mentioned antenna port according to the actual demand, and adjust the coverage and channel capacity of the radiated signal of the antenna.
  • any antenna port may be electrically connected to any one of the multiple radio frequency ports through a circuit module. Then the power input by each radio frequency port can be transmitted to any one of the antenna ports, so as to realize power redistribution. Therefore, the coverage area of the radiated signal of the antenna can be adjusted according to the requirement, and the channel capacity of the set range can be increased.
  • the above-mentioned antenna may further include a first correction module, which is used for correcting phases and amplitudes between different antenna ports.
  • a first correction module which is used for correcting phases and amplitudes between different antenna ports.
  • the first correction module includes a coupler and a power divider.
  • a coupler is connected to the antenna port connected to the front radiating element array, and a coupler is also connected to the antenna port connected to the side radiating element array.
  • the above-mentioned coupler is connected with the correction port through a power divider. All the couplers connected to each antenna can be connected to a power divider, so that the signals of the various radiating element arrays can be converged at one place.
  • the above-mentioned radiating element array may include a plurality of radiating elements, and each radiating element is connected to an active component, and the active component is used to reconstruct the radiation pattern of the radiating element.
  • the radiation pattern of the corresponding radiation unit can be adjusted through the above-mentioned active components, and the maximum radiation direction of the antenna can be changed.
  • the antenna may include multiple radiating element arrays, and each radiating element array may include multiple radiating elements. By using active components to adjust the radiation pattern of the radiation unit, the radiation pattern of the array of radiation elements can be adjusted to increase the degree of freedom in the adjustment of the radiation pattern of the entire antenna, and 360° coverage of the radiation signal of a single antenna can be achieved.
  • the specific types of the above-mentioned active components are not limited, for example, it can be at least one of diodes, capacitors, varactors, radio frequency micro-electromechanical systems (Microelectromechanical Systems, MEMS) switches, liquid crystals, graphene and micro-mechanical rotary devices. one. This application does not specifically limit this.
  • the present application further provides a communication system, which includes a mounting frame and the antenna according to the first aspect above, where the antenna is mounted on the mounting frame.
  • the radiation range of the antenna in the communication system is relatively wide, which is conducive to improving the coverage and signal strength of the communication system. Specifically, under a certain signal strength, the number of installed antennas can be reduced to reduce costs, and when the number of antennas installed in the communication system is certain, the signal strength of the communication system can be made stronger.
  • the number of antennas included in each communication system is not limited, and the form of networking that can be formed is not limited.
  • a communication system may include an antenna whose radiated signal covers a cell.
  • the antenna can realize 360° coverage of radiated signals, and a communication system can realize full coverage by using one antenna, which is beneficial to reduce the cost of the communication system.
  • the antenna when the above-mentioned communication system includes an antenna, the antenna includes a front installation surface and two side installation surfaces, the two side installation surfaces are respectively arranged on two opposite sides of the front installation surface, and the positive radiation element array is arranged on the front installation surface.
  • the side radiating element array includes a first side radiating element array and a second side radiating element array, the first side radiating element array is arranged on one of the two side radiating elements, and the second side radiating element array is arranged on the two side radiating elements Another face.
  • the signal radiated by the front radiating element array can cover the first cell
  • the signal radiated by the second side radiating element array can cover the second cell
  • the signal radiated by the third side radiating element array can cover the third cell. That is to say, one antenna can be used to realize the signal coverage of three cells, so as to reduce the energy consumption of the communication system.
  • the foregoing includes at least two antennas. Different antennas can also work together.
  • a second correction module is connected between two adjacent antennas, and the second correction module is used to correct the phase and amplitude between different antennas. All the antenna arrays of the entire communication system can work together according to requirements.
  • the front radiating element array installed on the front mounting surface of each antenna forms an antenna array
  • the side radiating element array installed on each side mounting surface also forms an antenna array.
  • the communication system includes multiple radiation areas, and at least one radiation area consists of Beam coverage radiated by antenna fronts of at least two different antennas. This solution can adjust the coverage area of the antenna according to the demand, so as to enrich the application scenarios of the antenna.
  • the communication system includes at least two radiation areas, and the radiation areas correspond to the antennas one by one.
  • the antennas may not be coordinated, but only the multiple antenna arrays inside the antenna itself are coordinated.
  • Both the front radiating element array and the side radiating element array are radiating element arrays, and the communication system includes multiple radiating element arrays, with the first radiating element array as the baseline, according to the coordinates of the first radiating element array, the i-th radiating element The coordinates of the array, the angle between the direction of the i-th radiating element array and the x-axis, and the phase of the first radiating element array obtain the phase of the i-th radiating element array.
  • the above communication system may further include two or more antennas.
  • the communication system may include three antennas, and the three antennas are respectively a first antenna, a second antenna and a third antenna.
  • the cooperative algorithm the cooperative work between different antennas can be realized, and the power sharing and channel sharing between the antennas can also be realized by cooperating with the circuit modules.
  • the signals radiated by the above three antennas may cover the same cell.
  • This solution can make the radiation signal coverage of each antenna larger than 120°, thereby ensuring the signal strength of the area corresponding to the gap between two adjacent antennas.
  • one or two of the antennas can be turned off according to requirements, so as to realize energy saving of the communication system.
  • the signals radiated by the above three antennas can also be made to cover one cell respectively.
  • the signal radiated by the first antenna may cover the first cell
  • the signal radiated by the second antenna may cover the second cell
  • the signal radiated by the third antenna may cover the third cell.
  • the first cell, the second cell, and the third cell may respectively correspond to sectoral areas larger than 120°. There may be overlap between different cells, and the coordination algorithm can realize the collaborative work of adjacent cells.
  • the three antennas when the above-mentioned three antennas are installed on the mounting frame, the three antennas can be evenly arranged on the peripheral side of the mounting frame, so as to facilitate the uniformity of signals around the mounting frame.
  • the three antennas can also be arranged unevenly according to actual usage requirements, and details will not be described here.
  • FIG. 1 is a schematic diagram of a communication system architecture applicable to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a communication system in a possible embodiment of the present application.
  • FIG. 3 is a schematic diagram of the composition of an antenna in a possible embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a possible structure of the antenna in the embodiment of the present application.
  • FIG. 5A is a schematic diagram of a top view structure of the antenna in the embodiment of the present application.
  • FIG. 5B is a schematic structural diagram of another top view of the antenna in the embodiment of the present application.
  • FIG. 5C is a schematic diagram of another top view structure of the antenna in the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another top view of the antenna in the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another top view of the antenna in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of another structure of the antenna in the embodiment of the present application.
  • FIG. 9A is another structural schematic diagram of the antenna in the embodiment of the present application.
  • FIG. 9B is another schematic structural diagram of the antenna in the embodiment of the present application.
  • FIGS. 10A to 10F are schematic diagrams of several possible structures of the antenna in the embodiment of the present application.
  • Fig. 11A is a schematic diagram of the orthographic projection of the side radiating unit array on the mounting plate in the embodiment of the present application;
  • Fig. 11B is another schematic diagram of the orthographic projection of the side radiation unit array on the mounting plate in the embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an antenna in an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a circuit module in an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a circuit module in an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a circuit module in an embodiment of the present application.
  • FIG. 16 is an application scenario of the antenna in the embodiment of the present application.
  • FIG. 17 is another application scenario of the antenna in the embodiment of the present application.
  • Fig. 18 is a schematic structural diagram of the first calibration module in the embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of an antenna in an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a communication system in an embodiment of the present application.
  • Fig. 21 is another schematic structural diagram of the communication system in the embodiment of the present application.
  • FIG. 22 is a schematic diagram of a networking structure of a communication system in an embodiment of the present application.
  • FIG. 23 is an antenna pattern diagram of the communication system in the embodiment of the present application.
  • FIG. 24 is a schematic diagram of a networking structure of a communication system in an embodiment of the present application.
  • FIG. 25 is a schematic diagram of a networking structure of a communication system in an embodiment of the present application.
  • FIG. 26 is a schematic structural diagram of a communication system in an embodiment of the present application.
  • Fig. 27 is a networking form of the communication system in the embodiment of the present application.
  • Fig. 28 is another networking form of the communication system in the embodiment of the present application.
  • FIG. 29 is another schematic structural diagram of the communication system in the embodiment of the present application.
  • Fig. 30 is another networking form of the communication system in the embodiment of the present application.
  • 16-circuit module 161-antenna port;
  • FIG. 1 exemplarily shows a schematic diagram of a communication system architecture applicable to this embodiment of the present application.
  • the communication system may be a base station antenna feeder system.
  • the application scenario may include a base station and a terminal. Wireless communication can be realized between the base station and the terminal.
  • the base station may be located in a base station subsystem (base station subsystem, BBS), a terrestrial radio access network (UMTS terrestrial radio access network, UTRAN) or an evolved terrestrial radio access network (evolved universal terrestrial radio access, E-UTRAN), Cell coverage for wireless signals to enable communication between terminal equipment and wireless networks.
  • BBS base station subsystem
  • UMTS terrestrial radio access network UTRAN
  • E-UTRAN evolved terrestrial radio access network
  • the base station can be a base transceiver station (BTS) in a global system for mobile communication (GSM) or (code division multiple access, CDMA) system, or a wideband code division multiple access (CDMA) system.
  • BTS base transceiver station
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • CDMA wideband code division multiple access
  • address (wideband code division multiple access, WCDMA) system Node B (NodeB, NB) can also be long term evolution (long term evolution, LTE) evolution type Node B (eNB or eNodeB) system, or It may be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • LTE long term evolution
  • eNB evolution type Node B
  • CRAN cloud radio access network
  • the base station can also be a relay station, an access point, a vehicle-mounted device, a wearable device, and a g-node (gNodeB or gNB) in a new radio (NR) system or a base station in a future evolved network. Examples are not limited.
  • a base station antenna feeding system may generally include structures such as an antenna 1 , a mounting frame 2 , and an antenna adjustment bracket 4 .
  • the antenna 1 of the base station includes a radome 19, the radome 19 has good electromagnetic wave penetration characteristics in terms of electrical performance, and can withstand the influence of harsh external environments in terms of mechanical properties, thereby protecting the antenna 1 from external environmental influences. effect.
  • the antenna 1 can be installed on the installation frame 2 through the antenna adjustment bracket 4 so as to receive or transmit signals from the antenna 1 .
  • the embodiment shown in FIG. 2 is only used as an optional implementation manner.
  • the antenna and base station antenna feeding system in the embodiment of the present application may be the same as the embodiment shown in FIG. 2 .
  • the base station may further include a radio frequency processing unit 5 and a baseband processing unit 6 .
  • the radio frequency processing unit 5 can be used to perform frequency selection, amplification and down-conversion processing on the signal received by the antenna 1, and convert it into an intermediate frequency signal or a baseband signal and send it to the baseband processing unit 6, or the radio frequency processing unit 5 is used to convert The baseband processing unit 6 or the intermediate frequency signal is converted into electromagnetic waves through the antenna 1 and sent out after up-conversion and amplification processing.
  • the baseband processing unit 6 can be connected to the feeding network of the antenna 1 through the radio frequency processing unit 5 .
  • the radio frequency processing unit 5 can also be referred to as a remote radio unit (remote radio unit, RRU), or it may also be a radio frequency module in an active antenna unit (Active Antenna Unit, AAU), a baseband processing unit 6 may also be called a baseband unit (baseband unit, BBU).
  • RRU remote radio unit
  • AAU Active Antenna Unit
  • BBU baseband unit
  • the radio frequency processing unit 5 may be integrated with the antenna 1 , and the baseband processing unit 6 is located at the far end of the antenna 1 . In some other embodiments, the radio frequency processing unit 5 and the baseband processing unit 6 may also be located at the far end of the antenna 1 at the same time.
  • the radio frequency processing unit 5 and the baseband processing unit 6 can be connected through a cable 7 .
  • FIG. 2 and FIG. 3 may be referred to together, and FIG. 3 is a schematic composition diagram of an antenna in a possible embodiment of the present application.
  • the antenna 1 of the base station may include a radiation element array 13 and a reflection plate 110 .
  • the aforementioned radiating element array 13 can also be called an antenna dipole, dipole, etc., and it can effectively transmit or receive antenna signals.
  • the frequencies of different radiating element arrays 13 may be the same or different.
  • the reflecting plate 110 may also be called a bottom plate, an antenna panel, or a reflecting surface, and may be made of metal. When the antenna 1 receives a signal, the reflector 110 can reflect the antenna signal to the target coverage area.
  • the reflection plate 110 can reflect and transmit the signal incident on the reflection plate 110 .
  • the radiation element array 13 is usually placed on the surface of one side of the reflector 110, which not only can greatly enhance the receiving or transmitting capability of the antenna 1 signal, but also can block and shield from the back of the reflector 110 (the back of the reflector 110 in this application is Refers to the interference effect of other radio waves on the signal reception of the antenna on the side opposite to the reflecting plate 110 for setting the radiation element array 13 .
  • the radiating element array 13 is connected to the feeding network 111 .
  • the feed network 111 is usually composed of a controlled impedance transmission line.
  • the feed network 111 can feed the signal to the radiation element array 13 according to a certain amplitude and phase, or send the received signal to the baseband of the base station according to a certain amplitude and phase.
  • processing unit6 Specifically, in some implementations, the feeding network 111 can be used to realize different radiation beam directions, or be connected with the calibration network 112 to obtain calibration signals required by the system.
  • a phase shifter 113 may be included in the feeding network 111 to change the phase of antenna signal radiation.
  • the feeding network 111 it is also possible to set some modules for expanding performance, such as a combiner 114, which can be used to synthesize signals of different frequencies and transmit them through the antenna 1; or when used in reverse, it can be used to combine the antenna 1
  • a combiner 114 which can be used to synthesize signals of different frequencies and transmit them through the antenna 1; or when used in reverse, it can be used to combine the antenna 1
  • the received signals are divided into multiple channels according to different frequencies and transmitted to the baseband processing unit 6 for processing, such as the filter 115 for filtering out interference signals.
  • FIG. 4 is a schematic structural diagram of a possible structure of the antenna in the embodiment of the present application
  • FIG. 5A is a schematic structural diagram of a top view of the antenna in the embodiment of the present application.
  • antenna 1 comprises positive installation surface 11, side installation surface 12 and radiating element array 13
  • radiating element array 13 comprises positive radiating element array 131 and side radiating element array 132, above-mentioned positive radiating element array 131 Installed on the front installation surface 11 , the side radiation unit array 132 is installed on the side installation surface 12 .
  • the radiation surface of the above-mentioned front radiation element array 131 is parallel to the front installation surface 11
  • the radiation surface of the side radiation element array 132 is parallel to the side installation surface 12 .
  • the radiation surface of the front radiation element array 131 may not be parallel to the front installation surface 11
  • the radiation surface of the side radiation element array 132 may be non-parallel to the side installation surface 12 .
  • the angle between the front mounting surface 11 and the side mounting surface 12 on the side away from the front radiation element array 131 is a first angle, and the angle ⁇ of the first angle is less than 180°.
  • the above-mentioned first angle is the angle between the front mounting surface 11 and the side mounting surface 12 and the angle away from the front radiation element array 131 and the side radiation element array 132 . That is to say, in this solution, in addition to setting the front radiating element array 131 on the front of the antenna 1 , a side radiating element array 132 can also be set on the side of the antenna 1 . In this solution, the area of the sky surface of the antenna 1 can be enlarged without increasing the area occupied by the front mounting surface 11 of the antenna.
  • the above-mentioned antenna surface may be called an antenna aperture surface or an antenna front surface, etc., and specifically may refer to an area covered by the radiation unit of the antenna 1 . Therefore, the coverage of the antenna 1 and the performance of the antenna 1 can be improved without increasing wind load and installation space.
  • the above-mentioned positive installation surface 11 refers to a surface for installing the radiation unit, which may specifically be an installation surface facing away from the installation frame 2 when the antenna 1 is in use.
  • the side installation surface 12 also refers to a surface for installing the radiation unit, specifically, it may be an installation surface on the side adjacent to the front installation surface 11 .
  • Antenna 1 usually includes a plurality of radiation elements. In actual work, the above-mentioned plurality of radiation elements are divided into radiation element arrays 13. Specifically, part of the radiation elements in the plurality of radiation elements can be a radiation element array 13. In actual work, , it is possible to control the radiation signal of the antenna 1 by taking the radiation element array 13 as a unit.
  • the division method of the above-mentioned radiating element array 13 is not limited.
  • a plurality of radiating elements on one installation surface may be arranged in a matrix, and then one column of radiating elements may be a radiating element array 13, or two adjacent columns of radiation elements may be arranged in a matrix.
  • the unit is a radiating element array 13 , or, the radiating element corresponding to a small matrix with several rows and several columns may also be a radiating element array 13 , which is not limited in the present application.
  • the antenna 1 in the embodiment of the present application may include other radiating element arrays 13 in addition to the front radiating element array 131 and the side radiating element array 132 , which is not limited in the present application.
  • the antenna 1 may also include other mounting surfaces for mounting the radiating element array 13 .
  • the positive radiating element array may include at least two radiating element arrays, and the operating frequencies of the at least two radiating element arrays may be the same or different, which is not limited in the present application.
  • the sizes of the radiation units of the at least two radiation unit arrays are not limited, and may be the same or different.
  • the side radiating element array may also include at least two radiating element arrays, and the operating frequencies of the at least two radiating element arrays may be the same or different, which is not limited in the present application.
