WO2023051472A1 - 一种天线及基站天馈系统 - Google Patents

一种天线及基站天馈系统 Download PDF

Info

Publication number
WO2023051472A1
WO2023051472A1 PCT/CN2022/121394 CN2022121394W WO2023051472A1 WO 2023051472 A1 WO2023051472 A1 WO 2023051472A1 CN 2022121394 W CN2022121394 W CN 2022121394W WO 2023051472 A1 WO2023051472 A1 WO 2023051472A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
cavity
phase shifter
phase
reflector
Prior art date
Application number
PCT/CN2022/121394
Other languages
English (en)
French (fr)
Inventor
陈斌
刘子晖
张黎
崔鹤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023051472A1 publication Critical patent/WO2023051472A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means

Definitions

  • the present application relates to the technical field of communications, specifically an antenna and a base station antenna feeder system.
  • base stations can support more and more communication frequency bands, so more and more radiation units and phase shifters are required for base station antennas, resulting in more and more complex antenna structures. Since the sky space of the operator's site is limited, when setting the radiation unit of the base station antenna, the radiation unit can be set in a nested or stacked manner.
  • the reflector In the base station antenna in the prior art, components such as the radiation unit and the phase shifter of the base station antenna are all arranged on the reflector, and then the reflector is fixedly connected to the pole. In this case, the reflector bears the weight of various components such as the radiation unit of the antenna and the phase shifter.
  • the reflector itself is a plate-shaped structure, which is prone to deformation or cracking when it is under a large force. These problems will be further aggravated if the reflector vibrates due to factors such as the external environment. In addition, the connection between the reflector and the pole is also prone to damage due to excessive force. All of these will cause damage to the base station antenna, or performance degradation of the base station antenna.
  • the present application provides an antenna and a base station antenna feed system to improve the structural stability of the antenna installation, make the antenna less prone to damage, increase the service life of the antenna, and ensure the antenna performance of the base station.
  • the present application provides an antenna.
  • the antenna includes a first phase shifter, and the first phase shifter includes a cavity and a phase shifting circuit.
  • the above-mentioned phase shifting circuit is arranged in the cavity.
  • the cavity is connected with a mounting structure, and the mounting structure is used for connecting with the pole.
  • the cavity of the first phase shifter is used as the frame of the antenna, and the cavity of the first phase shifter is mounted to the pole by using a mounting structure, so that the cavity can support the entire antenna.
  • the cavity of the first phase shifter is used as the stressed skeleton of the antenna, and the cavity is used to carry the weight of the antenna itself, which is conducive to improving the stability of the antenna installation structure, making the antenna less prone to damage and improving the service life of the antenna , to ensure the antenna performance of the base station.
  • the above-mentioned antenna may further include a reflector, and the reflector is connected to the cavity.
  • the arrangement of the reflector is beneficial to increase the gain of the antenna, and the reflector is connected to the cavity, and the cavity is connected to the pole, so there is no need to use the reflector to transfer the weight of the antenna. Therefore, this solution can reduce the probability of the reflector being damaged, improve the working performance and service life of the reflector, and increase the service life of the antenna.
  • the cavity may be a strip-shaped cavity.
  • the reflecting plates respectively extend along the first direction and the second direction, and the first direction and the second direction are perpendicular to each other.
  • the length of the reflecting plate along the first direction is greater than the length of the second direction.
  • the reflective plate as a rectangle as an example, the long side of the rectangular reflective plate extends along the first direction, and the wide side extends along the second direction.
  • the extending direction of the strip-shaped cavity is consistent with the first direction.
  • the strength of the reflector is poor in the longer direction. Therefore, the strength of the reflector can be improved to a large extent by fixedly connecting the strip-shaped cavity to the reflector along the first direction of the reflector.
  • the reflecting plate includes a first side and a second side extending along the first square, and the first side and the second side are oppositely arranged.
  • the first side and the second side are two long sides of the rectangle.
  • the first side and the second side are respectively connected to the strip-shaped cavity. That is to say, the strip-shaped cavity is disposed on the edge of the reflector.
  • This solution can reduce the impact of the cavity on the working state of the reflector.
  • the cavity is located on the edge of the reflector, which is also conducive to avoiding the radiation signal generated by the antenna, reducing the insertion loss of the antenna, and improving the gain of the antenna.
  • the length of the strip-shaped cavity along the first direction is equal to the length of the reflecting plate along the first direction.
  • the strip-shaped cavity in this solution can provide relatively comprehensive support for the reflector to improve the strength of the antenna frame.
  • the structure of the antenna can be made relatively regular.
  • the number of the first phase shifters of the antenna is not limited, and may be specifically set according to actual requirements.
  • the antenna above includes at least two first phase shifters, and the at least two first phase shifters are divided into two groups.
  • the numbers of the two groups of first phase shifters may be the same or different, which is not limited in this application.
  • the even number of first phase shifters can be equally divided into two groups of first phase shifters; in other embodiments, the number of two groups of first phase shifters is also Can be different.
  • the cavities of the first phase shifters in each group have an integral structure. Therefore, each group of first phase shifters supports the antenna as a whole, which improves the strength of the antenna support structure, and further improves the reliability of the antenna support structure.
  • the even number of first phase shifters is symmetrically arranged on the reflector. That is to say, the even-numbered first phase shifters are evenly divided into two groups of first phase shifters, and the two groups of first phase shifters are symmetrically arranged on the reflecting plate.
  • the antenna may further include a second phase shifter, and the second phase shifter is tiled on the surface of the reflector.
  • the second phase shifter is arranged in tiles, less space is occupied in the height direction, which is beneficial to reduce the thickness of the antenna and improve the wind load and size competitiveness of the antenna.
  • the antenna above also includes a radiation unit connected to the cavity.
  • the radiation unit is directly arranged in the cavity, and the cavity can be used to directly bear the weight of the radiation unit.
  • the radiation unit is directly connected to the cavity, so the connection path is short, which can reduce the loss of the connection path and increase the gain of the antenna.
  • the antenna further includes a radome and a radiation unit, and the first phase shifter and the radiation unit are arranged in the radome.
  • the radiation unit is connected with the cavity, and the inner wall of the radome has a reflective layer.
  • the reflective layer is directly formed on the inner wall of the radome without additional reflectors, and the cost of the antenna is relatively low.
  • the cavities in the above embodiments are strip-shaped cavities, and multiple radiation units can form a linear array antenna system.
  • the extension direction of the strip-shaped cavity is consistent with the extension direction of the linear array antenna system.
  • the length of the strip-shaped cavity in the extending direction may be greater than or equal to the length of the linear array antenna system in the extending direction.
  • the present application also provides a base station antenna feeder system.
  • the base station antenna feeder system includes the above-mentioned antenna of the first aspect and a pole, and the installation structure of the above-mentioned antenna is connected to the pole.
