WO2022042206A1 - 多频段天线系统和基站 - Google Patents

多频段天线系统和基站 Download PDF

Info

Publication number
WO2022042206A1
WO2022042206A1 PCT/CN2021/109718 CN2021109718W WO2022042206A1 WO 2022042206 A1 WO2022042206 A1 WO 2022042206A1 CN 2021109718 W CN2021109718 W CN 2021109718W WO 2022042206 A1 WO2022042206 A1 WO 2022042206A1
Authority
WO
WIPO (PCT)
Prior art keywords
fss
element array
antenna system
radiation element
radiating element
Prior art date
Application number
PCT/CN2021/109718
Other languages
English (en)
French (fr)
Inventor
李建平
罗兵
肖伟宏
李文芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020237008924A priority Critical patent/KR20230047491A/ko
Priority to JP2023513234A priority patent/JP2023538684A/ja
Priority to BR112023003238A priority patent/BR112023003238A2/pt
Priority to EP21860046.8A priority patent/EP4195413A4/en
Publication of WO2022042206A1 publication Critical patent/WO2022042206A1/zh
Priority to US18/173,965 priority patent/US20230216205A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/0026Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices having a stacked geometry or having multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/104Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome

Definitions

  • the present application relates to the field of communication technologies, and more particularly, to a multi-band antenna system and a base station.
  • the base station antenna is the foundation of current mobile communication and occupies an important position in mobile communication. In order to meet people's increasing demands for mobile communication speed and bandwidth, it is necessary to design higher speed and larger capacity communication systems.
  • the base station antenna system is currently evolving from the fourth generation mobile communication technology (4th-generation, 4G) to the fifth generation mobile communication technology (5th-generation, 5G).
  • the base station antenna includes passive antennas and active antennas, and the active antennas may be, for example, massive multiple-input multiple-output (massive MIMO) antennas.
  • massive MIMO massive multiple-input multiple-output
  • a key technology at present is to provide operators with active and passive integrated antenna panel solutions. Among them, multi-band antenna integration is the key technology in the antenna system.
  • the present application provides a multi-band antenna system and a base station, which can realize the layout of a multi-band architecture and have good system performance.
  • a multi-band antenna system including: a plurality of radiating element arrays, a feed network corresponding to the plurality of radiating element arrays, a frequency selective surface FSS, and a reflector; wherein the reflector is horizontal When placed, the plurality of radiation element arrays are located above the reflector, and all or part of the radiation element arrays in the plurality of radiation element arrays are stacked; the FSS is located between the stacked radiation element arrays; the stacked arrangement
  • the feed network corresponding to at least one radiation element array in the radiation element array is electrically connected to the FSS, or the feed network corresponding to the at least one radiation element array is integrated on the FSS.
  • FSS is located between the stacked radiation element arrays
  • the above-mentioned "FSS is located between the stacked radiation element arrays" may include various possible implementations. For example, there are two adjacent radiation element arrays that are stacked and placed, and a layer of FSS may be provided between the two radiation element arrays. , or a multi-layer FSS; for another example, between every two adjacent radiation element arrays placed in layers, a layer of FSS, or a multi-layer FSS is provided. It should be understood that the multiple layers of FSS are placed in adjacent stacks.
  • the feed network corresponding to at least one radiating element array is electrically connected to the FSS may also include various possible implementations.
  • the feeding network corresponding to one radiating element array can be electrically connected to the FSS connection, or, the feed network corresponding to multiple radiating element arrays can be electrically connected to the FSS;
  • the feeding network corresponding to one radiating element array can be electrically connected to one of the FSS layers, or multiple The feed network corresponding to the radiating element array can be electrically connected to one of the layers of the FSS.
  • the feeding network may be located above the reflective plate or below the reflective plate, which is not limited in this embodiment of the present application.
  • the FSS has a pass-band characteristic to the working frequency of the antenna, so that the electromagnetic waves radiated by the antenna can pass through the FSS well, thereby reducing the influence of the feeding network on the electromagnetic waves radiated by the antenna.
  • the feeder network is connected to the FSS as a whole, so that the feeder network is integrated into a part of the FSS, and the feeder network above will no longer affect the electromagnetic radiation of the antenna.
  • the FSS is one layer, or a multi-layer; when the FSS is a multi-layer, the feed network corresponding to the at least one radiating element array is electrically connected to the FSS It includes: the feed network corresponding to the at least one radiation element array is electrically connected to at least one layer of the FSS; the feed network corresponding to the at least one radiation element array is integrated on the FSS and includes: the feed corresponding to the at least one radiation element array The network is integrated on at least one layer of the FSS.