  • the sizes of the radiation units of the at least two radiation unit arrays are not limited, and may be the same or different.
  • the front radiating element array includes radiating elements of different sizes
  • in the embodiment shown in FIG. 5C the side radiating element array includes radiating elements of different sizes.
  • Various situations are not listed here.
  • Figure 6 is a schematic diagram of another top view structure of the antenna in the embodiment of the present application.
  • the angle ⁇ of the above-mentioned first included angle may be 90°, that is to say, the above-mentioned positive mounting surface 11 and the side mounting surface 12 are vertically arranged. This solution has less influence on the wind load of the antenna 1 and can make the angle of the radiation range of the antenna 1 larger.
  • Fig. 7 is a schematic diagram of another top view structure of the antenna in the embodiment of the present application.
  • the angle ⁇ of the above-mentioned included angle can also be less than 90°, that is to say, the above-mentioned side mounting surface 12 is inclined to the back side of the mounting surface 11.
  • the wind load and installation space are small, and in addition, the radiation coverage angle of the antenna 1 can be improved, and the radiation intensity on the side away from the front installation surface 11 is also stronger.
  • the angle ⁇ of the above-mentioned first included angle is 60°-120°.
  • the above-mentioned first included angle ⁇ can be designed according to the radiation range requirements of the actual antenna 1 , and this application does not limit it.
  • FIG. 8 is a schematic diagram of another structure of the antenna in the embodiment of the present application.
  • the above-mentioned antenna 1 further includes a mounting part 116 .
  • the front mounting surface 11 and the side mounting surface 12 are mounted on the pole through the mounting piece 116 .
  • the above-mentioned mounting part 116 includes a connecting head 1161, specifically, the connecting head 1161 is used to install and connect with the pole.
  • the above-mentioned connecting head 1161 is located on the side of the front mounting surface 11 away from the front radiation element array 131, and the orthographic projection of the connecting head 1161 on the front mounting surface 11 is located on the symmetry axis of the front mounting surface 11.
  • This solution can make the structure of the antenna 1 symmetrical with respect to the pole, which is beneficial to improve the stability of the installation of the antenna 1 .
  • the front mounting surface 11 and the side mounting surface 12 can be fixed into an integrated structure first, and then one mounting piece 116 can be used to realize the installation of multiple mounting surfaces of the antenna 1, which is beneficial to reduce the number of accessories of the antenna 1.
  • the overall weight of the antenna 1 is reduced.
  • the distance between the above-mentioned connector 1161 and the front mounting surface 11 is greater than the distance between any position of the side installation and the front mounting surface 11. That is to say, the connector 1161 is located on the outside of all the front mounting surface 11 and the side mounting surface 12 , so that multiple antennas 1 can be installed on the same pole to reduce the space occupied by the antennas 1 .
  • the front installation surface 11 and the side installation surface 12 of the antenna 1 can be arranged in a radome, and the radiation element array in the radome can be installed on the pole as a whole.
  • FIG. 9A is another schematic structural diagram of the antenna in the embodiment of the present application
  • FIG. 9B is another schematic structural diagram of the antenna in the embodiment of the present application.
  • the above antenna 1 further includes a front mounting plate 14 and a side mounting plate 15 .
  • the front mounting surface 11 is located on the front mounting plate 14
  • the side mounting surface 12 is located on the side mounting plate 15 .
  • the above-mentioned front mounting plate 14 and side mounting plate 15 can be connected by means of welding, threading or integral molding.
  • the angle between the front mounting plate and the side mounting plate 15 is not limited.
  • the above-mentioned side mounting plate 15 can be vertically arranged with the front mounting plate 14, or the surface of the side mounting plate 15 facing away from the side radiation element array 132 can be the first surface, and the front mounting plate 14 and the side mounting plate 15 are opposite to each other.
  • the adjacent surface is the second surface, and the included angle between the above-mentioned first surface and the second surface may also be an acute angle, which is not limited in this application.
  • the above-mentioned front mounting plate 14 may include a reflective plate
  • the side mounting plate 15 may also include a reflective plate.
  • the front mounting plate 14 and the side mounting plate 15 may be made of metal.
  • the edge of the above-mentioned positive installation plate 14 may have a first folded portion 141, and the first folded portion 141 is located on a side where the positive radiation element array 131 is installed on the positive installation plate 14. side, that is to say, the front mounting plate 14 has a first folded portion 141 that is folded toward the direction of the front radiation unit.
  • the edge of the above-mentioned side mounting plate 15 may also have a second folded portion 151, the second folded portion 151 is located on the side of the side mounting plate 15 where the side radiation element array 132 is installed, that is to say, the side mounting plate 15 has a The second folded portion 151 folded in the direction of the radiation unit.
  • this solution can reduce the strength of the signal radiated backward by the antenna 1 behind the side mounting plate 15 and improve the front-to-back ratio of the antenna 1 .
  • only the front mounting plate 14 may have the first folded portion 141, or only the side mounting plate 15 may have the second folded portion 151, or, the front mounting plate 14 may also have the first folded portion portion 141 , and the side mounting plate 15 has a second folded portion 151 . It can be designed according to actual needs.
  • the above-mentioned side mounting surface 12 can be provided only on one side of the front mounting surface 11 according to requirements, and a side radiation element array 132 can be provided on the side mounting surface 12 .
  • the side radiation element array 132 is only provided on this side.
  • the above-mentioned side installation surfaces 12 can also be provided on opposite sides of the front installation surface 11 , and each side installation surface 12 is equipped with a side radiation element array 132 .
  • the antenna 1 may include a front installation surface 11 and two side installation surfaces 12, the two side installation surfaces 12 are respectively arranged on two opposite sides of the front installation surface 11, and the front installation surface 11 is provided with a positive radiation element array 131 , the side mounting surface 12 is provided with a side radiating element array 132 . That is to say, side radiation element arrays 132 are provided on both sides of the front radiation element array 131 .
  • This solution can greatly improve the performance of the antenna 1 while ensuring that the space occupied by the front mounting surface 11 of the antenna 1 is constant.
  • the side radiation element arrays 132 on both sides of the front radiation element array 131 on the front installation surface 11 can be arranged symmetrically or asymmetrically, and can be specifically designed according to requirements.
  • each mounting board of the above-mentioned antenna 1 the specific position of each mounting board may not be limited.
  • the two side mounting plates can be arranged symmetrically on both sides of the above-mentioned front mounting plate. The following is a list of possible arrangements for the concentration:
  • FIGS 10A to 10F are schematic diagrams of several possible structures of the antenna in the embodiment of the present application.
  • the side mounting plate is perpendicular to the front mounting plate.
  • the side installation board is located on the side of the front installation board that is away from the front radiation element array 131.
  • the orthographic projection of the side installation board on the plane where the front installation board is located can be completely located on the front installation board, that is, the front installation board
  • the mounting plate can completely cover the side mounting plate.
  • the side mounting plate is located outside the front mounting plate.
  • the orthographic projection of the side mounting plate on the plane where the front mounting plate is located can be completely located outside the front mounting plate.
  • the front mounting plate is located between the side mounting plates.
  • the side mounting plate and the positive mounting part 116 can also be arranged at an acute angle.
  • the side mounting plate is located on the side of the positive mounting plate away from the front radiation element array 131.
  • the orthographic projection of the side mounting plate on the plane where the positive mounting plate is located can be completely located Front mounting plate, that is to say, the front mounting plate completely conceals the side mounting plate.
  • the connection between the side mounting plate and the front mounting plate is located outside the above-mentioned front mounting plate.
  • the front mounting plate is located between the side mounting plates.
  • the two side mounting surfaces 12 include a first side mounting surface and a second side mounting surface.
  • the front mounting surface 11 is provided with m columns of positive radiating element arrays 131
  • the first side radiating surface is provided with n columns of side radiating element arrays 132
  • the second side radiating surface is provided with s columns of side radiating element arrays 132 .
  • the number of side radiating element arrays 132 is less than the number of front radiating element arrays 131 , and the size of the side mounting surfaces 12 on both sides is smaller, which is beneficial to thinning the antenna 1 and reducing the profile of the antenna 1 .
  • FIG. 11A is a schematic diagram of the orthographic projection of the side radiating element array on the front mounting plate in the embodiment of the present application. As shown in FIG. .
  • the front radiating element array 131 and the side radiating element array 132 can be separated by the front mounting plate 14 to reduce the crosstalk between the front radiating element array 131 and the side radiating element array 132 .
  • FIG. 11B is another schematic diagram of the orthographic projection of the side radiating element array on the front mounting board 14 in the embodiment of the present application. As shown in FIG. The projection can be partially located on the front mounting plate 14 . Therefore, it is beneficial to reduce the area occupied by the front mounting plate 14 and to enhance the radiation range of the side radiation unit.
  • the orthographic projection of the above-mentioned side radiating unit array 132 on the plane where the front mounting plate 14 is located may not be located on the front mounting plate 14 at all.
  • the antenna in this embodiment is suitable for use under the condition that the wind load permits.
  • the above-mentioned antenna 1 may specifically be an active antenna or a passive antenna, and both antennas 1 may be applicable to the above-mentioned antenna architecture, which is not limited in this application.
  • the foregoing active antenna may refer to an antenna provided with an active device, and an active antenna may also refer to an antenna including a radio frequency channel module.
  • FIG 12 is a schematic structural view of the antenna in the embodiment of the present application, as shown in Figure 12, in a specific embodiment, the above-mentioned antenna 1 also includes a circuit module 16, the front radiating element array 131 is connected to the antenna port 161, and the side radiating element The array 132 is also connected to an antenna port 161 .
  • One end of the circuit module 16 is connected to the antenna port 161 connected to the front radiating element array 131 and the antenna port 161 connected to the side radiating element array 132, and the other end is used to connect to a plurality of radio frequency ports 162.
  • the above-mentioned radio frequency port 162 can be a port of a radio frequency remote unit (Remote radio unit, RRU); or, when the antenna 1 is an active antenna (Active antenna unit, AAU), the above-mentioned radio frequency
  • the port 162 is a radio frequency port of the radio frequency channel module of the active antenna. It is easy to understand that the circuit module 16 includes a feed network or a feed module.
  • the front radiating element array and the side radiating element array of the antenna can be connected to a radio frequency remote unit through the circuit module, so that the front radiating element array 131 and the side radiating element array 132 can be driven simultaneously, and the positive radiating element array 131 can be
  • the cells covered by the side radiation element array 132 may be the same cell or different cells, which is not limited in this application.
  • the antenna may include at least two front radiating element arrays 131 and at least two side radiating element arrays 132 .
  • the above-mentioned circuit module 16 can be connected to the antenna port 161 connected to part of the front radiating element array 131 , and connected to the antenna port 161 connected to part of the side radiating element array 132 . That is to say, not all the antenna ports 161 of the radiating element array 13 are connected to the circuit module 16, but the circuit module 16 is connected to at least one antenna port 161 connected to the front radiating element array and one antenna port connected to the side radiating element array.
  • the circuit module 16 may be connected to the antenna ports 161 connected to all the front radiating element arrays 131 , and connected to the antenna ports 161 connected to all the side radiating element arrays 132 .
  • the antenna port 161 is specifically connected to the radiation unit of the antenna 1 .
  • the antenna port 161 may be connected to one radiation unit or at least two radiation units, which is not limited in the present application.
  • the radiating element array 13 and the antenna ports 161 may have a one-to-one correspondence.
  • the radiating element array 13 may not be in a one-to-one correspondence with the antenna ports 161. set up.
  • each radiating element array 13 in the front radiating element array 131 and the side radiating element array 132 is connected to one antenna port 161 described above.
  • At least one antenna port 161 is electrically connected to at least two radio frequency ports 162 among the plurality of radio frequency ports 162 through the circuit module 16 .
  • the antenna port 161 and the radio frequency port 162 are directly connected one by one, so the power provided by each radio frequency port 162 can only be transmitted to the antenna port 161 connected to it, that is, it can only be used to drive one array, and cannot be used according to It is required to adjust the power of each array in real time.
  • the circuit module 16 in this embodiment can specifically realize the redistribution of the input power of the antenna 1 , so as to realize the power sharing of each sub-array of the antenna 1 . Therefore, this solution can allocate the input power of the above-mentioned antenna port 161 according to actual needs, and adjust the coverage and channel capacity of the radiated signal of the antenna 1 .
  • any antenna port 161 among the multiple antenna ports 161 may be connected to any one of the multiple radio frequency ports 162 through the circuit module 16 . This solution can allocate the input power of all antenna ports 161 according to actual needs.
  • the above-mentioned circuit module 16 may be an analog circuit module, and its specific form is not limited.
  • FIG. 13 shows a form of a circuit module.
  • the analog circuit includes an electric bridge 163 and a phase shifter 164, so that each antenna port 161 connected to the circuit module 16 can be electrically connected to any radio frequency port 162, so that each The power input by each radio frequency port 162 can be transmitted to any antenna port 161 in the antenna ports 161 to realize power redistribution. Therefore, the coverage of the radiated signal of the antenna 1 can be adjusted according to requirements, and the channel capacity of the set range can be increased.
  • FIG. 13 only shows a possible implementation of the above-mentioned circuit module 16.
  • the above-mentioned circuit module 16 may also include electrical devices such as a bridge 163, a phase shifter 164, and a power divider. at least one.
  • the bridge 163 includes an input port and an output port, the input port of the bridge 163 is connected to the radio frequency port 162, and the output port of the bridge 163 is connected to the front radiating element array 131 and the side radiating element array 132 respectively. thereby.
  • the specific composition form of the above-mentioned electric bridge 163 is not limited, as shown in FIG. bridge.
  • the above-mentioned first electric bridge includes a first input port, a second input port, a first output port and a second output port.
  • the first output port is connected to a column of positive radiation element arrays 131 arranged on the front mounting surface 11, specifically connected to the antenna port 161 connected to the positive radiation element array 131;
  • the second output port is connected to a column of side radiation element arrays on the first side radiation surface 132, specifically connected to the antenna port 161 connected to the side radiating element array 132, and the above-mentioned first input port and second input port are respectively connected to the radio frequency port 162.
  • the above-mentioned second electric bridge includes a third input port, a fourth input port, a third output port and a fourth output port, and the third output port is connected to another positive radiation element array 131 provided on the positive mounting surface 11, Specifically connected to the antenna port 161 connected to the positive radiating element array 131; the fourth output port is connected to the side radiating element array 132 of the second side radiating surface, specifically connected to the antenna port 161 connected to the side radiating element array 132, the above-mentioned first The third input port and the fourth input port are respectively connected to the radio frequency port 162 .
  • the first bridge and the second dispensing above are specifically 2*2 Butler matrix, also known as 3dB 90° bridge, the matrix is specifically:
  • Fig. 14 shows one form of a circuit module.
  • the circuit module 16 may include three electric bridges 163 , and the three electric bridges 163 are respectively a third electric bridge, a fourth electric bridge and a fifth electric bridge.
  • the above-mentioned third electric bridge includes the fifth input port, the sixth input port, the fifth output port and the sixth output port;
  • the fourth electric bridge includes the seventh input port, the eighth input port, the seventh output port and the eighth output port ;
  • the fourth bridge includes a ninth input port, a tenth input port, a ninth output port and a tenth output port.
  • the above-mentioned fifth output port is connected to a row of side radiation element arrays 132 of the first side radiation surface, specifically, connected to the antenna port 161 connected to a row of side radiation element arrays 132 of the first side radiation surface; the sixth output port is connected to the second side radiation
  • the side radiating element array 132 on the second side radiating surface is connected to, specifically, the antenna port 161 connected to a column of side radiating element arrays 132 on the second side radiating surface.
  • the fifth input port is connected to the seventh output port, and the sixth input port is connected to the ninth output port.
  • the eighth output port is connected to a row of positive radiation element arrays 131 provided on the front installation surface 11 , specifically to an antenna port 161 connected to a row of positive radiation element arrays 131 arranged on the front installation surface 11 .
  • the tenth output port is connected to another column of positive radiation element arrays 131 provided on the front mounting surface 11 , specifically to the antenna port 161 connected to another column of positive radiation element arrays 131 provided on the front installation surface 11 .
  • the seventh input port, the eighth input port, the ninth input port, and the tenth input port are respectively connected to the radio frequency port 162 .
  • Fig. 15 shows one form of a circuit module.
  • the circuit module 16 may include four electric bridges 163, and the four electric bridges 163 are respectively the sixth electric bridge, the seventh electric bridge, the eighth electric bridge and Ninth bridge.
  • the sixth electric bridge includes the eleventh input port, the twelfth input port, the eleventh output port and the twelfth output port;
  • the seventh electric bridge includes the thirteenth input port, the fourteenth input port, the tenth Three output ports and a fourteenth output port;
  • the eighth electric bridge includes a fifteenth input port, a sixteenth input port, a fifteenth output port and a sixteenth output port;
  • the ninth electric bridge includes a seventeenth input port, An eighteenth input port, a seventeenth output port, and an eighteenth output port.
  • the eleventh output port is connected to a row of positive radiation element arrays 131 provided on the front installation surface 11 , specifically to an antenna port 161 connected to a row of positive radiation element arrays 131 arranged on the front installation surface 11 .
  • the twelfth output port is connected to a row of side radiation element arrays 132 on the first side radiation surface, specifically connected to the antenna port 161 connected to a row of side radiation element arrays 132 on the first side radiation surface.
  • the eleventh input port is connected to the seventeenth output port, the twelfth input port is connected to the fifteenth output port, and the thirteenth output port is connected to another column of positive radiation element array 131 provided on the front mounting surface 11.
  • the fourteenth output port is connected to the side radiation element array 132 of the second side radiation surface, specifically connected to the antenna port 161 connected to the side radiation element array 132 of the second side radiation surface.
  • the thirteenth input port is connected to the sixteenth output port, the fourteenth input port is connected to the eighteenth output port, the fifteenth input port, the sixteenth input port, the seventeenth input port and the eighteenth input port are connected .
  • FIG 16 is an application scenario of the antenna in the embodiment of the present application.
  • each input port of the above-mentioned electric bridge is connected to a power amplifier, and each power amplifier is connected to the baseband digital bridge weighter.
  • the digital bridge weighter is the inverse matrix of the bridge weights.
