WO2023274173A1 - 一种天线结构、基站天线及基站 - Google Patents

一种天线结构、基站天线及基站 Download PDF

Info

Publication number
WO2023274173A1
WO2023274173A1 PCT/CN2022/101642 CN2022101642W WO2023274173A1 WO 2023274173 A1 WO2023274173 A1 WO 2023274173A1 CN 2022101642 W CN2022101642 W CN 2022101642W WO 2023274173 A1 WO2023274173 A1 WO 2023274173A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating
decoupling
radiation
antenna structure
antenna
Prior art date
Application number
PCT/CN2022/101642
Other languages
English (en)
French (fr)
Inventor
万振兴
肖兴慰
杜子静
肖伟宏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023274173A1 publication Critical patent/WO2023274173A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/002Protection against seismic waves, thermal radiation or other disturbances, e.g. nuclear explosion; Arrangements for improving the power handling capability of an antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure

Definitions

  • the present application relates to the technical field of antennas, and in particular to an antenna structure, a base station antenna and a base station.
  • the antenna radiation performance directly determines the communication quality, and the antenna radiation performance can be measured through the antenna pattern.
  • the indicators of the antenna pattern mainly include gain, side lobe and cross polarization ratio.
  • the gain indicates the energy concentration degree of the antenna, and the higher the gain, the more concentrated the energy of the antenna and the farther the radiation distance is; A larger value means more energy is wasted, so the smaller the sidelobe, the better; the cross-polarization ratio refers to the difference in received energy between two orthogonally polarized antennas. The larger the cross-polarization ratio, the higher the diversity gain , the better the communication quality.
  • the current communication system has more and more frequency bands, and more and more frequency bands need to be covered by the antenna.
  • the size of the antenna is getting smaller and smaller, which requires the size of the antenna to be smaller.
  • the mutual coupling between antennas in different frequency bands in the multi-frequency antenna is serious, the performance of antennas in different frequency bands is affected, and the antenna pattern shows obvious deterioration.
  • the high-frequency and low-frequency units of a multi-frequency antenna coexist in the array, and the size of the radiation surface of the low-frequency unit is usually more than twice the wavelength corresponding to the operating frequency band of the high-frequency unit, so that the radiation surface of the low-frequency unit is in the high-frequency field when the high-frequency unit is working.
  • a strong scattering field is formed, which is superimposed on the radiation field of the high-frequency unit itself, affecting the radiation performance of the high-frequency unit, and correspondingly, the pattern of the high-frequency is deteriorated.
  • the present application provides an antenna structure, a base station antenna and a base station, so as to reduce the influence of the low-frequency radiation unit in the base station antenna on the performance of the high-frequency radiation unit.
  • the present application provides an antenna structure, including a radiating unit, the radiating unit includes a radiating arm, the radiating arm includes a radiating body and a first decoupling element, and the radiating body and the first decoupling element are aligned along the extending direction of the radiating arm. Neighbors are arranged to form radial arms.
  • the antenna structure itself can be used as a low-frequency radiation unit in the base station antenna.
  • the setting of the first decoupling element is equivalent to loading an inductor for the radiation arm.
  • the first decoupling element presents a high-impedance state in the high-frequency band.
  • the first The induced current generated by the decoupling element is small, and the radiation energy of the radiation arm as a whole is small.
  • the antenna structure is used as the low-frequency radiation unit in the base station antenna, which has little impact on the performance of the high-frequency radiation unit in the base station antenna.
  • the radiation unit is decoupled, and the decoupling bandwidth is wide.
  • the radiating arm adopts the structural form of a combination of the radiating body and the first decoupling element, the overall size of the radiating arm is relatively large, and the gain of the low-frequency radiating unit itself is relatively high.
  • the first decoupling element includes an inductor.
  • the inductance presents a high-resistance state in the high-frequency band, and the induced current generated is small, so that the radiation energy of the radiation arm as a whole is small, so that the antenna structure is used as the low-frequency radiation unit in the base station antenna, which affects the performance of the high-frequency radiation unit in the base station antenna. The impact is small, and the decoupling of the high-frequency radiation unit is realized.
  • the inductance When specifically setting the inductance, the inductance is in the shape of a helical coil, a broken line or a wavy line.
  • the structure is relatively simple, and it is convenient to combine and configure with the radiation body.
  • the first decoupling element between two radiating bodies sequentially arranged along the extending direction of the radiating arms includes a plurality of inductors.
  • the number of inductances included in the first decoupling element is relatively large, which is equivalent to increasing the inductance loaded on the entire radiating arm, and can improve the decoupling effect on the high-frequency radiating unit.
  • the antenna structure further includes a plurality of second decoupling elements, and the second decoupling elements are arranged on at least one side of the radiating arm along the extending direction of the radiating arm.
  • the far-field phase of the scattering field of the second decoupling element can form anti-phase cancellation with the far-field phase of the scattering field of the radiation arm, so that the setting of the second decoupling element can suppress the scattering level of the low-frequency radiation unit in the high-frequency band, effectively reducing the
  • the scattering level of the small low-frequency radiation unit in the high-frequency band reduces the impact of the low-frequency radiation unit on the performance of the high-frequency radiation unit in the base station antenna, and realizes decoupling of the high-frequency radiation unit.
  • the decoupling effects of the second decoupling element and the first decoupling element are superimposed to improve the decoupling effect of the antenna structure on the high-frequency radiation unit.
  • the second decoupling member When specifically setting the second decoupling member, the second decoupling member includes a metal sheet.
  • the structure is relatively simple, and it is convenient to debug the decoupling effect of the second decoupling member.
  • the second decoupling member includes a plurality of metal sheets, and the plurality of metal sheets are stacked along a direction perpendicular to the extending direction of the radiation arm.
  • the second decoupling member includes a larger number of metal sheets, and the decoupling effect on the high-frequency radiation unit is more significant.
  • the antenna structure further includes a mounting part, the mounting part is arranged on the radiation arm, and the extending direction of the mounting part is parallel to the extending direction of the radiating arm; the mounting part is provided with a plurality of second coupler.
  • the arrangement of the mounting part can integrate the multiple second decoupling components into a whole, thereby stabilizing the relative positions of the multiple second decoupling components, and can simplify the connection between the multiple second decoupling components and the radiation arm.
  • the present application provides another antenna structure, including a radiating unit and multiple second decoupling elements, the radiating unit includes a radiating arm, and the second decoupling elements are arranged along the extending direction of the radiating arm.
  • the antenna structure itself can be used as the low-frequency radiation unit in the base station antenna, and the far-field phase of the scattering field of the second decoupling element can form anti-phase cancellation with the far-field phase of the scattering field of the radiation arm, so that the second decoupling
  • the setting of the coupling can suppress the scattering level of the low-frequency radiation unit in the high-frequency band, effectively reduce the scattering level of the low-frequency radiation unit in the high-frequency band, and reduce the influence of the low-frequency radiation unit on the performance of the high-frequency radiation unit in the base station antenna, and realize Decoupling the HF radiator.
  • the second decoupling member When specifically setting the second decoupling member, the second decoupling member includes a metal sheet.
  • the structure is relatively simple, and it is convenient to debug the decoupling effect of the second decoupling member.
  • the second decoupling member includes a plurality of metal sheets, and the plurality of metal sheets are stacked along a direction perpendicular to the extending direction of the radiation arm.
  • the second decoupling member includes a larger number of metal sheets, and the decoupling effect on the high-frequency radiation unit is more significant.
  • the antenna structure further includes a mounting part, the mounting part is arranged on the radiation arm, and the extending direction of the mounting part is parallel to the extending direction of the radiating arm; the mounting part is provided with a plurality of second coupler.
  • the arrangement of the mounting part can integrate the multiple second decoupling components into a whole, thereby stabilizing the relative positions of the multiple second decoupling components, and can simplify the connection between the multiple second decoupling components and the radiation arm.
  • the radiation arm includes a radiation body and a first decoupling element, and the radiation body and the first decoupling element are arranged adjacent to each other along the extending direction of the radiation arm to form the radiation arm.
  • the setting of the first decoupling element is equivalent to loading inductance for the radiation arm.
  • the first decoupling element presents a high-impedance state in the high frequency band.
  • the induced current generated by the first decoupling element is small, and the overall radiation energy of the radiation arm is small.