  • the cavity of the first phase shifter is used to bear the weight of the antenna, which is conducive to improving the stability of the antenna installation structure, making the antenna less likely to be damaged, improving the service life of the antenna, and ensuring the antenna performance of the base station.
  • FIG. 1 is a schematic diagram of a system architecture applicable to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a base station antenna feeder system in a possible embodiment of the present application
  • FIG. 3 is a schematic diagram of the composition of an antenna in a possible embodiment of the present application.
  • FIG. 4 is a side sectional view of an antenna in a possible embodiment of the present application.
  • FIG. 5 is a top view of the interior of the antenna in a possible embodiment of the present application.
  • FIG. 6 is a top view of the interior of an antenna in another possible embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an antenna in another possible embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an antenna in another possible embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an antenna in another possible embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an antenna in another possible embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an antenna in another possible embodiment of the present application.
  • FIG. 12 is a schematic diagram of the internal structure of the antenna in another possible embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of an antenna according to another possible embodiment of the present application.
  • FIG. 1 exemplarily shows that, as shown in FIG. 1 , the application scenario may include a base station and a terminal. Wireless communication can be realized between the base station and the terminal.
  • the base station may be located in a base station subsystem (base btation bubsystem, BBS), a terrestrial radio access network (UMTS terrestrial radio access network, UTRAN) or an evolved terrestrial radio access network (evolved universal terrestrial radio access, E-UTRAN), Cell coverage for wireless signals to enable communication between terminal equipment and wireless networks.
  • base station subsystem base btation bubsystem, BBS
  • UMTS terrestrial radio access network UTRAN
  • E-UTRAN evolved terrestrial radio access network
  • the base station can be a base transceiver station (BTS) in a global system for mobile communication (GSM) or (code division multiple access, CDMA) system, or a wideband code division multiple access (CDMA) system.
  • BTS base transceiver station
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • CDMA wideband code division multiple access
  • address (wideband code division multiple access, WCDMA) system Node B (NodeB, NB) can also be long term evolution (long term evolution, LTE) evolution type Node B (eNB or eNodeB) system, or It may be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • LTE long term evolution
  • eNB evolution type Node B
  • CRAN cloud radio access network
  • the base station can also be a relay station, an access point, a vehicle-mounted device, a wearable device, and a g-node (gNodeB or gNB) in a new radio (NR) system or a base station in a future evolved network. Examples are not limited.
  • FIG. 2 shows a possible structural schematic diagram of a base station antenna feeding system.
  • a base station antenna feeding system may generally include structures such as an antenna 1 , a pole 2 , and an antenna adjustment bracket 3 .
  • the antenna 1 of the base station includes a radome 11.
  • the radome 11 has good electromagnetic wave penetration characteristics in terms of electrical performance, and can withstand the influence of harsh external environments in terms of mechanical properties, thereby protecting the antenna system from external environmental influences. effect.
  • the antenna 1 can be installed on the pole 2 or the iron tower through the antenna adjustment bracket 3, so as to receive or transmit signals from the antenna 1.
  • the base station may further include a radio frequency processing unit 5 and a baseband processing unit 6 .
  • the radio frequency processing unit 5 can be used to perform frequency selection, amplification and down-conversion processing on the signal received by the antenna 1, and convert it into an intermediate frequency signal or a baseband signal and send it to the baseband processing unit 6, or the radio frequency processing unit 5 is used to convert The baseband processing unit 6 or the intermediate frequency signal is converted into electromagnetic waves through the antenna 1 and sent out after up-conversion and amplification processing.
  • the baseband processing unit 6 can be connected to the feeding network of the antenna 1 through the radio frequency processing unit 5 .
  • the radio frequency processing unit 5 may also be called a remote radio unit (remote radio unit, RRU), and the baseband processing unit 6 may also be called a baseband unit (BBU).
  • RRU remote radio unit
  • BBU baseband unit
  • the radio frequency processing unit 5 may be integrated with the antenna 1 , and the baseband processing unit 6 is located at the far end of the antenna 1 . In some other embodiments, the radio frequency processing unit 5 and the baseband processing unit 6 may also be located at the far end of the antenna 1 at the same time.
  • the radio frequency processing unit 5 and the baseband processing unit 6 can be connected through a cable 7 .
  • FIG. 2 and FIG. 3 may be referred to together, and FIG. 3 is a schematic composition diagram of an antenna in a possible embodiment of the present application.
  • the antenna 1 of the base station may include a first radiation unit 12 and a reflection plate 13 .
  • the first radiating unit here generally refers to all radiating units, and the above-mentioned "first” has no special limitation on the characteristics of the radiating unit, for example, it may include the first radiating unit 12 and The second radiating unit 12' and so on.
  • the above-mentioned first radiating unit 12 may also be referred to as an antenna element, a vibrator, etc.
  • the first radiating unit 12 is a unit constituting the basic structure of the antenna array, which can effectively send or receive antenna signals.
  • the frequencies of different first radiating elements 12 may be the same or different.
  • the reflecting plate 13 may also be called a bottom plate, an antenna panel, or a reflecting surface, etc., and may specifically be made of metal.
  • the reflector 13 can reflect and gather the antenna signals at the receiving point, thereby realizing directional reception.
  • the reflector 13 implements directional transmission of the antenna signals.
  • the first radiating unit 12 is usually placed on the surface of one side of the reflector 13, which can not only greatly enhance the receiving or transmitting capability of the antenna 1 signal, but also block and shield the reflection from the back of the reflector 13 (the back of the reflector 13 in this application). Refers to the interference effect of other radio waves on the signal reception of the antenna from the side opposite to the reflector 13 for setting the first radiating unit 12 , so as to increase the gain of the antenna.
  • the first radiating unit 12 is connected to a feeding network 14 .
  • the feed network 14 is usually composed of a controlled impedance transmission line.
  • the feed network 14 can feed the signal to the first radiation unit 12 according to a certain amplitude and phase, or send the received signal to the base station according to a certain amplitude and phase.
  • the feeding network 14 can realize different radiation beam directions through the transmission component 141, or be connected with the calibration network 142 to obtain calibration signals required by the system.
  • a phase shifter 143 may be included in the feeding network 14 to change the maximum direction of antenna signal radiation.
  • some modules for expanding performance may also be set, such as a combiner 144, which can be used to synthesize signals of different frequencies and transmit them through the antenna 1; or when used in reverse, it can be used to combine the antenna 1
  • the received signals are divided into multiple channels according to different frequencies and transmitted to the baseband processing unit 6 for processing, such as the filter 145 for filtering out interference signals.
  • Fig. 4 is a side sectional view of an antenna according to a possible embodiment of the present application.
  • the antenna 1 includes a first phase shifter 1431, a first radiating unit 12, a second radiating unit 12' and a mounting structure 146.
  • the first phase shifter 1431 includes a cavity 14311 and a phase shifting circuit (not shown in the figure).
  • a first phase shifter 1431 may include one or more cavities 14311.
  • the first radiating unit 12 is a dual-polarized radiating unit