  • some carriers are simultaneously input through four ports, so as to realize the simultaneous radiation of each radiating element array of antenna 1, such as New Radio (NR) and 3GPP Long Term Evolution (LTE); in addition, some The carrier is input through some ports (such as the antenna port 161 corresponding to the positive radiation element array 131), such as Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications Services (UMTS), so as to realize The radiation of only part of the radiating element array, such as the positive radiating element array 131 , passes through.
  • GSM Global System for Mobile Communications
  • UMTS Universal Mobile Telecommunications Services
  • part of the carrier is input through four ports at the same time, thereby realizing the simultaneous radiation of each radiating element array of antenna 1, such as New Radio (New Radio, NR); in addition, part of the carrier is input through part of the ports (such as the normal The antenna port 161 corresponding to the radiating element array 131), such as 3GPP Long Term Evolution (Long Term Evolution, LTE), Global System for Mobile Communications (Global System for Mobile Communications, GSM) and Universal Mobile Telecommunications Services (Universal Mobile Telecommunications Services, UMTS), In this way, only part of the radiating element array can be radiated, such as the positive radiating element array 131. In this way, the antenna 1 can support the simultaneous operation of four systems without causing power waste.
  • 3GPP Long Term Evolution Long Term Evolution, LTE
  • Global System for Mobile Communications Global System for Mobile Communications, GSM
  • Universal Mobile Telecommunications Services Universal Mobile Telecommunications Services
  • Figure 18 is a schematic structural diagram of the first calibration module in the embodiment of the present application, please refer to Figure 18, in one embodiment, the antenna 1 may further include a first calibration module, and the first calibration module may specifically be a calibration circuit module.
  • the calibration circuit module can be used to calibrate the phase and amplitude between different antenna ports 161 , so as to facilitate coordination between the antenna ports 161 , and then obtain the required beamforming pattern, so as to improve the performance of the antenna 1 .
  • the above-mentioned first correction module is arranged between the radio frequency port and the antenna port, but the specific position of the first correction module is not limited, for example, the first correction module can be arranged between the radio frequency port and the circuit module, or, the first Specifically, the correction module can also be arranged between the circuit module and the antenna port, or, it is also possible that the first correction module and the circuit module are integrated into one structure. This application does not limit this.
  • the structure of the calibration circuit module is not limited.
  • FIG. 18 shows a possible structure of the calibration circuit module.
  • the calibration circuit includes a coupler 17 and a power divider 18 .
  • the antenna port 161 connected to each positive radiating element array 131 is connected to one of the couplers, and the antenna port 161 connected to each side radiating element array 132 is connected to a plurality of couplers.
  • the antenna 1 includes two front radiating element arrays 131 and one side radiating element array 132 respectively arranged on both sides.
  • Antenna ports F and G in the figure are antenna ports 161 connected to two front radiating element arrays 131
  • antenna ports E and H in the figure are antenna ports 161 connected to two side radiating element arrays 132 .
  • Each antenna port 161 is connected to a coupler. All the couplers connected to each antenna 1 can be connected to a power divider, so that the signals of the various radiating element arrays can be converged to one place.
  • the end of the power divider away from the coupler is connected to a correction circuit for correction.
  • the antenna 1 is an active antenna
  • the above-mentioned power divider is connected to the correction circuit of the active antenna radio frequency unit of the active antenna;
  • the antenna 1 is a passive antenna, the above-mentioned power divider and the radio frequency of the passive antenna The correction port connection of the remote unit.
  • FIG 19 is a schematic structural diagram of the antenna in the embodiment of the present application.
  • the antenna 1 when the above antenna 1 is an active antenna, the antenna 1 includes a radio frequency single board 117 and a radiator 118.
  • the radio frequency single board 117 can also be referred to as an active single board, and is connected to the radiation unit.
  • the radio frequency single board 117 In the downlink circuit, the radio frequency single board 117 is used to up-convert the digital intermediate frequency signal from the baseband processing unit into a radio frequency signal; The single board 117 is used for down-converting the radio frequency signal into a digital intermediate frequency signal.
  • the radiator 118 is disposed on the side of the radio frequency single board 117 away from the front mounting surface 11 , and the front radiating element array 131 and the side radiating element array 132 are both connected to the radio frequency single board 117 .
  • a single radio frequency board 117 is used to connect all the radiating element arrays, which is beneficial to simplify the structure of the antenna 1, and also facilitates the calibration and cooperation among different radiating element arrays.
  • the passive antenna When the antenna 1 is a passive antenna, the passive antenna includes a remote radio unit, and the front radiating element array 131 and the side radiating element array 132 of the antenna 1 are both connected to the remote radio unit. That is to say, all the radiating element arrays of the antenna 1 are connected to one radio frequency remote unit, so as to facilitate calibration and coordination between different radiating element arrays.
  • the radiating element array 13 of the above-mentioned antenna 1 includes a plurality of radiating elements, and each radiating element is connected with an active component, and the active component is used to reconstruct the radiation pattern of the radiating element.
  • the radiation pattern of the corresponding radiation unit can be adjusted through the above-mentioned active components, and the maximum radiation direction of the antenna can be changed.
  • the antenna 1 may include multiple radiating element arrays 13, and each radiating element array 13 may include multiple radiating elements. By using active components to adjust the radiation pattern of the radiation element, the radiation pattern of the radiation element array 13 can be adjusted, so as to increase the degree of freedom of the pattern adjustment of the entire antenna 1 and achieve 360° coverage of the radiation signal of a single antenna 1 .
  • the above-mentioned active components may include at least one of diodes, capacitors, varactors, RF microelectromechanical systems (Microelectromechanical Systems, MEMS) switches, liquid crystals, graphene, and micromechanical rotating devices. This application does not specifically limit this.
  • FIG. 20 is a schematic structural diagram of a communication system in an embodiment of the present application.
  • the present application also provides a communication system, which includes a mounting frame 2 and at least one antenna 1 in any of the above-mentioned embodiments, where the antenna 1 is mounted on the mounting frame 2 .
  • the radiation range of the antenna 1 is relatively wide, which is beneficial to improve the coverage and signal strength of the communication system.
  • the number of antennas 1 installed can be reduced to reduce costs.
  • the signal strength of the communication system can be made stronger.
  • the above-mentioned mounting frame 2 refers to a structure for installing the antenna 1, and the above-mentioned mounting frame 2 can specifically be a rod-shaped structure or a tower-shaped structure, etc., that is to say, the specific mounting frame 2 in the embodiment of the application It may be a structure for installing antennas such as a pole or an iron tower.
  • the above-mentioned installation frame 2 may include one pole or at least two poles, which is not limited in the present application.
  • the communication system in the embodiment of the present application can support various standards, for example, it can support Global System for Mobile Communication (GSM), Long Term Evolution (LTE) or 5G New Radio (New radio), etc. .
  • GSM Global System for Mobile Communication
  • LTE Long Term Evolution
  • New radio 5G New Radio
  • the communication system can be applied to macro stations, micro stations, indoor small stations, etc., which is not limited in this application.
  • the communication system may only be provided with one antenna 1 , since the antenna 1 is provided with a front radiating element array 131 and a side radiating element array 132 .
  • the antenna 1 can achieve 360° coverage of radiated signals, and the communication system can realize comprehensive coverage by using one antenna 1. Coverage is beneficial to reduce the cost of the communication system.
  • the embodiment shown in Fig. 20 can realize the networking form of single station, single antenna and one cell.
  • the communication system has only one antenna 1, it can realize the 360° full coverage of the radiated signal of one cell 3.
  • FIG. 21 is another schematic structural diagram of the communication system in the embodiment of the present application.
  • a communication system is provided with only one antenna 1, and the antenna 1 includes a positive radiating element array 131, and two side radiating element arrays 132 located on both sides of the positive radiating element array 131, The two side radiating element arrays 132 are respectively a first side radiating element array 132 and a second side radiating element array 132 .
  • This solution can realize the networking form of three cells with one station and one antenna.
  • the radiation signal of each radiating element array 13 can cover one cell 3, and can realize full coverage of 360°.
  • the radiation signal of the first-side radiating element array 132 can cover the first cell 3'
  • the radiation signal of the second-side radiating element array 132 can cover the second cell 3
  • the radiation signal of the positive radiating element array 131 can cover the third cell 3"'.
  • it can be controlled by an algorithm so that the above-mentioned first cell 3', second cell 3" and third cell 3"' correspond to 120° fan-shaped areas respectively, and the fan-shaped areas corresponding to the three cells 3 can be synthesized to cover 360° scope.
  • one antenna can be used to realize the signal coverage of three cells, so as to reduce the energy consumption of the communication system.
  • FIG. 22 is a schematic diagram of a networking structure of a communication system in an embodiment of the present application.
  • the above communication system may also be provided with two or more antennas 1 .
  • Radiation signals of different antennas 1 may cover the same cell 3 or different cells 3, which is not limited in this application.
  • three antennas 1 are set in a communication system as an example to illustrate different application scenarios.
  • three antennas 1 are provided in the communication system, and the three antennas 1 are provided on the peripheral side of the mounting frame.
  • the above-mentioned three antennas 1 may specifically be a first antenna 1', a second antenna 1" and a third antenna 1"'.
  • the cell ranges covered by the radiation signals of the three antennas 1 can be configured according to requirements.
  • the three antennas 1 may all be distributed on the peripheral side of the mounting frame, or may be unevenly distributed on the peripheral side of the mounting frame, and be designed according to actual signal coverage and channel capacity requirements. Yes, this application does not limit this.
  • each antenna 1 includes a front radiating element array 131 and a first side radiating element array 132 and a second side radiating element array 132 located on both sides of the front radiating element array 131 .
  • the antenna pattern of the communication system in this embodiment is shown in FIG. 23 . It can be seen that each antenna 1 can achieve 360° coverage without coverage degradation. Therefore, different networking forms can be realized. For example, the networking form of single station, single antenna and one cell as shown in Figure 20, the networking form of single station, single antenna and three cells as shown in Figure 21, and the two networking forms of single station and three antennas.
  • the first networking form among the two networking forms of the above-mentioned single station three antennas is shown in FIG. 22 , and the first networking form may be: the signals radiated by the three antennas 1 jointly cover a cell 3 .
  • the coverage area of the radiated signal of each antenna 1 is greater than 120°, thereby ensuring the signal strength of the area corresponding to the gap between two adjacent antennas 1 .
  • the second networking form among the two networking forms of the above-mentioned single-station three-antenna is shown in Figure 24.
  • the second networking form can be: the signals radiated by the three antennas 1 of the above-mentioned communication system respectively cover a cell 3.
  • the radiation signal of the above-mentioned first antenna 1' covers the first cell 3'
  • the radiation signal of the second antenna 1" covers the second cell 3
  • the radiation signal of the third antenna 1"' covers the third cell 3"'.
  • the above-mentioned first cell 3', second cell 3" and third cell 3"' can respectively correspond to fan-shaped areas greater than 120°. There may be overlap between different cells 3 , and the cooperative work of adjacent cells 3 can be realized by cooperating with the cooperative algorithm.
  • each antenna 1 among the three antennas can cover three cells 3 , and a single-site three-antenna nine-cell network can be implemented, which is not limited in this application.
  • Cooperative algorithms can also be used between cells to reduce inter-cell interference, realize multi-cell cooperative work, and improve system performance. That is to say, for the antenna 1 of each cell 3, it is not only responsible for the signal transmission of the users of the cell 3, but also responsible for the signal transmission of the users of other cells 3 at the same time.
  • the communication system includes the above three antennas 1, since a single antenna 1 can achieve 360° full coverage of the radiated signal, one or two of the three antennas 1 can be turned off according to actual needs, and the remaining turned-on antennas 1 can also achieve full coverage of the radiation signals of each cell 3. Therefore, this solution is also conducive to saving the energy consumption required for the antenna 1 to work. In addition, if one or two of the three antennas 1 is damaged, the communication system can still be guaranteed to work.
  • FIG. 25 is a schematic diagram of a networking structure of a communication system in an embodiment of the present application.
  • each antenna 1 in the communication system is provided with the above-mentioned circuit module.
  • the power of antenna 1 in each area can be adjusted according to actual needs, so as to improve the cooperation effect between different cells 3, and realize channel sharing, power sharing, and flow number sharing between cells.
  • each antenna 1 including four radiating element arrays 13 as an example, each radiating element array 13 has one antenna port 161 .
  • the power distribution of the four antenna ports E, F, G and H in the first antenna 1' can be respectively 4W, 0W, 0W and 0W, so that the radiation signal strength of the antenna 1 in the overlapping area of the first cell 3' and the second cell 3" is relatively large, and the channel capacity is relatively large.
  • the four antennas of the third antenna 1"' can also be made
  • the power distribution of the three antenna ports E, F, G and H is 0W, 0W, 0W and 4W respectively, so that the radiation signal strength of antenna 1 in the overlapping area of the third cell 3"' and the second cell 3" is relatively large, and the signal Larger capacity. Therefore, this solution can greatly improve the radiation signal strength and channel capacity of the second cell 3".
  • the demand of the second cell 3" is also high, and the power allocation of the four antenna ports E, F, G and H in the first antenna 1' can be respectively 2.5W, 0.5W, 0.5W and 0.5W , so that the radiation signal strength of the antenna 1 in the overlapping area of the first cell 3' and the second cell 3" is relatively large, and the channel capacity is relatively large.
  • the power distribution of the four antenna ports E, F, G and H of the third antenna 1"' be 0.3W, 0.5W, 0.8W and 2.5W respectively, so that the third cell 3"' and the second cell 3
  • This scheme can also improve the radiation signal strength and channel capacity of the second cell 3 ", while ensuring that the first cell 3' and the third cell The cell 3"' can also have signal coverage.
  • the above scheme of power allocation is only for illustration.
  • the antenna in the embodiment of the present application may specifically include a greater or lesser number of antenna ports 161 and radio frequency ports 162 .
  • a second correction module is connected between any two adjacent antennas 1, and the second correction module is used to correct the phase between different antennas 1 and magnitude.
  • the positive radiating element array 131 installed on the positive mounting surface 11 of each antenna 1 forms an antenna array
  • the side radiating element array 132 installed on each side mounting surface 12 also forms an antenna array.
  • the first correction module is used to correct the phase and amplitude between different antenna fronts.
  • the second correction module is used to correct the phase and amplitude between different antennas 1 . Therefore, all antenna arrays of the entire communication system can work together according to requirements.
  • all the antenna fronts of the entire communication system can work together according to requirements, so that the communication system can include multiple radiation areas, at least one radiation area is formed by the antenna fronts of at least two different antennas 1 Radiation beam coverage.
  • the above-mentioned beams radiated by the antenna front refer to beams within the range of ⁇ 60° from the normal direction of the antenna front.
  • the beams within this range have strong radiation intensity and can reliably transmit signals for users.
  • FIG. 26 is a schematic structural diagram of a communication system in an embodiment of the present application.
  • the communication system includes two antennas 1, and each antenna 1 includes three antenna arrays.
  • FIG. 27 and FIG. 28 are a networking form of the communication system in the embodiment of the present application, specifically the networking form of the communication system shown in FIG. 26 .
  • at least one radiation area can be covered by beams radiated by at least two antenna fronts of different antennas 1 .
  • the number of antenna fronts forming the radiation area is not limited, for example, a radiation area can be covered by two antenna fronts, as shown in Figure 27; it can also be covered by three antenna fronts or more
  • the antenna array covers a radiation area, as shown in Figure 28.
  • the number of radiation areas of the communication system may also be greater than or equal to the number of antennas 1 of the communication system.
  • the number (3) of radiation areas of the communication system is greater than the number (2) of antennas 1 of the communication system; as shown in Figure 28, the number (2) of radiation areas of the communication system is equal to that of the communication system Number of antennas 1 (2).
  • Fig. 29 is another schematic structural diagram of the communication system in the embodiment of the present application.
  • the communication system both includes two antennas 1, and each antenna 1 includes three antenna arrays. The difference is only that the included angles between adjacent antenna fronts are different, but in the antenna 1 shown in FIG. 26 and FIG. 29 , the included angles between adjacent antenna fronts are complementary.
  • FIG. 30 is another networking form of the communication system in the embodiment of the present application, specifically the networking form of the communication system shown in FIG. 29 .
  • the antennas 1 shown in FIG. 26 and FIG. 29 can all form the networking forms shown in FIG. 27 , FIG. 28 and FIG. 30 .
  • the networking forms in FIG. 27 and FIG. 30 are the same, and the only difference is that the antenna fronts forming the same radiation area are different.
  • antenna fronts covering a radiation area are adjacent or not.
  • the antenna fronts covering one radiation area are adjacent, but in the embodiment shown in FIG. 30 , the antenna fronts covering one radiation area are not adjacent.
  • the radiation area of the communication system may be in one-to-one correspondence with the antennas 1 , that is, the antennas 1 may not be coordinated, and only the multiple antenna arrays inside the antenna 1 itself are coordinated.
  • each cell may include one radiation area, or may include multiple radiation areas. That is to say, one radiation area can form a cell, or multiple radiation areas can jointly form a cell.
  • different antenna fronts in the same radiation area jointly obtain a channel matrix.
  • the radiation area is composed of two antenna arrays, the number of channels of one antenna array is x, and the number of channels of the other antenna array is y.
  • the two antenna arrays jointly perform channel estimation on the baseband side to obtain an x+y-dimensional channel matrix to cover a radiation area and jointly serve a cell or a user.
  • different antenna arrays in the same radiation area also perform joint precoding. Estimate the joint channel matrix and calculate the weights of the transmit antennas of the base station antennas, which is called joint precoding. That is, codebooks are calculated in a joint manner to form SSB broadcast or CSI-RS channels or service beams.
  • Both the front radiating element array 131 and the side radiating element array 132 are radiating element arrays, and the communication system includes multiple radiating element arrays, taking the first radiating element array as the baseline, according to the coordinates of the first radiating element array, the i-th radiation The coordinates of the element array, the angle between the direction of the i-th radiating element array and the x-axis, and the phase of the first radiating element array obtain the phase of the i-th radiating element array.
  • (x1, z1) is the coordinates of the first radiation element array (xi, zi) is the coordinates of the i-th radiation element array, the angle between the array direction and the x-axis is: arctan(zi/xi); ⁇ is The angle between the direction of the i-th radiating element array and the x-axis is in radians, and the angle between the antenna pointing and the antenna tangent direction is ⁇ -arctan(zi/xi); a is the phase of the first radiating element array, The unit is in radians.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种天线及通信系统。该天线包括正安装面、侧安装面、正辐射单元阵列和侧辐射单元阵列。正辐射单元阵列安装于正安装面,侧辐射单元阵列安装于侧安装面。在背离正辐射单元阵列的一侧的夹角为第一夹角,第一夹角的角度小于180°。有利于减少天线的风载,提升天线的覆盖范围,提升天线的性能。电路模块的一端与正辐射单元阵列连接的天线端口和侧辐射单元阵列连接的天线端口连接,另一端用于与射频端口连接。电路模块使正辐射单元阵列和侧辐射单元阵列连接至同一个驱动端,从而可以同时驱动正辐射单元阵列和侧辐射单元阵列。至少一个天线端口通过电路模块与多个射频端口中至少两个射频端口电连接,以对射频端口输入的功率再分配。