  • the antenna As the low-frequency radiation unit in the base station antenna, the structure has little impact on the performance of the high-frequency radiation unit in the base station antenna, and realizes decoupling of the high-frequency radiation unit, and the decoupling bandwidth is wide.
  • the radiating arm adopts the structural form of a combination of the radiating body and the first decoupling element, the overall size of the radiating arm is relatively large, and the gain of the low-frequency radiating unit itself is relatively high.
  • the decoupling effects of the first decoupling element and the second decoupling element are superimposed to improve the decoupling effect of the antenna structure on the high-frequency radiation unit.
  • the first decoupling element includes an inductor.
  • the inductance presents a high-resistance state in the high-frequency band, and the induced current generated is small, so that the radiation energy of the radiation arm as a whole is small, so that the antenna structure is used as the low-frequency radiation unit in the base station antenna, which affects the performance of the high-frequency radiation unit in the base station antenna. The impact is small, and the decoupling of the high-frequency radiation unit is realized.
  • the inductance When specifically setting the inductance, the inductance is in the shape of a helical coil, a broken line or a wavy line.
  • the structure is relatively simple, and it is convenient to combine and configure with the radiation body.
  • the first decoupling element between two radiating bodies sequentially arranged along the extending direction of the radiating arms includes a plurality of inductors.
  • the number of inductances included in the first decoupling element is relatively large, which is equivalent to increasing the inductance loaded on the entire radiating arm, and can improve the decoupling effect on the high-frequency radiating unit.
  • the present application provides a base station antenna, including a high-frequency antenna structure, and the aforementioned antenna structure, where the antenna structure is used for decoupling the high-frequency antenna structure.
  • the antenna structure in the base station antenna can be used as a low-frequency radiation unit, which has little impact on the performance of the high-frequency radiation unit, and realizes decoupling of the high-frequency radiation unit.
  • the overall antenna pattern of the base station antenna is relatively ideal, and the overall performance is relatively superior.
  • the present application provides a base station, including the aforementioned base station antenna.
  • the performance of the base station antenna is superior, the base station works stably, and the performance is reliable.
  • FIG. 1 is a schematic diagram of a system architecture applicable to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an antenna feeding system of a base station according to an embodiment shown in the above figure;
  • FIG. 3 is a schematic structural diagram of a base station antenna in a possible embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an antenna structure in a possible embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a radiation arm of an antenna structure in a possible embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an inductor of an antenna structure in a possible embodiment of the present application.
  • FIG. 7 is another structural schematic diagram of the inductance of the antenna structure in a possible embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an antenna structure in another possible embodiment of the present application.
  • Fig. 9 is an enlarged view of place A in Fig. 8;
  • FIG. 10 is a schematic structural diagram of an antenna structure in another possible embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a mounting part of an antenna structure in another possible embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an antenna structure in another possible embodiment of the present application.
  • Fig. 13 is a schematic diagram of a usage scenario of an antenna structure according to another possible embodiment of the present application.
  • 60-signal processing unit 70-cable; 11-radiation unit; 12-reflector; 3-feed network; 31-transmission components;
  • 300-installation piece 400-frame structure; 500-balun; 101-radiation body; 102-first decoupling piece; 103-inductance;
  • 201-metal sheet 301-installation hole; 401-first frame; 402-second frame.
  • FIG. 1 exemplarily shows a schematic diagram of a system architecture applicable to the embodiment of the present application.
  • the system architecture may include radio access network devices and terminals, such as including but not limited to the base station shown in FIG. 1 .
  • Wireless communication can be realized between the wireless access device and the terminal.
  • the radio access network device may be located in a base station subsystem (BBS), a UMTS terrestrial radio access network (UTRAN), or an evolved universal terrestrial radio access (E- In UTRAN), it is used to carry out cell coverage of wireless signals to realize the connection between terminal equipment and radio frequency terminals of wireless networks.
  • BSS base station subsystem
  • UTRAN UMTS terrestrial radio access network
  • E- In UTRAN evolved universal terrestrial radio access
  • the base station can be a base station (base transceiver station, BTS) in a GSM or CDMA system, or a base station (NodeB, NB) in a WCDMA system, or an evolved base station (evolutional NodeB, eNB or eNodeB), can also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario, or the base station can also be a relay station, an access point, a vehicle-mounted device, a wearable device in a 5G network
  • the base station in the base station or the base station in the future evolved PLMN network, etc., for example, a new wireless base station, is not limited in this embodiment of the present application.
  • FIG. 2 shows a schematic structural diagram of an antenna feeding system of a base station in an embodiment as shown in the above figure.
  • An antenna feeding system of a base station may generally include structures such as an antenna 10 , a pole 20 , and an antenna adjustment bracket 30 .
  • the antenna 10 of the base station includes a radome 40
  • the radome 40 has good electromagnetic wave penetration characteristics in electrical performance, and can withstand the influence of external harsh environment in mechanical performance, so as to protect the antenna system from external environmental influences. effect.
  • the radome 40 can be installed on the pole 20 or the iron tower through the antenna adjustment bracket 30 so as to receive or transmit signals from the antenna 10 .
  • the base station may further include a radio frequency processing unit 50 and a signal processing unit 60 .
  • the radio frequency processing unit 50 can be used to perform frequency selection, amplification and down-conversion processing on the signal received by the antenna 10, and convert it into an intermediate frequency signal or a baseband signal and send it to the signal processing unit 60, or the radio frequency processing unit 50 can be used to convert The signal processing unit 60 or the intermediate frequency signal is converted into electromagnetic waves through the antenna 10 and sent out after up-conversion and amplification processing.
  • the signal processing unit 60 can be connected to the feeding structure of the antenna 10 through the radio frequency processing unit 50 , and is used for processing the intermediate frequency signal or the baseband signal sent by the radio frequency processing unit 50 .
  • the radio frequency processing unit 50 may be integrated with the antenna 10 , and the signal processing unit 60 is located at a far end of the antenna 10 . In some other embodiments, the radio frequency processing unit 50 and the signal processing unit 60 may also be located at the far end of the antenna 10 at the same time.
  • the radio frequency processing unit 50 and the signal processing unit 60 may be connected through a cable 70 .
  • FIG. 2 and FIG. 3 may be referred to together, and FIG. 3 is a schematic structural diagram of a base station antenna in a possible embodiment of the present application.
  • the antenna 10 of the base station may include a radiation unit 11 and a reflection plate 12 .
  • the radiating unit 11 may also be called an antenna dipole, a vibrator, etc.
  • the radiating unit 11 is a unit constituting the basic structure of the antenna array, which can effectively radiate or receive antenna signals.
  • the frequencies of different radiating elements 11 may be the same or different.
  • the reflector 12 may also be referred to as a bottom plate, an antenna panel, or a metal reflector, and the reflector 12 may reflect and concentrate antenna signals on a receiving point.
  • the radiation unit 11 is usually placed on the surface of one side of the reflector 12, which can not only greatly enhance the receiving or transmitting capability of the antenna 10 signal, but also can block and shield from the back of the reflector 12 (the back of the reflector 12 in this application refers to The interference effect of other radio waves on the signal reception of the antenna from the side of the reflector 12 opposite to the radiation unit 11 .
  • the radiation unit 11 is connected to the feed network 3 .
  • the feed network 3 is usually composed of a controlled impedance transmission line.
  • the feed network 3 can feed the signal to the radiation unit 11 according to a certain amplitude and phase, or send the received signal to the base station for signal processing according to a certain amplitude and phase.
  • Unit 60 the feeding network 3 can realize different radiation beam directions through the transmission part 31, or be connected with the calibration network 32 to obtain the calibration signal required by the system.
  • a phase shifter 33 may be included in the feeding network 3 to change the maximum direction of antenna signal radiation.
  • a combiner 34 may also be provided in the feed network 3 (which can be used to combine signals of different frequencies into one channel and transmit them through the antenna 10; or when used in reverse, can be used to combine the signals received by the antenna 10 according to different The frequency is divided into multiple channels and transmitted to the signal processing unit 50 for processing), the filter 35 (for filtering out interference signals) and other modules for expanding performance.
  • the antenna structure provided in the embodiment of the present application may be adapted to the radiation unit 11 of the base station antenna, for example, as a low frequency radiation unit, for decoupling the high frequency radiation unit in the base station antenna.
