WO2023051471A1 - 一种天线系统及基站天馈系统 - Google Patents

一种天线系统及基站天馈系统 Download PDF

Info

Publication number
WO2023051471A1
WO2023051471A1 PCT/CN2022/121392 CN2022121392W WO2023051471A1 WO 2023051471 A1 WO2023051471 A1 WO 2023051471A1 CN 2022121392 W CN2022121392 W CN 2022121392W WO 2023051471 A1 WO2023051471 A1 WO 2023051471A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
element array
radiating element
antenna system
frequency
Prior art date
Application number
PCT/CN2022/121392
Other languages
English (en)
French (fr)
Inventor
肖伟宏
廖志强
崔鹤
李建平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22874856.2A priority Critical patent/EP4386983A1/en
Publication of WO2023051471A1 publication Critical patent/WO2023051471A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means

Definitions

  • the present application relates to the technical field of communications, specifically an antenna system and a base station antenna feeder system.
  • the base station can support more and more communication frequency bands, so the structure of the base station antenna becomes more and more complex.
  • a single antenna needs to integrate antenna arrays and feed networks of more frequency bands, making the antenna integration degree of a single antenna higher and higher.
  • the multi-band antenna system can include a first frequency band radiating element array and a second frequency band radiating element array, and a frequency selective surface (frequency selective surface) can be arranged between the first frequency band radiating element array and the second frequency band radiating element array.
  • FSS frequency selective surface
  • the present application provides an antenna system and a base station antenna feeder system.
  • the antenna system includes at least two radiating element arrays in frequency bands.
  • the signal quality of the antenna system is good, and the integration degree is high.
  • independent evolution of radiation element arrays in different frequency bands can be realized.
  • the present application provides an antenna system, which includes a frequency selective surface, a first frequency band radiating element array, a second frequency band radiating element array, and a phase shifter.
  • the first frequency band radiating element array, the frequency selective surface and the second frequency band radiating element array are set in sequence, that is to say, the frequency selective surface is set between the first frequency band radiating element array and the second frequency band radiating element array.
  • the above-mentioned frequency selective surface is used for reflecting the signal of the radiation unit array of the first frequency band and transmitting the signal of the radiation unit array of the second frequency band.
  • the above-mentioned signals include transmitted signals and received signals.
  • the aforementioned phase shifter is connected to the array of radiation elements in the first frequency band, so as to feed the array of radiation elements in the first frequency band.
  • the above-mentioned phase shifter includes a cavity, the cavity is arranged on the edge of the frequency selective surface, and the first extending direction of the cavity is consistent with the second extending direction of the radiation element array of the first frequency band.
  • the cavity of the phase shifter is arranged on the edge of the frequency selective surface, and the signal of the second frequency band radiating element array has less insertion loss when it is transmitted from the above frequency selective surface, which is conducive to improving the signal quality of the antenna system.
  • the space of the entire antenna system facing the sky can be provided with a frequency selective surface, without the need for an additional auxiliary structure of a phase shifter. Therefore, the side of the frequency selection surface facing away from the first frequency band radiating element array can have more space for arranging the second frequency band radiating element array, thereby improving the integration degree of the antenna system.
  • the radiating element array of the first frequency band and the radiating element array of the second frequency band are arranged in layers, which can realize the single-plane deployment of the radiating element array of at least two frequency bands.
  • the antenna system Seen from the surface direction perpendicular to the frequency selection surface, the antenna system The whole occupies one space and is easy to deploy.
  • the integrated level of the antenna system is high, so the area of the antenna system is small, and the wind load is also small.
  • the frequency selective surface includes a first side and a second side, and the first side and the second side may be two opposite sides of the frequency selective surface.
  • the phase shifter includes a first phase shifter and a second phase shifter, the cavity of the first phase shifter is disposed on the first side, and the cavity of the second phase shifter is disposed on the second side.
  • the radiation unit for the first frequency band includes a first array and a second array. The above-mentioned first phase shifter is connected with the first array, and is used for feeding the first array. The second phase shifter is connected to the second array for feeding the second array.
  • the above-mentioned phase shifter also includes a phase shifting circuit, and the phase shifting circuit is specifically arranged in the cavity.
  • the radiation unit of the first frequency band radiation unit array includes a first balun, and the first balun includes a first outer conductor and a first inner conductor.
  • the radiation unit of the first frequency band radiation unit array includes a first radiation arm and a second radiation arm of the same polarization.
  • the first outer conductor is connected to the first radiating arm and the cavity, and the first inner conductor is connected to the second radiating arm and the phase shifting circuit. That is to say, the first radiating arm is connected to the cavity through the first outer conductor, and the second radiating arm is connected to the phase shifting circuit through the first inner conductor.
  • the first balun is directly electrically connected to the phase shifter.
  • This scheme does not need to transmit the signal between the first balun and the phase shifter through the frequency selective surface, and the signal transmission path is shorter, so the insertion loss of the signal is also less, which is conducive to improving the gain of the first frequency band radiating element array , to improve the performance of the antenna system.
  • there is no need to use the frequency selective surface to transmit the signal between the first balun and the phase shifter so the frequency selective surface has less interference with the second frequency band radiating element array, which is conducive to improving the second frequency band radiation
  • the gain of the element array can also improve the performance of the antenna system.
  • the radiation unit of the first frequency band radiation unit array may include a group of co-polarized first radiation arms and second radiation arms, or may include two groups of co-polarized first radiation arms and second radiation arms. arms, with different polarization directions for each group. This application does not limit this.
  • the included angle between the first balun and the frequency selective surface can be an acute angle, that is, the first balun is inclined toward the center of the frequency selective surface.
  • This solution can make the projection of the radiation element array of the first frequency band on the frequency selective surface completely located on the frequency selective surface.
  • the frequency selective surface can completely reflect the signal of the radiation unit array in the first frequency band, so that the gain of the radiation unit array in the first frequency band can be improved.
  • the projection on the frequency selective surface may be completely located on the frequency selective surface, or partially located on the frequency selective surface, which is not limited in this application.
  • the above antenna system may further include a reflector, which is arranged on a side of the second frequency band radiating element array away from the frequency selective surface, and is used for reflecting signals of the second frequency band radiating element array.
  • the signal specifically includes a signal sent to the radiation element array in the second frequency band, and a signal emitted by the radiation element array in the second frequency band. This solution can increase the gain of the radiation element array in the second frequency band.
  • the length of the cavity in the first extension direction is greater than or equal to the length of the first frequency band radiating element array in the second extension direction.
  • This scheme can make all the radiating elements of the radiating element array in the first frequency band be directly arranged in the cavity, so as to shorten the length of the connecting structure between the radiating element and the cavity, reduce insertion loss, and improve the signal of the radiating element array in the first frequency band quality.
  • this solution is also conducive to improving the overall strength of the antenna system.
  • the radiating element array in the first frequency band may specifically be a passive radiating element array.
  • the radiating element array of the first frequency band has no interference with the radiating element array of the second frequency band arranged on the rear side of the frequency selective surface, so as to facilitate the stacking of the radiating element arrays.
  • the second frequency band radiating element array may be a passive radiating element array or an active radiating element array, which is not limited in this application.
  • the frequency band of the first frequency band radiating element array is smaller than the frequency band of the second frequency band radiating element array.
  • the smaller the frequency band of the radiating element array the larger the size of the radiating element. This scheme is beneficial to make the size of the radiating element arranged on the front side of the frequency selective surface larger in the radiating element of the entire antenna system, and the appearance of the antenna system is improved. It is relatively regular, and the wind load of the antenna system can also be small.
  • the radiating surface of the radiating element array in the first frequency band may be parallel to the frequency selective surface
  • the radiating surface of the radiating element array in the second frequency band may be parallel to the frequency selective surface. That is, the radiating surface of the first frequency band radiating element array, the radiating surface of the second frequency band radiating element array and the frequency selection surface are all arranged in parallel. Then the directions of the signal beams transmitted and received by the radiating element array in the first frequency band are the same as the directions of the signal beams transmitted and received by the radiating element array in the second frequency band. This solution is beneficial to improve the accuracy of signal coverage of the antenna system.
  • the above antenna system may include a first radome and a second radome.
  • the radiating element array of the first frequency band is arranged in the first radome, and the radiating element array of the second frequency band is arranged in the second radome. This solution is beneficial to the independent evolution of the first frequency band radiating element array and the second frequency band radiating element array.
  • the first radome When installing the antenna system, the first radome has a first installation structure, and the first radome and the second radome are fixedly connected to form an integral structure.
  • the above-mentioned first installation structure is installed on the pole, so that the entire antenna system can be installed on the pole, and this solution is beneficial to simplify the installation process of the antenna system.
  • the above-mentioned second radome cover may also have a second installation structure.
  • the first installation structure and the second installation structure are respectively installed on the pole.
  • the first radome and the second radome can be installed independently, and the decoupling of the first frequency band radiating element array and the second frequency band radiating element array The degree is higher, which is more conducive to the independent evolution of the first frequency band radiating element array or the second frequency band radiating element array.
  • the antenna system above also includes a third frequency band radiating single array, and the third frequency band radiating element array is located on the same side of the frequency selective surface as the first frequency band radiating element array.
  • the frequency band of the third frequency band radiating element array is different from the frequency band of the first frequency band radiating element array. That is to say, the frequency selective surface has one side of the radiating element array of the first frequency band, and may have radiating element arrays of at least two frequency bands.
  • the frequency band of the radiation unit array of the third frequency band is different from that of the radiation unit array of the first frequency band
  • other characteristics of the radiation unit array of the third frequency band may be the same as those of the radiation unit array of the first frequency band.
  • the radiating element array of the third frequency band is also a passive radiating element array
  • the frequency band of the radiating element array of the third frequency band is also smaller than that of the radiating element array of the second frequency band.
  • both the radiating element array of the third frequency band and the radiating element array of the first frequency band can be arranged in the first radome, thereby simplifying the structure of the antenna system.
  • the antenna system may further include a fourth frequency band radiating element array.
  • the radiating element array of the fourth frequency band and the radiating element array of the second frequency band are located on the same side of the frequency selective surface.
  • the frequency band of the fourth frequency band radiating element array is different from the frequency band of the second frequency band radiating element array. That is to say, the frequency selective surface has one side of the radiating element array of the second frequency band, and may have radiating element arrays of at least two frequency bands.
  • the frequency band of the fourth frequency band radiating element array is different from that of the second frequency band radiating element array, other features may be the same as those of the second frequency band radiating element array.
  • the frequency band of the radiating element array in the fourth frequency band is also larger than the radiating element array in the first frequency band.
  • the radiation unit array of the fourth frequency band and the radiation unit array of the second frequency band may also be located in the second radome.
  • the antenna system further includes a third radome, and the array of radiating elements of the fourth frequency band is disposed in the third radome.
  • the radiating element arrays of different frequency bands are arranged in different radomes, so as to facilitate the independent evolution of the above-mentioned radiating element arrays of the second frequency band and the radiating element arrays of the fourth frequency band.
  • the third radome when installing the third radome, the third radome can be fixedly connected to the first radome, and then installed to the pole.
  • the above-mentioned third radome may also be provided with a third installation structure, and the third installation structure is installed to the pole. That is to say, the radiating element array of the fourth frequency band can be independently installed on the pole, so as to facilitate the independent evolution of the radiating element array of the fourth frequency band.
  • the present application further provides a base station antenna feeder system
  • the base station antenna feeder system includes the above-mentioned antenna system in the first aspect, and further includes a pole.
  • the above-mentioned antenna system is installed on a pole.
  • the base station antenna feeder system in this solution has a high degree of integration, good antenna signal quality, and is conducive to independent evolution.
  • FIG. 1 is a schematic diagram of a system architecture applicable to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a base station antenna feeder system in a possible embodiment of the present application
  • FIG. 3 is a schematic diagram of the composition of an antenna system in a possible embodiment of the present application.
  • FIG. 4 is a schematic diagram of the composition of an antenna system in a possible embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an antenna system in a possible embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an antenna system in another possible embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a frequency selective surface in a possible embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a frequency selective surface in another possible embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a frequency selective surface in another possible embodiment of the present application.
  • FIG. 10 is a schematic diagram of the composition of an antenna system in another possible embodiment of the present application.
  • FIG. 11 is a schematic diagram of the composition of an antenna system in another possible embodiment of the present application.
  • Fig. 12 is a schematic diagram of the connection between the first frequency band radiating element array and the phase shifter in an embodiment of the present application