Description

一种天线及通信系统
相关申请的交叉引用
本申请要求在2021年11月21日提交中华人民共和国知识产权局、申请号为202111381535.4、发明名称为“一种天线及通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体为一种天线及通信系统。
背景技术
随着无线通信技术的发展,通信系统能够支持的通信频段越来越多,因此通信系统的天线的结构越来越复杂,天线集成度也越来越高。而由于受到风载等条件的限定,天线的正面尺寸已经难以进一步的增加,导致天线集成的辐射单元的数量较小,可以辐射信号的强度和范围也受到了限制,难以提升通信系统的性能。
发明内容
本申请提供一种天线及通信系统,以在不增加天线的风载和安装空间的情况下,提升天线的覆盖范围,提升天线的性能。
第一方面,本申请提供了一种天线,该天线包括正安装面、侧安装面、辐射单元阵列和电路模块。上述辐射单元阵列包括正辐射单元阵列和侧辐射单元阵列。上述正辐射单元阵列安装于正安装面,上述侧辐射单元阵列安装于侧安装面。可以理解的,上述正安装面为用于安装正辐射单元阵列的表面,侧安装面为用于安装侧辐射单元阵列的表面。上述正安装面与侧安装面的夹角中,在背离上述正辐射单元阵列和侧辐射单元阵列的一侧的夹角为第一夹角,该第一夹角的角度小于180°。也就是说上述正安装面和侧安装面并非位于同一平面,而是位于呈第一夹角的两个不同的平面。从而减少了天线的辐射单元阵列在正安装面所在的平面的投影的面积,有利于减少天线的风载。或者说,在风载一定的情况下,本申请实施例可以设置数量更多的辐射单元阵列,从而可以提升天线的覆盖范围,提升天线的性能。
可选的实现方式中,上述第一夹角的角度可以小于或者等于90°。该方案中,可以在较大的程度上减小天线的风载,此外还可以较好的兼顾在正辐射单元背侧区域的辐射信号的覆盖效果。
设置上述天线时,一种可选的方式可以使天线还包括正安装板和侧安装板,则上述正安装面位于正安装板,侧安装面位于侧安装板。该方案中,可以直接将正辐射单元阵列和侧辐射单元阵列安装于上述正安装板和侧安装板。
上述正安装板包括反射板,侧安装板包括反射板。例如,可以使正安装板和侧安装板本身就是金属材质等结构,本身就作为反射板;或者,还可以在正安装板和侧安装板的表面涂布制备反射板,本申请对此不做限制。
上述侧辐射单元阵列在正安装板的正投影至少部分位于正安装板。该方案可以利用正安装板分隔正辐射单元阵列和侧辐射单元阵列,以减少两者之间的串扰。
可以理解的,在一些技术方案中,上述侧辐射单元阵列在正安装板上的正投影也可以完全不位于上述正安装板,从而有利于减小天线的风载。
具体设计上述正安装板时,可以使正安装板的边缘具有第一翻折部,该第一翻折部位于正安装板安装正辐射单元阵列的一侧。该方案可以降低天线在正安装板后向辐射信号的强度,提高天线前后比。
还可以使侧安装板的边缘具有第二翻折部,该第二翻折部位于侧安装板安装侧辐射单元阵列的一侧。该方案可以降低天线在侧安装板后向辐射信号的强度,提高天线前后比。
在具体实施方式中,可以仅正安装板具有第一翻折部,或者,仅侧安装板具有第二翻折部,再或者,还可以使正安装板具有第一翻折部,且侧安装板具有第二翻折部。根据实际需求设计即可。
为了实现天线的安装,上述天线还包括安装件,安装件设置于正安装面背离正辐射单元阵列的一侧,安装件具有连接头,连接头用于与抱杆连接,连接头与正安装面的距离,大于侧安装面任一位置与正安装面的距离。连接头位于所有正安装面和侧安装面的外侧,则可以在同一个抱杆安装多个天线,以减少天线占用的空间。此外,可以使得天线的正安装面和侧安装面设置于一个天线罩内,并将天线罩内的辐射单元阵列作为整体安装至抱杆。
一种可选的技术方案中,上述天线可以包括一个正安装面和两个侧安装面,上述两个侧安装面分别设置于正安装面的相对的两个侧面,正安装面设置正辐射单元阵列,侧辐射面设置侧辐射单元阵列。该方案中,在正辐射单元阵列的两侧均设置有侧辐射单元阵列。该方案可以在保证天线的正安装面占用的空间一定的情况下,较大程度的提升天线的性能。
具体的,上述两个侧安装面包括第一侧安装面和第二侧安装面,正安装面设置m列正辐射单元阵列,第一侧辐射面设置n列侧辐射单元阵列,第二侧辐射面设置s列侧辐射单元阵列,m、n和s满足:m:n:s=a:b:a,其中,a和b均为大于0的整数,且b>a。侧辐射单元阵列的数量少于正辐射单元阵列的数量,两侧的侧安装面的尺寸较小,有利于减薄天线的厚度,降低天线的剖面。
一种具体的技术方案中,可以使上述b=2,a=1。该方案便于利用电桥实现功率共享。
上述电路模块具体包括电桥,电桥包括输入端口和输出端口,输入端口与射频端口连接,电桥的输出端口分别与正辐射单元阵列和侧辐射单元阵列连接。利用电桥可以实现正辐射单元阵列和侧辐射单元阵列的功率共享,使得整个天线可以作为整体来工作。
上述天线可以为有源天线也可以为无源天线,当上述天线为有源天线时,天线包括射频单板和散热器,散热器设置于射频单板背离正安装面的一侧,正辐射单元阵列和侧辐射单元阵列与射频单板连接。利用一个射频单板连接所有的辐射单元阵列,有利于简化天线的结构,此外,也便于不同的辐射单元阵列之间的校正和协同。
当然,在另一种可选的技术方案中,还可以使天线包括一个正安装面和一个侧安装面,则仅在正辐射单元阵列的一侧设置侧辐射单元阵列。以提升该侧的信号强度和信号覆盖范围。
上述天线可以为有源天线或者无源天线,本申请对此不足限制。
可选的技术方案中,上述正辐射单元阵列还可以连接有天线端口,侧辐射单元阵列也连接有天线端口,上述电路模块的一端与上述正辐射单元阵列连接的天线端口和侧辐射单 元阵列连接的天线端口连接,另一端用于与射频端口连接。该方案中,电路模块使正辐射单元阵列和侧辐射单元阵列连接至同一个驱动端,从而可以同时驱动上述正辐射单元阵列和侧辐射单元阵列。
上述射频端口在不同类型的天线中也不同,例如,当天线为有源天线时,射频端口为有源天线的射频模块对应的端口;当天线为无源模块时,射频端口为射频拉远单元的射频端口。
另一种可选的技术方案,天线端口中至少一个天线端口通过电路模块与多个射频端口中至少两个射频端口电连接。该方案可以利用电路模块对从射频端口输入的功率进行再分配,从而实现天线的各个子阵列的功率共享。因此,该方案可以根据实际需求分配上述天线端口的输入功率,调节天线的辐射信号的覆盖范围和信道容量。
再一种可选的技术方案中,可以使任一天线端口通过电路模块与多个射频端口中的任一个电连接。则每个射频端口输入的功率都可以传输至天线端口中的任一天线端口,以实现功率再分配。从而可以根据需求调节天线的辐射信号的覆盖范围,且可以提升设定范围的信道容量。
上述天线还可以包括第一校正模块,该第一校正模块用于校正不同的天线端口之间的相位和幅度。该方案便于在天线端口之间进行协同,进而得到需要的波束赋形的方向图,以便于提升天线的性能。
可选的实现方式中,上述第一校正模块包括耦合器和功分器。
具体的技术方案中,上述正辐射单元阵列连接的天线端口连接有耦合器,侧辐射单元阵列连接的天线端口也连接有耦合器。上述耦合器通过功分器与校正口连接。每个天线连接的所有耦合器可以与一个功分器连接,从而使各个辐射单元阵列的信号汇合至一处。
上述辐射单元阵列可以包括多个辐射单元,每个辐射单元连接有源元器件,该有源元器件用于重构辐射单元的方向图。该方案中,可以根据实际需求,通过上述有源元器件来调节对应的辐射单元的方向图,改变天线最大辐射的方向。天线可以包括多个辐射单元阵列,每个辐射单元阵列可以包括多个辐射单元。利用有源元器件调节辐射单元的方向图,从而可以调节辐射单元阵列的方向图,以增加整个天线的方向图调节的自由度,可以实现单天线的辐射信号360°覆盖。
上述有源元器件的具体类型不做限制,例如,可以为包括二极管、电容管、变容管、射频微电机系统(Microelectromechanical Systems,MEMS)开关、液晶、石墨烯和微机械旋转装置中的至少一个。本申请对此不作具体限制。
第二方面,本申请还提供了一种通信系统,该通信系统包括安装架和上述第一方面的天线,该天线安装于安装架。该通信系统中的天线的辐射范围较广,有利于提升通信系统的覆盖范围和信号强度。具体的,在一定的信号强度下,可以减少设置的天线数量,以降低成本,当通信系统安装的天线数量一定的情况下,可以使得通信系统的信号强度较强。
每个通信系统中包括的天线数量不做限制,可以形成的组网形式也不做限制。
例如,通信系统可以包括一个天线,该天线的辐射信号覆盖一个小区。该天线可以实现辐射信号的360°覆盖,通信系统利用一个天线就可以实现全面覆盖,有利于降低通信系统的成本。
此外,上述通信系统包括一个天线时,该天线包括一个正安装面和两个侧安装面,两个侧安装面分别设置于正安装面的相对的两个侧面,正辐射单元阵列设置于正安装面,侧 辐射单元阵列包括第一侧辐射单元阵列和第二侧辐射单元阵列,第一侧辐射单元阵列设置于两个侧辐射面中的一个,第二侧辐射单元阵列设置于两个侧辐射面中的另一个。该技术方案中,可以使正辐射单元阵列辐射的信号覆盖第一小区,第二侧辐射单元阵列辐射的信号覆盖第二小区,第三侧辐射单元阵列辐射的信号覆盖第三小区。也就是说,可以利用一个天线实现三个小区的信号覆盖,以减少通信系统的能耗。
可选的实现方式中,上述包括至少两个天线。不同的天线之间也可以协同工作。
为了实现不同的天线之间的协同,相邻的两个天线之间连接有第二校正模块,第二校正模块用于校正不同的天线之间的相位和幅度。可以使得整个通信系统的全部天线阵面可以根据需求进行协同工作。
每个天线的正安装面安装的正辐射单元阵列形成一个天线阵面,每个侧安装面安装的侧辐射单元阵列也形成一个天线阵面,通信系统包括多个辐射区域,至少一个辐射区域由至少两个不同天线的天线阵面所辐射的波束覆盖。该方案可以根据需求调节天线的覆盖区域,以便于丰富天线的应用场景。
另一种具体的实施例中,通信系统包括至少两个辐射区域,辐射区域与天线一一对应。天线之间可以不协同,仅仅是天线自身内部的多个天线阵列进行协同。
上述正辐射单元阵列与侧辐射单元阵列均为辐射单元阵列,通信系统包括多个辐射单元阵列,以第一个辐射单元阵列为基线,根据第一个辐射单元阵列的坐标、第i个辐射单元阵列的坐标、第i个辐射单元阵列的指向与x轴的夹角以及第一个辐射单元阵列的相位获取第i个辐射单元阵列的相位。
此外,上述通信系统还可以包括两个及以上数量的天线。例如,通信系统可以包括三个天线,三个天线分别为第一天线、第二天线和第三天线。此时,通过协同算法,可以实现不同天线之间的协同工作,配合电路模块,还可以实现天线之间的功率共享和通道共享。
一种可选的组网形式中,可以使上述三个天线辐射的信号覆盖同一小区。该方案可以使每个天线的辐射信号覆盖的范围大于120°,从而保证了相邻两个天线之间的缝隙对应的区域的信号强度。该方案还可以根据需求关闭其中的一个天线或者两个天线,以实现通信系统的节能。
另一种可选的组网形式中,还可以使上述三个天线辐射的信号分别覆盖一个小区。具体可以使第一天线辐射的信号覆盖第一小区,第二天线辐射的信号覆盖第二小区,第三天线辐射的信号覆盖第三小区。具体可以使上述第一小区、第二小区和第三小区分别对应为大于120°扇形区域。不同的小区之间可以存在交叠,配合协同算法,可以实现相邻小区的协同工作。
可选的技术方案中,在安装架安装上述三个天线时,可以使三个天线均匀设置于安装架的周侧,从而便于实现安装架周侧信号的均匀性。当然,还可以根据实际使用需求,三个天线不均匀设置,此处不进行赘述。
附图说明
图1为本申请实施例适用的一种通信系统架构示意图;
图2为本申请一种可能的实施例的通信系统的结构示意图;
图3为本申请一种可能的实施例的天线的组成示意图;
图4为本申请实施例中天线的一种可能的结构示意图;
图5A为本申请实施例中天线的一种俯视结构示意图;
图5B为本申请实施例中天线的另一种俯视结构示意图;
图5C为本申请实施例中天线的另一种俯视结构示意图;
图6为本申请实施例中天线的另一种俯视结构示意图;
图7为本申请实施例中天线的另一种俯视结构示意图;
图8为本申请实施例中天线的另一种结构示意图;
图9A为本申请实施例中天线的另一种结构示意图;
图9B为本申请实施例中天线的另一种结构示意图;
图10A~图10F为本申请实施例中天线的几种可能的结构示意图;
图11A为本申请实施例中侧辐射单元阵列在正安装板的正投影的一种示意图;
图11B为本申请实施例中侧辐射单元阵列在正安装板的正投影的另一种示意图;
图12为本申请实施例中天线的一种结构示意图;
图13为本申请实施例中电路模块的一种结构示意图;
图14为本申请实施例中电路模块的一种结构示意图;
图15为本申请实施例中电路模块的一种结构示意图;
图16为本申请实施例中天线的一种应用场景;
图17为本申请实施例中天线的另一种应用场景;
图18为本申请实施例中第一校正模块的一种结构示意图;
图19为本申请实施例中天线的一种结构示意图;
图20为本申请实施例中通信系统的一种结构示意图;
图21为本申请实施例中通信系统的另一种结构示意图;
图22为本申请实施例中通信系统的一种组网结构示意图;
图23为本申请实施例中通信系统的天线方向图;
图24为本申请实施例中通信系统的一种组网结构示意图;
图25为本申请实施例中通信系统的一种组网结构示意图;
图26为本申请实施例中通信系统的一种结构示意图;
图27为本申请实施例中通信系统的一种组网形式;
图28为本申请实施例中通信系统的另一种组网形式;
图29为本申请实施例中通信系统的另一种结构示意图;
图30为本申请实施例中通信系统的另一种组网形式。
附图标记:
1-天线;                            11-正安装面;
12-侧安装面;                       13-辐射单元阵列;
131-正辐射单元阵列;                132-侧辐射单元阵列;
14-正安装板;                       141-第一翻折部;
15-侧安装板;                       151-第二翻折部;
16-电路模块;                       161-天线端口;
162-射频端口;                      163-电桥;
164-移项器;                        17-耦合器;
18-功分器;                         19-天线罩;
110-反射板;                          111-馈电网络;
112-校准网络;                        113-移相器;
114-合路器;                          115-滤波器;
116-安装件;                          1161-连接头;
117-射频单板;                        118-散热器;
1’-第一天线;                        1”-第二天线;
1”’-第三天线;                      2-安装架;
3-小区;                              3’-第一小区;
3”-第二小区;                        3”’-第三小区;
4-天线调整支架;                      5-射频处理单元;
6-基带处理单元;                      7-电缆线。
具体实施方式
为了方便理解本申请实施例提供的天线及通信系统,下面介绍一下其应用场景。图1示例性示出了本申请实施例适用的一种通信系统架构示意图,如图1所示,该通信系统可以为基站天馈系统。该应用场景可以包括基站和终端。基站和终端之间可以实现无线通信。该基站可以位于基站子系统(base station subsystem,BBS)、陆地无线接入网(UMTS terrestrial radio access network,UTRAN)或者演进的陆地无线接入网(evolved universal terrestrial radio access,E-UTRAN)中,用于进行无线信号的小区覆盖以实现终端设备与无线网络之间的通信。具体来说,基站可以是全球移动通信系统(global system for mobile communication,GSM)或(code division multiple access,CDMA)系统中的基地收发台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的节点B(NodeB,NB),还可以是长期演进(long term evolution,LTE)系统中的演进型节点B(evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。或者该基站也可以为中继站、接入点、车载设备、可穿戴设备以及新无线(new radio,NR)系统中的g节点(gNodeB或者gNB)或者未来演进的网络中的基站等,本申请实施例并不限定。
图2示出了通信系统的一种可能的结构示意图。基站天线馈电系统通常可以包括天线1、安装架2、天线调整支架4等结构。其中,基站的天线1包括天线罩19,天线罩19在电气性能上具有良好的电磁波穿透特性,机械性能上能经受外部恶劣环境的影响,从而可起到保护天线1免受外部环境影响的作用。天线1可通过天线调整支架4安装于安装架2,以便于天线1信号的接收或者发射。当然,图2所示的实施例仅仅作为一种可选的实现方式,具体实施时,本申请实施例中的天线及基站天线馈电系统可能与图2所示的实施例。
另外,基站还可以包括射频处理单元5和基带处理单元6。例如,射频处理单元5可用于对天线1接收到的信号进行选频、放大以及下变频处理,并将其转换成中频信号或基带信号发送给基带处理单元6,或者射频处理单元5用于将基带处理单元6或中频信号经过上变频以及放大处理通过天线1转换成电磁波发送出去。基带处理单元6可通过射频处理单元5与天线1的馈电网络连接。在一些实施方式中,射频处理单元5又可称为射频拉远单元(remote radio unit,RRU),或者,还可能是有源天线单元(Active Antenna Unit,AAU)中的射频模块,基带处理单元6又可称为基带单元(baseband unit,BBU)。
在一种可能的实施例中,如图2所示,射频处理单元5可与天线1一体设置,基带处理单元6位于天线1的远端。在另外一些实施例中,还可以使射频处理单元5和基带处理单元6同时位于天线1的远端。射频处理单元5与基带处理单元6可以通过电缆线7连接。