  • the low-frequency radiation unit forms a strong scattering field in the high-frequency field, and the superposition of the scattering field and the radiation field of the high-frequency radiation unit itself will affect the performance of the high-frequency radiation unit.
  • the embodiment of the present application provides an antenna structure.
  • the antenna structure itself can be used as the low-frequency radiation unit in the base station antenna, and can decouple the high-frequency radiation unit in the base station antenna, that is, reduce the impact of the low-frequency radiation unit on high-frequency radiation. impact on unit performance.
  • the antenna structure includes a radiating unit, the radiating unit includes a radiating arm, and the radiating arm may include a radiating body and a first decoupling element, and the radiating body and the first decoupling element may be arranged along the extending direction of the radiating arm Arranged adjacently to form radial arms.
  • the antenna structure includes a radiating unit, and the radiating unit includes a radiating arm, and the antenna structure may further include a plurality of second decoupling elements, and the second decoupling elements may be arranged along an extending direction of the radiating arm.
  • the radiating arm of the antenna structure can include the radiating body and the first decoupling element, and at the same time, the antenna structure can include multiple second decoupling elements, thus forming yet another possible implementation example.
  • the antenna structure will be described in detail below.
  • Fig. 4 shows a schematic structural diagram of an antenna structure in a possible embodiment of the present application.
  • Fig. 5 shows a schematic structural diagram of a radiation arm of an antenna structure in a possible embodiment of the present application.
  • the radiating arm 100 of the antenna structure may include a radiating body 101 and a first decoupling element 102, and the radiating body 101 and the first decoupling element 102 may be adjacent along the extending direction of the radiating arm 100. It is provided that the radiating body 101 and the first decoupling member 102 are connected to form a whole, that is, the radiating arm 100 , and the radiating body 101 and the first decoupling member 102 can be electrically connected to each other.
  • the number of radiating bodies 101 may be multiple, and the number of first decoupling elements 102 may also be multiple.
  • the radiating bodies 101 and the first decoupling elements 102 are arranged at intervals, and along the extending direction of the radiating arm 100, two successively A first decoupling element 102 is arranged between the arranged radiation bodies 101 .
  • the radiation body 101 may be in the shape of a cuboid.
  • the lengths of the multiple radiation bodies 101 may be the same or different.
  • the first decoupling element 102 may include an inductance, and the number of inductances may be multiple, that is, the inductance between two sequentially arranged radiating bodies 101 along the extending direction of the radiating arm 100 may be one, or may be for multiple.
  • Fig. 6 shows a schematic structural diagram of an inductor of an antenna structure in a possible embodiment of the present application.
  • the inductor 103 may be a helical coil wound from a wire structure.
  • the cross-sectional shape of the linear structure may be circular, or rectangular or triangular.
  • the setting of the inductance 103 is equivalent to loading an inductance for the radiation arm.
  • the impedance of the inductance Z jwL (where j represents an imaginary number, w represents the frequency, and L represents the inductance value), when the frequency w increases, the impedance of the inductance increases accordingly , so that the inductance 103 presents a high-resistance state in the high-frequency band, the induced current generated by the inductance 103 is small, and the radiation energy of the radiation arm as a whole is small.
  • the antenna structure of this embodiment is used as a low-frequency radiation unit in the base station antenna, and its influence on the base station The influence of the performance of the high-frequency radiation unit in the antenna is small, and the decoupling of the high-frequency radiation unit is realized, and the decoupling bandwidth is wide.
  • the axial direction of the inductor 103 may be perpendicular to the extending direction of the radiation body 101 , or may be at other angles.
  • the axes of the multiple inductors 103 may be parallel to each other, or may be arranged at an angle with each other.
  • Fig. 7 shows another structural schematic diagram of the inductance of the antenna structure in a possible embodiment of the present application.
  • the inductor 103 may also be a broken line or a wavy line formed by bending a linear structure.
  • the cross-sectional shape of the linear structure may be circular, or rectangular or triangular.
  • the radiation body 101 can transmit or receive radio frequency signals
  • the first decoupling element 102 can also transmit or receive radio frequency signals.
  • the radiating arm 100 adopts the structural form of a combination of the radiating body 101 and the first decoupling element 102 , the overall size of the radiating arm 100 is relatively large, and the gain of the low frequency radiating unit itself is relatively high.
  • the radiation body 101 and the first decoupling member 102 can be integrally formed by using a non-conductive medium.
  • the radiation body 101 and the first decoupling member 102 may be integrally processed by using a plus etched pattern (PEP) molding process. Electroplating is carried out after integral molding to make the two conductive and realize the electrical connection between the two.
  • PEP plus etched pattern
  • the non-conductive medium can use polyphenylene sulfide and its modified materials, polyphenylene ether and its modified materials, liquid crystal polymers and their modified materials, polyetherimide and its modified materials, syndiotactic polyphenylene oxide Ethylene and its modified materials, cyclic polyolefin and its modified materials, or fluoroplastics and its modified materials, etc.
  • the radiation arm 100 may be disposed on a frame structure 400 .
  • the frame structure 400 may include a first frame 401 and a second frame 402 arranged in parallel, and the radiation arm 100 may be fixedly connected between the first frame 401 and the second frame 402 .
  • the frame structure 400 may be provided with wires to feed the radiation arm 100 through the wires.
  • the radiating arm 100 includes the radiating bodies 101 and the first decoupling elements 102 arranged at intervals, one of the radiating bodies 101 can be fed by a wire, and all the radiating bodies 101 and the first decoupling elements 102 are electrically connected, thereby realizing The entire radiating arm 100 is fed.
  • the radiation body 101 can be connected with the frame structure 400 through a positioning member, and the positioning member can be a pin or the like, so as to realize the fixing of the position of the radiation body 101;
  • the first The decoupling member 102 may also be connected to the frame structure 400 through a positioning member, or the first decoupling member 102 may be connected to an adjacent radiating body 101 so as to fix the position of the first decoupling member 102 .
  • the frame structure 400 can be integrally formed with the radiation body 101 and the first decoupling member 102 to realize the fixing of the positions of the radiation body 101 and the first decoupling member 102.
  • the frame structure 400 and the radiation body 101 and the first decoupling Part 102 adopts the same material.
  • FIG. 8 shows a schematic structural diagram of an antenna structure in another possible embodiment of the present application.
  • the antenna structure includes a radiation unit
  • the radiation unit includes a radiation arm 100
  • the antenna structure may further include a second decoupling member 200
  • the second decoupling member 200 may be arranged on both sides of the radiation arm 100.
  • the second decoupling element 200 may be arranged on at least one side of the radiation arm 100
  • FIG. 8 is only illustrated by taking the second decoupling element 200 may be arranged on both sides of the radiation arm 100 as an example.
  • the number of second decoupling elements 200 on the same side of the radiation arm 100 can be multiple, and the plurality of second decoupling elements 200 can be arranged along the extending direction of the radiation arm 100; the distance between adjacent second decoupling elements 200 can be Same or different.
  • the numbers of the second decoupling elements 200 on both sides of the radiation arm 100 may be the same or different.
  • the radiation arm can be an integral structure, such as a rod-shaped structure, and the radiation arm can be integrally formed with a non-conductive medium, and then electroplated, so that the radiation arm has conductivity.
  • FIG. 9 shows an enlarged view at point A in FIG. 8 .
  • the second decoupling member 200 may include one or more metal sheets 201 (FIG. 9 uses the second decoupling member 200 including multiple metal sheets 201 as an example for illustration), and the material of the metal sheet 201 may be copper, aluminum or silver etc.
  • the second decoupling member 200 includes a plurality of metal sheets 201
  • the plurality of metal sheets 201 may be stacked in a direction perpendicular to the extending direction of the radiation arm 100; the spacing of the stacked metal sheets 201 may be the same, or Different; multiple metal sheets 201 can be arranged parallel to each other.
  • its shape can be rectangle, circle, rectangular ring, circular ring and so on.
  • the metal sheet 201 can be arranged parallel to the radiating arm 100, that is, the plane where the metal sheet 201 is located is parallel to the extending direction of the radiating arm 100, or the metal sheet 201 can be arranged perpendicular to the radiating arm 100, or the metal sheet 201 can also be arranged parallel to the radiating arm 100. 100 is set at other angles.
  • the size of the metal sheet 201 may be configured according to the wavelength of the frequency band of the high-frequency radiation unit additionally existing in the base station antenna, so as to realize decoupling of the high-frequency radiation unit.
  • the size of the radiation arm 100 is matched and set according to the frequency band (eg, 690-960 MHz) of the radiation unit to which the radiation arm 100 belongs.