  • FIG. 13 is a schematic diagram of the composition of an antenna system in another possible embodiment of the present application.
  • FIG. 14 is a schematic diagram of the composition of an antenna system in another possible embodiment of the present application.
  • FIG. 15 is a schematic diagram of the composition of an antenna system in another possible embodiment of the present application.
  • FIG. 16 is a schematic diagram of the composition of an antenna system in another possible embodiment of the present application.
  • FIG. 17 is a schematic diagram of the composition of an antenna system in another possible embodiment of the present application.
  • FIG. 18 is a schematic diagram of the composition of an antenna system in another possible embodiment of the present application.
  • Fig. 19 is a schematic diagram of the composition of an antenna system in another possible embodiment of the present application.
  • FIG. 1 exemplarily shows that, as shown in FIG. 1 , the application scenario may include a base station and a terminal. Wireless communication can be realized between the base station and the terminal.
  • the base station may be located in a base station subsystem (base btation bubsystem, BBS), a terrestrial radio access network (UMTS terrestrial radio access network, UTRAN) or an evolved terrestrial radio access network (evolved universal terrestrial radio access, E-UTRAN), Cell coverage for wireless signals to enable communication between terminal equipment and wireless networks.
  • base station subsystem base btation bubsystem, BBS
  • UMTS terrestrial radio access network UTRAN
  • E-UTRAN evolved terrestrial radio access network
  • the base station can be a base transceiver station (BTS) in a global system for mobile communication (GSM) or (code division multiple access, CDMA) system, or a wideband code division multiple access (CDMA) system.
  • BTS base transceiver station
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • CDMA wideband code division multiple access
  • address (wideband code division multiple access, WCDMA) system Node B (NodeB, NB) can also be long term evolution (long term evolution, LTE) evolution type Node B (eNB or eNodeB) system, or It may be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • LTE long term evolution
  • eNB evolution type Node B
  • CRAN cloud radio access network
  • the base station can also be a relay station, an access point, a vehicle-mounted device, a wearable device, and a g-node (gNodeB or gNB) in a new radio (NR) system or a base station in a future evolved network. Examples are not limited.
  • FIG. 2 shows a possible structural schematic diagram of a base station antenna feeding system.
  • a base station antenna feeding system may generally include structures such as an antenna system 1 , a pole 2 , and an antenna adjustment bracket 3 .
  • the antenna system 1 of the base station includes a radome 11.
  • the radome 11 has good electromagnetic wave penetration characteristics in terms of electrical performance, and can withstand the influence of harsh external environments in terms of mechanical properties, so as to protect the antenna system 1 from the external environment. The role of influence.
  • the antenna system 1 can be installed on the pole 2 or the iron tower through the antenna adjustment bracket 3 so as to receive or transmit signals of the antenna system 1 .
  • the base station may further include a radio frequency processing unit 5 and a baseband processing unit 6 .
  • the radio frequency processing unit 5 can be used to perform frequency selection, amplification and down-conversion processing on the signal received by the antenna system 1, and convert it into an intermediate frequency signal or a baseband signal and send it to the baseband processing unit 6, or the radio frequency processing unit 5 is used for
  • the baseband processing unit 6 or the intermediate frequency signal is converted into electromagnetic waves by the antenna system 1 through up-conversion and amplification processing and sent out.
  • the baseband processing unit 6 can be connected to the feeding network of the antenna system 1 through the radio frequency processing unit 5 .
  • the radio frequency processing unit 5 may also be called a remote radio unit (remote radio unit, RRU), and the baseband processing unit 6 may also be called a baseband unit (BBU).
  • RRU remote radio unit
  • BBU baseband unit
  • the radio frequency processing unit 5 may be integrated with the antenna system 1 , and the baseband processing unit 6 is located at the far end of the antenna system 1 . In some other embodiments, the radio frequency processing unit 5 and the baseband processing unit 6 may also be located at the remote end of the antenna system 1 at the same time.
  • the radio frequency processing unit 5 and the baseband processing unit 6 can be connected through a cable 7 .
  • FIG. 3 is a schematic composition diagram of an antenna system in a possible embodiment of the present application.
  • the antenna system 1 of the base station may include a radiation element array 12 and a reflection plate 13 .
  • the above-mentioned radiating element array 12 may also be called an antenna dipole, dipole, etc., and it can effectively transmit or receive antenna signals.
  • the frequencies of different radiating element arrays 12 may be the same or different.
  • the reflection plate 13 may also be called a bottom plate, an antenna panel, or a reflection surface, etc., and may be made of metal.
  • the reflector 13 can reflect and concentrate the antenna signals on the receiving point.
  • the antenna system 1 transmits a signal, it reflects and transmits the signal to the reflector 13 .
  • the radiating element array 12 is usually placed on the surface of one side of the reflector 13, which can not only greatly enhance the receiving or transmitting capability of the antenna system 1 signal, but also block and shield the reflection from the back of the reflector 13 (the back of the reflector 13 in this application). Refers to the interference effect of other radio waves on the signal reception of the antenna from the side opposite to the reflector 13 for setting the radiating element array 12 .
  • the array of radiating elements 12 is connected to a feeding network 14 .
  • the feed network 14 is usually composed of a controlled impedance transmission line.
  • the feed network 14 can feed the signal to the radiation element array 12 according to a certain amplitude and phase, or send the received signal to the baseband of the base station according to a certain amplitude and phase. processing unit6.
  • the feeding network 14 can realize different radiation beam directions through the transmission component 141, or be connected with the calibration network 142 to obtain calibration signals required by the system.
  • a phase shifter 143 may be included in the feeding network 14 to change the maximum direction of antenna signal radiation.
  • the feeding network 14 it is also possible to set some modules for expanding performance, such as a combiner 144, which can be used to synthesize signals of different frequencies and transmit them through the antenna system 1; or when used in reverse, it can be used to combine the antenna
  • a combiner 144 which can be used to synthesize signals of different frequencies and transmit them through the antenna system 1; or when used in reverse, it can be used to combine the antenna
  • the signals received by the system 1 are divided into multiple channels according to different frequencies and transmitted to the baseband processing unit 6 for processing, such as the filter 145 for filtering out interference signals.
  • Fig. 4 is the composition schematic diagram of the antenna system of a kind of possible embodiment of the present application, as shown in Fig. 4, the antenna system 1 of base station comprises FSS15, the first frequency band radiating element array 121, the second frequency band radiating element array 122 and phase shifting device 143.
  • the above-mentioned FSS15 is located between the first frequency band radiating element array 121 and the second frequency band radiating element array 122, and the above-mentioned FSS15 is used to reflect the signal of the first frequency band radiating element array 121 and transmit the signal of the second frequency band The signal of the radiating element array 122 .
  • the signal of the radiation unit array 121 in the first frequency band specifically includes the signal received by the radiation unit array 121 in the first frequency band, and the signal transmitted by the radiation unit array 121 in the first frequency band;
  • the signal of the radiation unit array 122 in the second frequency band specifically includes the signal in the second frequency band The signal received by the radiating element array 122 and the signal transmitted by the radiating element array 122 in the second frequency band.
  • the first frequency band radiating element array 121 and the second frequency band radiating element array 122 can be stacked in the direction perpendicular to the pole, that is to say, the first frequency band radiating element array 121 and the second frequency band
  • the radiating element array 122 is arranged side by side (SBS), so as to improve the integration of the antenna system 1 in one antenna space.
  • the phase shifter 143 includes a cavity 1431 and a phase shifting circuit 1432 , and the phase shifting circuit 1432 is disposed in the cavity 1431 .
  • the first frequency band radiating element array 121 may be connected to the phase shifter 143 , so that the phase shifter 143 is used to feed the first frequency band radiating element array 121 .
  • the manner in which the radiation element array 121 of the first frequency band is connected to the phase shifter 143 is not limited.
  • the radiation element array 121 in the first frequency band and the phase shifter 143 may also be directly electrically connected through a balun of the radiation element.
  • the first frequency band radiating element array 121 and the phase shifter 143 may not only be directly electrically connected, but may also be coupled electrically connected, which is not limited in this application.
  • the cavity 1431 is disposed on the edge of the FSS15.
  • the cavity 1431 may specifically be elongated, and the first extension direction of the cavity 1431 is consistent with the second extension direction of the radiation element array 121 in the first frequency band.
  • a phase shifter 143 may include one or more cavities 1431, for example, when the second frequency band radiating element array 122 includes a dual-polarized radiating element, the phase shifter 143 includes two cavities 1431, It is used for correspondingly connecting with a row of radiation element arrays 122 of the second frequency band.
  • the phase shifter 143 includes a cavity 1431 as an example for illustration.
  • the cavity 1431 may be a cavity 1431 with a closed section, or a cavity 1431 with an unclosed section, and the cavity 1431 is used to form the formation of the phase shifting circuit 1432 of the phase shifter 143 .
  • the phase shifting circuit 1432 is disposed in the cavity 1431, and the specific position of the phase shifting circuit 1432 is not limited.
  • the cavity 1431 is a cavity 1431 with a closed cross section, it can be understood that the phase shifting circuit 1432 is arranged in the cavity 1431.
  • the outer surface is not limited.
  • the cavity 1431 of the phase shifter 143 is arranged on the edge of the FSS15, so that there is no structure that may cause interference on the surface of the entire FSS15, and when the signal of the second frequency band radiating element array 122 passes through the above-mentioned FSS15, Less insertion loss is beneficial to improve the signal quality of the antenna system 1 .
  • the design and layout of the radiation element array 121 in the first frequency band may not take into account the influence of the radiation element array 122 in the second frequency band on the signal interference of the radiation element array 121 in the first frequency band.
  • the design and layout of the radiation element array 122 in the second frequency band The layout also does not need to consider the influence of the first frequency band radiating element array 121 on the second frequency band radiating element array 122 such as signal interference.
  • the space facing the sky of the antenna system needs to arrange the FSS and the reflector carrying the phase shifter side by side. array of signals.
  • the reflector cannot transmit the signal of the radiation element array of the second frequency band, so that the side of the reflector facing away from the radiation element array of the first frequency band cannot be provided with the radiation element array of the second frequency band, resulting in limited space for arranging the radiation element array of the second frequency band .
  • the first frequency band radiating element array 121 and the second frequency band radiating element array 122 are arranged in SBS, which can realize the single-plane deployment of the radiating element arrays of at least two frequency bands.
  • the antenna system 1 From the front of the antenna system 1, that is, perpendicular to Viewed from the surface direction of the FSS15, the antenna system 1 occupies one sky area as a whole and is easy to deploy. In addition, the integrated degree of the antenna system 1 is high, so the area of the antenna system 1 is small, and the wind load is also small.
  • the second frequency band radiating element array 122 of the antenna system 1 can be installed on the pole 2 on the side away from the first frequency band radiating element array 121, that is to say, the first frequency band radiating element array 121, FSS15 and the second frequency band radiating element array 122 are arranged in sequence along the direction toward the pole 2 .
  • the direction of the FSS15 away from the pole 2 is the front side
  • the direction of the FSS15 towards the pole 2 is the rear side.
  • the signal generated by the radiating element array 121 of the first frequency band is directly transmitted to the front side of the FSS 15 , and the FSS 15 can reflect the signal generated by the radiating element array 121 of the first frequency band towards the FSS 15 .
  • the signal generated by the radiating unit array 122 of the second frequency band can pass through the FSS 15 and also be transmitted to the front side of the FSS 15 .
  • the cavity 1431 of the phase shifter 143 is arranged on the edge of the FSS15, and there is no need to additionally arrange a reflector for setting the phase shifter 143, so that the antenna system 1 can be provided with a larger area of the FSS15, and the corresponding FSS15 deviates from the first
  • the space on one side of the frequency band radiating element array 121 is also larger. Therefore, the rear side of the FSS 15 has more space for arranging the above-mentioned second frequency band radiating element array 122 to improve the integration of the antenna system 1 .
  • the antenna system 1 further includes other components, other components can also be disposed on the edge of the FSS15.
  • FIG. 5 is a schematic structural diagram of an antenna system in a possible embodiment of the present application. Specifically, FIG. 5 shows a schematic structural diagram of the antenna system in the direction A shown in FIG. 4 . As shown in FIG. 5 , taking the above-mentioned FSS 15 as a rectangle as an example, the setting of the cavity 1431 in the embodiment of the present application will be described.
  • the FSS 15 includes a first side 151 and a second side 152 extending along the first direction X, and a third side 153 and a fourth side 154 extending along the second direction, wherein the first side 151 and the second The side 152 is opposite to each other, and the third side 153 and the fourth side 154 are opposite to each other.
  • the aforementioned phase shifter 143 includes a first phase shifter 1433 and a second phase shifter 1434 , and the first frequency band radiating element array 121 includes a first array 1211 and a second array 1212 .
  • the above-mentioned first phase shifter 1433 is connected to the first array 1211, that is to say, the first phase shifter 1433 provides feed for the first array 1211;
  • the second phase shifter 1434 is connected to the second array 1212, that is to say, the second Phase shifter 1434 provides power to second array 1212 .
  • the cavity 1431 of the first phase shifter 1433 is specifically disposed on the first side 151 , and the cavity 1431 of the second phase shifter 1434 is disposed on the second side 152 .
  • the length of the first side 151 is greater than the length of the third side 153
  • the cavity 1431 is set on the first side 151 and the second side 152 of the FSS15
  • the first frequency band radiating element array 121 Extending along the first direction X, the cavity 1431 also extends along the above-mentioned first direction X.
  • the length of the cavity 1431 along the first extending direction is greater than or equal to the length of the first frequency band radiating element array 121 along the second extending direction.
  • This scheme can make all the radiating elements of the first frequency band radiating element array 121 be directly arranged in the cavity 1431, so as to shorten the length of the connecting structure between the radiating elements and the cavity 1431, reduce insertion loss, and improve the first frequency band radiating elements.
  • the signal quality of the array 121 is also conducive to improving the overall strength of the antenna system 1 .
  • FIG. 6 is a schematic structural diagram of an antenna system in another possible embodiment of the present application. Specifically, FIG. 6 shows another schematic structural diagram of the antenna system in the direction A shown in FIG. 4 . As shown in FIG. 6 , in other embodiments, the length of the cavity 1431 along the first extending direction may also be smaller than the length of the first frequency band radiating element array 121 along the first extending direction. In this embodiment, it is only necessary that the length of the cavity 1431 along the first extension direction only needs to enable the radiation element array 121 of the first frequency band to be connected to the cavity 1431 .