  • the first phase shifter 1431 includes two cavities 14311. It is correspondingly connected with a row of first radiation units 12 .
  • the drawings of the embodiments of the present application all take one example as an example.
  • the cavity 14311 may be a cavity 14311 with a closed section, or a cavity 14311 with an unclosed section, and the cavity 14311 is used to form the formation of the phase shifting circuit of the first phase shifter 1431 .
  • the phase-shifting circuit is disposed in the cavity 14311, and the specific location of the phase-shifting circuit is not limited. For example, when the cavity is a cavity with a closed section, the phase-shifting circuit can be disposed inside the cavity 14311 , or can be disposed on the outer surface of the cavity 14311 .
  • the cavity 14311 is connected with an installation structure 146, which is used to install the antenna 1 to the pole or iron tower of the base station.
  • the first radiating unit 12 and the second radiating unit 12' are used for sending and receiving antenna signals.
  • the cavity 14311 of the first phase shifter 1431 is used to install the antenna 1.
  • the cavity 14311 serves as the frame of the antenna 1, which can support the entire antenna 1 and transmit the force received by the antenna 1 to the pole or iron tower. Since the cavity 14311 is relatively rigid, the cavity 14311 of the first phase shifter 1431 is used as the stressed skeleton of the antenna 1, and the cavity 14311 is used to carry the weight of the antenna 1 itself, which is conducive to improving the stability of the installation structure of the antenna 1 The property makes the antenna 1 less likely to be damaged, improves the service life of the antenna 1, and ensures the performance of the antenna 1 of the base station.
  • first phase shifters 1431 there may be one or more first phase shifters 1431 .
  • the corresponding phase shifting circuits provided in the cavities 14311 of different first phase shifters 1431 have the same frequency band, or may have different frequency bands, which is not limited in this application.
  • the type of the first radiation unit 12 connected to each cavity 14311 is not limited, for example, the first radiation unit 12 may be a die-casting first radiation unit 12, a sheet metal first radiation unit 12, a printed circuit board first radiation unit. Unit 12, plastic first radiation unit 12 or electroplating first radiation unit 12, etc.
  • the above-mentioned cavity 14311 can be made by using profiles.
  • the profile used as the cavity 14311 is beneficial to increase the strength of the cavity 14311 on the one hand, and to reduce the weight of the cavity 14311 on the other hand, and can also simplify the preparation process of the cavity 14311 and reduce the cost.
  • the shape of the cavity 14311 of the first phase shifter 1431 is not limited, specifically, it can be a block shape, a strip shape or an irregular shape, which can be designed according to the specific structure and layout of the antenna 1 .
  • the above-mentioned antenna 1 may further include a reflector 13 , and the reflector 13 is specifically plate-shaped.
  • the reflection plate 13 is connected to the cavity 14311 .
  • the strength of the reflector 13 is generally weak, so this solution does not need to use the reflector 13 to carry the entire weight of the antenna 1, which can improve the service life of the reflector 13, and make the reflector 13 less prone to cracking or damage during mechanical reliability testing or use. , the problem of cracking of solder joints provided on the reflector 13 is not easy to occur, thereby improving the service life of the antenna 1 .
  • connection method between the reflection plate 13 and the cavity 14311 is not limited.
  • the reflection plate 13 and the cavity 14311 may be connected by means of welding, riveting or screwing.
  • the reflection plate 13 and the cavity 14311 may also be integrally formed.
  • the position of the cavity 14311 on the reflective plate 13 is not limited, and can be located at any position such as the edge or the middle of the reflective plate 13 .
  • the direction Y is vertical.
  • the reflecting plate 13 may be rectangular, and of course may also be in other shapes, which are not limited in this application.
  • the relatively longer direction of the reflection plate 13 can be selected as the first direction X
  • the relatively shorter direction of the reflection plate 13 can be selected as the second direction Y.
  • the reflector 13 is trapezoidal, it can be considered that the extending direction of the bottom of the trapezoid is the first direction X of the reflector 13 , and the direction perpendicular to the bottom of the trapezoid is the second direction Y.
  • the direction with the longest length of the reflecting plate 13 is the first direction X
  • the direction perpendicular to the first direction X is the second direction Y.
  • the cavity 14311 of the first phase shifter 1431 is a strip-shaped cavity 14311
  • the strip-shaped cavity 14311 extends along the first direction X.
  • the strength of the reflector 13 is poor in the longer direction. Therefore, the strength of the reflector 13 can be greatly improved by connecting the strip-shaped cavity 14311 to the reflector 13 along the first direction X of the reflector 13 .
  • the reflector 13 includes opposite first sides 131 and second sides 132 , that is to say, the first sides 131 and the second sides 132 are two edges of the reflector 13 respectively. .
  • the first side 131 and the second side 132 extend along the first direction X, and the first side 131 and the second side 132 are respectively connected to the strip-shaped cavity 14311 .
  • the reflective plate 13 is made with a circuit pattern, for example, in an application scenario where the reflective plate 13 is a reflective lens plate, the reflective plate 13 has a circuit pattern.
  • the cavity 14311 is arranged on the edge of the reflector 13 , so that the cavity 14311 avoids the above-mentioned circuit patterns, and the influence of the cavity 14311 on the working state of the reflector 13 is reduced.
  • the cavity 14311 is located on the edge of the reflector 13, which is also beneficial to avoid the radiation signal generated by the antenna, reduces the insertion loss of the antenna, and is beneficial to increase the gain of the antenna.
  • Fig. 6 is a top view of the interior of an antenna in another possible embodiment of the present application.
  • the length of the strip-shaped cavity 14311 along the first direction X is equal to the length of the reflecting plate 13 along the first direction X.
  • the strip-shaped cavity 14311 can provide relatively comprehensive support for the reflector 13 to improve the strength of the frame of the antenna 1 .
  • the structure of the antenna 1 can be made relatively regular.
  • Fig. 7 is a schematic structural diagram of an antenna according to another possible embodiment of the present application.
  • the antenna 1 may include at least two first phase shifters 1431 , and the at least two first phase shifters 1431 are divided into two groups.
  • Two groups of first phase shifters 1431 are respectively the first group of first phase shifters A and the second group of first phase shifters B, the number of first phase shifters 1431 included in the first group of first phase shifters A , and the number of first phase shifters 1431 included in the second group of first phase shifters B may be the same or different, which is not limited in this application.
  • the antenna 1 including four first phase shifters 1431 as an example, in the embodiment shown in FIG.
  • FIG. 8 is a schematic structural diagram of an antenna in another possible embodiment of the present application.
  • the number of first phase shifters 1431 included in the first group of first phase shifters A is the same as the number of first phase shifters 1431 included in the second group of first phase shifters B
  • the first group of first phase shifters A may include one first phase shifter 1431
  • the second group of first phase shifters B may include three first phase shifters 1431 .
  • the cavities 14311 of each set of first phase shifters 1431 can be fixed into an integrated structure, for example, if a set of cavities includes three cavities 14311, then the three cavities 14311 are fixed in an integrated structure.
  • This solution is conducive to improving the strength of the cavity 14311 as a frame, and the specific fixing method of each group of cavities 14311 is not limited.
  • all the cavities 14311 in each group of cavities 14311 can be integrally formed, or each group can be made All the cavities 14311 in the cavities 14311 are fixed as an integral structure by means of welding, riveting or screwing.
  • Fig. 9 is a schematic structural diagram of an antenna according to another possible embodiment of the present application.