  • the antenna structure itself is used as the low-frequency radiation unit in the base station antenna, and the antenna structure needs to decouple the radiation unit corresponding to the 2.3-3.8 GHz frequency band, so the size of the metal sheet 201 can be 0.1 times the wavelength of the 2.3-3.8 GHz frequency band.
  • the far-field phase of the scattering field of the radiation arm 100 and the far-field phase of the scattering field of the second decoupling element 200 differ by about 180°.
  • the setting of the decoupling member 200 can suppress the scattering level of the antenna structure in the 2.3-3.8GHz frequency band, that is, effectively reduce the scattering level of the low-frequency radiation unit in the high-frequency band, thereby reducing the impact of the low-frequency radiation unit on the high-frequency radiation of the base station antenna.
  • the influence of the performance of the radiating unit realizes the decoupling of the high-frequency radiating unit.
  • low frequency and high frequency are relative concepts, and the antenna structure of this embodiment itself can be used as the low frequency radiation unit in the base station antenna to decouple the high frequency radiation unit in the base station antenna; the antenna structure itself in this embodiment can also be used as a For the high-frequency radiation unit in the base station antenna, adjust the size of the metal sheet 201 to decouple the higher-frequency radiation unit in the base station antenna.
  • the size of the above-mentioned metal sheet 201 can be the maximum side length of the metal sheet 201, for example, when the metal sheet 201 is a rectangle, the size of the metal sheet 201 can be the length of the long side of the rectangle; when the metal sheet 201 is a circle When shaped, the size of the metal sheet 201 can be the length of the diameter of the circle.
  • the metal sheet 201 may be fixedly connected to the radiation arm 100 through a positioning member, and in a specific implementation, the positioning member may be a pin. At this time, a positioning hole may be provided on the radiation arm 100, and a positioning hole may also be provided on the metal sheet 201. One end of the positioning piece is inserted into the positioning hole on the radiation arm 100, and the other end of the positioning piece is inserted into the metal sheet. 201 , so that the metal sheet 201 is fixedly connected to the radiation arm 100 , that is, the second decoupling element 200 is fixedly connected to the radiation arm 100 . Moreover, the position of the second decoupling member 200 on the radiation arm 100 can be adjusted according to the position of the positioning hole on the radiation arm 100 .
  • the positioning member may also be a screw or a stud.
  • the positioning holes on the radiation arm 100 are threaded holes.
  • the positioning member can also be an element of other structural forms, which is suitable for the connection between the metal sheet 201 and the radiation arm 100 , and will not be listed here.
  • the number of metal sheets 201 included in each second decoupling element 200 may be the same or different; at the same time, the shapes, sizes and angles relative to the radiation arms 100 of the metal sheets 201 included in each second decoupling member 200 may be the same or different.
  • Fig. 10 shows a schematic structural diagram of an antenna structure in another possible embodiment of the present application.
  • Fig. 11 shows a schematic structural diagram of a mounting part of an antenna structure in another possible embodiment of the present application.
  • the antenna structure may further include a mounting part 300 disposed on the radiation arm 100 , and the extending direction of the mounting part 300 may be parallel to the extending direction of the radiation arm 100 .
  • Multiple second decoupling components 200 may be disposed on the mounting component 300 along its own extending direction, so that multiple second decoupling components 200 are disposed on the radiation arm 100 through the mounting component 300 .
  • extension direction of the installation part 300 can be parallel to the extension direction of the radiation arm 100, when multiple second decoupling parts 200 are arranged along the extension direction of the installation part, the extension direction of the multiple second decoupling parts 200 along the radiation arm 100 can be realized. Arranged in the direction of extension.
  • more than one mounting hole 301 may be provided on the mounting part 300.
  • FIG. 301 may be respectively located at two ends of the installation part 300 in the extending direction.
  • the mounting part 300 can be fixedly connected to the radiation arm 100 through the mounting hole 301 and a positioning part matched with the mounting hole 301.
  • the positioning part can be a pin, a screw or a stud.
  • the mounting part 300 can be integrally formed with the radiation arm 100.
  • the mounting part 300 and the radiation arm 100 are made of the same material, and the above-mentioned enhanced etching pattern (PEP) can also be used.
  • the molding process is integrally formed.
  • the mounting hole 301 may not be provided on the mounting member 300 .
  • the mounting part 300 may use a printed circuit board (printed circuit board, PCB), and the metal sheet 201 may be integrally formed on the PCB by a die-cutting process.
  • PCB printed circuit board
  • One layer of PCB can be molded with one metal sheet 201, and can also be formed with multiple metal sheets 201.
  • a plurality of metal sheets 201 are tiled along the extending direction on the PCB, and the plurality of metal sheets 201 constitute a plurality of second decoupling
  • Each second decoupling element 200 includes a metal piece 201 .
  • a plurality of metal sheets 201 are tiled along the extending direction on one layer of PCB, and multi-layer PCBs are stacked to form a plurality of second decoupling members 200, and each second decoupling member 200 includes a plurality of stacked metal sheets 201.
  • the setting of the mounting part 300 can make the plurality of second decoupling parts 200 a whole, so that the relative positions of the multiple second decoupling parts 200 can be stabilized, and can simplify the connection between the multiple second decoupling parts 200 and the radiation arm 100. Connection.
  • the shape of the integrally formed metal sheet 201 on the PCB can be adjusted according to the specific setting of the PCB.
  • the shape of the metal sheet 201 can be a rectangular ring or a circle A ring or the like, thereby adapting to the design of the mounting hole 301, can surround the mounting hole 301 in a ring.
  • the shape of the metal sheet 201 can be a rectangle or a circle, etc.
  • the shape of the metal sheet 201 can also be a rectangular ring or a circular ring.
  • Fig. 12 shows a schematic structural diagram of the antenna structure of another possible embodiment of the present application. This embodiment is different from the technical solution of the aforementioned one and another possible embodiment, and the above two embodiments are mutually One possible scenario cited.
  • the antenna structure in combination with the above, includes a radiating unit, and the radiating unit includes a radiating arm 100.
  • the radiating arm 100 may include a radiating body 101 and a first decoupling member 102.
  • the antenna structure may further include a plurality of second Decoupling 200 .
  • FIG. 12 takes four radiating arms 100 as an example for illustration.
  • the four radiating arms 100 form two pairs of dipoles, and the radiating arms 100 belonging to different dipoles may be perpendicular to each other. All the radiation arms 100 may be arranged in the same plane.
  • the size of the radiating arm 100 matched with antennas of different frequency bands is different, and the size of the radiating arm 100 can be determined according to the corresponding frequency band used.
  • each radiating arm 100 When there are multiple radiating arms 100 , an equal number of frame structures 400 may be provided correspondingly, and each radiating arm 100 is separately arranged on one frame structure 400 .
  • a plurality of frame structures 400 can be connected to each other to form a whole, for example, the first ends of the plurality of frame structures 400 are free, and the second ends of the plurality of frame structures 400 are connected to each other.
  • the second end of the frame structure 400 can be fixedly connected to the balun 500 .
  • the balun 500 can be used as a wire routing carrier, and feeds power to the radiation arm 100 through the wire.
  • the radiating arm 100 includes radiating bodies 101 and decoupling elements 102 arranged at intervals, the radiating bodies 101 can be fed through wires, for example, the radiating bodies 101 near the second end of the frame structure 400 are fed, all the radiating bodies 101 and The decoupling element 102 is electrically connected to feed power to the entire radiation arm 100 . At this time, wires may not be laid on the frame structure 400 .
  • the balun 500 can be provided with a circuit board, or the balun 500 itself can be used as the substrate of the circuit board, in other words, the balun 500 is used as the substrate of the circuit board, and the wiring and Lay out other electronics.
  • the balun 500 can be integrally formed with the frame structure 400, and furthermore, the balun 500 can be integrally formed with the frame structure 400, the radiation body 101 and the decoupling element 102. At this time, the balun 500, the frame structure 400, the radiation The body 101 and the decoupling member 102 are made of the same material.
  • Fig. 13 shows a schematic diagram of a usage scenario of an antenna structure in another possible embodiment of the present application.
  • the balun 500 may be disposed on the reflection plate 12 .
  • the reflector 12 and the radiation unit may form an independent array, and the base station antenna may include multiple independent arrays.
  • the frequency bands corresponding to the radiation units of the multiple independent arrays may be the same or different.
  • the radiating unit can be a low-frequency radiating unit or a high-frequency radiating unit.
  • the antenna structure of this embodiment can be used as a low-frequency radiating unit and form an independent array with the reflector 12, which can decouple high-frequency radiating units of other independent arrays. .
  • a radome 40 may be provided outside the plurality of independent arrays, and the radome 40 protects the independent arrays from the external environment. It can be understood that the radome 40 also has better electromagnetic wave penetration characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种天线结构、基站天线及基站。天线结构包括辐射单元,辐射单元包括辐射臂,辐射臂包括辐射本体和第一去耦件,辐射本体与第一去耦件沿辐射臂的延伸方向相邻设置以组成辐射臂。在采用上述结构时,天线结构自身可以作为基站天线中的低频辐射单元,通过设置第一去耦件为辐射臂加载电感,第一去耦件在高频段呈现高阻状态,第一去耦件产生的感应电流较小,辐射臂整体的辐射能量较小,进而天线结构作为基站天线中的低频辐射单元,其对基站天线中的高频辐射单元性能的影响较小,实现对高频辐射单元去耦。