  • FIG. 7 is a schematic structural diagram of the FSS in a possible embodiment of the present application.
  • the FSS 15 includes a plurality of spaces, and each space has a rectangular metal frame line.
  • Fig. 8 is a schematic structural diagram of an FSS in another possible embodiment of the present application. In the embodiment shown in FIG.
  • the FSS 15 also includes a plurality of spaces, and each space has a rectangular metal sheet.
  • Fig. 9 is a schematic structural diagram of an FSS in another possible embodiment of the present application. In the embodiment shown in FIG. 9 , the FSS 15 includes a plurality of independent metal frame wires, and each metal frame wire has a rectangular metal sheet inside.
  • the radiating elements of the first frequency band radiating element array 121 include a first balun 1213 , and the first balun 1213 is electrically connected to the phase shifter 143 .
  • the first balun 1213 of the radiation element array 121 in the first frequency band can be connected to the FSS15 , and then connected to the phase shifter 143 through the FSS15 .
  • FIG. 10 is a schematic diagram of an antenna system in another possible embodiment of the present application.
  • the first balun 1213 of the radiating element of the first frequency band radiating element array 121 is directly electrically connected to the phase shifter 143 .
  • This scheme does not need to transmit the signal between the first balun 1213 and the phase shifter 143 through the FSS15, and the transmission path of the signal is short, so the insertion loss of the signal is also small, which is beneficial to improve the radiation element array 121 of the first frequency band. gain, and improve the performance of the antenna system 1.
  • the electrical connection between the first balun 1213 and the phase shifter 143 may be a direct electrical connection or a coupling electrical connection, which is not limited in this application.
  • the projection of the first frequency band radiating element array 121 on the FSS15 is completely located on the FSS15 .
  • the FSS 15 can completely reflect the signals of the radiation element array 121 in the first frequency band, and the signals specifically include the signals received by the radiation element array 121 in the first frequency band and the signals emitted by the radiation element array 121 in the first frequency band.
  • This solution can increase the gain of the radiation element array 121 in the first frequency band.
  • the projection on the FSS15 may be completely located on the FSS15, or may be partially located on the FSS15, which is not limited in this application.
  • the first balun 1213 and FSS15 can be set at an acute angle.
  • the smaller angle between the first balun 1213 and the FSS 15 is an acute angle
  • the first balun 1213 is inclined toward the center of the FSS 15 .
  • the arrangement of the first balun 1213 and the FSS 15 at an acute angle refers to the setting trend of the overall structure of the first balun 1213 . That is to say, the first balun 1213 can be a linear structure and be arranged at an acute angle with the FSS 15 , as shown in FIG. 7 .
  • FIG. 11 is a schematic diagram of the composition of an antenna system in another possible embodiment of the present application.
  • the first balun 1213 includes two parts, one part is perpendicular to the FSS15, and the other part is arranged at an acute angle to the FSS15.
  • the first balun 1213 in the embodiment shown in FIG. 11 can also be regarded as being set at an acute angle with the FSS 15 . In a word, it is only necessary that the first balun 1213 is generally arranged at an acute angle with the FSS 15 and inclined toward the center of the FSS 15 .
  • FIG. 12 is a schematic diagram of the connection between the radiation element array 121 in the first frequency band and the phase shifter 143 in an embodiment of the present application.
  • the phase shifter 143 further includes a phase shifting circuit 1432 , and the phase shifting circuit 1432 is disposed in the cavity 1431 .
  • the first balun 1213 includes a first outer conductor 1215 and a first inner conductor 1214 .
  • the radiation unit of the first frequency band radiation unit array 121 includes two groups of radiation arms with different polarization directions, each group of radiation arms includes a first radiation arm 1216 and a second radiation arm 1217 with the same polarization, and the first outer conductor 1215 is connected to the first radiation arm 1215.
  • a radiating arm 1216 is connected to the cavity 1431
  • the first inner conductor 1214 is connected to the second radiating arm 1217 and the phase shifting circuit 1432 .
  • the first radiation arm 1216 and the second radiation arm 1217 connected by a straight line are a group of radiation arms with the same polarization direction
  • the first radiation arm 1216 and the second radiation arm 1217 connected by a dotted line is another group of radiation arms with the same polarization direction.
  • the straight line and dotted line in the figure are only used to distinguish two groups of radiation arms, and their actual structures are not distinguished.
  • the specific connection methods of the straight line and the dotted line can be the same, and will not be repeated here.
  • the above-mentioned antenna system 1 further includes a reflector 13 , and the reflector 13 is disposed on a side of the second frequency band radiating element array 122 away from the FSS 15 .
  • the reflecting plate 13 is arranged on the side of the second frequency band radiating element array 122 away from the FSS 15, and is used to reflect the signal of the second frequency band radiating element array 122, and the signal specifically includes the signal sent to the second frequency band radiating element array 122 , and the signal emitted by the radiation element array 122 in the second frequency band.
  • This solution can increase the gain of the radiation element array 122 in the second frequency band.
  • the second frequency band radiating element array 122 is also connected with a phase shifter, and the phase shifter is used to feed the second frequency band radiating element array 122 .
  • the specific setting position of the phase shifter is not limited in the present application, for example, when the second frequency band radiating element array 122 is provided with a reflector on the side away from the FSS15, the phase shifter can be arranged on the above-mentioned reflector.
  • the above-mentioned phase shifter can also be installed with a structural member.
  • the above-mentioned first frequency band radiating element array 121 can be a passive (Passive) radiating element array, and the first frequency band radiating element array 121 has no interference with the second frequency band radiating element array 122 arranged on the rear side of the FSS15, so that To realize the stacking of the radiating element array 12 .
  • the first frequency band radiating element array 121 may be a fourth generation (The fourth generation, 4G) low frequency antenna, generally in the 690MHz-960MHz frequency band.
  • the second frequency band radiating element array 122 may specifically be a passive (passive) radiating element array, or may be an active (active) radiating element array, which is not limited in this application.
  • the second frequency band radiating element array 122 When the second frequency band radiating element array 122 is an active radiating element array, it may be a fifth generation (The fifth generation, 5G) high-frequency antenna, generally in the 2600MHz or 3500MHz frequency band.
  • the second frequency band radiating element array 122 may specifically be a massive multiple-input multiple-output (Massive MIMO, MM) antenna.
  • the frequency band of the first frequency band radiating element array 121 may be smaller than the frequency band of the second frequency band radiating element array 122 .
  • the size of a single radiating element of the radiating element array is larger in the smaller frequency band.
  • the size of the radiating unit arranged on the front side of FSS15 is larger in the radiating unit of the whole antenna system, then viewed from the direction A in Figure 11, the appearance of the antenna system 1 is relatively regular, and the antenna system 1 The wind load can also be smaller.
  • the radiation surface of the first frequency band radiating element array 121 can be parallel to the FSS15, and the second frequency band radiating element array 122 The radiating surface is parallel to FSS15.
  • the radiating surface of the first frequency band radiating element array 121 and the radiating surface of the second frequency band radiating element array 122 are parallel to the FSS15, then the directions of the signal beams transmitted and received by the first frequency band radiating element array 121 are the same as those of the second frequency band radiating element array 121.
  • the directions of the transmitting and receiving signal beams of the frequency band radiating element array 122 are the same.
  • the aforementioned radiation surface specifically refers to the surface of the radiation unit.
  • the directions of the transmitted and received signal beams of the first frequency band radiating element array 121 and the transmitting and receiving signal beams of the second frequency band radiating element array 122 are all along the normal direction.
  • the front extension is beneficial to improve the accuracy of the signal coverage of the antenna system 1. It should be noted that the positional relationship of "parallel" above refers to approximately parallel, which may include slight non-parallel due to errors caused by manufacturing, installation and other processes.
  • the antenna system 1 includes a first radome 111 and a second radome 112 .
  • the first frequency band radiating element array 121 is set in the first radome 111
  • the second frequency band radiating element array 122 is set in the second radome 112 .
  • the first frequency band radiating element array 121 and the second frequency band radiating element array 122 have radome independently, and the first frequency band radiating element array 121 and the second frequency band radiating element array 122 can be independently installed and replaced respectively.
  • the FSS 15 can also be arranged in the first radome 111 .
  • the reflecting plate 13 is arranged inside the second antenna cover 112 .
  • the first radome 111 and the second radome 112 can be fixedly connected, so that the antenna system 1 is first fixed into an integral structure. Then the whole antenna system 1 is installed on the pole 2.
  • the first radome 111 and the second radome 112 are connected into an integral structure through the second installation structure 1121 , and then installed to the pole by the first installation structure 1111 .
  • the operation is relatively simple when the antenna system 1 is installed on the pole 2 .
  • Figure 13 is a schematic diagram of the composition of the antenna system in another possible embodiment of the present application.
  • the second radome 112 has a second installation structure 1121 , and the second installation structure 1121 is also installed on the pole 2 .
  • arrays of radiating elements in different frequency bands can be installed on the poles respectively.
  • the radiating element array 121 of the first frequency band is completely decoupled from the radiating element array 122 of the second frequency band, so as to facilitate independent evolution of the radiating element arrays of each frequency band of the antenna system 1 .
  • Figure 14 is a schematic diagram of the composition of the antenna system in another possible embodiment of the present application.
  • the radiating element array 123 and the first frequency band radiating element array 121 are located on the same side of the FSS 15 .
  • the number of frequency bands of the radiating element array set on the front side of the FSS15 is not limited, and the radiating element array of one frequency band, the radiating element array of two frequency bands or the radiating element array of more frequency bands can be set.
  • the third frequency band radiating element array 123 may also be directly disposed in the cavity 1431 and connected to the cavity 1431 through the second balun 1231 .
  • the specific connection manner of the second balun 1231 is the same as that of the first balun 1213 , and will not be repeated here.
  • FIG. 15 is a schematic diagram of the composition of the antenna system in another possible embodiment of the present application.
  • the cavity 1431 of the phase shifter 143 connected to the third frequency band radiating element array 123 is also disposed on the edge of the above-mentioned FSS 15 .
  • the radiation element array 123 of the third frequency band in this embodiment is connected to the cavity 1431 through the FSS15.
  • the cavity 1431 of the phase shifter connected to the radiation element array 123 of the third frequency band can be arranged on the edge of the FSS15 in parallel with the cavity 1431 of the phase shifter of the radiation element array 121 of the first frequency band.
  • they can be fixed as an integral structure, or as an integrally formed structure.
  • the first frequency band radiating element array 121 and the third frequency band radiating element array 123 in the above embodiment can be set in the same radome, for example, both can be set in the first radome 111 .
  • the third frequency band radiating element array 123 may specifically also be a passive (passive) radiating element array.
  • the frequency band of the radiating element array 123 of the third frequency band may be smaller than that of the radiating element array 121 of the first frequency band.
  • the phase shifter 143 connected to the radiation element array 123 of the third frequency band may also be located at the edge of the FSS 15 (not shown in FIG. 15 ).
  • the radiation element array 123 of the third frequency band is compared with the radiation element array 121 of the first frequency band, except that the frequency band is different, other features may be the same as those of the radiation element array 121 of the first frequency band in the above embodiment.
  • FIG. 16 is a schematic diagram of the composition of an antenna system in another possible embodiment of the present application.
  • the band radiating element array 122 is located on the same side of the FSS 15 .
  • the number of frequency bands of the radiating element array set on the rear side of the FSS15 is not limited, and the radiating element array of one frequency band, the radiating element array of two frequency bands or the radiating element array of more frequency bands can be set.
  • the second frequency band radiation element array 122 and the fourth frequency band radiation element array 124 when the second frequency band radiation element array 122 and the fourth frequency band radiation element array 124 are arranged, the second frequency band radiation element array 122 and the fourth frequency band radiation element array 124 can be arranged side by side. More specifically, the second frequency band radiating element array 122 and the fourth frequency band radiating element array 124 may be arranged on the same plane. In this way, it can be realized that when both the second frequency band radiating element array 122 and the fourth frequency band radiating element array 124 are active (active) radiating element arrays, there is no problem of signal shielding.
  • the radiation element array 124 in the fourth frequency band may specifically be a passive (Passive) radiation element array or an active (Active) radiation element array.
  • the frequency band of the radiating element array 124 of the fourth frequency band may be greater than the frequency band of the radiating element array 121 of the first frequency band.
  • other features can be the same as the characteristics of the radiation element array 122 of the second frequency band in the above-mentioned embodiment.
  • the second frequency band radiating element array 122 and the fourth frequency band radiating element array 124 in the above embodiment can be arranged in the same radome, for example, both can be arranged in the second radome 112 .
  • FIG. 17 is a schematic diagram of the composition of an antenna system in another possible embodiment of the present application.
  • the radiating element array 122 of the second frequency band may be arranged in the second radome 112
  • the radiating element array 124 of the fourth frequency band may be arranged in the third radome 113 .
  • the specific installation method is not limited.
  • the second radome cover 112 has a second installation structure 1121 , and the second installation structure 1121 is installed on the pole 2 .
  • the third radome 113 is fixedly connected to the first radome 111 , and the first radome 111 has a first installation structure 1111 , and the first installation structure 1111 is installed on the pole 2 .
  • FIG. 18 is a schematic diagram of an antenna system in another possible embodiment of the present application.
  • the first radome 111, the second radome 112 and the third radome 113 The integral structure is fixed, and the first installation structure 1111 connected with the first radome 111 is installed on the pole 2 .
  • FIG. 19 is a schematic diagram of the composition of an antenna system in another possible embodiment of the present application.
  • the second antenna cover 112 has a second installation structure 1121 , and the second installation structure 1121 is installed on the pole 2 .
  • the third radome 113 has a third installation structure 1131 , and the third installation structure 1131 is installed to the pole 2 .
  • the above-mentioned first radome 111 , second radome 112 and third radome 113 are independently installed on the pole 2 .