  • the number of the first phase shifters 1431 included in the antenna 1 is not limited, and when the number of the first phase shifters 1431 is an even number, the even number of first phase shifters 1431 are symmetrically arranged on the reflector 13.
  • the number of the above-mentioned first phase shifters 1431 may be two, four or six.
  • the number of the first phase shifters 1431 is six, then when the first phase shifters 1431 are divided into two groups, each group includes three first phase shifters 1431, each group Specifically, the cavity 14311 of the first phase shifter 1431 can be fixed as an integral structure.
  • the two groups of first phase shifters 1431 are symmetrically disposed on the reflector 13 .
  • the above-mentioned first phase shifters 1431 can be divided into two groups, and each group includes a first phase shifter 1431 , and two sets of first phase shifters 1431 are symmetrically disposed on the reflector 13 .
  • FIG. 4 when the number of the above-mentioned first phase shifters 1431 is two, the above-mentioned first phase shifters 1431 can be divided into two groups, and each group includes a first phase shifter 1431 , and two sets of first phase shifters 1431 are symmetrically disposed on the reflector 13 . Or, as shown in FIG.
  • the above-mentioned first phase shifters 1431 can be divided into two groups, and each group includes two first phase shifters 1431, Moreover, two groups of first phase shifters 1431 are symmetrically disposed on the reflecting plate 13 .
  • the above symmetrical arrangement is beneficial to improve the symmetry of the structure composed of the cavity 14311 and the reflector 13 , and to improve the force uniformity of the antenna 1 , so that the strength of the antenna 1 is stronger.
  • FIG. 10 is a schematic structural diagram of an antenna according to another possible embodiment of the present application
  • FIG. 11 is a schematic structural diagram of an antenna according to another possible embodiment of the present application.
  • the cavity 14311 in the embodiment shown in FIG. 10 is not located at the edge of the reflective plate 13 , but is located closer to the center of the reflective plate than the edge of the reflective plate 13 .
  • the cavities 14311 are located on the two side edges of the reflection plate 13 .
  • the antenna 1 above also includes a first radiation unit 12, the first radiation unit 12 is fixedly connected to the cavity 14311, and the first radiation unit 12 can be phase-shifted with the first The phase shifting circuit in the cavity 14311 of the device 1431 is connected.
  • the above-mentioned first radiation unit 12 is fixed in the cavity 14311 , and the first radiation unit 12 does not need to be arranged on the reflection plate 13 .
  • the cavity 14311 can be used to bear the weight of the first radiation unit 12 , and the reflection plate 13 not only does not need to bear the weight of the first phase shifter 1431 , but also does not need to bear the weight of the above-mentioned first radiation unit 12 .
  • this solution can reduce the weight carried by the reflector 13 , reduce the probability of damage to the reflector 13 , and improve the overall reliability of the antenna 1 .
  • the above-mentioned first radiating unit 12 can be directly connected to the phase-shifting circuit in the first phase shifter 1431, and the connection path is relatively short, thereby reducing the number of transfer components such as cables used for connecting the first radiating unit 12 and the first phase shifter 1431 , thereby reducing the loss of the connection path and improving the gain performance of the antenna 1 .
  • this solution can also save manufacturing man-hours.
  • the above-mentioned first radiating unit 12 may specifically be the first radiating unit 12, and in addition, the antenna 1 may further include a second radiating unit 12', and the second radiating unit 12' is fixedly connected to the reflector 13.
  • the weight of the above-mentioned first radiation unit may be greater than the weight of the second radiation unit 12'.
  • the heavy first radiating unit 12 is fixedly connected to the cavity 14311 of the first phase shifter 1431, and the cavity 14311 is used to carry the weight of the first radiating unit 12, so the weight carried by the reflective plate 13 can be further reduced.
  • the first phase shifter 1431 and the first radiation unit 12 can be arranged on both sides of the reflection plate 13 .
  • the first phase shifter 1431 and the first radiation unit 12 may also be arranged on the same side of the reflective plate 13 . This application does not limit this.
  • the antenna 1 may further include a second phase shifter 1432, specifically, the second phase shifter 1432 may be connected to the second radiation unit 12'.
  • the second phase shifter 1432 may be tiled on the surface of the reflecting plate 13 . That is to say, the second phase shifter 1432 does not need to be stacked, which is beneficial to reduce the thickness of the antenna 1 and improve the wind load and size competitiveness of the antenna 1 .
  • additional structures such as transmission components may also be provided on the reflecting plate 13 , or the above additional structures may also be provided in the cavity 14311 , which is not limited in the present application.
  • the second phase shifter 1432 can be smaller than the first phase shifter 1431, that is to say, among the phase shifters of the antenna 1, the larger first phase shifter 1431 can be used as a frame, together with the reflector 13 Connect with the mounting structure 146.
  • the first phase shifter 1431 with a larger volume has a better supporting effect, and the second phase shifter 1432 with a smaller volume has a smaller weight, so the weight borne by the reflector 13 is also smaller.
  • the above-mentioned second phase shifter 1432 can be connected to the second radiation unit 12'.
  • Fig. 12 is a schematic diagram of an internal structure of an antenna according to another possible embodiment of the present application.
  • the above-mentioned cavity 14311 may specifically be a strip-shaped cavity 14311, and the antenna 1 includes a plurality of first radiation units 12, and the plurality of first radiation units 12 are arranged in a line to form a linear array antenna system.
  • the extension direction of the strip-shaped cavity 14311 is consistent with the extension direction of the linear array antenna system, so that each first radiation unit 12 can be connected to the strip-shaped cavity 14311.
  • the length of the strip-shaped cavity 14311 along the extending direction is greater than or equal to the length of the linear array antenna system along the extending direction.
  • all the first radiation units 12 of a linear array antenna system can be arranged in a strip-shaped Cavity 14311.
  • Fig. 13 is a schematic structural diagram of an antenna according to another possible embodiment of the present application.
  • the antenna 1 may further include a radome 11 and a first radiation unit 12 , and the first phase shifter 1431 and the first radiation unit 12 are disposed in the radome 11 .
  • the first radiating unit 12 is fixedly connected to the cavity 14311 of the first phase shifter 1431 and is electrically connected to the phase shifting circuit.
  • the inner wall of the above-mentioned radome 11 has a reflective layer, which may specifically be a reflective coating, and the preparation process of the reflective coating is simple and low in cost.
  • the first radiating units 12 may all be disposed in the cavity 14311 of the first phase shifter 1431 , and other additional components may also be disposed in the cavity 14311 .
  • This solution does not require an additional reflection plate 13, and the cost is relatively low.
  • the cavity 14311 can also be a strip-shaped cavity 14311, and the antenna 1 includes a plurality of first radiation units 12, and the plurality of first radiation units 12 are lined up to form a linear array antenna system.
  • the extension direction of the strip-shaped cavity 14311 is consistent with the extension direction of the linear array antenna system, so that each first radiation unit 12 can be connected to the strip-shaped cavity 14311.
  • the length of the strip-shaped cavity 14311 along the extending direction is greater than or equal to the length of the linear array antenna system along the extending direction.
  • all the first radiation units 12 of a linear array antenna system can be arranged in a strip-shaped The cavity 14311, so that a strip-shaped cavity 14311 can be used to carry a linear array antenna system to improve the integrity of the antenna 1 .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本申请提供了一种天线及基站天馈系统。上述天线包括第一移相器,该第一移相器包括腔体和移相电路。上述移相电路设置于腔体。该腔体连接有安装结构,该安装结构用于与抱杆连接。该方案中,利用第一移相器的腔体作为天线的框架,利用安装结构将第一移相器的腔体安装至抱杆,使得腔体可以支撑整个天线。该方案中,第一移相器的腔体作为天线的受力骨架,利用腔体来承载天线自身的重量,有利于提升天线安装结构的稳定性,使得天线不易出现损坏,提升天线的使用寿命,保证基站的天线性能。