Description

一种天线结构、基站天线及基站
相关申请的交叉引用
本申请要求在2021年07月02日提交中国专利局、申请号为202110750473.3、申请名称为“一种天线结构、基站天线及基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,尤其涉及一种天线结构、基站天线及基站。
背景技术
在移动通信系统中,天线辐射性能直接决定通信质量,而通过天线方向图可以衡量天线辐射性能。天线方向图的指标主要有增益、副瓣和交叉极化比等。其中,增益表示天线的能量集中程度,增益越高则表示天线能量越集中、辐射距离越远;副瓣指的是天线方向图中除最大辐射方向所在的主瓣外的波瓣,副瓣越大则表示能量浪费得越多,所以副瓣越小越好;交叉极化比指的是两个正交极化天线之间接收能量的差值,交叉极化比越大,分集收益越高,通信质量越好。
当前的通信系统的频段越来越多,需要天线覆盖的频段也就越来越多,同时,天线尺寸越来越小,这就要求天线尺寸做小。在尺寸受限的情况下,多频天线中不同频段的天线之间互耦严重,不同频段的天线的性能均受到影响,天线方向图表现出明显的恶化。比如,多频天线的高、低频单元在阵列中共存,低频单元辐射面尺寸通常为高频单元工作频段对应波长的两倍以上,使得高频单元工作时低频单元的辐射面在高频场内形成较强的散射场,该散射场与高频单元自身的辐射场叠加,影响高频单元的辐射性能,对应地,高频的方向图恶化。
发明内容
本申请提供一种天线结构、基站天线及基站,以减轻基站天线中的低频辐射单元对高频辐射单元性能的影响。
第一方面,本申请提供了一种天线结构,包括辐射单元,辐射单元包括辐射臂,辐射臂包括辐射本体和第一去耦件,辐射本体与第一去耦件沿辐射臂的延伸方向相邻设置以组成辐射臂。
本申请提供的技术方案,天线结构自身可以作为基站天线中的低频辐射单元,第一去耦件的设置相当于为辐射臂加载电感,第一去耦件在高频段呈现高阻状态,第一去耦件产生的感应电流较小,辐射臂整体的辐射能量较小,天线结构作为基站天线中的低频辐射单元,其对基站天线中的高频辐射单元性能的影响较小,实现对高频辐射单元去耦,并且,去耦带宽较宽。此外,辐射臂采用辐射本体和第一去耦件组合的结构形式,辐射臂的整体尺寸较大,对于低频辐射单元自身的增益较高。
在一个具体的可实施方案中,第一去耦件包括电感。电感在高频段呈现高阻状态,产 生的感应电流较小,使得辐射臂整体的辐射能量较小,从而天线结构作为基站天线中的低频辐射单元,其对基站天线中的高频辐射单元性能的影响较小,实现对高频辐射单元去耦。
在具体设置电感时,电感呈螺旋线圈状、折线状或波浪线状。结构比较简单,便于与辐射本体组合配置。
在一个具体的可实施方案中,辐射本体的个数为多个,沿辐射臂的延伸方向依次设置的两个辐射本体之间的第一去耦件包括多个电感。第一去耦件包括的电感的数量较多,相当于增大辐射臂整体所加载的电感,能够提升对高频辐射单元的去耦效果。
在一个具体的可实施方案中,天线结构还包括多个第二去耦件,第二去耦件沿辐射臂的延伸方向设置在辐射臂的至少一侧。第二去耦件散射场的远场相位可以与辐射臂散射场的远场相位形成反相抵消,从而第二去耦件的设置可以抑制低频辐射单元在高频段的散射量级,有效地减小低频辐射单元在高频段的散射量级,减轻低频辐射单元对基站天线中的高频辐射单元性能的影响,实现对高频辐射单元去耦。第二去耦件与第一去耦件的去耦效果叠加,提升天线结构对高频辐射单元的去耦效果。
在具体设置第二去耦件时,第二去耦件包括金属片。结构比较简单,便于调试第二去耦件的去耦效果。
在一个具体的可实施方案中,第二去耦件包括多个金属片,多个金属片沿与辐射臂延伸方向相垂直的方向层叠设置。第二去耦件包括的金属片的数量较多,对高频辐射单元的去耦效果比较显著。
在一个具体的可实施方案中,天线结构还包括安装件,安装件设置在辐射臂上,安装件的延伸方向与辐射臂的延伸方向相互平行;安装件沿延伸方向设置有多个第二去耦件。安装件的设置可以使多个第二去耦件成为一个整体,从而使多个第二去耦件的相对位置稳定,并且可以简化多个第二去耦件与辐射臂的连接。
第二方面,本申请提供了另一种天线结构,包括辐射单元和多个第二去耦件,辐射单元包括辐射臂,第二去耦件沿辐射臂的延伸方向设置。
本申请提供的技术方案,天线结构自身可以作为基站天线中的低频辐射单元,第二去耦件散射场的远场相位可以与辐射臂散射场的远场相位形成反相抵消,从而第二去耦件的设置可以抑制低频辐射单元在高频段的散射量级,有效地减小低频辐射单元在高频段的散射量级,减轻低频辐射单元对基站天线中的高频辐射单元性能的影响,实现对高频辐射单元去耦。
在具体设置第二去耦件时,第二去耦件包括金属片。结构比较简单,便于调试第二去耦件的去耦效果。
在一个具体的可实施方案中,第二去耦件包括多个金属片,多个金属片沿与辐射臂延伸方向相垂直的方向层叠设置。第二去耦件包括的金属片的数量较多,对高频辐射单元的去耦效果比较显著。
在一个具体的可实施方案中,天线结构还包括安装件,安装件设置在辐射臂上,安装件的延伸方向与辐射臂的延伸方向相互平行;安装件沿延伸方向设置有多个第二去耦件。安装件的设置可以使多个第二去耦件成为一个整体,从而使多个第二去耦件的相对位置稳定,并且可以简化多个第二去耦件与辐射臂的连接。
在一个具体的可实施方案中,辐射臂包括辐射本体和第一去耦件,辐射本体与第一去耦件沿辐射臂的延伸方向相邻设置以组成辐射臂。第一去耦件的设置相当于为辐射臂加载 电感,第一去耦件在高频段呈现高阻状态,第一去耦件产生的感应电流较小,辐射臂整体的辐射能量较小,天线结构作为基站天线中的低频辐射单元,其对基站天线中的高频辐射单元性能的影响较小,实现对高频辐射单元去耦,并且,去耦带宽较宽。此外,辐射臂采用辐射本体和第一去耦件组合的结构形式,辐射臂的整体尺寸较大,对于低频辐射单元自身的增益较高。第一去耦件与第二去耦件的去耦效果叠加,提升天线结构对高频辐射单元的去耦效果。
在一个具体的可实施方案中,第一去耦件包括电感。电感在高频段呈现高阻状态,产生的感应电流较小,使得辐射臂整体的辐射能量较小,从而天线结构作为基站天线中的低频辐射单元,其对基站天线中的高频辐射单元性能的影响较小,实现对高频辐射单元去耦。
在具体设置电感时,电感呈螺旋线圈状、折线状或波浪线状。结构比较简单,便于与辐射本体组合配置。
在一个具体的可实施方案中,辐射本体的个数为多个,沿辐射臂的延伸方向依次设置的两个辐射本体之间的第一去耦件包括多个电感。第一去耦件包括的电感的数量较多,相当于增大辐射臂整体所加载的电感,能够提升对高频辐射单元的去耦效果。
第三方面,本申请提供了一种基站天线,包括高频天线结构,以及如前述的天线结构,天线结构用于对高频天线结构去耦。基站天线中的天线结构可以作为低频辐射单元,对高频辐射单元的性能影响较小,实现对高频辐射单元去耦,基站天线整体的天线方向图比较理想,整体性能比较优越。
第四方面,本申请提供了一种基站,包括前述的基站天线。基站天线性能比较优越,基站工作稳定,性能可靠。
附图说明
图1为本申请实施例适用的一种系统架构示意图;
图2为上图所示的一种实施例的基站的天线馈电系统的结构示意图;
图3为本申请一种可能的实施例的基站天线的结构示意图;
图4为本申请一种可能的实施例的天线结构的结构示意图;
图5为本申请一种可能的实施例的天线结构的辐射臂的结构示意图;
图6为本申请一种可能的实施例的天线结构的电感的结构示意图;
图7为本申请一种可能的实施例的天线结构的电感的另一结构示意图;
图8为本申请另一种可能的实施例的天线结构的结构示意图;
图9为图8中A处的放大图;
图10为本申请另一种可能的实施例的天线结构的结构示意图;
图11为本申请另一种可能的实施例的天线结构的安装件的结构示意图;
图12为本申请又一种可能的实施例的天线结构的结构示意图;
图13为本申请又一种可能的实施例的天线结构的使用场景示意图。
附图标记:
10-天线;20-抱杆;30-天线调整支架;40-天线罩;50-射频处理单元;
60-信号处理单元;70-电缆线;11-辐射单元;12-反射板;3-馈电网络;31-传动部件;
32-校准网络;33-移相器;34-合路器;35-滤波器;100-辐射臂;200-第二去耦件;
300-安装件;400-框架结构;500-巴伦;101-辐射本体;102-第一去耦件;103-电感;
201-金属片;301-安装孔;401-第一边框;402-第二边框。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
为了方便理解,首先说明本申请涉及的天线结构的应用场景。