更为具体地,可一并参照图2和图3,图3为本申请一种可能的实施例的天线的组成示意图。其中,如图3所示,基站的天线1可以包括辐射单元阵列13和反射板110。上述辐射单元阵列13也可以称为天线振子、振子等,它能有效地发送或接收天线信号。在天线1中,不同辐射单元阵列13的频率可以相同或者不同。反射板110也可以称为底板、天线面板或者反射面等,其可以是金属材质。天线1接收信号时,反射板110可以把天线信号反射到目标覆盖区域。天线1发射信号时,反射板110可以将射至反射板110的信号反射并发射出去。辐射单元阵列13通常放置于反射板110一侧表面,这不但可以大大增强天线1信号的接收或发射能力,还能够起到阻挡、屏蔽来自反射板110背面(本申请中反射板110的背面是指与反射板110用于设置辐射单元阵列13相背的一侧)的其它电波对天线信号接收的干扰作用。
在基站的天线1中,辐射单元阵列13与馈电网络111相连接。馈电网络111通常由受控的阻抗传输线构成,馈电网络111可把信号按照一定的幅度、相位馈送到辐射单元阵列13,或者将接收到的信号按照一定的幅度、相位发送到基站的基带处理单元6。具体地,在一些实施方式中,馈电网络111可以用于实现不同辐射波束方向,或者与校准网络112连接以获取系统所需的校准信号。在馈电网络111中可以包括移相器113,以用来改变天线信号辐射的相位。在馈电网络111中还可能设置一些用于扩展性能的模块,例如合路器114,可用于把不同频率的信号合成一路,通过天线1发射;或者反向使用时,可以用于将天线1接收到的信号,根据不同的频率分成多路传输到基带处理单元6进行处理,又例如滤波器115,用于滤除干扰信号。
值得说明的是,本申请中出现的“具体的”、“具体设置”和“具体设计”等涉及到“具体”字样的实施例,均指代可选的实施例,也就是说,该实施例是在本申请发明构思下一种可能的具体实施例,但是还包括其它可能的实施例。
图4为本申请实施例中天线的一种可能的结构示意图,图5A为本申请实施例中天线的一种俯视结构示意图。如图4和图5A所示,天线1包括正安装面11、侧安装面12和辐射单元阵列13,辐射单元阵列13包括正辐射单元阵列131和侧辐射单元阵列132,上述正辐射单元阵列131安装于正安装面11,侧辐射单元阵列132安装于侧安装面12。可以认为,上述正辐射单元阵列131的辐射面与正安装面11平行,侧辐射单元阵列132的辐射面与侧安装面12平行。当然,在一些实施例中,根据实际需求,可以使正辐射单元阵列131的辐射面与正安装面11不平行,侧辐射单元阵列132的辐射面与侧安装面12不平行。上述正安装面11和侧安装面12在背离正辐射单元阵列131的一侧的夹角为第一夹角,该第一夹角的角度α小于180°。具体的,可以认为上述第一夹角为正安装面11和侧安装面12的夹角中,背离正辐射单元阵列131和侧辐射单元阵列132的夹角。也就是说,该方案除了在天线1的正面设置正辐射单元阵列131以外,还可以在天线1侧面设置侧辐射单元阵列132。该方案中,可以在不增加天线的正安装面11占用的面积情况下,扩大天线1的天面的面积。上述天面可以称为天线口面或者天线阵面等,具体可以指天线1的辐射单元覆盖的区域。从而,可以不增加风载和安装空间,提升天线1的覆盖范围,提升天线1的性能。
具体的,上述正安装面11指的是用于安装辐射单元的表面,具体可以为天线1使用状态下背离安装架2方向的安装面。侧安装面12也指的是用于安装辐射单元的表面,具体可以为与正安装面11相邻的一侧的安装面。天线1通常包括多个辐射单元,在实际工作中,上述多个辐射单元被划分为辐射单元阵列13,具体可以使多个辐射单元中的部分辐射单元为一个辐射单元阵列13,在实际工作中,可能以辐射单元阵列13为单位来控制天线1的辐射信号。上述辐射单元阵列13的划分方式不做限制,例如,可以使一个安装面的多个辐射单元矩阵排布,则可以使一列辐射单元为一个辐射单元阵列13,或者使相邻的两列的辐射单元为一个辐射单元阵列13,再或者,还可以使若干行若干列的小矩阵对应的辐射单元为一个辐射单元阵列13,本申请对此不作限制。
值得说明的是,本申请实施例中的天线1,除了正辐射单元阵列131和侧辐射单元阵列132以外,还可以包括其它的辐射单元阵列13,本申请对此不作限制。例如,该天线1还可以包括其它的安装面,以安装辐射单元阵列13。
本申请实施例附图中的天线的辐射单元阵列的安装和布局方式仅为示例,本申请实施例并不限定。
此外,可选的实施例中,正辐射单元阵列中可以包括至少两个辐射单元阵列,上述至少两个辐射单元阵列的工作频率可以相同也可以不同,本申请对此不作限制。此外,上述至少两个辐射单元阵列的辐射单元的尺寸也不做限制,可以相同或者不同。同样的,侧辐射单元阵列中也可以包括至少两个辐射单元阵列,上述至少两个辐射单元阵列的工作频率可以相同也可以不同,本申请对此不作限制。此外,上述至少两个辐射单元阵列的辐射单元的尺寸也不做限制,可以相同或者不同。例如,图5B所示的实施例中,正辐射单元阵列中包括不同尺寸的辐射单元;图5C所示的实施例中,侧辐射单元阵列中包括不同尺寸的辐射单元。各种情况此处不进行一一列举。
图6为本申请实施例中天线的另一种俯视结构示意图,如图6所示,具体的实施例中,上述第一夹角的角度α可以为90°,也就是说,上述正安装面11与侧安装面12垂直设置。该方案对于天线1的风载的影响较小,且可以使天线1的辐射范围的角度更大。
图7为本申请实施例中天线的另一种俯视结构示意图,如图7所示,另一种实施例中,上述夹角的角度α还可以小于90°,也就是说,上述侧安装面12向正安装面11的背侧倾斜。该方案的风载和安装空间较小,此外,还可以提升天线1的辐射范围覆盖的角度,在背离正安装面11的一侧的辐射强度也较强。
可选的实施例中,上述第一夹角的角度α为60°~120°,具体可以根据实际天线1的辐射范围需求来设计上述第一夹角α,本申请对此不做限制。
图8为本申请实施例中天线的另一种结构示意图,如图8所示,一种实施例中,上述天线1还包括安装件116。上述正安装面11和侧安装面12通过该安装件116安装于上述抱杆。上述安装件116包括连接头1161,具体利用该连接头1161与抱杆安装连接。在具体设置上述安装件116时,使得上述连接头1161位于正安装面11背离正辐射单元阵列131的一侧,且连接头1161在正安装面11的正投影位于正安装面11的对称轴。该方案可以使得天线1的结构相对于抱杆对称,有利于提升天线1安装的稳定性。此外,该方案中,可以先使得正安装面11和侧安装面12固定为一体结构,之后利用一个安装件116就可以实现天线1多个安装面的安装,有利于减少天线1的配件数量,减小天线1的整机重量。
请继续参考图8,进一步的实施例中,上述连接头1161与正安装面11的距离大于侧 面安装的任一位置与正安装面11的距离。也就是说,连接头1161位于所有正安装面11和侧安装面12的外侧,则可以在同一个抱杆安装多个天线1,以减少天线1占用的空间。此外,可以使得天线1的正安装面11和侧安装面12设置于一个天线罩内,并将天线罩内的辐射单元阵列作为整体安装至抱杆。
图9A为本申请实施例中天线的另一种结构示意图,图9B为本申请实施例中天线的另一种结构示意图。如图9A和9B所示,上述天线1还包括正安装板14和侧安装板15。上述正安装面11位于正安装板14,侧安装面12位于侧安装板15。上述正安装板14和侧安装板15可以通过焊接、螺纹连接或者一体成型等方式进行连接。
具体设置上述正安装板14和侧安装板15时,正安装版和侧安装板15之间的夹角不做限制。例如,上述侧安装板15可以与正安装板14垂直设置,或者,可以使侧安装板15背离侧辐射单元阵列132的一侧的表面为第一表面,正安装板14与侧安装板15相邻的表面为第二表面,上述第一表面与第二表面之间的夹角还可以为锐角本申请对此不做限制。
一种可能的实现方式中,上述正安装板14可以包括反射板,侧安装板15也可以包括反射板,具体可以使正安装板14和侧安装板15为金属材质。天线1接收信号时,反射板可以把天线信号反射到目标覆盖区域。天线发射信号时,反射板可以将射至反射板的信号反射并发射出去。
请继续参考图9A,一种可能的实现方式中,上述正安装板14的边缘可以具有第一翻折部141,该第一翻折部141位于正安装板14安装正辐射单元阵列131的一侧,也就是说,正安装板14具有朝向正辐射单元方向翻折的第一翻折部141。该方案可以降低天线1在正安装板14后向辐射信号的强度,提高天线1前后比。
上述侧安装板15的边缘也可以具有第二翻折部151,该第二翻折部151位于侧安装板15安装侧辐射单元阵列132的一侧,也就是说,侧安装板15具有朝向侧辐射单元方向翻折的第二翻折部151。同样的,该方案可以降低天线1在侧安装板15后向辐射信号的强度,提高天线1前后比。
在具体实施方式中,可以仅正安装板14具有第一翻折部141,或者,仅侧安装板15具有第二翻折部151,再或者,还可以使正安装板14具有第一翻折部141,且侧安装板15具有第二翻折部151。根据实际需求设计即可。
请参考图4和图5A,具体设计上述天线1时,可以根据需求,仅在正安装面11的一侧设置上述侧安装面12,且在该侧安装面12设置侧辐射单元阵列132。例如,仅在天线1的正安装面11的一侧对于天线1的辐射信号具有需求或者需求较高时,仅在该侧面设置侧辐射单元阵列132。
请参考图6至图9A,在其他实施例中,还可以使正安装面11相对的两侧都设置上述侧安装面12,且每个侧安装面12都安装有侧辐射单元阵列132。具体的,可以使天线1包括一个正安装面11和两个侧安装面12,两个侧安装面12分别设置于正安装面11相对的两个侧面,正安装面11设置正辐射单元阵列131,侧安装面12设置侧辐射单元阵列132。也就是说,在正辐射单元阵列131的两侧均设置有侧辐射单元阵列132。该方案可以在保证天线1正安装面11占用的空间一定的情况下,较大程度的提升天线1的性能。
当然,在具体的实施例中,正安装面11的正辐射单元阵列131两侧的侧辐射单元阵列132可以对称设置,也可以不对称设置,具体根据需求设计即可。
具体设置上述天线1的各个安装板时,可以对于各个安装板的具体位置不做限制。具 体的实施例中,以天线1包括一个正安装板和两个侧安装板为例,可以使两个侧安装板对称设置于上述正安装板的两侧。下面列举集中可能的布置方式:
图10A~图10F为本申请实施例中天线的几种可能的结构示意图,如图10A~图10C所示,侧安装板与正安装板垂直,此时,如图10A所示,一种实施例中,侧安装板位于正安装板的背离正辐射单元阵列131的一侧,具体的,可以使侧安装板在正安装板所在的平面的正投影完全位于正安装板,也就是说,正安装板可以完全遮挡侧安装板。如图10B所示,另一种实施例中,侧安装板位于正安装板的外侧,具体的,可以使侧安装板在正安装板所在的平面的正投影完全位于正安装板的外侧。如图10C所示,另一种实施例中,正安装板位于侧安装板之间。如图10D~图10F所示,其它实施例中,还可以使的侧安装板与正安装件116之间呈锐角设置。如图10D所示,一种实施例中,侧安装板位于正安装板的背离正辐射单元阵列131的一侧,具体的,可以使侧安装板在正安装板所在的平面的正投影完全位于正安装板,也就是说,正安装板可以完全遮挡侧安装板。如图10E所示,另一种实施例中,侧安装板与正安装板的连接处位于上述正安装板的外侧。如图10F所示,另一种实施例中,正安装板位于侧安装板之间。
请继续参考图10A~图10F,当天线1包括一个正安装面11和两个侧安装面12时,上述两个侧安装面12包括第一侧安装面和第二侧安装面。上述正安装面11设置m列正辐射单元阵列131,第一侧辐射面设置n列侧辐射单元阵列132,第二侧辐射面设置s列侧辐射单元阵列132。上述m、n和s满足:m:n:s=a:b:a,其中,a和b均为大于0的整数,且b>a。该方案中,侧辐射单元阵列132的数量少于正辐射单元阵列131的数量,两侧的侧安装面12的尺寸较小,有利于减薄天线1的厚度,降低天线1的剖面。
具体的一种实施例中,可以使上述b=2,a=1。该方案便于利用电桥实现功率共享,从而覆盖3dB/4.7dB的信号。除此以外,还可以使上述b=4,a=1,或者,b=4,a=2,或者,b=8,a=1,或者,b=8,a=2,或者,b=8,a=4,或者,b=8,a=6,或者,b=10,a=4等等,本申请不做具体限制。
图11A为本申请实施例中侧辐射单元阵列在正安装板的正投影的一种示意图,如图11A所示,侧辐射单元阵列132在正安装板14的正投影,完全位于正安装板14。该方案可以利用正安装板14分隔正辐射单元阵列131和侧辐射单元阵列132,减少正辐射单元阵列131与侧辐射单元阵列132之间的串扰。
图11B为本申请实施例中侧辐射单元阵列在正安装板的正投影的另一种示意图,如图11B所示,在其它实施例中,上述侧辐射单元阵列132在正安装板14的正投影,可以部分位于正安装板14。从而有利于减小正安装板14占用的面积,且有利于增强侧辐射单元的辐射范围。
此外,还可以使上述侧辐射单元阵列132在正安装板14所在的平面的正投影,完全不位于正安装板14。该实施例中的天线适合于风载允许的条件下使用。
上述天线1具体可以为有源天线,也可以为无源天线,两种天线1都可以适用上述天线架构,本申请对此不做限制。具体的,上述有源天线可以指设置有源器件的天线,有源天线也可以指包括了射频通道模块的天线。
图12为本申请实施例中天线的一种结构示意图,如图12所示,具体的实施例中,上述天线1还包括电路模块16,正辐射单元阵列131连接有天线端口161,侧辐射单元阵列132也连接有天线端口161。上述电路模块16的一端与正辐射单元阵列131连接的天线端 口161以及侧辐射单元阵列132连接的天线端口161连接,另一端用于与多个射频端口162连接。当天线1为无源天线单元时,上述射频端口162可以为射频拉远单元(Remote radio unit,RRU)的端口;或者,当天线1为有源天线(Active antenna unit,AAU)时,上述射频端口162为有源天线的射频通道模块的射频端口。容易理解的,电路模块16包括馈电网络或馈电模块。该方案可以通过电路模块,使天线的正辐射单元阵列与侧辐射单元阵列连接至一个射频拉远单元,从而可以同时驱动正辐射单元阵列131和侧辐射单元阵列132,可以使正辐射单元阵列131和侧辐射单元阵列132对应覆盖的小区可以为同一小区或者不同的小区,本申请对此不做限制。
值得说明的是,可选的实施例中,该天线可以包括至少两个正辐射单元阵列131和至少两个侧辐射单元阵列132。则上述电路模块16可以与部分正辐射单元阵列131连接的天线端口161连接,以及部分侧辐射单元阵列132连接的天线端口161连接。也就是说并非全部的辐射单元阵列13的天线端口161都与电路模块16连接,但是该电路模块16至少与一个正辐射单元阵列连接的天线端口161和一个侧辐射单元阵列连接的天线端口连接。在另一种可选的实施例中,可以使电路模块16与所有的正辐射单元阵列131连接的天线端口161连接,以及与所有的侧辐射单元阵列132连接的天线端口161连接。
上述天线端口161具体与天线1的辐射单元连接。可选的实现方式中,可以使天线端口161连接一个辐射单元或者连接至少两个辐射单元,本申请对此不作限制。在可选的实施例中,辐射单元阵列13与天线端口161可以为一一对应的关系,当然,可以理解的,再其它实施例中,辐射单元阵列13也可以不与天线端口161一一对应设置。例如,一种可能的实施例中,正辐射单元阵列131和侧辐射单元阵列132中每个辐射单元阵列13连接一个上述天线端口161。至少一个天线端口161通过电路模块16与多个射频端口162中至少两个射频端口162电连接。传统实现方式中,天线端口161与射频端口162直接一一对应连接,则每个射频端口162提供的功率只能传输至与其连接的天线端口161,也就是只能用于驱动一个阵列,无法根据需求实时调节各个阵列的功率。本实施例中的电路模块16具体可以实现天线1输入功率的再分配,从而实现天线1的各个子阵列的功率共享。因此,该方案可以根据实际需求分配上述天线端口161的输入功率,调节天线1的辐射信号的覆盖范围和信道容量。
具体的实施例中,可以使多个天线端口161中的任意一个天线端口161,通过电路模块16与多个射频端口162中的任意一个射频端口162连接。该方案可以根据实际需求分配所有的天线端口161的输入功率。
上述电路模块16可以为模拟电路模块,其具体形式不做限制,图13示出了电路模块的一种形式。如图13所示的实施例中,该模拟电路包括电桥163和移项器164,从而可以实现电路模块16连接的每个天线端口161与任一的射频端口162都进行电连接,使每个射频端口162输入的功率都可以传输至天线端口161中的任一天线端口161,以实现功率再分配。从而可以根据需求调节天线1的辐射信号的覆盖范围,且可以提升设定范围的信道容量。图13仅仅示出了上述电路模块16的一种可能的实现方式,例如,在其它实施例中,上述电路模块16还可以包括电桥163、移项器164和功分器等电器件中的至少一个。
具体的实施例中,上述电桥163包括输入端口和输出端口,电桥163的输入端口与射频端口162连接,电桥163的输出端口分别与正辐射单元阵列131和侧辐射单元阵列132连接。从而。
上述电桥163的具体组成形式不做限制,如图13所示,一种实施例中,电路模块16可以包括两个电桥163,两个电桥163分别为第一电桥和第二电桥。上述第一电桥包括第一输入端口、第二输入端口、第一输出端口和第二输出端口。第一输出端口与正安装面11设置的一列正辐射单元阵列131连接,具体与该正辐射单元阵列131连接的天线端口161连接;第二输出端口与第一侧辐射面的一列侧辐射单元阵列132连接,具体与该侧辐射单元阵列132连接的天线端口161连接,上述第一输入端口和第二输入端口分别与射频端口162连接。相类似的,上述第二电桥包括第三输入端口、第四输入端口、第三输出端口和第四输出端口,第三输出端口与正安装面11设置的另一列正辐射单元阵列131连接,具体与该正辐射单元阵列131连接的天线端口161连接;第四输出端口与第二侧辐射面的侧辐射单元阵列132连接,具体与该侧辐射单元阵列132连接的天线端口161连接,上述第三输入端口和第四输入端口分别与射频端口162连接。
上述第一电桥和第二点胶具体为2*2巴特勒矩阵,也称为3dB 90°电桥,该矩阵具体为:
Figure PCTCN2022132991-appb-000001
图14示出了电路模块的一种形式。如图14所示的实施例中,另一种实施例中,电路模块16可以包括三个电桥163,三个电桥163分别为第三电桥、第四电桥和第五电桥。上述第三电桥包括第五输入端口、第六输入端口、第五输出端口和第六输出端口;第四电桥包括第七输入端口、第八输入端口、第七输出端口和第八输出端口;第四电桥包括第九输入端口、第十输入端口、第九输出端口和第十输出端口。上述第五输出端口与第一侧辐射面的一列侧辐射单元阵列132连接,具体与第一侧辐射面的一列侧辐射单元阵列132连接的天线端口161连接;第六输出端口与第二侧辐射面的侧辐射单元阵列132连接,具体与第二侧辐射面的一列侧辐射单元阵列132连接的天线端口161连接。上述第五输入端口与第七输出端口连接,第六输入端口与第九输出端口连接。第八输出端口与正安装面11设置的一列正辐射单元阵列131连接,具体与正安装面11设置的一列正辐射单元阵列131连接的天线端口161连接。第十输出端口与正安装面11设置的另一列正辐射单元阵列131连接,具体与正安装面11设置的另一列正辐射单元阵列131连接的天线端口161连接。第七输入端口、第八输入端口、第九输入端口、第十输入端口分别与射频端口162连接。