Description

一种天线及基站天馈系统
相关申请的交叉引用
本申请要求在2021年09月30日提交中国专利局、申请号为202111168870.6、申请名称为“一种天线及基站天馈系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体为一种天线及基站天馈系统。
背景技术
随着无线通信技术的发展,基站能够支持的通信频段越来越多,因此基站天线所需的辐射单元以及移相器也越来越多,导致天线的结构越来越复杂。由于运营商站点的天面空间有限,在设置基站天线的辐射单元时,可以采用嵌套或者堆叠的方式来设置辐射单元。
现有技术中的基站天线,基站天线的辐射单元和移相器等器件均设置于反射板,再将反射板固定连接至抱杆。该情况下,反射板承受了天线的辐射单元以及移相器等各种器件的重量。反射板本身为板状结构,在受力较大时,容易出现变形或者开裂等问题。若反射板由于外部环境等因素发生振动,将进一步加重这些问题。此外,反射板与抱杆的连接处也容易因受力过大出现损坏。这些都将导致基站天线的损坏,或者基站天线的性能降低。
发明内容
本申请提供一种天线及基站天馈系统,以提升天线安装的结构稳定性,使得天线不易出现损坏,提升天线的使用寿命,保证基站的天线性能。
第一方面,本申请提供了一种天线。该天线包括第一移相器,该第一移相器包括腔体和移相电路。上述移相电路设置于腔体。该腔体连接有安装结构,该安装结构用于与抱杆连接。该方案中,利用第一移相器的腔体作为天线的框架,利用安装结构将第一移相器的腔体安装至抱杆,使得腔体可以支撑整个天线。该方案中,第一移相器的腔体作为天线的受力骨架,利用腔体来承载天线自身的重量,有利于提升天线安装结构的稳定性,使得天线不易出现损坏,提升天线的使用寿命,保证基站的天线性能。
具体的技术方案中,上述天线还可以包括反射板,该反射板与腔体连接。该方案中,反射板的设置有利于提升天线的增益,且反射板与腔体连接,腔体与抱杆连接,则无需利用反射板来传递天线的重量。因此,该方案可以减少反射板受到损坏的概率,提升反射板的工作性能以及使用寿命,提升天线的使用寿命。
上述腔体的具体形状不做限制,一种技术方案中,上述腔体可以为条形腔体。反射板分别沿第一方向延伸和第二方向延伸,上述第一方向和第二方向垂直。上述反射板沿第一方向的长度大于第二方向的长度。以反射板为长方形为例,长方形的反射板的长边沿第一方向延伸,宽边沿第二方向延伸。上述条形腔体的延伸方向与第一方向一致。反射板在长度较长的方向的强度较差,因此,将条形腔体沿反射板第一方向与反射板固定连接,可以 在较大程度上提升反射板的强度。
反射板包括沿第一方形延伸的第一侧边和第二侧边,且第一侧边和第二侧边相对设置。以反射板为长方形为例,上述第一侧边和第二侧边即为长方形的两个长边。上述第一侧边和第二侧边分别连接上述条形腔体。也就是说,条形腔体设置于反射板的边缘。该方案可以减少腔体对于反射板的工作状态的影响。此外,腔体位于反射板的边缘,还有利于避让天线产生的辐射信号,减少天线的插损,有利于提升天线的增益。
上述条形腔体沿第一方向的长度与反射板沿第一方向的长度相等。该方案中的条形腔体可以为反射板提供较为全面的支撑,以提升天线的框架的强度。此外,可以使得天线的结构较为规整。
天线的第一移相器的数量不做限制,具体可以根据实际需求设置。上述天线包括至少两个第一移相器,至少两个第一移相器分为两组。该方案中,两组第一移相器的数量可以相同也可以不同,本申请不做限制。例如,当第一移相器的数量为偶数个时,可以使偶数个第一移相器平均分成两组第一移相器;在其它实施例中,两组第一移相器的数量也可以不同。每组的第一移相器的腔体为一体结构。从而使得每组第一移相器作为整体来支撑天线,提升天线支撑结构的强度,进而提升天线支撑结构的可靠性。
当天线包括反射板,且第一移相器的数量为偶数个时,偶数个第一移相器对称设置于反射板。也就是说,偶数个第一移相器平均分成两组第一移相器,两组第一移相器对称设置于反射板。该方案有利于提升天线结构的对称性,提升天线的稳定性。
除了上述第一移相器,天线还可以包括第二移相器,第二移相器平铺设置于反射板的表面。该方案中,第二移相器平铺设置,则高度方向占用的空间较少,有利于减小天线的厚度,提升天线的风载和尺寸竞争力。
上述天线还包括辐射单元,该辐射单元与腔体连接。该技术方案中,辐射单元直接设置于腔体,则可以利用腔体来直接承载辐射单元的重量。该方案中无需将辐射单元设置于反射板,则反射板承载的重量进一步减少,降低了反射板损坏的概率,提升天线整体的可靠性。此外,辐射单元直接与腔体连接,则连接路径较短,可以减少连接路径的损耗,提升天线的增益。
另一种技术方案中,上述天线还包括天线罩和辐射单元,上述第一移相器和辐射单元设置于天线罩内。辐射单元与腔体连接,天线罩内壁具有反射层。该方案中,直接在天线罩内壁制作反射层,而无需额外设置反射板,天线的成本较低。
上述实施例中的腔体为条形腔体,多个辐射单元可以形成线阵天线系统。条形腔体的延伸方向与线阵天线系统的延伸方向一致。该方案中,有利于减少线阵天线系统与条形腔体之间的距离,减短辐射单元与第一移相器连接的路径,以减少天线损耗。
具体可以使上述条形腔体在延伸方向的长度大于或者等于线阵天线系统在延伸方向的长度。该方案可以使得线阵天线系统的所有辐射单元都能够设置于条形腔体,以减少天线的损耗,并提升天线的整体性。
第二方面,本申请还提供了一种基站天馈系统。该基站天馈系统包括上述第一方面的天线和抱杆,上述天线的安装结构与抱杆连接。该方案中,利用第一移相器的腔体来承载天线的重量,有利于提升天线安装结构的稳定性,使得天线不易出现损坏,提升天线的使用寿命,保证基站的天线性能。
附图说明
图1为本申请实施例适用的一种系统架构示意图;
图2为本申请一种可能的实施例的基站天馈系统的结构示意图;
图3为本申请一种可能的实施例的天线的组成示意图;
图4为本申请一种可能的实施例的天线的侧面剖视图;
图5为本申请一种可能的实施例的天线内部的俯视图;
图6为本申请另一种可能的实施例的天线内部的俯视图;
图7为本申请另一种可能的实施例的天线的结构示意图;
图8为本申请另一种可能的实施例的天线的结构示意图;
图9为本申请另一种可能的实施例的天线的结构示意图;
图10为本申请另一种可能的实施例的天线的结构示意图;
图11为本申请另一种可能的实施例的天线的结构示意图;
图12为本申请另一种可能的实施例的天线内部的结构示意图;
图13为本申请另一种可能的实施例的天线的结构示意图。
附图标记:
1-天线;                             11-天线罩;
12-第一辐射单元;                    12’-第二辐射单元;
13-反射板;                          131-第一侧边;
132-第二侧边;                       14-馈电网络;
141-传动部件;                       142-校准网络;
143-移相器;                         1431-第一移相器;
1432-第二移相器;                    14311-腔体;
144-合路器;                         145-滤波器;
146-安装结构;                       2-抱杆;
3-天线调整支架;                     5-射频处理单元;
6-基带处理单元;                     7-电缆线。
具体实施方式
为了方便理解本申请实施例提供的天线及基站天馈系统,下面介绍一下其应用场景。图1示例性示出,如图1所示,该应用场景可以包括基站和终端。基站和终端之间可以实现无线通信。该基站可以位于基站子系统(base btation bubsystem,BBS)、陆地无线接入网(UMTS terrestrial radio access network,UTRAN)或者演进的陆地无线接入网(evolved universal terrestrial radio access,E-UTRAN)中,用于进行无线信号的小区覆盖以实现终端设备与无线网络之间的通信。具体来说,基站可以是全球移动通信系统(global system for mobile comunication,GSM)或(code division multiple access,CDMA)系统中的基地收发台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的节点B(NodeB,NB),还可以是长期演进(long term evolution,LTE)系统中的演进型节点B(evolutional NodeB,eNB或eNodeB),还可以是云无线接入 网络(cloud radio access network,CRAN)场景下的无线控制器。或者该基站也可以为中继站、接入点、车载设备、可穿戴设备以及新无线(new radio,NR)系统中的g节点(gNodeB或者gNB)或者未来演进的网络中的基站等,本申请实施例并不限定。