图1示例性示出本申请实施例适用的一种系统架构示意图,如图1所示,该系统架构中可以包括无线接入网设备和终端,如包括但不限于图1所示的基站。无线接入设备和终端之间可以实现无线通信。该无线接入网设备可以位于基站子系统(base btation bubsystem,BBS)、陆地无线接入网(UMTS terrestrial radio access network,UTRAN)或者演进的陆地无线接入网(evolved universal terrestrial radio access,E-UTRAN)中,用于进行无线信号的小区覆盖以实现终端设备与无线网络射频端之间的衔接。具体来说,基站可以是GSM或CDMA系统中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该基站也可以为中继站、接入点、车载设备、可穿戴设备以5G网络中的基站或者未来演进的PLMN网络中的基站等,例如,新无线基站,本申请实施例并不限定。
图2展示了如上图所示的一种实施例的基站的天线馈电系统的结构示意图。基站的天线馈电系统通常可以包括天线10、抱杆20、天线调整支架30等结构。其中,基站的天线10包括天线罩40,天线罩40在电气性能上具有良好的电磁波穿透特性,机械性能上能经受外部恶劣环境的影响,从而可起到保护天线系统免受外部环境影响的作用。天线罩40可通过天线调整支架30安装于抱杆20或者铁塔上,以便于天线10信号的接收或者发射。
另外,基站还可以包括射频处理单元50和信号处理单元60。例如,射频处理单元50可用于对天线10接收到的信号进行选频、放大以及下变频处理,并将其转换成中频信号或基带信号发送给信号处理单元60,或者射频处理单元50用于将信号处理单元60或中频信号经过上变频以及放大处理通过天线10转换成电磁波发送出去。信号处理单元60可通过射频处理单元50与天线10的馈电结构连接,用于对射频处理单元50发送的中频信号或基带信号进行处理。
在一种可能的实施例中,如图2所示,射频处理单元50可与天线10一体设置,信号处理单元60位于天线10的远端。在另外一些实施例中,还可以使射频处理单元50和信号处理单元60同时位于天线10的远端。射频处理单元50与信号处理单元60可以通过电缆线70连接。
更为具体地,可一并参照图2和图3,图3为本申请一种可能的实施例的基站天线的结构示意图。其中,如图3所示,基站的天线10可以包括辐射单元11和反射板12。其中,辐射单元11也可以称为天线振子、振子等,辐射单元11为构成天线阵列的基本结构的单元,它能有效地辐射或接收天线信号。在天线10中,不同辐射单元11的频率可以相同或者不同。反射板12也可以称为底板、天线面板或者金属反射面等,反射板12可以把天线信号反射聚集在接收点上。辐射单元11通常放置于反射板12一侧表面,这不但可以大大增强天线10信号的接收或发射能力,还能够起到阻挡、屏蔽来自反射板12背面(本申请中反射板12的背面是指与反射板12的用于设置辐射单元11相背的一侧)的其它电波对天线信号接收的干扰作用。
在基站的天线10中,辐射单元11与馈电网络3相连接。馈电网络3通常由受控的阻抗传输线构成,馈电网络3可把信号按照一定的幅度、相位馈送到辐射单元11,或者将接收到的信号按照一定的幅度、相位发送到基站的信号处理单元60。另外,馈电网络3可以通过传动部件31实现不同辐射波束指向,或者与校准网络32连接以获取系统所需的校准信号。在馈电网络3中可以包括移相器33,以用来改变天线信号辐射的最大方向。在馈电网络3中还可能设置有合路器34(可用于把不同频率的信号合成一路,通过天线10发射;或者反向使用时,可以用于将天线10接收到的信号,根据不同的频率分成多路传输到信号处理单元50进行处理)、滤波器35(用于滤除干扰信号)等用于扩展性能的模块。
本申请实施例提供的天线结构可以适配于基站天线的辐射单元11,例如作为低频辐射单元,用于为基站天线中的高频辐射单元去耦。目前的基站天线,高频辐射单元工作时,低频辐射单元在高频场内形成较强的散射场,该散射场与高频辐射单元自身的辐射场叠加会影响高频辐射单元的性能。
基于此,本申请实施例提供了一种天线结构,天线结构自身可以作为基站天线中的低频辐射单元,且可以对基站天线中的高频辐射单元去耦,即减轻低频辐射单元对高频辐射单元性能的影响。
作为一种可能的实施例,天线结构包括辐射单元,辐射单元包括辐射臂,并且,辐射臂可以包括辐射本体和第一去耦件,辐射本体与第一去耦件可以沿辐射臂的延伸方向相邻设置以组成辐射臂。
作为另一种可能的实施例,天线结构包括辐射单元,辐射单元包括辐射臂,并且,天线结构可以还包括多个第二去耦件,第二去耦件可以沿辐射臂的延伸方向设置。
上述两种实施例可以互相引用,即天线结构的辐射臂可以包括辐射本体和第一去耦件,同时,天线结构可以包括多个第二去耦件,由此可以形成又一种可能的实施例。以下对天线结构进行详细说明。
图4示出了本申请一种可能的实施例的天线结构的结构示意图。图5示出了本申请一种可能的实施例的天线结构的辐射臂的结构示意图。一并参考图4和图5所示,天线结构的辐射臂100可以包括辐射本体101和第一去耦件102,辐射本体101和第一去耦件102可以沿辐射臂100的延伸方向相邻设置,辐射本体101和第一去耦件102相互连接构成一个整体,即为辐射臂100,且辐射本体101和第一去耦件102可以相互电性连接。辐射本体101的个数可以为多个,第一去耦件102的个数也可以为多个,辐射本体101和第一去耦件102间隔布置,沿辐射臂100的延伸方向,两个依次设置的辐射本体101之间设置有第一去耦件102。
在具体实施中,辐射本体101可以为长方体状,辐射本体101为多个时,多个辐射本体101的长度可以相同,也可以不同。
在具体实施中,第一去耦件102可以包括电感,电感的个数可以为多个,即沿辐射臂100的延伸方向两个依次设置的辐射本体101之间的电感可以为一个,也可以为多个。
图6示出了本申请一种可能的实施例的天线结构的电感的结构示意图。参考图6所示,电感103可以是由线状结构绕制而成的螺旋线圈。其中,线状结构的横截面形状可以为圆形,也可以为矩形或三角形等形状。电感103的设置相当于为辐射臂加载电感,根据电感的阻抗Z=jwL(其中,j表示虚数,w表示频率,L表示电感值),当频率w升高时,电感的阻抗随之增大,从而电感103在高频段呈现高阻状态,电感103产生的感应电流较小, 辐射臂整体的辐射能量较小,进而,本实施例的天线结构作为基站天线中的低频辐射单元,其对基站天线中的高频辐射单元性能的影响较小,实现对高频辐射单元去耦,且去耦带宽较宽。
在具体实施中,以电感103为螺旋线圈为例,电感103的轴向可以与辐射本体101的延伸方向相互垂直,也可以呈其他角度。当相邻辐射本体101之间的电感103为多个时,该多个电感103的轴向可以相互平行,也可以互呈夹角设置。
图7示出了本申请一种可能的实施例的天线结构的电感的另一结构示意图。参考图7所示,电感103也可以是由线状结构弯折而成的折线或波浪线等。相似地,线状结构的横截面形状可以为圆形,也可以为矩形或三角形等形状。
需要说明的是,辐射本体101可以发射或接收射频信号,第一去耦件102也可以发射或接收射频信号。并且,辐射臂100采用辐射本体101和第一去耦件102组合的结构形式,辐射臂100的整体尺寸较大,对于低频辐射单元自身的增益较高。
在结构层面,辐射本体101与第一去耦件102可以采用非导电介质一体成型。具体实施时,可以采用增强式蚀刻模型(plus etched pattern,PEP)成型工艺一体加工辐射本体101和第一去耦件102。一体成型后进行电镀,使二者具有导电性,实现二者相互电性连接。其中,非导电介质可以采用聚苯硫醚及其改性材料、聚苯醚及其改性材料、液晶高分子及其改性材料、聚醚酰亚胺及其改性材料、间规聚苯乙烯及其改性材料、环状聚烯烃及其改性材料或者氟塑料及其改性材料等。
再次参考图4,在一种实施方式中,辐射臂100可以设置在框架结构400上。框架结构400可以包括平行设置的第一边框401和第二边框402,辐射臂100可以固定连接在第一边框401和第二边框402之间。框架结构400上可以设置有导线,通过导线为辐射臂100馈电。当辐射臂100包括间隔布置的辐射本体101和第一去耦件102时,可以通过导线为其中一个辐射本体101馈电,全部的辐射本体101和第一去耦件102电性连接,从而实现为整个辐射臂100馈电。
当辐射臂100包括间隔布置的辐射本体101和第一去耦件102时,辐射本体101可以通过定位件与框架结构400连接,定位件可以为销钉等,实现辐射本体101位置的固定;第一去耦件102也可以通过定位件与框架结构400连接,或者,第一去耦件102可以与相邻的辐射本体101连接,实现第一去耦件102位置的固定。或者,框架结构400可以与辐射本体101及第一去耦件102一体成型,实现辐射本体101和第一去耦件102位置的固定,此时,框架结构400与辐射本体101及第一去耦件102采用相同材质。