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种天线系统及基站天馈系统。该天线系统包括依次设置的第一频段辐射单元阵列、频率选择表面和第二频段辐射单元阵列,还包括移相器,频率选择表面设置于第一频段辐射单元阵列与第二频段辐射单元阵列之间。该频率选择表面用于反射第一频段辐射单元阵列的信号,并透射第二频段辐射单元阵列的信号。上述移相器与第一频段辐射单元阵列连接,从而用于为第一频段辐射单元阵列馈电。上述移相器包括腔体,该腔体设置于频率选择表面的边缘,且腔体的第一延伸方向与第一频段辐射单元阵列的第二延伸方向一致。该天线系统至少包括两个频段的辐射单元阵列,且天线系统的信号质量较好,集成度较高。此外。不同频段的辐射单元阵列可以分别独立演进。

Description

一种天线系统及基站天馈系统
相关申请的交叉引用
本申请要求在2021年09月30日提交中国专利局、申请号为202111162182.9、申请名称为“一种天线系统及基站天馈系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体为一种天线系统及基站天馈系统。
背景技术
随着无线通信技术的发展,基站能够支持的通信频段越来越多,因此基站天线的结构越来越复杂。单个天面需要集成较多频段的天线阵列和馈电网络,使得单个天面的天线集成度也越来越高。
现有技术中,为了实现天线系统的高集成度,将多个频段的天线单元阵列集成到一个天线系统,形成多频段天线系统。具体的,可以使多频段天线系统包括第一频段辐射单元阵列和第二频段辐射单元阵列,在第一频段辐射单元阵列和第二频段辐射单元阵列之间可以设置有频率选择表面(frequency selective surface,FSS)。然而,频率选择表面的面积有限,则用于设置第一频段辐射单元阵列和第二频段辐射单元阵列的空间有限,天线的集成度较低。
发明内容
本申请提供一种天线系统及基站天馈系统,该天线系统至少包括两个频段的辐射单元阵列。该天线系统的信号质量较好,且集成度较高。并且,能够实现不同频段的辐射单元阵列的独立演进。
第一方面,本申请提供了一种天线系统,该天线系统包括频率选择表面、第一频段辐射单元阵列、第二频段辐射单元阵列和移相器。上述第一频段辐射单元阵列、频率选择表面和第二频段辐射单元阵列依次设置,也就是说,上述频率选择表面设置于第一频段辐射单元阵列与第二频段辐射单元阵列之间。上述频率选择表面用于反射第一频段辐射单元阵列的信号,并透射第二频段辐射单元阵列的信号。具体的,上述信号包括发射的信号,也包括接收的信号。上述移相器与第一频段辐射单元阵列连接,从而用于为第一频段辐射单元阵列馈电。上述移相器包括腔体,该腔体设置于频率选择表面的边缘,且腔体的第一延伸方向与第一频段辐射单元阵列的第二延伸方向一致。该技术方案中,移相器的腔体设置于频率选择表面的边缘,第二频段辐射单元阵列的信号在从上述频率选择表面透射时,插损较少,有利于提升天线系统的信号质量。此外,配置第二频段辐射单元阵列时无需考虑第一频段辐射单元阵列对其可能产生的干扰,有利于实现第一频段辐射单元阵列与第二频段辐射单元阵列的解耦,以便根据需求灵活配置第一频段辐射单元阵列和第二频段辐射单元阵列。此外,该方案中,整个天线系统朝向天面的空间都可以设置频率选择表面,而无 需额外设置移相器的辅助结构。因此可以使频率选择表面背离第一频段辐射单元阵列的一侧具有较多的空间,用于设置上述第二频段辐射单元阵列,从而提升天线系统的集成度。该方案中,第一频段辐射单元阵列和第二频段辐射单元阵列采用层叠排列,可以实现至少两个频段的辐射单元阵列的单天面部署,从垂直于频率选择表面的表面方向看,天线系统整体占用一个天面,易于部署。此外,该天线系统的集成度较高,则天线系统的面积较小,风载也就较小。
具体的技术方案中,上述频率选择表面包括第一侧边和第二侧边,该第一侧边和第二侧边可以为频率选择表面相对的两个侧边。上述移相器包括第一移相器和第二移相器,则第一移相器的腔体设置于上述第一侧边,第二移相器的腔体设置于上述第二侧边。第一频段辐射单元包括第一阵列和第二阵列。上述第一移相器与第一阵列连接,用于为第一阵列馈电。第二移相器与第二阵列连接,用于为第二阵列馈电。
上述移相器除了包括腔体以外,还包括移相电路,该移相电路具体设置于腔体。上述第一频段辐射单元阵列的辐射单元包括第一巴伦,该第一巴伦包括第一外导体和第一内导体。第一频段辐射单元阵列的辐射单元包括同极化的第一辐射臂和第二辐射臂。上述第一外导体连接第一辐射臂和腔体,第一内导体连接第二辐射臂和移相电路。也就是说,第一辐射臂和腔体通过第一外导体连接,第二辐射臂和移相电路通过第一内导体连接。该方案中,第一巴伦直接与移相器电连接。该方案无需通过频率选择表面来传输在第一巴伦与移相器之间的信号,信号的传输路径较短,则信号的插损也较少,有利于提升第一频段辐射单元阵列的增益,提升天线系统性能。此外,该方案中,无需利用频率选择表面来传输在第一巴伦与移相器之间的信号,则频率选择表面对于第二频段辐射单元阵列的干扰较少,有利于提升第二频段辐射单元阵列的增益,也可以提升天线系统性能。
具体的技术方案中,第一频段辐射单元阵列的辐射单元可以包括一组同极化的第一辐射臂和第二辐射臂,也可以包括两组同极化的第一辐射臂和第二辐射臂,每组的极化方向不同。本申请对此不做限制。
具体设置上述第一巴伦时,可以使第一巴伦与频率选择表面的夹角呈锐角,也就是说,使得第一巴伦朝向频率选择表面的中心倾斜。该方案可以使得第一频段辐射单元阵列在频率选择表面的投影完全位于频率选择表面。该方案中,频率选择表面可以完全反射第一频段辐射单元阵列的信号,从而可以提升第一频段辐射单元阵列的增益。
针对位于频率选择表面后侧的第二频段辐射单元阵列,在频率选择表面的投影可以完全位于频率选择表面,也可以部分位于频率选择表面,本申请对此不做限制。
上述天线系统还可以包括反射板,该反射板设置于第二频段辐射单元阵列远离频率选择表面的一侧,用于反射第二频段辐射单元阵列的信号。该信号具体包括发送至第二频段辐射单元阵列的信号,以及第二频段辐射单元阵列发射出的信号。该方案可以提升第二频段辐射单元阵列的增益。
上述腔体在第一延伸方向的长度大于或者等于第一频段辐射单元阵列在第二沿延伸方向的长度。该方案可以使得第一频段辐射单元阵列的全部辐射单元都直接设置于腔体,以减短辐射单元与腔体之间连接结构的长度,以减少插损,提升第一频段辐射单元阵列的信号质量。此外,该方案还有利于提升天线系统的整体强度。
具体的技术方案中,上述第一频段辐射单元阵列具体可以为无源辐射单元阵列。该第一频段辐射单元阵列对于设置于频率选择表面后侧的第二频段辐射单元阵列无干扰,以便 于实现辐射单元阵列的叠置。第二频段辐射单元阵列则可以为无源辐射单元阵列或者有源辐射单元阵列,本申请对此不做限制。
上述第一频段辐射单元阵列的频段小于第二频段辐射单元阵列的频段。辐射单元阵列的频段越小,则辐射单元的尺寸越大,该方案有利于使设置于频率选择表面的前侧的辐射单元的尺寸在整个天线系统的辐射单元中较大,则天线系统的外观较为规整,且天线系统的风载也可以较小。
具体设置本申请中天线系统时,可以使第一频段辐射单元阵列的辐射面与频率选择表面平行,第二频段辐射单元阵列的辐射面与频率选择表面平行。也就是第一频段辐射单元阵列的辐射面、第二频段辐射单元阵列的辐射面与频率选择表面均平行设置。则第一频段辐射单元阵列的发射和接收的信号波束的方向,与第二频段辐射单元阵列的发射和接收的信号波束的方向相同。该方案有利于提升天线系统信号覆盖范围的准确性。
具体设置上述天线系统时,上述天线系统可以包括第一天线罩和第二天线罩。上述第一频段辐射单元阵列设置于第一天线罩中,第二频段辐射单元阵列设置于第二天线罩中。该方案有利于独立演进上述第一频段辐射单元阵列和第二频段辐射单元阵列。
具体安装上述天线系统时,上述第一天线罩具有第一安装结构,且第一天线罩与第二天线罩固定连接成整体结构。上述第一安装结构安装至抱杆,从而可以使整个天线系统安装于抱杆,该方案有利于简化天线系统的安装过程。
另一种技术方案中,上述第二天线罩还可以具有第二安装结构。第一安装结构和第二安装结构分别安装于抱杆,该方案中,可以使第一天线罩和第二天线罩独立安装,则第一频段辐射单元阵列和第二频段辐射单元阵列的解耦成度更高,更加有利于独立演进第一频段辐射单元阵列或第二频段辐射单元阵列。
上述天线系统还包括第三频段辐射单阵列,该第三频段辐射单元阵列和第一频段辐射单元阵列位于频率选择表面的同一侧。上述第三频段辐射单元阵列的频段和第一频段辐射单元阵列的频段不同。也就是说,频率选择表面具有第一频段辐射单元阵列的一侧,可以具有至少两个频段的辐射单元阵列。
上述第三频段辐射单元阵列除了频段与第一频段辐射单元阵列不同以外,其它特征均可以与第一频段辐射单元阵列相同。例如,第三频段辐射单元阵列也为无源辐射单元阵列,第三频段辐射单元阵列的频段也小于第二频段辐射单元阵列等。
具体设置上述第三频段辐射单元阵列时,可以使第三频段辐射单元阵列与第一频段辐射单元阵列都设置于第一天线罩内,从而简化天线系统的结构。
再一种技术方案中,天线系统还可以包括第四频段辐射单元阵列。上述第四频段辐射单元阵列和第二频段辐射单元阵列位于频率选择表面的同一侧。上述第四频段辐射单元阵列的频段和第二频段辐射单元阵列的频段不同。也就是说,频率选择表面具有第二频段辐射单元阵列的一侧,可以具有至少两个频段的辐射单元阵列。
上述第四频段辐射单元阵列除了频段与第二频段辐射单元阵列不同以外,其它特征均可以与第二频段辐射单元阵列相同。例如,第四频段辐射单元阵列的频段也大于第一频段辐射单元阵列等。
具体设置上述第四频段辐射单元阵列时,可以使得第四频段辐射单元阵列与第二频段辐射单元阵列同样位于第二天线罩内。或者,在其它技术方案中,上述天线系统还包括第三天线罩,上述第四频段辐射单元阵列设置于第三天线罩中。使得不同频段的辐射单元阵 列设置于不同的天线罩内,从而便于独立演进上述第二频段辐射单元阵列和第四频段辐射单元阵列。
具体安装上述第三天线罩时,可以使第三天线罩与第一天线罩固定连接,再安装至抱杆。或者,上述第三天线罩还可以设有第三安装结构,该第三安装结构安装至抱杆。也就是说,可以使得第四频段辐射单元阵列独立安装于抱杆,以便于独立演进第四频段辐射单元阵列。
第二方面,本申请还提供了一种基站天馈系统,该基站天馈系统包括上述第一方面的天线系统,还包括抱杆。上述天线系统安装于抱杆。该方案中的基站天馈系统的集成度较高,天线信号的质量较好,且有利于进行独立演进。
附图说明
图1为本申请实施例适用的一种系统架构示意图;
图2为本申请一种可能的实施例的基站天馈系统的结构示意图;
图3为本申请一种可能的实施例的天线系统的组成示意图;
图4为本申请一种可能的实施例的天线系统的组成示意图;
图5为本申请一种可能的实施例中天线系统的结构示意图;
图6为本申请另一种可能的实施例中天线系统的结构示意图;
图7为本申请一种可能的实施例中频率选择表面的结构示意图;
图8为本申请另一种可能的实施例中频率选择表面的结构示意图;
图9为本申请另一种可能的实施例中频率选择表面的结构示意图;
图10为本申请另一种可能的实施例的天线系统的组成示意图;
图11为本申请另一种可能的实施例的天线系统的组成示意图;
图12为本申请一种实施例中第一频段辐射单元阵列与移相器连接的示意图;
图13为本申请另一种可能的实施例的天线系统的组成示意图;
图14为本申请另一种可能的实施例的天线系统的组成示意图;
图15为本申请另一种可能的实施例的天线系统的组成示意图;
图16为本申请另一种可能的实施例的天线系统的组成示意图;
图17为本申请另一种可能的实施例的天线系统的组成示意图;
图18为本申请另一种可能的实施例的天线系统的组成示意图;
图19为本申请另一种可能的实施例的天线系统的组成示意图。
附图标记:
1-天线系统;                         11-天线罩;
111-第一天线罩;                     1111-第一安装结构;
112-第二天线罩;                     1121-第二安装结构;
113-第三天线罩;                     1131-第三安装结构;
12-辐射单元阵列;                    121-第一频段辐射单元阵列;
1211-第一阵列;                      1212-第二阵列;
1213-第一巴伦;                      1215-第一外导体;
1214-第一内导体;                    1216-第一辐射臂;
1217-第二辐射臂;                     122-第二频段辐射单元阵列;
123-第三频段辐射单元阵列;            1231-第二巴伦;
124-第四频段辐射单元阵列;            13-反射板;
14-馈电网络;                         141-传动部件;
142-校准网络;                        143-移相器;
1431-腔体;                           1432-移相电路;
1433-第一移相器;                     1434-第二移相器;
144-合路器;                          145-滤波器;