图2示出了基站天线馈电系统的一种可能的结构示意图。基站天线馈电系统通常可以包括天线1、抱杆2、天线调整支架3等结构。其中,基站的天线1包括天线罩11,天线罩11在电气性能上具有良好的电磁波穿透特性,机械性能上能经受外部恶劣环境的影响,从而可起到保护天线系统免受外部环境影响的作用。天线1可通过天线调整支架3安装于抱杆2或者铁塔上,以便于天线1信号的接收或者发射。
另外,基站还可以包括射频处理单元5和基带处理单元6。例如,射频处理单元5可用于对天线1接收到的信号进行选频、放大以及下变频处理,并将其转换成中频信号或基带信号发送给基带处理单元6,或者射频处理单元5用于将基带处理单元6或中频信号经过上变频以及放大处理通过天线1转换成电磁波发送出去。基带处理单元6可通过射频处理单元5与天线1的馈电网络连接。在一些实施方式中,射频处理单元5又可称为射频拉远单元(remote radio unit,RRU),基带处理单元6又可称为基带单元(baseband unit,BBU)。
在一种可能的实施例中,如图2所示,射频处理单元5可与天线1一体设置,基带处理单元6位于天线1的远端。在另外一些实施例中,还可以使射频处理单元5和基带处理单元6同时位于天线1的远端。射频处理单元5与基带处理单元6可以通过电缆线7连接。
更为具体地,可一并参照图2和图3,图3为本申请一种可能的实施例的天线的组成示意图。其中,如图3所示,基站的天线1可以包括第一辐射单元12和反射板13。值得说明的是,此处第一辐射单元泛指所有辐射单元,上述“第一”对辐射单元的特征无特殊限制,例如,可以包括下述各种实施例中出现的第一辐射单元12和第二辐射单元12’等。上述第一辐射单元12也可以称为天线振子、振子等,第一辐射单元12为构成天线阵列基本结构的单元,它能有效地发送或接收天线信号。在天线1中,不同第一辐射单元12的频率可以相同或者不同。反射板13也可以称为底板、天线面板或者反射面等,其具体可以是金属材质。天线接收信号时,反射板13可以把天线信号反射聚集在接收点上,从而实现定向接收。天线发射信号时,反射板13实现天线信号的定向发射。第一辐射单元12通常放置于反射板13一侧表面,这不但可以大大增强天线1信号的接收或发射能力,还能够起到阻挡、屏蔽来自反射板13背面(本申请中反射板13的背面是指与反射板13用于设置第一辐射单元12相背的一侧)的其它电波对天线信号接收的干扰作用,提升天线的增益。
在基站的天线1中,第一辐射单元12与馈电网络14相连接。馈电网络14通常由受控的阻抗传输线构成,馈电网络14可把信号按照一定的幅度、相位馈送到第一辐射单元12,或者将接收到的信号按照一定的幅度、相位发送到基站的基带处理单元6。具体地,在一些实施方式中,馈电网络14可以通过传动部件141实现不同辐射波束指向,或者与校准网络142连接以获取系统所需的校准信号。在馈电网络14中可以包括移相器143,以用来改变天线信号辐射的最大方向。在馈电网络14中还可能设置一些用于扩展性能的模块,例如合路器144,可用于把不同频率的信号合成一路,通过天线1发射;或者反向使用时,可以用于将天线1接收到的信号,根据不同的频率分成多路传输到基带处理单元6进行处理,又例如滤波器145,用于滤除干扰信号。
图4为本申请一种可能的实施例的天线侧面剖视图,如图4所示,天线1包括第一移 相器1431、第一辐射单元12、第二辐射单元12’和安装结构146。上述第一移相器1431包括腔体14311和移相电路(图中未示出)。具体的,一个第一移相器1431可以包括一个或者多个腔体14311,例如,第一辐射单元12为双极化辐射单元时,第一移相器1431就包括两个腔体14311,用于与一列第一辐射单元12对应连接。本申请实施例的附图,均以一个为例进行示例。腔体14311可以为具有封闭截面的腔体14311,也可以为具有非封闭截面的腔体14311,腔体14311用于形成第一移相器1431的移相电路的地层。上述移相电路设置于上述腔体14311,移相电路的具体设置位置不做限制。例如,当腔体为具有封闭截面的腔体时,移相电路可以设置于腔体14311的内部,也可以设置于腔体14311的外表面。上述腔体14311连接有安装结构146,该安装结构146用于安装天线1至基站的抱杆或者铁塔上。上述第一辐射单元12与第二辐射单元12’用于发送和接收天线信号。该方案中,利用第一移相器1431的腔体14311来安装天线1,该腔体14311作为天线1的框架,可以支撑整个天线1,将天线1受到的力传导至抱杆或者铁塔。由于腔体14311的刚性较大,因此,第一移相器1431的腔体14311作为天线1的受力骨架,利用腔体14311来承载天线1自身的重量,有利于提升天线1安装结构的稳定性,使得天线1不易出现损坏,提升天线1的使用寿命,保证基站的天线1性能。
在本实施例中,第一移相器1431的个数可以为一个或者多个。具体设置上述第一移相器1431时,不同第一移相器1431的腔体14311对应设置的移相电路具有相同的频段,也可以具有不同的频段,本申请不做限制。对每个腔体14311连接的第一辐射单元12的类型不做限制,例如,该第一辐射单元12可以为压铸第一辐射单元12、钣金第一辐射单元12、印刷电路板第一辐射单元12、塑胶第一辐射单元12或者电镀第一辐射单元12等。
具体的技术方案中,上述腔体14311可利用型材制备。型材作为腔体14311一方面有利于提升腔体14311的强度,另一方面有利于减轻腔体14311的重量,此外还可以简化腔体14311的制备工艺,降低成本。
上述第一移相器1431的腔体14311的形状不做限制,具体可以为块状,也可以为条状或者不规则形状,根据天线1的具体结构和布局设计即可。
请继续参考图4,具体的实施例中,上述天线1还可以包括反射板13,该反射板13具体为板状。上述反射板13与腔体14311连接。反射板13的强度通常较弱,则该方案无需利用反射板13来承载天线1全部的重量,可以提升反射板13的使用寿命,使反射板13机械可靠性测试或者使用时不易出现开裂或者损坏,不易出现反射板13上设置的焊点开裂的问题,进而提升天线1的使用寿命。
具体的实施例中,反射板13与腔体14311的连接方式不做限制。例如,上述反射板13与腔体14311可以采用焊接、铆接或者螺钉连接等方式进行连接。或者,上述反射板13与腔体14311还可以为一体成型结构。此外,上述腔体14311在反射板13的位置也不做限制,可以位于反射板13的边缘或者中部等任意位置。
图5为本申请一种可能的实施例的天线内部的俯视图,请参考图5,上述反射板13沿第一方向X的长度大于沿第二方向Y的长度,上述第一方向X与第二方向Y垂直。具体的实施例中,反射板13可以为长方形,当然也可以为其它形状,本申请不做限制。当反射板13为其它形状时,可以选择反射板13相对较长的方向为第一方向X,相对较短的方向为第二方向Y。例如,上述反射板13为梯形时,可以认为梯形的底边的延伸方向为反射板13的第一方向X,垂直于梯形的底边的方向为第二方向Y。或者,还可以认为反射板 13长度最长的方向为第一方向X,垂直于第一方向X的方向为第二方向Y。在一种实现方式中,第一移相器1431的腔体14311为条形腔体14311时,上述条形腔体14311沿第一方向X延伸。反射板13在长度较长的方向的强度较差,因此,将条形腔体14311沿反射板13第一方向X与反射板13固定连接,可以在较大程度上提升反射板13的强度。
请继续参考图5,上述反射板13包括相对的第一侧边131和第二侧边132,也就是说,上述第一侧边131和第二侧边132分别为反射板13的两个边缘。上述第一侧边131和第二侧边132沿所述第一方向X延伸,则第一侧边131和第二侧边132分别连接条形腔体14311。在一些应用场景中,在反射板13制作电路图案,例如该反射板13为反射透镜板的应用场景下,反射板13具有电路图案。本申请将腔体14311设置于反射板13的边缘,便于使腔体14311避让上述电路图案,减少腔体14311对于反射板13的工作状态的影响。此外,腔体14311位于反射板13的边缘,还有利于避让天线产生的辐射信号,减少天线的插损,有利于提升天线的增益。
图6为本申请另一种可能的实施例的天线内部的俯视图。如图6所示,上述条形腔体14311沿第一方向X的长度与反射板13沿第一方向X的长度相等。该方案中,条形腔体14311可以为反射板13提供较为全面的支撑,以提升天线1的框架的强度。此外,可以使得天线1的结构较为规整。
图7为本申请另一种可能的实施例的天线的结构示意图。如图7所示,一种实施例中,上述天线1可以包括至少两个上述第一移相器1431,至少两个第一移相器1431分为两组。两组第一移相器1431分别为第一组第一移相器A和第二组第一移相器B,上述第一组第一移相器A包括的第一移相器1431的数量,与第二组第一移相器B包括的第一移相器1431的数量可以相同,也可以不同,本申请不做限制。以天线1包括四个第一移相器1431为例,如图7所示的实施例中,四个第一移相器1431均匀分成两组,也就是说,第一组第一移相器A和第二组第一移相器B分别包括两个第一移相器1431。或者,图8为本申请另一种可能的实施例的天线的结构示意图。如图8所示的实施例中,第一组第一移相器A包括的第一移相器1431的数量,与第二组第一移相器B包括的第一移相器1431的数量不同,具体可以使第一组第一移相器A包括一个第一移相器1431,第二组第一移相器B包括三个第一移相器1431。