图8示出了本申请另一种可能的实施例的天线结构的结构示意图,这种实施例与前述所描述的一种可能的实施例的技术方案不同,但是两种实施例可以相互引用。如图8所示,天线结构包括辐射单元,辐射单元包括辐射臂100,天线结构还可以包括第二去耦件200,第二去耦件200可以设置在辐射臂100两侧,需要说明的是在实际运用中,第二去耦件200可以设置在辐射臂100的至少一侧,图8只是以第二去耦件200可以设置在辐射臂100两侧为例进行说明。辐射臂100同一侧的第二去耦件200的数量可以为多个,该多个第二去耦件200可以沿辐射臂100的延伸方向排布;相邻第二去耦件200的间距可以相同,也可以不同。当辐射臂100两侧均设置有多个第二去耦件200时,辐射臂100两侧的第二去耦件200的数量可以相同,也可以不同。辐射臂可以为一体式结构,例如杆状结构,辐射臂可以采用非导电介质整体成型,而后进行电镀,从而辐射臂具有导电性。
图9示出了图8中A处的放大图。参考图9所示,第二去耦件200可以包括一个或多个金属片201(图9以第二去耦件200包括多个金属片201为例进行说明),金属片201的材质可以为铜、铝或银等。当第二去耦件200包括多个金属片201时,多个金属片201可以沿与辐射臂100延伸方向相垂直的方向层叠设置;层叠设置的多个金属片201的间距可以相同,也可以不同;多个金属片201可以相互平行设置。对于单个金属片201而言,其形状可以为矩形、圆形、矩形环、圆环等。金属片201可以平行于辐射臂100设置,即金属片201所在平面与辐射臂100的延伸方向相互平行,或者,金属片201可以垂直于辐射臂100设置,或者,金属片201也可以与辐射臂100呈其他角度设置。
在具体实施中,金属片201的尺寸可以根据基站天线中另外存在的高频辐射单元的频段的波长进行配置,以实现对高频辐射单元去耦。例如,在一种实施方式中,辐射臂100的尺寸根据辐射臂100所属的辐射单元的频段(例如690-960MHz)进行匹配设置。天线结构自身作为基站天线中的低频辐射单元,需要天线结构对2.3~3.8GHz频段所对应的辐射单元去耦,则金属片201的尺寸可以为2.3~3.8GHz频段波长的0.1倍。此时,辐射臂100散射场的远场相位和第二去耦件200散射场的远场相位相差约180°,二者几乎为反相,由此二者可以形成反相抵消,从而第二去耦件200的设置可以抑制天线结构在2.3~3.8GHz频段的散射量级,即有效地减小低频辐射单元在高频段的散射量级,从而可以减轻低频辐射单元对基站天线中的高频辐射单元性能的影响,实现对高频辐射单元去耦。
可以理解,低频与高频为相对概念,本实施例的天线结构自身可以作为基站天线中的低频辐射单元,对基站天线中的高频辐射单元去耦;本实施例的天线结构自身也可以作为基站天线中的高频辐射单元,调试金属片201的尺寸,实现对基站天线中的更高频辐射单元去耦。
需要说明的是,上述的金属片201尺寸可以为金属片201的最大边长,例如,当金属片201为矩形时,金属片201尺寸可以为矩形的长边的长度;当金属片201为圆形时,金属片201尺寸可以为圆形的直径的长度。
金属片201可以通过定位件固定连接在辐射臂100上,在一种具体实施中,定位件可以为销钉。此时,辐射臂100上可以设置有定位孔,金属片201上也可以设置有定位孔,定位件的一端插接在辐射臂100上的定位孔内,定位件的另一端插接在金属片201上的定位孔内,从而实现金属片201固定连接在辐射臂100上,即实现第二去耦件200固定连接在辐射臂100上。并且,第二去耦件200在辐射臂100上的位置可以根据辐射臂100上的定位孔的位置而进行调整。在另一种具体实施中,定位件也可以为螺钉或螺柱。此时,辐射臂100上的定位孔为螺纹孔。定位件还可以为其他结构形式的元件,适用于金属片201与辐射臂100的连接即可,此处不作一一列举。
当辐射臂100同一侧设置有多个第二去耦件200时,单个辐射臂100同一侧的多个第二去耦件200中,各个第二去耦件200所包括的金属片201的数量可以相同,也可以不同;同时,各个第二去耦件200所包括的金属片201的形状、尺寸以及相对于辐射臂100的设置角度可以相同,也可以不同。
图10示出了本申请另一种可能的实施例的天线结构的结构示意图。图11示出了本申请另一种可能的实施例的天线结构的安装件的结构示意图。一并参考图10和图11所示,天线结构还可以包括安装件300,安装件300设置在辐射臂100上,安装件300的延伸方向可以与辐射臂100的延伸方向相互平行。安装件300上沿自身延伸方向可以设置有多个 第二去耦件200,从而多个第二去耦件200通过安装件300设置在辐射臂100上。由于安装件300的延伸方向可以与辐射臂100的延伸方向相互平行,多个第二去耦件200沿安装件的延伸方向设置时,可以实现多个第二去耦件200沿辐射臂100的延伸方向排布。
在一些实施例中,安装件300上可以设置有一个以上安装孔301,图11以安装件300上设置有四个第二去耦件、两个安装孔301为例进行说明,两个安装孔301可以分别位于安装件300延伸方向上的两端。安装件300可以通过安装孔301及与安装孔301匹配的定位件固定连接在辐射臂100上,具体实施时,该定位件可以为销钉、螺钉或螺柱等。
在其他一些实施例中,安装件300可以与辐射臂100一体成型,此时,安装件300与辐射臂100采用相同材质,二者也可以采用前述的增强式蚀刻模型(plus etched pattern,PEP)成型工艺一体成型。此时,安装件300上可不必设置安装孔301。
在具体实施中,安装件300可以采用印刷电路板(printed circuit board,PCB),可以采用模切工艺将金属片201一体成型在PCB上。一层PCB可以成型有一个金属片201,也可以成型有多个金属片201,例如,PCB上沿延伸方向平铺多个金属片201,该多个金属片201即构成多个第二去耦件200,每个第二去耦件200包括一个金属片201。或者,一层PCB上沿延伸方向平铺多个金属片201,多层PCB层叠设置,构成多个第二去耦件200,且每个第二去耦件200包括多个层叠设置的金属片201。安装件300的设置,可以使多个第二去耦件200成为一个整体,从而使多个第二去耦件200的相对位置稳定,并且可以简化多个第二去耦件200与辐射臂100的连接。
在具体实施中,在PCB上一体成型的金属片201的形状可以根据PCB的具体设置情况而进行调整,例如,当PCB上成型有安装孔301时,金属片201的形状可以为矩形环或圆环等,由此适应安装孔301的设计,可以将安装孔301围绕在环形内。当PCB上未成型有安装孔301时,金属片201的形状可以为矩形或圆形等,当然,此时金属片201的形状也可以为矩形环或圆环等。
图12示出了本申请又一种可能的实施例的天线结构的结构示意图,这种实施例与前述的一种及另一种可能的实施例的技术方案不同,是上述两种实施例相互引用的一种可能的方案。参考图12所示,结合上述,天线结构包括辐射单元,辐射单元包括辐射臂100,辐射臂100可以包括辐射本体101和第一去耦件102,此时,天线结构可以还包括多个第二去耦件200。
在一种实施方式中,辐射臂100可以为偶数个。其中,两个辐射臂100形成一对偶极子,该两个辐射臂100可以成180°设置。图12以辐射臂100的个数为四个为例进行说明,四个辐射臂100形成两对偶极子,属于不同偶极子的辐射臂100可以相互垂直。全部的辐射臂100可以设置在同一平面内。不同频段的天线所匹配使用的辐射臂100的尺寸不同,可以根据对应运用的频段确定辐射臂100的尺寸。当辐射臂100为多个时,可以对应设置等数量的框架结构400,每个辐射臂100单独设置在一个框架结构400上。多个框架结构400可以相互连接成为一个整体,例如,多个框架结构400的第一端自由,第二端相互连接。
在一些实施例中,框架结构400的第二端可以固定连接在巴伦500上。巴伦500可以作为导线的走线载体,通过导线为辐射臂100馈电。当辐射臂100包括间隔布置的辐射本体101和去耦件102时,可以通过导线为辐射本体101馈电,例如,为靠近框架结构400第二端的辐射本体101馈电,全部的辐射本体101和去耦件102电性连接,实现为整个辐 射臂100馈电。此时,框架结构400上可以不必布设导线。
在其他一些实施例中,巴伦500上可以设置有电路板,或者,巴伦500本身可以作为电路板的基板,换言之,以巴伦500为电路板的基板,在巴伦500上进行布线及布设其他电子器件。
在具体实施中,巴伦500可以与框架结构400一体成型,进而,巴伦500可以与框架结构400、辐射本体101及去耦件102一体成型,此时,巴伦500与框架结构400、辐射本体101及去耦件102采用相同材质。
图13示出了本申请又一种可能的实施例的天线结构的使用场景示意图。参考图13所示,巴伦500可以设置在反射板12上。反射板12可以与辐射单元形成独立阵列,基站天线可以包括多个独立阵列。并且,多个独立阵列的辐射单元对应的频段可以相同,也可以不同。辐射单元可以是低频辐射单元,也可以是高频辐射单元,例如,本实施例的天线结构可以作为低频辐射单元而与反射板12形成独立阵列,可以对其他独立阵列的高频辐射单元去耦。
在具体实施中,多个独立阵列的外部可以设置有天线罩40,天线罩40保护独立阵列免受外部环境影响,可以理解,天线罩40同时具有较好的电磁波穿透特性。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。