图15示出了电路模块的一种形式。如图15所示的实施例中,另一种实施例中,电路模块16可以包括四个电桥163,四个电桥163分别为第六电桥、第七电桥、第八电桥和第九电桥。其中,第六电桥包括第十一输入端口、第十二输入端口、第十一输出端口和第十二输出端口;第七电桥包括第十三输入端口、第十四输入端口、第十三输出端口和第十四输出端口;第八电桥包括第十五输入端口、第十六输入端口、第十五输出端口和第十六输出端口;第九电桥包括第十七输入端口、第十八输入端口、第十七输出端口和第十八输出端口。第十一输出端口与正安装面11设置的一列正辐射单元阵列131连接,具体与正安装面11设置的一列正辐射单元阵列131连接的天线端口161连接。第十二输出端口与第一侧辐射面的一列侧辐射单元阵列132连接,具体与第一侧辐射面的一列侧辐射单元阵列132连接的天线端口161连接。第十一输入端口与第十七输出端口连接,第十二输入端口与第十五输出端口连接,第十三输出端口与正安装面11设置的另一列正辐射单元阵列131连接,具体与正安装面11设置的另一列正辐射单元阵列131连接的天线端口161连接。第十四输 出端口与第二侧辐射面的侧辐射单元阵列132连接,具体与第二侧辐射面的侧辐射单元阵列132连接的天线端口161连接。第十三输入端口与第十六输出端口连接,第十四输入端口与第十八输出端口连接,第十五输入端口、第十六输入端口、第十七输入端口和第十八输入端口连接。
图16为本申请实施例中天线的一种应用场景,如图16所示,上述电桥的每个输入口与一个功放器连接,各个功放器均连接至基带数字电桥加权器,该基带数字电桥加权器为电桥加权的逆矩阵。如图16所示,部分载波通过四个端口同时输入,从而实现天线1各个辐射单元阵列同时辐射,如新无线(New Radio,NR)和3GPP长期演进(Long Term Evolution,LTE);另外,部分载波通过其中部分端口输入(如正辐射单元阵列131对应的天线端口161),如全球移动通信系统(Global System for Mobile Communications,GSM)和通用移动电信业务(Universal Mobile Telecommunications Services,UMTS),从而实现仅通过部分辐射单元阵列的辐射,例如正辐射单元阵列131。或者,如图17所示,部分载波通过四个端口同时输入,从而实现天线1各个辐射单元阵列同时辐射,如新无线(New Radio,NR);另外,部分载波通过其中部分端口输入(如正辐射单元阵列131对应的天线端口161),如3GPP长期演进(Long Term Evolution,LTE)、全球移动通信系统(Global System for Mobile Communications,GSM)和通用移动电信业务(Universal Mobile Telecommunications Services,UMTS),从而实现仅通过部分辐射单元阵列的辐射,例如正辐射单元阵列131通过这种方式,天线1可以支持四种制式同时工作,不会造成功率浪费。
图18为本申请实施例中第一校正模块的一种结构示意图,请参考图18,一种实施例中,可以使天线1还包括第一校正模块,该第一校正模块具体可以为校准电路模块。可以利用该校准电路模块校准不同天线端口161之间的相位和幅度,便于在天线端口161之间进行协同,进而得到需要的波束赋形的方向图,以便于提升天线1的性能。
上述第一校正模块设置于射频端口与天线端口之间,但是第一校正模块的具体位置不做限制,例如,该第一校正模块具体可以设置于射频端口与电路模块之间,或者,第一校正模块具体还可以设置于电路模块与天线端口之间,再或者,还可能是第一校正模块与电路模块集成为一体结构。本申请对此不做限制。
具体的实施例中,上述校准电路模块的结构不做限制,图18示出了校准电路模块的一种可能的结构,该校准电路包括耦合器17和功分器18。
如图18所示,具体的实施例中,每个正辐射单元阵列131连接的天线端口161连接多个耦合器中的一个耦合器,每个侧辐射单元阵列132连接的天线端口161连接多个耦合器中的一个耦合器。具体的,图18所示的实施例中,天线1包括两个正辐射单元阵列131和两侧分别设置的一个侧辐射单元阵列132。图中天线端口F和G为两个正辐射单元阵列131连接的天线端口161,图中天线端口E和H为两个侧辐射单元阵列132连接的天线端口161。每个天线端口161均连接一个耦合器。每个天线1连接的所有耦合器可以与一个功分器连接,从而使各个辐射单元阵列的信号汇合至一处。
请继续参考图18,进一步的实施例中,功分器远离耦合器的一端与校正电路连接以进行校正。具体的,当天线1为有源天线时,上述功分器与有源天线的有源天线射频单元的矫正电路连接;当天线1为无源天线时,上述功分器与无源天线的射频拉远单元的校正口连接。
图19为本申请实施例中天线的一种结构示意图,如图19所示,具体的实施例中,当 上述天线1为有源天线时,天线1包括射频单板117和散热器118。上述射频单板117也可以称为有源单板,与辐射单元连接,在下行电路中,射频单板117用于将来自基带处理单元数字中频信号上变频成射频信号;在上行电路中,射频单板117用于将射频信号下变频成数字中频信号。上述散热器118设置于射频单板117背离正安装面11的一侧,正辐射单元阵列131和侧辐射单元阵列132均与射频单板117连接。该方案中,利用一个射频单板117连接所有的辐射单元阵列,有利于简化天线1的结构,此外,也便于不同的辐射单元阵列之间的校正和协同。
当天线1为无源天线时,无源天线包括射频拉远单元,天线1的正辐射单元阵列131和侧辐射单元阵列132均与射频拉远单元连接。也就是说,天线1的所有辐射单元阵列都连接至一个射频拉远单元,便于不同的辐射单元阵列之间的校正和协同。
上述天线1的辐射单元阵列13包括多个辐射单元,每个辐射单元连接有源元器件,该有源元器件用于重构辐射单元的方向图。该方案中,可以根据实际需求,通过上述有源元器件来调节对应的辐射单元的方向图,改变天线最大辐射的方向。天线1可以包括多个辐射单元阵列13,每个辐射单元阵列13可以包括多个辐射单元。利用有源元器件调节辐射单元的方向图,从而可以调节辐射单元阵列13的方向图,以增加整个天线1的方向图调节的自由度,可以实现单天线1的辐射信号360°覆盖。
具体的技术方案中,上述有源元器件可以为包括二极管、电容管、变容管、射频微电机系统(Microelectromechanical Systems,MEMS)开关、液晶、石墨烯和微机械旋转装置中的至少一个。本申请对此不作具体限制。
图20为本申请实施例中通信系统的一种结构示意图。如图20所示,本申请还提供了一种通信系统,该通信系统包括安装架2和至少一个上述任一实施例中的天线1,该天线1安装于安装架2上。该实施例中,天线1的辐射范围较广,有利于提升通信系统的覆盖范围和信号强度。具体的,在一定的信号强度下,可以减少设置的天线1数量,以降低成本,当通信系统安装的天线1数量一定的情况下,可以使得通信系统的信号强度较强。
值得说明的是,上述安装架2指的是用于安装天线1的结构,上述安装架2具体可以为杆状结构或者塔状结构等,也就是说,本申请实施例中的安装架2具体可以为抱杆或者铁塔等用于安装天线的结构,此外,上述安装架2可以包括一个抱杆或者至少两个抱杆,本申请对此不做限制。
本申请实施例中的通信系统可以支持各种制式中,例如可以支持全球移动通信系统(Global System for Mobile Communication,GSM)、长期演进(Long Term Evolution,LTE)或者5G新射频(New radio)等。该通信系统可以应用于宏站、微站、室内小站等,本申请对此不作限制。
请继续参考图20,通信系统可以仅设置有一个天线1,由于该天线1的正面设置有正辐射单元阵列131,侧面设置有侧辐射单元阵列132。特别的,当天线1的正辐射单元阵列131的两侧均设置有侧辐射单元阵列132时,因此,该天线1可以实现辐射信号的360°覆盖,通信系统利用一个天线1,就可以实现全面覆盖,有利于降低通信系统的成本。
如图20所示的实施例,可以实现单站单天线一小区的组网形式,当通信系统仅仅具有一个天线1时,就可以实现一个小区3的辐射信号360°全覆盖。
图21为本申请实施例中通信系统的另一种结构示意图。如图21所示,一种实施例中,一个通信系统仅仅设置一个天线1,该天线1包括一个正辐射单元阵列131,以及位于正 辐射单元阵列131两侧的两个侧辐射单元阵列132,该两个侧辐射单元阵列132分别为第一侧辐射单元阵列132和第二侧辐射单元阵列132。该方案可以实现单站单天线三小区的组网形式,具体可以使上述每个辐射单元阵列13的辐射信号覆盖一个小区3,且可以实现360°的全覆盖。例如,可以使第一侧辐射单元阵列132的辐射信号覆盖第一小区3’,第二侧辐射单元阵列132的辐射信号覆盖第二小区3”,正辐射单元阵列131的辐射信号覆盖第三小区3”’。具体可以通过算法控制,使上述第一小区3’、第二小区3”和第三小区3”’分别对应为120°扇形区域,且使得三个小区3对应的扇形区域可以合成360°的覆盖范围。本申请技术方案中,可以利用一个天线实现三个小区的信号覆盖,以减少通信系统的能耗。
图22为本申请实施例中通信系统的一种组网结构示意图。如图22所示,一种实施例中,上述通信系统还可以设置有两个或者更多个的天线1。不同的天线1的辐射信号可以覆盖同一小区3,也可以覆盖不同的小区3,本申请对此不做限制。下面以通信系统设置三个天线1为例,来说明不同的应用场景。
例如,通信系统设置三个天线1,三个天线1设置于安装架的周侧。上述三个天线1具体可以为第一天线1’、第二天线1”和第三天线1”’。可以根据需求配置三个天线1的辐射信号覆盖的小区范围。
具体安装上述三个天线1时,三个天线1可以均为分布于安装架的周侧,或者,还可以不均匀分布于安装架的周侧,根据实际信号覆盖范围和信道容量需求来设计即可,本申请对此不作限制。
可选的实施例中,每个天线1包括正辐射单元阵列131和位于该正辐射单元阵列131两侧的第一侧辐射单元阵列132和第二侧辐射单元阵列132。该实施例中的通信系统的天线方向图如图23所示,可见,每个天线1都可以实现360°覆盖,且无覆盖恶化。因此,可以实现不同的组网形式。例如,如图20所示的单站单天线一小区的组网形式,如图21所示的单站单天线三小区的组网形式,以及单站三天线的两种组网形式。
上述单站三天线的两种组网形式中的第一种组网形式如图22所示,该第一种组网形式可以为:三个天线1辐射的信号共同覆盖一个小区3。该实施例中,可以使每个天线1的辐射信号覆盖的范围大于120°,从而保证了相邻两个天线1之间的缝隙对应的区域的信号强度。
上述单站三天线的两种组网形式中的第二种组网形式如图24所示,该第二种组网形式可以为:上述通信系统的三个天线1辐射的信号分别覆盖一个小区3。例如,上述第一天线1’的辐射信号覆盖第一小区3’,第二天线1”的辐射信号覆盖第二小区3”,第三天线1”’的辐射信号覆盖第三小区3”’。具体可以使上述第一小区3’、第二小区3”和第三小区3”’分别对应为大于120°扇形区域。不同的小区3之间可以存在交叠,配合协同算法,可以实现相邻小区3的协同工作。
除了上述几种组网形式以外,还可以使实现单站三天线六小区或者单站三天线九小区等组网形式。例如,三个天线中的每个天线1可以覆盖三个小区3,则可以实现单站三天线九小区的组网形式,本申请对此不作限制。
小区间还可以通过协同算法降低小区间干扰,实现多小区协同工作,提升系统性能。也就是说,对于每个小区3的天线1来说,不仅负责该小区3的用户的信号传输,还可以同时负责其他小区3的用户的信号传输。当通信系统包括上述三个天线1时,由于单个天线1就可以实现辐射信号的360°全覆盖,因此,可以根据实际需求,关闭三个天线1中的 一个或者两个,剩余的开启的天线1也可以实现各个小区3的辐射信号的全覆盖。因此,该方案还有利于节约天线1工作需要的能耗。此外,假如三个天线1中的一个或者两个天线1出现损坏时,仍然可以保证该通信系统能够进行工作。
图25为本申请实施例中通信系统的一种组网结构示意图。如图25所示,该通信系统中的每个天线1都设置有上述电路模块。在实际应用过程中,可以根据实际需求调节各个区域的天线1的功率,以便于提升不同小区3之间的协作效果,可以实现小区间通道共享、功率共享和流数共享。例如,以每个天线1包括四个辐射单元阵列13为例,每个辐射单元阵列13具有一个天线端口161。如图25所示,假如第二小区3”对应的需求较大,在第二小区3”对应的区域正在举办聚集性活动,用户数量较多,则对于天线1的辐射信号强度和信号容量需求较大。此时,假如,四个射频端口A、B、C和D分别输入1W的功率,则可以使第一天线1’中的四个天线端口E、F、G和H的功率分配分别为4W、0W、0W和0W,使得第一小区3’与第二小区3”交叠的区域的天线1的辐射信号强度较大,信道容量较大。此外,还可以使第三天线1”’的四个天线端口E、F、G和H的功率分配分别为0W、0W、0W和4W,使得第三小区3”’与第二小区3”交叠的区域的天线1辐射信号强度较大,信号容量较大。因此,该方案可以极大提高第二小区3”的辐射信号强度和信道容量。
该实施例中仅仅列举一种天线端口之间的功率分配方案,当然,在同样的场景下,还可以根据需求采用其它的分配方案。例如,同样是第二小区3”的需求较高,可以使第一天线1’中的四个天线端口E、F、G和H的功率分配分别为2.5W、0.5W、0.5W和0.5W,使得第一小区3’与第二小区3”交叠的区域的天线1的辐射信号强度较大,信道容量较大。还可以使第三天线1”’的四个天线端口E、F、G和H的功率分配分别为0.3W、0.5W、0.8W和2.5W,使得第三小区3”’与第二小区3”交叠的区域的天线1辐射信号强度较大,信号容量较大。因此,该方案也可以提高第二小区3”的辐射信号强度和信道容量,同时可以保证第一小区3’和第三小区3”’也能具有信号的覆盖。上述功率分配的方案仅仅为示例性说明。
值得说明的是,上述实施例仅仅作为一种示例,本申请实施例中的天线具体可以包括更多数量或者更少数量的天线端口161和射频端口162。
具体的实施例中,为了实现不同天线1之间的协同工作,任一相邻的两个天线1之间连接有第二校正模块,第二校正模块用于校正不同的天线1之间的相位和幅度。为了便于描述,可以认为每个天线1的正安装面11安装的正辐射单元阵列131形成一个天线阵面,每个侧安装面12安装的侧辐射单元阵列132也形成一个天线阵面,在每个天线1内部,利用第一校正模块来校正不同的天线阵面之间的相位和幅度。而在不同的天线阵面之间,利用该第二校正模块来校正不同的天线1之间的相位和幅度。从而可以使得整个通信系统的全部天线阵面可以根据需求进行协同工作。
具体的一种实施例中,整个通信系统的全部天线阵面可以根据需求进行协同工作,从而使得通信系统可以包括多个辐射区域,至少一个辐射区域由至少两个不同天线1的天线阵面所辐射的波束覆盖。
具体的,上述天线阵面辐射的波束指的是天线阵面的法向的±60°范围内的波束,该范围内的波束辐射强度较强,可以可靠的为用户传输信号。
图26为本申请实施例中通信系统的一种结构示意图,图26所示的实施例中,通信系统包括两个天线1,每个天线1包括三个天线阵面。图27和图28为本申请实施例中通信系统的一种组网形式,具体为图26所示通信系统的组网形式。具体的实施例中,由于整 个通信系统的全部天线阵面可以根据需求进行协同工作,因此,可以使至少一个辐射区域由至少两个不同天线1的天线阵面所辐射的波束覆盖。
具体的实施例中,组成辐射区域的天线阵面的数量不做限制,例如,可以由两个天线阵面覆盖一个辐射区域,如图27所示;也可以由三个天线阵面或者更多的天线阵面覆盖一个辐射区域,如图28所示。
此外,还可以使通信系统的辐射区域的数量,大于或者等于通信系统的天线1的数量。例如,如图27所示,通信系统的辐射区域的数量(3)大于通信系统的天线1的数量(2);如图28所示,通信系统的辐射区域的数量(2)等于通信系统的天线1的数量(2)。
图29为本申请实施例中通信系统的另一种结构示意图,图26和图29所示的实施例中,通信系统都包括两个天线1,每个天线1包括三个天线阵面。区别仅在于相邻的天线阵面之间的夹角不同,但是图26和图29所示天线1中,相邻的天线阵面之间的夹角互补。
图30为本申请实施例中通信系统的另一种组网形式,具体为图29所示的通信系统的组网形式。由于上述夹角互补,因此,图26和图29所示天线1都可以形成图27、图28和图30所示的组网形式。具体可以认为图27和图30的组网形式相同,区别仅在于组成同一个辐射区域的天线阵面不同。具体的实施例中,覆盖一个辐射区域的天线阵面相邻或者不相邻。如图27和图28所示的实施例中,覆盖一个辐射区域的天线阵面相邻,而如图30所示的实施例中,覆盖一个辐射区域的天线阵面不相邻。
除此以外,还可以使通信系统的辐射区域与天线1一一对应,也就是说,天线1之间可以不协同,仅仅是天线1自身内部的多个天线阵列进行协同。
值得说明的是,本申请实施例中,每个小区可以包括一个辐射区域,也可以包括多个辐射区。也就是说,可以一个辐射区域就形成一个小区,或者多个辐射区域联合形成一个小区。
为了实现不同天线阵面的协同,以形成一个辐射区域,使得同一个辐射区域内不同的天线阵面联合获取信道矩阵。具体的,假定辐射区域由两个天线阵面组成,一个天线阵面的通道数量为x,另一个天线阵面的通道数量为y。本申请中,两个天线阵面在基带侧联合做信道估计,获取x+y维信道矩阵,以覆盖一个辐射区域,并共同服务一个小区、或服务一个用户。
此外,在同一个辐射区域内不同的天线阵面还进行联合预编码。预计联合信道矩阵,计算基站天线的发射天线的权值,称为联合预编码。即通过联合的方式计算码本,形成SSB广播或CSI-RS信道或业务波束。
下面结合具体实施例介绍多个天线阵面协同时,天线相位的计算方式。正辐射单元阵列131与侧辐射单元阵列132均为辐射单元阵列,通信系统包括多个辐射单元阵列,以第一个辐射单元阵列为基线,根据第一个辐射单元阵列的坐标、第i个辐射单元阵列的坐标、第i个辐射单元阵列的指向与x轴的夹角以及第一个辐射单元阵列的相位获取第i个辐射单元阵列的相位。
具体的,可以利用下述公式来计算上述第i个辐射单元阵列的相位:
Figure PCTCN2022132991-appb-000002
其中:(x1,z1)为第一个辐射单元阵列的坐标(xi,zi)为第i个辐射单元阵列的坐标, 阵列方向与x轴的夹角为:arctan(zi/xi);θ为第i个辐射单元阵列的指向与x轴的夹角,单位为弧度,则天线指向与天线切线方向的夹角为θ-arctan(zi/xi);a为第一个辐射单元阵列的相位,单位为弧度。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (31)