具体可以使每组第一移相器1431的腔体14311固定为一体结构,例如,一组腔体包括三个腔体14311,则三个腔体14311固定为一体结构。该方案有利于提升腔体14311作为框架的强度,每组腔体14311具体的固定方式不做限制,例如,每组腔体14311内的所有腔体14311可以为一体成型结构,或者可以使每组腔体14311内的所有腔体14311采用焊接、铆接或者螺钉连接等方式,固定为一体结构。
图9为本申请另一种可能的实施例的天线的结构示意图。如图9所示,天线1包括的第一移相器1431的数量不做限制,当第一移相器1431的个数为偶数个时,偶数个第一移相器1431对称设置于反射板13。例如,上述第一移相器1431的个数可以为两个、四个或者六个等。图9所示的实施例中,第一移相器1431的个数为六个,则将第一移相器1431划分为两组时,每组包括三个第一移相器1431,每组的第一移相器1431的腔体14311具体可以固定为一体结构。此外,上述两组第一移相器1431对称设置于反射板13。其它实施例中,如图4所示,当上述第一移相器1431的个数为两个时,可以将上述第一移相器1431划分为两组,每组包括一个第一移相器1431,且两组第一移相器1431对称设置于反 射板13。或者,如图7所示,当上述第一移相器1431的个数为四个,则可以将上述第一移相器1431划分为两组,每组包括两个第一移相器1431,且两组第一移相器1431对称设置于反射板13。以上对称地设置有利于提升腔体14311和反射板13组成的结构的对称性、有利于提升天线1的受力均匀性,使得天线1的强度较强。
图10为本申请另一种可能的实施例的天线的结构示意图;图11为本申请另一种可能的实施例的天线的结构示意图。其中,图10所示的实施例中的腔体14311并非位于反射板13的边缘,而是相较反射板13的边缘更靠近反射板的中心设置。而图11所示的实施例中的腔体14311位于反射板13的两侧边缘。如图10和图11所示,具体实施例中,上述天线1还包括第一辐射单元12,该第一辐射单元12固定连接于腔体14311,且第一辐射单元12可以与第一移相器1431的腔体14311内的移相电路连接。该实施例中,上述第一辐射单元12固定于腔体14311,第一辐射单元12无需设置于反射板13。该方案中,可以用腔体14311来承载第一辐射单元12的重量,反射板13不仅无需承载第一移相器1431的重量,也无需承载上述第一辐射单元12的重量。因此,该方案可以减少了反射板13承载的重量、降低反射板13损坏的概率、提升天线1整体的可靠性。上述第一辐射单元12可以直接与第一移相器1431内的移相电路连接,连接路径较短,从而减少第一辐射单元12与第一移相器1431连接所用的线缆等转接部件,从而减小了连接路径的损耗,提升天线1的增益性能。此外,该方案还可以节约制造工时。
请继续参考图10,上述第一辐射单元12具体可以为第一辐射单元12,此外,天线1还可以包括第二辐射单元12’,该第二辐射单元12’固定连接于反射板13。具体的实施例中,可以使上述第一辐射单元的重量可以大于第二辐射单元12’的重量。将重量较大的第一辐射单元12固定连接于第一移相器1431的腔体14311,利用腔体14311来承载第一辐射单元12的重量,则反射板13承载的重量能够进一步减少。
具体设置上述第一移相器1431和第一辐射单元12时,可以使第一移相器1431和第一辐射单元12设置于反射板13的两侧。当然,也可以使第一移相器1431和第一辐射单元12设置于反射板13的同一侧。本申请对此不做限制。
请继续参考图10和图11。图11中,由于该方案可以使第一移相器1431和第一辐射单元12不占用反射板13的表面空间,因此,反射板13的空间较为充裕。图10和图11中,上述天线1还可以包括第二移相器1432,具体的,上述第二移相器1432可以与第二辐射单元12’连接。具体设置上述第二移相器1432时,可以使第二移相器1432平铺设置于反射板13的表面。也就是说,第二移相器1432无需堆叠设置,有利于降低天线1的厚度,提升天线1的风载和尺寸竞争力。此外,上述反射板13上还可以设置有传动部件等附加结构,或者,上述附加结构还可以设置于腔体14311,本申请对此不做限制。
该第二移相器1432具体可以比第一移相器1431体积小,也就是说,可以将天线1的移相器中,体积较大的第一移相器1431作为框架,与反射板13和安装结构146连接。体积较大的第一移相器1431的支撑效果较好,体积较小的第二移相器1432的重量较小,反射板13承受的重量也就较小。具体的实施例中,可以使上述第二移相器1432与第二辐射单元12’连接。
图12为本申请另一种可能的实施例的天线内部的结构示意图。如图12所示,上述腔体14311具体可以为条形腔体14311,天线1包括多个第一辐射单元12,多个第一辐射单元12一字排开,形成线阵天线系统。上述条形腔体14311的延伸方向与线阵天线系统的延 伸方向一致,则便于使每个第一辐射单元12都能够与条形腔体14311连接。此外,上述条形腔体14311沿延伸方向的长度大于或者等于线阵天线系统沿延伸方向的长度,该方案中,可以将一个线阵天线系统的所有第一辐射单元12都设置于一个条形腔体14311。
图13为本申请另一种可能的实施例的天线的结构示意图。如图13所示,再一种实施例中,天线1还可以包括天线罩11和第一辐射单元12,第一移相器1431和第一辐射单元12设置于天线罩11内。第一辐射单元12固定连接于第一移相器1431的腔体14311,并与移相电路电连接。上述天线罩11的内壁具有反射层,该反射层具体可以为反射涂层,反射涂层的制备工艺简单且成本较低。该方案中,第一辐射单元12可以均设置于第一移相器1431的腔体14311,此外,其它的附加部件也可以设置于上述腔体14311。该方案无需设置额外的反射板13,成本较低。
该实施例中,同样可以使腔体14311为条形腔体14311,天线1包括多个第一辐射单元12,多个第一辐射单元12一字排开,形成线阵天线系统。上述条形腔体14311的延伸方向与线阵天线系统的延伸方向一致,则便于使每个第一辐射单元12都能够与条形腔体14311连接。此外,上述条形腔体14311沿延伸方向的长度大于或者等于线阵天线系统沿延伸方向的长度,该方案中,可以将一个线阵天线系统的所有第一辐射单元12都设置于一个条形腔体14311,从而可以利用一个条形腔体14311承载一个线阵天线系统,提升天线1的整体性。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种天线,其特征在于,包括第一移相器,所述第一移相器包括腔体和移相电路,所述移相电路设置于所述腔体,所述腔体与安装结构连接,所述安装结构与抱杆连接。
  2. 如权利要求1所述的天线,其特征在于,还包括反射板,所述反射板与所述腔体连接。
  3. 如权利要求2所述的天线,其特征在于,所述腔体为条形腔体,所述反射板分别沿第一方向与第二方向延伸,所述第一方向与所述第二方向垂直,且所述反射板沿所述第一方向的长度大于沿所述第二方向的长度;所述条形腔体沿所述第一方向延伸。
  4. 如权利要求3所述的天线,其特征在于,所述反射板包括相对的第一侧边和第二侧边,所述第一侧边和所述第二侧边沿所述第一方向延伸,所述第一侧边和所述第二侧边分别连接所述条形腔体。
  5. 如权利要求3或4所述的天线,其特征在于,所述条形腔体沿第一方向的长度与所述反射板沿第一方向的长度相等。
  6. 如权利要求2~5任一项所述的天线,其特征在于,所述第一移相器的个数为偶数个,偶数个所述第一移相器对称设置于所述反射板。
  7. 如权利要求2~6任一项所述的天线,其特征在于,所述天线还包括第二移相器,所述第二移相器平铺设置于所述反射板的表面。
  8. 如权利要求1~7任一项所述的天线,其特征在于,所述天线还包括辐射单元,所述辐射单元与所述腔体连接。
  9. 如权利要求1所述的天线,其特征在于,所述天线还包括天线罩和辐射单元,所述第一移相器和所述辐射单元设置于所述天线罩内,所述天线罩内壁具有反射层;所述辐射单元与所述腔体连接。
  10. 如权利要求8或9所述的天线,其特征在于,所述腔体为条形腔体,多个所述辐射单元形成线阵天线系统;所述条形腔体的延伸方向与所述线阵天线系统的延伸方向一致。
  11. 如权利要求10所述的天线,其特征在于,所述条形腔体在沿延伸方向的长度大于或者等于所述线阵天线系统在沿延伸方向的长度。
  12. 如权利要求1~11任一项所述的天线,其特征在于,包括至少两个所述第一移相器,至少两个所述第一移相器分为两组,每组的第一移相器的所述腔体为一体结构。
  13. 一种基站天馈系统,其特征在于,包括如权利要求1~12任一项所述的天线和抱杆,所述天线的所述安装结构与所述抱杆连接。
PCT/CN2022/121394 2021-09-30 2022-09-26 一种天线及基站天馈系统 WO2023051472A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111168870.6A CN115911822A (zh) 2021-09-30 2021-09-30 一种天线及基站天馈系统
CN202111168870.6 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023051472A1 true WO2023051472A1 (zh) 2023-04-06