Claims (18)

  1. 一种天线结构,其特征在于,包括辐射单元,所述辐射单元包括辐射臂,所述辐射臂包括辐射本体和第一去耦件,所述辐射本体与所述第一去耦件沿所述辐射臂的延伸方向相邻设置以组成所述辐射臂。
  2. 如权利要求1所述的天线结构,其特征在于,所述第一去耦件包括电感。
  3. 如权利要求2所述的天线结构,其特征在于,所述电感呈螺旋线圈状、折线状或波浪线状。
  4. 如权利要求1~3任一所述的天线结构,其特征在于,所述辐射本体的个数为多个,沿所述辐射臂的延伸方向依次设置的两个所述辐射本体之间的所述第一去耦件包括多个电感。
  5. 如权利要求1~4任一所述的天线结构,其特征在于,还包括多个第二去耦件,所述第二去耦件沿所述辐射臂的延伸方向设置在所述辐射臂的至少一侧。
  6. 如权利要求5所述的天线结构,其特征在于,所述第二去耦件包括金属片。
  7. 如权利要求6所述的天线结构,其特征在于,所述第二去耦件包括多个金属片,所述多个金属片沿与所述辐射臂延伸方向相垂直的方向层叠设置。
  8. 如权利要求5~7任一所述的天线结构,其特征在于,还包括安装件,所述安装件设置在所述辐射臂上,所述安装件的延伸方向与所述辐射臂的延伸方向相互平行;
    所述安装件沿延伸方向设置有所述多个第二去耦件。
  9. 一种天线结构,其特征在于,包括辐射单元和多个第二去耦件,所述辐射单元包括辐射臂,所述第二去耦件沿所述辐射臂的延伸方向设置。
  10. 如权利要求9所述的天线结构,其特征在于,所述第二去耦件包括金属片。
  11. 如权利要求10所述的天线结构,其特征在于,所述第二去耦件包括多个金属片,所述多个金属片沿与所述辐射臂延伸方向相垂直的方向层叠设置。
  12. 如权利要求9~11任一所述的天线结构,其特征在于,还包括安装件,所述安装件设置在所述辐射臂上,所述安装件的延伸方向与所述辐射臂的延伸方向相互平行;
    所述安装件沿延伸方向设置有所述多个第二去耦件。
  13. 如权利要求9~12任一所述的天线结构,其特征在于,所述辐射臂包括辐射本体和第一去耦件,所述辐射本体与所述第一去耦件沿所述辐射臂的延伸方向相邻设置以组成所述辐射臂。
  14. 如权利要求13所述的天线结构,其特征在于,所述第一去耦件包括电感。
  15. 如权利要求14所述的天线结构,其特征在于,所述电感呈螺旋线圈状、折线状或波浪线状。
  16. 如权利要求13~15任一所述的天线结构,其特征在于,所述辐射本体的个数为多个,沿所述辐射臂的延伸方向依次设置的两个所述辐射本体之间的所述第一去耦件包括多个电感。
  17. 一种基站天线,其特征在于,包括高频天线结构,以及如权利要求1~16任一所述的天线结构,所述天线结构用于对所述高频天线结构去耦。
  18. 一种基站,其特征在于,包括如权利要求17所述的基站天线。
PCT/CN2022/101642 2021-07-02 2022-06-27 一种天线结构、基站天线及基站 WO2023274173A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110750473.3 2021-07-02
CN202110750473.3A CN115566423A (zh) 2021-07-02 2021-07-02 一种天线结构、基站天线及基站

Publications (1)

Publication Number Publication Date
WO2023274173A1 true WO2023274173A1 (zh) 2023-01-05

Family

ID=84690085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101642 WO2023274173A1 (zh) 2021-07-02 2022-06-27 一种天线结构、基站天线及基站

Country Status (2)

Country Link
CN (1) CN115566423A (zh)
WO (1) WO2023274173A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117543200A (zh) * 2024-01-09 2024-02-09 电子科技大学 一种三维集成的毫米波全金属相控阵封装天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120001803A1 (en) * 2010-07-02 2012-01-05 Jen-Min Shau Wideband Antenna
CN108281757A (zh) * 2017-01-06 2018-07-13 罗森伯格技术(昆山)有限公司 用于高频去藕的基站天线
CN210443665U (zh) * 2019-10-21 2020-05-01 南京澳博阳射频技术有限公司 一种880-960MHz带滤波特性的辐射单元及基站天线
CN111613883A (zh) * 2020-06-30 2020-09-01 京信通信技术(广州)有限公司 低频辐射单元和天线
CN111786112A (zh) * 2020-06-22 2020-10-16 华南理工大学 一种具有交叉频带散射抑制功能的多频带天线
CN112952371A (zh) * 2021-03-02 2021-06-11 摩比天线技术(深圳)有限公司 低频辐射单元及可分离的多频基站天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120001803A1 (en) * 2010-07-02 2012-01-05 Jen-Min Shau Wideband Antenna
CN108281757A (zh) * 2017-01-06 2018-07-13 罗森伯格技术(昆山)有限公司 用于高频去藕的基站天线
CN210443665U (zh) * 2019-10-21 2020-05-01 南京澳博阳射频技术有限公司 一种880-960MHz带滤波特性的辐射单元及基站天线
CN111786112A (zh) * 2020-06-22 2020-10-16 华南理工大学 一种具有交叉频带散射抑制功能的多频带天线
CN111613883A (zh) * 2020-06-30 2020-09-01 京信通信技术(广州)有限公司 低频辐射单元和天线
CN112952371A (zh) * 2021-03-02 2021-06-11 摩比天线技术(深圳)有限公司 低频辐射单元及可分离的多频基站天线

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117543200A (zh) * 2024-01-09 2024-02-09 电子科技大学 一种三维集成的毫米波全金属相控阵封装天线
CN117543200B (zh) * 2024-01-09 2024-03-19 电子科技大学 一种三维集成的毫米波全金属相控阵封装天线

Also Published As

Publication number Publication date
CN115566423A (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
CN111864367A (zh) 低频辐射单元及基站天线
US11165136B2 (en) Flex integrated antenna array
US8098199B2 (en) Array antenna apparatus including multiple steerable antennas and capable of avoiding affection among steerable antennas
US8878737B2 (en) Single feed planar dual-polarization multi-loop element antenna
US6816124B2 (en) Linearly-polarized dual-band base-station antenna
WO2019010051A1 (en) NARROWBAND RADIANT ELEMENTS WITH ULTRA-WIDE BAND WIDTH
US20230223709A1 (en) Antenna device, array of antenna devices, and base station with antenna device
US20230335902A1 (en) Multi-band antenna and communication device
CN113036400A (zh) 辐射元件、天线组件和基站天线
US11831085B2 (en) Compact antenna radiating element
WO2023274173A1 (zh) 一种天线结构、基站天线及基站
US11695197B2 (en) Radiating element, antenna assembly and base station antenna
US10211538B2 (en) Directional antenna apparatus and methods
JP2020098999A (ja) アンテナ装置および無線端末
CN211045708U (zh) 辐射元件、天线组件和基站天线
WO2021130844A1 (ja) アンテナ装置および測定システム
WO2024021780A1 (zh) 一种天线和通信设备
WO2023051471A1 (zh) 一种天线系统及基站天馈系统
WO2023207916A1 (zh) 基站天线以及基站
CN220553598U (zh) 一种天线单元、天线及基站
KR102529334B1 (ko) Mimo 안테나 및 이를 포함하는 mimo 안테나 장치
EP4246712A1 (en) Antenna module and manufacturing method thereof
WO2024051773A1 (zh) 基站天线和基站
WO2024050703A1 (zh) 一种天线及通信设备
WO2022095981A1 (zh) 多频段融合天线组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22831987

Country of ref document: EP

Kind code of ref document: A1