  1. 一种天线,其特征在于,包括正安装面、侧安装面、辐射单元阵列和电路模块,所述辐射单元阵列包括正辐射单元阵列和侧辐射单元阵列,所述正辐射单元阵列安装于所述正安装面,所述侧辐射单元阵列安装于所述侧安装面,所述正安装面和所述侧安装面在背离所述正辐射单元阵列的一侧的夹角为第一夹角,所述第一夹角的角度小于180°;所述电路模块的一端与所述正辐射单元阵列连接的天线端口和所述侧辐射单元阵列连接的天线端口连接,另一端用于与多个射频端口连接,至少一个所述天线端口通过所述电路模块与所述多个射频端口中至少两个所述射频端口电连接。
  2. 如权利要求1所述的天线,其特征在于,所述第一夹角的角度小于或者等于90°。
  3. 如权利要求1或2所述的天线,其特征在于,还包括正安装板和侧安装板,所述正安装面位于所述正安装板,所述侧安装面位于所述侧安装板。
  4. 如权利要求3所述的天线,其特征在于,所述正安装板包括反射板,所述侧安装板包括反射板。
  5. 如权利要求4所述的天线,其特征在于,所述侧辐射单元阵列在所述正安装板的正投影至少部分位于所述正安装板。
  6. 如权利要求4或5所述的天线,其特征在于,所述正安装板的边缘具有第一翻折部,所述第一翻折部位于所述正安装板安装所述正辐射单元阵列的一侧;和/或,所述侧安装板的边缘具有第二翻折部,所述第二翻折部位于所述侧安装板安装所述侧辐射单元阵列的一侧。
  7. 如权利要求1~6任一项所述的天线,其特征在于,还包括安装件,所述安装件设置于所述正安装面背离所述正辐射单元阵列的一侧,所述安装件具有连接头,所述连接头用于与抱杆连接,所述连接头与所述正安装面的距离,大于所述侧安装面任一位置与所述正安装面的距离。
  8. 如权利要求1~7任一项所述的天线,其特征在于,包括一个所述正安装面和两个所述侧安装面,两个所述侧安装面分别设置于所述正安装面的相对的两个侧面,所述正安装面设置所述正辐射单元阵列,所述侧辐射面设置所述侧辐射单元阵列。
  9. 如权利要求8所述的天线,其特征在于,两个所述侧安装面包括第一侧安装面和第二侧安装面,所述正安装面设置m列所述正辐射单元阵列,所述第一侧辐射面设置n列所述侧辐射单元阵列,所述第二侧辐射面设置s列所述侧辐射单元阵列,所述m、所述n和所述s满足:m:n:s=a:b:a,其中,a和b均为大于0的整数,且b>a。
  10. 如权利要求9所述的天线,其特征在于,所述b=2,所述a=1。
  11. 如权利要求8~10任一项所述的天线,其特征在于,所述电路模块包括电桥,所述电桥包括输入端口和输出端口,所述输入端口与所述射频端口连接,所述电桥的所述输出端口分别与所述正辐射单元阵列和所述侧辐射单元阵列连接。
  12. 如权利要求8~11任一项所述的天线,其特征在于,所述天线为有源天线,所述天线包括射频单板和散热器,所述散热器设置于所述射频单板背离所述正安装面的一侧,所述正辐射单元阵列和所述侧辐射单元阵列与所述射频单板连接。
  13. 如权利要求1~12任一项所述的天线,其特征在于,任一所述天线端口通过所述电路模块与所述多个射频端口中的任一个电连接。
  14. 如权利要求1~13任一项所述的天线,其特征在于,还包括第一校正模块,所述第一校正模块用于校正不同的所述天线端口之间的相位和幅度。
  15. 如权利要求14所述的天线,其特征在于,所述校准模块包括多个耦合器和功分器。
  16. 如权利要求15所述的天线,其特征在于,所述正辐射单元阵列连接的天线端口连接有所述耦合器,所述侧辐射单元阵列连接的天线端口也连接有所述耦合器。
  17. 如权利要求16所述的天线,其特征在于,所述耦合器通过功分器与校正口连接。
  18. 如权利要求1~17任一项所述的天线,其特征在于,所述辐射单元阵列包括多个辐射单元,每个所述辐射单元连接有源元器件,所述有源元器件用于重构所述辐射单元的方向图。
  19. 如权利要求18所述的天线,其特征在于,所述有源元器件包括二极管、电容管、变容管、射频微电机系统开关、液晶、石墨烯和微机械旋转装置中的至少一个。
  20. 一种通信系统,其特征在于,包括安装架和至少一个如权利要求1~19任一项所述的天线,所述天线安装于所述安装架。
  21. 如权利要求20所述的通信系统,其特征在于,包括一个所述天线,所述天线的辐射信号覆盖一个小区。
  22. 如权利要求21所述的通信系统,其特征在于,包括一个所述天线,所述天线包括一个所述正安装面和两个所述侧安装面,两个所述侧安装面分别设置于所述正安装面的相对的两个侧面,所述正辐射单元阵列设置于所述正安装面,所述侧辐射单元阵列包括第一侧辐射单元阵列和第二侧辐射单元阵列,所述第一侧辐射单元阵列设置于两个所述侧辐射面中的一个,所述第二侧辐射单元阵列设置于两个所述侧辐射面中的另一个;
    所述正辐射单元阵列辐射的信号覆盖第一小区,所述第二侧辐射单元阵列辐射的信号覆盖第二小区,所述第三侧辐射单元阵列辐射的信号覆盖第三小区。
  23. 如权利要求20所述的通信系统,其特征在于,包括至少两个所述天线。
  24. 如权利要求23所述的通信系统,其特征在于,相邻的两个所述天线之间连接有第二校正模块,所述第二校正模块用于校正不同的所述天线之间的相位和幅度。
  25. 如权利要求23或24所述的通信系统,其特征在于,每个所述天线的所述正安装面安装的所述正辐射单元阵列形成一个天线阵面,每个所述侧安装面安装的所述侧辐射单元阵列也形成一个所述天线阵面,所述通信系统包括多个辐射区域,至少一个所述辐射区域由至少两个不同所述天线的所述天线阵面所辐射的波束覆盖。
  26. 如权利要求23或24所述的通信系统,其特征在于,所述通信系统包括至少两个辐射区域,所述辐射区域与所述天线一一对应。
  27. 如权利要求23~26任一项所述的通信系统,其特征在于,所述正辐射单元阵列与所述侧辐射单元阵列均为辐射单元阵列,所述通信系统包括多个所述辐射单元阵列,以第一个所述辐射单元阵列为基线,根据第一个所述辐射单元阵列的坐标、第i个所述辐射单元阵列的坐标、第i个所述辐射单元阵列的指向与x轴的夹角以及第一个所述辐射单元阵列的相位获取第i个所述辐射单元阵列的相位。
  28. 如权利要求20所述的通信系统,其特征在于,包括三个所述天线,三个所述天线分别为第一天线、第二天线和第三天线。
  29. 如权利要求20所述的通信系统,其特征在于,三个所述天线辐射的信号覆盖同一小区。
  30. 如权利要求20所述的通信系统,其特征在于,所述第一天线辐射的信号覆盖第一小区,所述第二天线辐射的信号覆盖第二小区,所述第三天线辐射的信号覆盖第三小区。
  31. 如权利要求28~30任一项所述的通信系统,其特征在于,三个所述天线均匀设置于所述安装架的周侧。
PCT/CN2022/132991 2021-11-21 2022-11-18 一种天线及通信系统 WO2023088446A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111381535 2021-11-21
CN202111381535.4 2021-11-21