15-频率选择表面;                     151-第一侧边;
152-第二侧边;                        153-第三侧边;
154-第四侧边;                        2-抱杆;
3-天线调整支架;                      5-射频处理单元;
6-基带处理单元;                      7-电缆线。
具体实施方式
为了方便理解本申请实施例提供的天线系统及基站天馈系统,下面介绍一下其应用场景。图1示例性示出,如图1所示,该应用场景可以包括基站和终端。基站和终端之间可以实现无线通信。该基站可以位于基站子系统(base btation bubsystem,BBS)、陆地无线接入网(UMTS terrestrial radio access network,UTRAN)或者演进的陆地无线接入网(evolved universal terrestrial radio access,E-UTRAN)中,用于进行无线信号的小区覆盖以实现终端设备与无线网络之间的通信。具体来说,基站可以是全球移动通信系统(global system for mobile comunication,GSM)或(code division multiple access,CDMA)系统中的基地收发台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的节点B(NodeB,NB),还可以是长期演进(long term evolution,LTE)系统中的演进型节点B(evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。或者该基站也可以为中继站、接入点、车载设备、可穿戴设备以及新无线(new radio,NR)系统中的g节点(gNodeB或者gNB)或者未来演进的网络中的基站等,本申请实施例并不限定。
图2示出了基站天线馈电系统的一种可能的结构示意图。基站天线馈电系统通常可以包括天线系统1、抱杆2、天线调整支架3等结构。其中,基站的天线系统1包括天线罩11,天线罩11在电气性能上具有良好的电磁波穿透特性,机械性能上能经受外部恶劣环境的影响,从而可起到保护天线系统1免受外部环境影响的作用。天线系统1可通过天线调整支架3安装于抱杆2或者铁塔上,以便于天线系统1信号的接收或者发射。
另外,基站还可以包括射频处理单元5和基带处理单元6。例如,射频处理单元5可用于对天线系统1接收到的信号进行选频、放大以及下变频处理,并将其转换成中频信号或基带信号发送给基带处理单元6,或者射频处理单元5用于将基带处理单元6或中频信号经过上变频以及放大处理通过天线系统1转换成电磁波发送出去。基带处理单元6可通过射频处理单元5与天线系统1的馈电网络连接。在一些实施方式中,射频处理单元5又可称为射频拉远单元(remote radio unit,RRU),基带处理单元6又可称为基带单元(baseband unit,BBU)。
在一种可能的实施例中,如图2所示,射频处理单元5可与天线系统1一体设置,基带处理单元6位于天线系统1的远端。在另外一些实施例中,还可以使射频处理单元5和基带处理单元6同时位于天线系统1的远端。射频处理单元5与基带处理单元6可以通过电缆线7连接。
更为具体地,可一并参照图2和图3,图3为本申请一种可能的实施例的天线系统的组成示意图。其中,如图3所示,基站的天线系统1可以包括辐射单元阵列12和反射板13。上述辐射单元阵列12也可以称为天线振子、振子等,它能有效地发送或接收天线信号。在天线系统1中,不同辐射单元阵列12的频率可以相同或者不同。反射板13也可以称为底板、天线面板或者反射面等,其可以是金属材质。天线系统1接收信号时,反射板13可以把天线信号反射聚集在接收点上。天线系统1发射信号时,将射至反射板13的信号反射并发射出去。辐射单元阵列12通常放置于反射板13一侧表面,这不但可以大大增强天线系统1信号的接收或发射能力,还能够起到阻挡、屏蔽来自反射板13背面(本申请中反射板13的背面是指与反射板13用于设置辐射单元阵列12相背的一侧)的其它电波对天线信号接收的干扰作用。
在基站的天线系统1中,辐射单元阵列12与馈电网络14相连接。馈电网络14通常由受控的阻抗传输线构成,馈电网络14可把信号按照一定的幅度、相位馈送到辐射单元阵列12,或者将接收到的信号按照一定的幅度、相位发送到基站的基带处理单元6。具体地,在一些实施方式中,馈电网络14可以通过传动部件141实现不同辐射波束指向,或者与校准网络142连接以获取系统所需的校准信号。在馈电网络14中可以包括移相器143,以用来改变天线信号辐射的最大方向。在馈电网络14中还可能设置一些用于扩展性能的模块,例如合路器144,可用于把不同频率的信号合成一路,通过天线系统1发射;或者反向使用时,可以用于将天线系统1接收到的信号,根据不同的频率分成多路传输到基带处理单元6进行处理,又例如滤波器145,用于滤除干扰信号。
图4为本申请一种可能的实施例的天线系统的组成示意图,如图4所示,基站的天线系统1包括FSS15、第一频段辐射单元阵列121、第二频段辐射单元阵列122和移相器143。具体设置上述天线系统各个结构时,上述FSS15位于第一频段辐射单元阵列121与第二频段辐射单元阵列122之间,上述FSS15用于反射第一频段辐射单元阵列121的信号、并且透射第二频段辐射单元阵列122的信号。上述第一频段辐射单元阵列121的信号具体包括第一频段辐射单元阵列121接收的信号,以及第一频段辐射单元阵列121发射的信号;上述第二频段辐射单元阵列122的信号具体包括第二频段辐射单元阵列122接收的信号,以及第二频段辐射单元阵列122发射的信号。该方案中,通过设置FSS15,可以使得第一频段辐射单元阵列121和第二频段辐射单元阵列122在垂直于抱杆的方向上叠置,也就是说第一频段辐射单元阵列121和第二频段辐射单元阵列122采用并排(Side by side,SBS)排列,从而提升一个天面空间内天线系统1的集成度。上述移相器143包括腔体1431和移相电路1432,移相电路1432设置于腔体1431。具体的,可以使得第一频段辐射单元阵列121与移相器143连接,使得移相器143用于为第一频段辐射单元阵列121馈电。具体的实施例中,第一频段辐射单元阵列121与移相器143连接的方式不做限制,例如,图4所示的实施例中,第一频段辐射单元阵列121通过金属的FSS15与移相器143直接电连接。此外,上述第一频段辐射单元阵列121与移相器143还可以通过辐射单元的巴伦直接电连接。第一频段辐射单元阵列121与移相器143除了可以直接电连接以外,还可以耦合电连 接,本申请对此也不做限制。上述腔体1431设置于FSS15的边缘。上述腔体1431具体可以长条形,则腔体1431的第一延伸方向与第一频段辐射单元阵列121的第二延伸方向一致。
具体的实施例中,一个移相器143可以包括一个或者多个腔体1431,例如,第二频段辐射单元阵列122包括双极化辐射单元时,移相器143就包括两个腔体1431,用于与一列第二频段辐射单元阵列122对应连接。本申请实施例的附图,均以移相器143包括一个腔体1431为例进行示例。腔体1431可以为具有封闭截面的腔体1431,也可以为具有非封闭截面的腔体1431,腔体1431用于形成移相器143的移相电路1432的地层。上述移相电路1432设置于上述腔体1431,移相电路1432的具体设置位置不做限制。例如,当腔体1431为具有封闭截面的腔体1431时,移相电路1432设置于腔体1431可以理解为,移相电路1432可以设置于腔体1431的内部,也可以设置于腔体1431的外表面。
该技术方案中,移相器143的腔体1431设置于FSS15的边缘,则整个FSS15的表面上都不存在可能产生干扰的结构,第二频段辐射单元阵列122的信号在穿过上述FSS15时,插损较少,有利于提升天线系统1的信号质量。此外,配置第二频段辐射单元阵列122时无需考虑第一频段辐射单元阵列121对其可能产生的干扰,有利于实现第一频段辐射单元阵列121与第二频段辐射单元阵列122的解耦,也就是说,第一频段辐射单元阵列121的设计和布局可以不用考虑第二频段辐射单元阵列122对第一频段辐射单元阵列121的信号干扰等影响,同样,第二频段辐射单元阵列122的设计和布局也可以不用考虑第一频段辐射单元阵列121对第二频段辐射单元阵列122的信号干扰等影响。以便根据需求灵活配置第一频段辐射单元阵列121和第二频段辐射单元阵列122。此外,现有技术中,天线系统朝向天面的空间需要并排设置FSS和承载移相器的反射板,该反射板一方面用于承载移相器,另一方面用于反射第一频段辐射单元阵列的信号。然而,反射板无法透射第二频段辐射单元阵列的信号,使得反射板背离第一频段辐射单元阵列的一侧无法设置第二频段辐射单元阵列,导致用于设置第二频段辐射单元阵列的空间有限。本申请实施例中,无需设置用于承载移相器的反射板,则可以设置面积较大的FSS15,因此在FSS15背离第一频段辐射单元阵列121的一侧具有较多的空间,以设置上述第二频段辐射单元阵列122,从而可以提升天线系统1的集成度。该方案中,第一频段辐射单元阵列121和第二频段辐射单元阵列122采用SBS排列,可以实现至少两个频段的辐射单元阵列的单天面部署,从天线系统1的正前方,即垂直于FSS15的表面方向看,天线系统1整体占用一个天面,易于部署。此外,该天线系统1的集成度较高,则天线系统1的面积较小,风载也就较小。
该天线系统1在安装时,可以使得天线系统1的第二频段辐射单元阵列122背离第一频段辐射单元阵列121的一侧安装至抱杆2,也就是说第一频段辐射单元阵列121、FSS15和第二频段辐射单元阵列122沿朝向抱杆2方向依次设置。以FSS15背离抱杆2的方向为前侧,FSS15朝向抱杆2的方向为后侧。上述第一频段辐射单元阵列121产生的信号直接发射至FSS15的前侧,且FSS15可以反射第一频段辐射单元阵列121产生的朝向FSS15的信号。第二频段辐射单元阵列122产生的信号可以透过FSS15,也发射至上述FSS15的前侧。该方案中,移相器143的腔体1431设置于FSS15的边缘,则无需额外安排用于设置移相器143的反射板,可以使得天线系统1设置更大面积的FSS15,对应FSS15背离第一频段辐射单元阵列121的一侧空间也较大。因此,FSS15的后侧具有较多用于设置上述第二频段辐射单元阵列122的空间,以提升天线系统1的集成度。
具体的实施例中,上述FSS15的边缘除了可以设置移相器143的腔体1431以外,如果天线系统1还包括其它部件,其它部件也可以设置于FSS15的边缘。
图5为本申请一种可能的实施例中天线系统的结构示意图,具体的,图5示出了天线系统在图4所示的A向的结构示意图。如图5所示,以上述FSS15为矩形为例,来说明本申请实施例中腔体1431的设置。FSS15包括沿第一方向X延伸的第一侧边151和第二侧边152,和沿第二方向延伸的第三侧边153和第四侧边154,其中,第一侧边151和第二侧边152相对设置,第三侧边153和第四侧边154相对设置。上述移相器143包括第一移相器1433和第二移相器1434,第一频段辐射单元阵列121包括第一阵列1211和第二阵列1212。上述第一移相器1433与第一阵列1211连接,也就是说第一移相器1433为第一阵列1211提供馈电;第二移相器1434与第二阵列1212连接,也就是说第二移相器1434为第二阵列1212提供馈电。上述第一移相器1433的腔体1431具体设置于第一侧边151,第二移相器1434的腔体1431设置于第二侧边152。
本申请实施例中,第一侧边151的长度大于第三侧边153的长度,上述腔体1431设置于FSS15的第一侧边151和第二侧边152,且第一频段辐射单元阵列121沿第一方向X延伸,腔体1431也沿上述第一方向X延伸。
请继续参考图5,具体的实施例中,上述腔体1431沿第一延伸方向的长度大于或者等于第一频段辐射单元阵列121沿第二延伸方向的长度。该方案可以使得第一频段辐射单元阵列121的全部辐射单元都直接设置于腔体1431,以减短辐射单元与腔体1431之间连接结构的长度,以减少插损,提升第一频段辐射单元阵列121的信号质量。此外,该方案还有利于提升天线系统1整体的强度。
图6为本申请另一种可能的实施例中天线系统的结构示意图,具体的,图6示出了天线系统在图4所示的A向的另一种结构示意图。如图6所示,在其它实施例中,上述腔体1431沿第一延伸方向的长度也可以小于第一频段辐射单元阵列121沿第一延伸方向的长度。该实施例中,只需使得腔体1431沿第一延伸方向的长度只需能够使得第一频段辐射单元阵列121能够连接至腔体1431即可。
本申请实施例对上述FSS15的具体结构不做限制,只需能够实现反射第一频段辐射单元阵列121的信号,且能够透射第二频段辐射单元阵列122的信号的功能即可。具体的实施例中,上述FSS15可以为栅格结构。图7为本申请一种可能的实施例中FSS的结构示意图,图7所示的实施例中,FSS15包括多个空格,每个空格内具有矩形金属框线。图8为本申请另一种可能的实施例中FSS的结构示意图。图8所示的实施例中,FSS15也包括多个空格,每个空格内具有矩形金属片。图9为本申请另一种可能的实施例中FSS的结构示意图。图9所示的实施例中,FSS15包括多个独立的金属框线,每个金属框线内具有矩形金属片。