Family

ID=85733995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121394 WO2023051472A1 (zh) 2021-09-30 2022-09-26 一种天线及基站天馈系统

Country Status (2)

Country Link
CN (1) CN115911822A (zh)
WO (1) WO2023051472A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346411A (zh) * 2013-06-17 2013-10-09 武汉虹信通信技术有限责任公司 一种用于地空宽带通信系统的定向地面站天线及排列方法
CN104466426A (zh) * 2014-11-11 2015-03-25 李梓萌 一种用于基站天线的反射板以及基站天线阵列结构
CN111129737A (zh) * 2019-12-31 2020-05-08 京信通信技术(广州)有限公司 天线单元及阵列天线
CN111525230A (zh) * 2020-05-09 2020-08-11 京信通信技术(广州)有限公司 天线
CN112803157A (zh) * 2021-01-26 2021-05-14 摩比天线技术(深圳)有限公司 一种一体化基站天线
WO2021096687A1 (en) * 2019-11-12 2021-05-20 Commscope Technologies Llc Cavity phase shifter and base station antenna

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346411A (zh) * 2013-06-17 2013-10-09 武汉虹信通信技术有限责任公司 一种用于地空宽带通信系统的定向地面站天线及排列方法
CN104466426A (zh) * 2014-11-11 2015-03-25 李梓萌 一种用于基站天线的反射板以及基站天线阵列结构
WO2021096687A1 (en) * 2019-11-12 2021-05-20 Commscope Technologies Llc Cavity phase shifter and base station antenna
CN111129737A (zh) * 2019-12-31 2020-05-08 京信通信技术(广州)有限公司 天线单元及阵列天线
CN111525230A (zh) * 2020-05-09 2020-08-11 京信通信技术(广州)有限公司 天线
CN112803157A (zh) * 2021-01-26 2021-05-14 摩比天线技术(深圳)有限公司 一种一体化基站天线

Also Published As

Publication number Publication date
CN115911822A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
CN103579740B (zh) 具有多个弯曲天线的无线电子设备和相关天线系统
CN108376828A (zh) 天线系统及移动终端
CN104145372A (zh) 用于模块化多扇区有源天线系统的装置和方法
US20130215832A1 (en) Broadband dual-polarized omni-directional antenna and feeding method using the same
US11342654B2 (en) Base station antenna, switch, and base station device
US20230344113A1 (en) Base station antenna
CN109560391B (zh) Mimo天线阵列及其天线反射板
WO2023088446A1 (zh) 一种天线及通信系统
WO2023051472A1 (zh) 一种天线及基站天馈系统
US20230231296A1 (en) Antenna structure and electronic device comprising same
US20230092210A1 (en) Antenna and base station
WO2023109846A1 (zh) 一种天线系统及基站天馈系统
WO2023051471A1 (zh) 一种天线系统及基站天馈系统
CN112909540B (zh) 一种天线装置以及设备
WO2024027465A1 (zh) 一种天线系统及基站
WO2024104028A1 (zh) 一种天线以及通信设备
WO2024131483A1 (zh) 一种馈电装置、天线装置及通信设备
WO2023109765A1 (zh) 一种天线系统和通信设备
WO2024104027A1 (zh) 一种天线及基站
US11848507B2 (en) Radiating element, antenna array, and network device
EP4391229A1 (en) Feed circuit, antenna device, communication device, and communication system
WO2024050703A1 (zh) 一种天线及通信设备
WO2022120858A1 (zh) 一种阵列天线及基站
CN220420884U (zh) 天线振子和天线
WO2024140036A1 (zh) 天线及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874857

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022874857

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022874857

Country of ref document: EP

Effective date: 20240411

NENP Non-entry into the national phase

Ref country code: DE