Publications (1)

Publication Number Publication Date
WO2023088446A1 true WO2023088446A1 (zh) 2023-05-25

Family

ID=86396278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132991 WO2023088446A1 (zh) 2021-11-21 2022-11-18 一种天线及通信系统

Country Status (2)

Country Link
CN (1) CN116315601A (zh)
WO (1) WO2023088446A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116886121A (zh) * 2023-07-10 2023-10-13 荣耀终端有限公司 一种射频电路和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101320846A (zh) * 2008-06-24 2008-12-10 东南大学 基片集成波导多波束智能天线
CN204407508U (zh) * 2015-03-02 2015-06-17 浙江佳源通讯技术有限公司 一体化超宽频排气管型集束天线
CN206180123U (zh) * 2016-09-29 2017-05-17 广东工业大学 一种5.8GHz ISM频段的定向共形阵列天线
US20200411961A1 (en) * 2019-06-28 2020-12-31 Commscope Technologies Llc Twin-beam base station antennas having thinned arrays with triangular sub-arrays
US20210029556A1 (en) * 2019-06-25 2021-01-28 Commscope Technologies Llc Multi-beam base station antennas having wideband radiating elements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101320846A (zh) * 2008-06-24 2008-12-10 东南大学 基片集成波导多波束智能天线
CN204407508U (zh) * 2015-03-02 2015-06-17 浙江佳源通讯技术有限公司 一体化超宽频排气管型集束天线
CN206180123U (zh) * 2016-09-29 2017-05-17 广东工业大学 一种5.8GHz ISM频段的定向共形阵列天线
US20210029556A1 (en) * 2019-06-25 2021-01-28 Commscope Technologies Llc Multi-beam base station antennas having wideband radiating elements
US20200411961A1 (en) * 2019-06-28 2020-12-31 Commscope Technologies Llc Twin-beam base station antennas having thinned arrays with triangular sub-arrays

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116886121A (zh) * 2023-07-10 2023-10-13 荣耀终端有限公司 一种射频电路和电子设备

Also Published As

Publication number Publication date
CN116315601A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US11689263B2 (en) Small cell beam-forming antennas
WO2019201063A1 (zh) 一种天线系统、馈电网络重构方法及装置
EP2816664B1 (en) Antenna system
US9960500B2 (en) Compact antenna array using virtual rotation of radiating vectors
US9712259B2 (en) Canister antenna producing a pseudo-omni radiation pattern for mitigating passive intermodulation (PIM)
US9209526B2 (en) Broadband dual-polarized omni-directional antenna and feeding method using the same
US10587034B2 (en) Base station antennas with lenses for reducing upwardly-directed radiation
US9049083B2 (en) Base station antenna and base station antenna feed network
US20200243951A1 (en) Compact omnidirectional antennas having stacked reflector structures
CN106252901A (zh) 宽频三波束阵列天线
CN105356062A (zh) 一种宽频阵列天线
CN106159465A (zh) 宽频五波束阵列天线
US20230344113A1 (en) Base station antenna
WO2023088446A1 (zh) 一种天线及通信系统
CN114513237B (zh) 一种面向大规模阵列通信的子阵结构设计方法
CN102306872B (zh) 电调天线对称多路功分移相器
US11646502B2 (en) Multi-band base station antenna
WO2023051472A1 (zh) 一种天线及基站天馈系统
WO2023051471A1 (zh) 一种天线系统及基站天馈系统
WO2023109846A1 (zh) 一种天线系统及基站天馈系统
WO2024001903A1 (zh) 一种天线装置和通信设备
WO2024027465A1 (zh) 一种天线系统及基站
EP4391229A1 (en) Feed circuit, antenna device, communication device, and communication system
WO2023109765A1 (zh) 一种天线系统和通信设备
DEHGHANI ALCAN’s Smart Antenna’s 5G Opportunities and Solutions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894975

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022894975

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022894975

Country of ref document: EP

Effective date: 20240621