请继续参考图4,具体的实施例中,上述第一频段辐射单元阵列121的辐射单元包括第一巴伦1213,第一巴伦1213与移相器143电连接。具体实现上述第一巴伦1213与移相器143电连接时,第一频段辐射单元阵列121的第一巴伦1213可以连接至FSS15,再通过FSS15与移相器143连接。
图10为本申请另一种可能的实施例的天线系统的组成示意图,如图10所示,第一频段辐射单元阵列121的辐射单元的第一巴伦1213直接与移相器143电连接。该方案无需通过FSS15来传输在第一巴伦1213与移相器143之间的信号,信号的传输路径较短,则 信号的插损也较少,有利于提升第一频段辐射单元阵列121的增益,提升天线系统1性能。此外,该方案中,无需利用FSS15来传输在第一巴伦1213与移相器143之间的信号,则FSS15对于第二频段辐射单元阵列122的干扰较少,有利于提升第二频段辐射单元阵列122的增益,也可以提升天线系统1性能。
该方案中,第一巴伦1213与移相器143的电连接可以为直接电连接,也可以为耦合电连接,本申请对此不做限制。
请参考图6和图10,具体设置上述第一频段辐射单元阵列121时,第一频段辐射单元阵列121在FSS15的投影完全位于FSS15上。该方案中,FSS15可以完全反射第一频段辐射单元阵列121的信号,该信号具体包括第一频段辐射单元阵列121接收的信号,以及第一频段辐射单元阵列121发射的信号。该方案可以提升第一频段辐射单元阵列121的增益。
针对位于FSS15后侧的第二频段辐射单元阵列122,在FSS15的投影可以完全位于FSS15,也可以部分位于FSS15,本申请对此不做限制。
请参考图10,在设置上述第一频段辐射单元阵列121时,为了保证第一频段辐射单元阵列121在FSS15的投影完全位于FSS15,可以使第一巴伦1213与FSS15呈锐角设置。该方案中,第一巴伦1213与FSS15之间较小的夹角为锐角,且第一巴伦1213朝向FSS15中心倾斜。值得说明的是,上述第一巴伦1213与FSS15呈锐角设置,指的是第一巴伦1213整体结构的设置趋势。也就是说第一巴伦1213可以为直线型结构,且与FSS15呈锐角设置,如图7所示。
或者,在其它实施例中,上述第一巴伦1213还可以为分段结构,图11为本申请另一种可能的实施例的天线系统的组成示意图,如图11所示,一种具体的实施例中,第一巴伦1213包括两部分,一部分与FSS15垂直,另一部分与FSS15呈锐角设置。图11所示的实施例中的第一巴伦1213也可以认为与FSS15呈锐角设置。总之,只需第一巴伦1213总体上与FSS15呈锐角设置、且朝向FSS15的中心倾斜即可。
图12为本申请一种实施例中第一频段辐射单元阵列121与移相器143连接的示意图。如图12所示,具体的实施例中,上述移相器143还包括移相电路1432,该移相电路1432设置于腔体1431。上述第一巴伦1213包括第一外导体1215和第一内导体1214。第一频段辐射单元阵列121的辐射单元包括两组不同极化方向的辐射臂,每组辐射臂包括同极化的第一辐射臂1216和第二辐射臂1217,上述第一外导体1215连接第一辐射臂1216与腔体1431,第一内导体1214连接第二辐射臂1217与移相电路1432。如图12中所示,利用直线连接的第一辐射臂1216和第二辐射臂1217为一组同极化方向的一组辐射臂,利用虚线连接的第一辐射臂1216和第二辐射臂1217为另一组同极化方向的一组辐射臂。图中的直线和虚线仅仅用来区分两组辐射臂,其实际结构不做区分,此外,直线和虚线的具体连接方式可以相同,此处不进行赘述。
请继续参考图11,具体的实施例中,上述天线系统1还包括反射板13,该反射板13设置于第二频段辐射单元阵列122远离FSS15的一侧。该方案中,反射板13设置于第二频段辐射单元阵列122远离FSS15的一侧,用于反射第二频段辐射单元阵列122的信号,该信号具体包括发送至第二频段辐射单元阵列122的信号,以及第二频段辐射单元阵列122发射出的信号。该方案可以提升第二频段辐射单元阵列122的增益。
具体的实施例中,上述第二频段辐射单元阵列122也连接有移相器,该移相器用于为第二频段辐射单元阵列122馈电。该移相器的具体设置位置本申请不做限制,例如,当第 二频段辐射单元阵列122远离FSS15的一侧设置有反射板时,可以使得移相器设置于上述反射板。当然,即使第二频段辐射单元阵列122未设置对应的反射板,也可以利用结构件来安装上述移相器。
具体的技术方案中,上述第一频段辐射单元阵列121可以为无源(Passive)辐射单元阵列,第一频段辐射单元阵列121对于设置于FSS15后侧的第二频段辐射单元阵列122无干扰,以便于实现辐射单元阵列12的叠置。具体的实施例中,该第一频段辐射单元阵列121可以为第四代(The fourth generation,4G)的低频天线,一般为690MHz~960MHz频段。上述第二频段辐射单元阵列122具体可以为无源(Passive)辐射单元阵列,也可以为有源(Active)辐射单元阵列,本申请对此不做限制。当第二频段辐射单元阵列122为有源辐射单元阵列时,可以为第五代(The fifth generation,5G)的高频天线,一般为2600MHz或3500MHz频段。该第二频段辐射单元阵列122具体可以为大规模多输入多输出(Massive MIMO,MM)天线。
此外,上述第一频段辐射单元阵列121的频段可以小于第二频段辐射单元阵列122的频段。通常,频段越小的辐射单元阵列的单个辐射单元的尺寸越大。该方案中,设置于FSS15的前侧的辐射单元的尺寸在整个天线系统的辐射单元中较大,则从图11中的A方向上看,天线系统1的外观较为规整,且天线系统1的风载也可以较小。
请继续参考图11,具体设置上述第一频段辐射单元阵列121和第二频段辐射单元阵列122时,可以使得第一频段辐射单元阵列121的辐射面与FSS15平行,第二频段辐射单元阵列122的辐射面与FSS15平行。该方案中,第一频段辐射单元阵列121的辐射面和第二频段辐射单元阵列122的辐射面与FSS15平行,则第一频段辐射单元阵列121的发射和接收的信号波束的方向,与第二频段辐射单元阵列122的发射和接收的信号波束的方向相同。上述辐射面具体指辐射单元的表面。在安装本实施例中的天线系统1时,可以使得第一频段辐射单元阵列121的发射和接收的信号波束的方向,与第二频段辐射单元阵列122的发射和接收的信号波束都沿着正前方延伸,有利于提升天线系统1信号覆盖范围的准确性。值的说明的是,上述“平行”的位置关系指的是大致平行,可以包括由于制造安装等过程造成的误差而导致的略微不平行。
请继续参考图11,本申请实施例中,天线系统1包括第一天线罩111和第二天线罩112。上述第一频段辐射单元阵列121设置于第一天线罩111内,第二频段辐射单元阵列122设置于第二天线罩112内。该方案中,第一频段辐射单元阵列121和第二频段辐射单元阵列122分别独立具有天线罩,可以分别独立安装和更换上述第一频段辐射单元阵列121和第二频段辐射单元阵列122。该方案有利于实现第一频段辐射单元阵列121和第二频段辐射单元阵列122的解耦,有利于实现天线系统1的第一频段辐射单元阵列121和第二频段辐射单元阵列122的独立演进。该实施例中,可以使FSS15也设置于第一天线罩111内。使得反射板13设置于第二天线罩112内。
如图11所示,具体安装上述天线系统1时,可以使得第一天线罩111与第二天线罩112固定连接,使得天线系统1先固定成整体结构。然后再将整体的天线系统1安装至抱杆2,例如,如图11所示的实施例中,上述第一天线罩111具有第一安装结构1111,第二天线罩112具有第二安装结构1121。上述第一天线罩111和第二天线罩112通过第二安装结构1121连接成整体结构,然后利用第一安装结构1111安装至抱杆。该方案在将天线系统1安装至抱杆2时,操作较为简单。
图13为本申请另一种可能的实施例的天线系统的组成示意图,如图13所示,另一种实施例中,上述第一天线罩111具有第一安装结构1111,第一安装结构1111安装至抱杆2。第二天线罩112具有第二安装结构1121,且第二安装结构1121也安装于抱杆2。本申请技术方案中,可以使得不同频段辐射单元阵列分别安装至抱杆。该实施例中的第一频段辐射单元阵列121与第二频段辐射单元阵列122完全解耦,便于独立演进天线系统1的各个频段辐射单元阵列。
图14为本申请另一种可能的实施例的天线系统的组成示意图,如图14所示,另一种实施例中,上述天线系统1还包括第三频段辐射单元阵列123,该第三频段辐射单元阵列123与第一频段辐射单元阵列121位于FSS15的同一侧。该方案中,FSS15的前侧设置的辐射单元阵列的频段的数量不做限制,可以设置一个频段的辐射单元阵列,两个频段的辐射单元阵列或者更多频段的辐射单元阵列。
如图14所示,该实施例中,第三频段辐射单元阵列123也可以直接设置于腔体1431,通过第二巴伦1231与腔体1431连接。具体的第二巴伦1231的连接方式与第一巴伦1213的连接方式相同,此处不进行赘述。或者,图15为本申请另一种可能的实施例的天线系统的组成示意图,如图15所示,另一种实施例中,上述第三频段辐射单元阵列123还可以设置于FSS15,该实施例中,与第三频段辐射单元阵列123连接的移相器143的腔体1431也设置于上述FSS15的边缘。该实施例中的第三频段辐射单元阵列123通过FSS15与腔体1431连接。本申请对此不做限制。具体的,与第三频段辐射单元阵列123连接的移相器的腔体1431可以和与第一频段辐射单元阵列121的移相器的腔体1431并行设置于FSS15的边缘,在一种实现方式中,它们可以固定为一体结构,或者为一体成型结构。
请参考图14和图15,上述实施例中的第一频段辐射单元阵列121和第三频段辐射单元阵列123可以设置于同一天线罩内,例如,均可以设置于第一天线罩111内。此外,上述第三频段辐射单元阵列123具体也可以为无源(passive)辐射单元阵列。可以使第三频段辐射单元阵列123的频段小于第一频段辐射单元阵列121。该第三频段辐射单元阵列123连接的移相器143也可以位于FSS15的边缘(图15中未示出)。总而言之,该第三频段辐射单元阵列123与第一频段辐射单元阵列121相比,除了频段不同以外,其它特征都可以与上述实施例中对于第一频段辐射单元阵列121的特征一样。
图16为本申请另一种可能的实施例的天线系统的组成示意图,如图16所示,上述天线系统1还包括第四频段辐射单元阵列124,该第四频段辐射单元阵列124与第二频段辐射单元阵列122位于FSS15的同一侧。该方案中,FSS15后侧设置的辐射单元阵列的频段的数量不做限制,可以设置一个频段的辐射单元阵列,两个频段的辐射单元阵列或者更多频段的辐射单元阵列。
具体设置上述第二频段辐射单元阵列122和第四频段辐射单元阵列124时,可以使第二频段辐射单元阵列122与第四频段辐射单元阵列124并列设置。更具体的可以使第二频段辐射单元阵列122和第四频段辐射单元阵列124设置于同一平面。如此可以实现第二频段辐射单元阵列122和第四频段辐射单元阵列124均为有源(Active)辐射单元阵列时,不存在信号的遮挡的问题。
上述第四频段辐射单元阵列124具体可以为无源(Passive)辐射单元阵列或者有源(Active)辐射单元阵列。具体的实施例中,可以使第四频段辐射单元阵列124的频段大于第一频段辐射单元阵列121的频段。总而言之,该第四频段辐射单元阵列124与第二频 段辐射单元阵列122相比,除了频段不同以外,其它特征都可以与上述实施例中对于第二频段辐射单元阵列122的特征一样。
如图16所示,上述实施例中的第二频段辐射单元阵列122和第四频段辐射单元阵列124可以设置于同一天线罩内,例如,均可以设置于第二天线罩112内。
或者,图17为本申请另一种可能的实施例的天线系统的组成示意图,如图17所示的实施例,还可以使第二频段辐射单元阵列122和第四频段辐射单元阵列124设置于不同的天线罩内。具体的实施例中,可以使第二频段辐射单元阵列122设置于第二天线罩112内,使第四频段辐射单元阵列124设置于第三天线罩113内。在安装上述第二天线罩112和第三天线罩113时,具体的安装方式不做限制。
请继续参考图17,具体的实施例中,第二天线罩112具有第二安装结构1121,该第二安装结构1121安装于抱杆2。第三天线罩113与第一天线罩111固定连接,且第一天线罩111具有第一安装结构1111,该第一安装结构1111安装于抱杆2。
或者,图18为本申请另一种可能的实施例的天线系统的组成示意图,如图18所示的实施例,还可以使第一天线罩111、第二天线罩112和第三天线罩113固定为一体结构,再利用第一天线罩111连接的第一安装结构1111安装于抱杆2。
或者,图19为本申请另一种可能的实施例的天线系统的组成示意图,如图19所示的实施例,第一天线罩111具有第一安装结构1111,该第一安装结构1111安装于抱杆2,第二天线罩112具有第二安装结构1121,该第二安装结构1121安装于抱杆2。还可以使第三天线罩113具有第三安装结构1131,该第三安装结构1131安装至抱杆2。具体的实施例中,上述第一天线罩111、第二天线罩112和第三天线罩113分别独立安装于抱杆2。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (18)

  1. 一种天线系统,其特征在于,包括频率选择表面、第一频段辐射单元阵列、第二频段辐射单元阵列和移相器,其中:
    所述频率选择表面设置于所述第一频段辐射单元阵列与所述第二频段辐射单元阵列之间,所述频率选择表面用于反射所述第一频段辐射单元阵列的信号、并且透射所述第二频段辐射单元阵列的信号;所述移相器包括腔体;所述腔体设置于所述频率选择表面的边缘,所述腔体的第一延伸方向与所述第一频段辐射单元阵列的第二延伸方向一致。
  2. 如权利要求1所述的天线系统,其特征在于,所述频率选择表面包括第一侧边和第二侧边,所述移相器包括第一移相器和第二移相器,所述第一移相器的所述腔体设置于所述第一侧边,所述第二移相器的所述腔体设置于所述第二侧边;所述第一频段辐射单元阵列包括第一阵列和第二阵列,所述第一移相器与所述第一阵列连接,所述第二移相器与所述第二阵列连接。
  3. 如权利要求1或2所述的天线系统,其特征在于,所述移相器还包括移相电路,所述第一频段辐射单元阵列的辐射单元包括第一巴伦,所述第一巴伦包括第一外导体和第一内导体;所述第一频段辐射单元阵列的辐射单元包括同极化的第一辐射臂和第二辐射臂,所述第一外导体连接所述第一辐射臂与所述腔体,所述第一内导体连接所述第二辐射臂与所述移相电路。
  4. 如权利要求3所述的天线系统,其特征在于,所述第一巴伦与所述频率选择表面的夹角呈锐角。
  5. 如权利要求1~4任一项所述的天线系统,其特征在于,所述天线系统还包括反射板,所述反射板设置于所述第二频段辐射单元阵列远离所述频率选择表面的一侧。
  6. 如权利要求1~5任一项所述的天线系统,其特征在于,所述腔体在所述第一延伸方向的长度大于或者等于所述第一频段辐射单元阵列在所述第二沿延伸方向的长度。
  7. 如权利要求1~6任一项所述的天线系统,其特征在于,所述第一频段辐射单元阵列为无源辐射单元阵列。
  8. 如权利要求1~7任一项所述的天线系统,其特征在于,所述第一频段辐射单元阵列的频段小于所述第二频段辐射单元阵列的频段。
  9. 如权利要求1~8任一项所述的天线系统,其特征在于,所述第一频段辐射单元阵列的辐射面与所述频率选择表面平行,所述第二频段辐射单元阵列的辐射面与所述频率选择表面平行。
  10. 如权利要求1~9任一项所述的天线系统,其特征在于,所述第一频段辐射单元阵列在所述频率选择表面的投影完全位于所述频率选择表面。
  11. 如权利要求1~10任一项所述的天线系统,其特征在于,所述第一频段辐射单元阵列设置于第一天线罩中,所述第一天线罩设有第一安装结构,所述第一安装结构安装至抱杆;所述第二频段辐射单元阵列设置于第二天线罩中,所述第一天线罩与所述第二天线罩固定连接。
  12. 如权利要求1~10任一项所述的天线系统,其特征在于,所述第一频段单元设置于第一天线罩中,所述第一天线罩设有第一安装结构;所述第二频段单元设置于第二天线罩中,所述第二天线罩设有第二安装结构,所述第一安装结构和所述第二安装结构分别安装 至抱杆。
  13. 如权利要求1~12任一项所述的天线系统,其特征在于,所述天线系统还包括第三频段辐射单元阵列,所述第一频段辐射单元阵列和所述第三频段辐射单元阵列位于所述频率选择表面的同一侧。
  14. 如权利要求11或者12所述的天线系统,其特征在于,所述天线系统还包括第三频段辐射单元阵列,所述第一频段辐射单元阵列和所述第三频段辐射单元阵列位于所述频率选择表面的同一侧,且所述第三频段辐射单元阵列也设置于所述第一天线罩中。
  15. 如权利要求1~14任一项所述的天线系统,其特征在于,所述天线系统还包括第四频段辐射单元阵列,所述第二频段辐射单元阵列和所述第四频段辐射单元阵列位于所述频率选择表面的同一侧。
  16. 如权利要求11或者12所述的天线系统,其特征在于,所述天线系统还包括第四频段辐射单元阵列,所述第二频段辐射单元阵列和所述第四频段辐射单元阵列位于所述频率选择表面的同一侧,所述第四频段辐射单元阵列设置于第三天线罩中,所述第三天线罩设有第三安装结构,述第三安装结构安装至抱杆。
  17. 如权利要求11或者12所述的天线系统,其特征在于,所述天线系统还包括第四频段辐射单元阵列,所述第二频段辐射单元阵列和所述第四频段辐射单元阵列位于所述频率选择表面的同一侧,所述第四频段辐射单元阵列设置于第三天线罩中,所述第三天线罩与所述第一天线罩固定连接。
  18. 一种基站天馈系统,其特征在于,包括如权利要求1~17任一项所述的天线系统。
PCT/CN2022/121392 2021-09-30 2022-09-26 一种天线系统及基站天馈系统 WO2023051471A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22874856.2A EP4386983A1 (en) 2021-09-30 2022-09-26 Antenna system and base station antenna feed system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111162182.9 2021-09-30
CN202111162182.9A CN115911855A (zh) 2021-09-30 2021-09-30 一种天线系统及基站天馈系统

Publications (1)

Publication Number Publication Date
WO2023051471A1 true WO2023051471A1 (zh) 2023-04-06

Family

ID=85739464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121392 WO2023051471A1 (zh) 2021-09-30 2022-09-26 一种天线系统及基站天馈系统

Country Status (3)

Country Link
EP (1) EP4386983A1 (zh)
CN (1) CN115911855A (zh)
WO (1) WO2023051471A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180053994A1 (en) * 2016-08-22 2018-02-22 L-3 Communications Corporation Electronically Compensated Radome Using Frequency Selective Surface Compensation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180053994A1 (en) * 2016-08-22 2018-02-22 L-3 Communications Corporation Electronically Compensated Radome Using Frequency Selective Surface Compensation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHU YUFENG; CHEN YIKAI; YANG SHIWEN: "Integration of 5G Rectangular MIMO Antenna Array and GSM Antenna for Dual-Band Base Station Applications", IEEE ACCESS, IEEE, USA, vol. 8, 30 March 2020 (2020-03-30), USA , pages 63175 - 63187, XP011783576, DOI: 10.1109/ACCESS.2020.2984246 *
ZHU, YUFENG ET AL.: "Cross-Band Mutual Coupling Reduction in Dual-Band Base-Station", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 69, no. 12, 26 July 2021 (2021-07-26), XP011894544, ISSN: 2169-3536, DOI: 10.1109/TAP.2021.3098514 *

Also Published As

Publication number Publication date
EP4386983A1 (en) 2024-06-19
CN115911855A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
US20130215832A1 (en) Broadband dual-polarized omni-directional antenna and feeding method using the same
US20230344113A1 (en) Base station antenna
EP4203192A1 (en) Antenna structure and electronic device comprising same
WO2023274173A1 (zh) 一种天线结构、基站天线及基站
WO2023088446A1 (zh) 一种天线及通信系统
WO2023051471A1 (zh) 一种天线系统及基站天馈系统
CN211829185U (zh) 基站天线
WO2023051472A1 (zh) 一种天线及基站天馈系统
WO2023109846A1 (zh) 一种天线系统及基站天馈系统
WO2024131483A1 (zh) 一种馈电装置、天线装置及通信设备
WO2024021780A1 (zh) 一种天线和通信设备
WO2024027465A1 (zh) 一种天线系统及基站
US11848507B2 (en) Radiating element, antenna array, and network device
CN213878438U (zh) 实现波束的空间-极化分离的天线装置
WO2023109765A1 (zh) 一种天线系统和通信设备
WO2024140036A1 (zh) 天线及基站
WO2024050703A1 (zh) 一种天线及通信设备
WO2023207916A1 (zh) 基站天线以及基站
US20230299491A1 (en) Antenna module and manufacturing method thereof
WO2023231752A1 (zh) 一种天线及基站
WO2024051773A1 (zh) 基站天线和基站
US20230043856A1 (en) Compound antenna device for omnidirectional coverage
WO2024077500A1 (zh) 一种通信设备及基站
CN116130904A (zh) 移相器、天线及基站天馈系统
WO2023065981A1 (zh) 一种天线和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874856

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022874856

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022874856

Country of ref document: EP

Effective date: 20240315

NENP Non-entry into the national phase

Ref country code: DE