  • frequency bands corresponding to the plurality of radiation element arrays respectively include at least two different frequency bands.
  • the above different frequency bands may include frequency bands corresponding to 4G antennas and frequency bands corresponding to 5G antennas.
  • the electrical connection manner is any of the following: a direct current connection, a coupled connection, or a segmented direct current connection.
  • the feed network includes a cable.
  • At least a portion of the cable is parallel to the FSS.
  • the feed network is a microstrip structure, or the feed network includes a microstrip line.
  • the FSS includes a first FSS, and among the plurality of radiation element arrays, a radiation element array located on an upper layer of the first FSS and a radiation element array located on a lower layer of the first FSS
  • the radiating element arrays are placed in different radomes. This is more conducive to the installation of the antenna and subsequent upgrades.
  • the first FSS here refers to any one layer of FSS in the at least one layer of FSS, which does not limit the protection scope of the embodiments of the present application.
  • the multi-band antenna system may include a larger number of radomes to achieve a protective effect, which is not limited in this embodiment of the present application.
  • the FSS includes a first FSS
  • the radiation element array located on the upper layer of the first FSS includes a plurality of radiation element arrays corresponding to at least two different frequency bands
  • the radiation element array located in the lower layer of the first FSS includes a plurality of radiation element arrays corresponding to at least two different frequency bands respectively.
  • At least one layer in the FSS is an FSS with a grid.
  • a second aspect provides a base station, where the base station includes the multi-band antenna system in the first aspect or any one of the implementations of the first aspect and a radio frequency module, where the radio frequency module is connected to the multi-band antenna system.
  • FIG. 1 shows a schematic diagram of a multi-band antenna system according to an embodiment of the present application.
  • FIG. 2 shows a schematic diagram of another multi-band antenna system according to an embodiment of the present application.
  • FIG. 3 shows a schematic diagram of another multi-band antenna system according to an embodiment of the present application.
  • FIG. 4 shows a schematic diagram of another multi-band antenna system according to an embodiment of the present application.
  • FIG. 5 shows a schematic diagram of another multi-band antenna system according to an embodiment of the present application.
  • FIG. 6 shows a schematic diagram of another multi-band antenna system according to an embodiment of the present application.
  • FIG. 7 shows a schematic diagram of another multi-band antenna system according to an embodiment of the present application.
  • Figure 8 shows a schematic diagram of an FSS with a grid.
  • FIG. 9 shows a schematic diagram of the electrical connection between the radiating element array and the FSS through the feeding network.
  • FIG. 10 shows another schematic diagram of the radiating element array being electrically connected to the FSS through the feeding network.
  • Figure 11 shows a schematic diagram of the cable and FSS DC connections.
  • Figure 12 shows a schematic diagram of the cable and FSS coupling connections.
  • Figure 13 shows a schematic diagram of the DC connection of cables and FSS segments.
  • Figure 14 shows a schematic diagram of the microstrip cable and the FSS coupling connection.
  • Figure 15 shows a schematic diagram of microstrip cable and FSS integration.
  • FIG. 16 shows a schematic diagram of another multi-band antenna system according to an embodiment of the present application.
  • FIG. 17 shows a schematic diagram of a base station according to an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • 5G fifth generation
  • new radio new radio
  • NR device to device
  • V2X vehicle to everything
  • the antenna may include one or more of a radiating element, a reflector (or, a base plate, an antenna panel), a feeding network (or, a power distribution network), and a radome.
  • the antenna element can constitute the radiation unit of the antenna.
  • Antenna vibrators can be referred to as vibrators for short, which have the function of guiding and amplifying electromagnetic waves.
  • the feeding network realizes the feeding function, and the feeding is the power supply. In the field of antennas, feeding can be directed to supply power to the antenna, or in other words, provide energy.
  • the function of the feeding network is to feed the signal to each radiating element of the antenna according to a certain amplitude and phase, or to feed the signal received from each radiating element to the signal processing unit of the base station according to a certain amplitude and phase.
  • the feed network is usually composed of controlled impedance transmission lines, and the feed network can include devices such as phase shifters.
  • FSS is a two-dimensional periodic array structure that can effectively control the transmission and reflection of incident electromagnetic waves.
  • the FSS can be a spatial filter that exhibits obvious band-pass or band-stop filtering characteristics when interacting with electromagnetic waves.
  • FSS has a specific frequency selection effect.
  • the base station in this embodiment of the present application may be a device used for communicating with terminal equipment, including base stations in the global system for mobile communications (GSM) system or code division multiple access (code division multiple access, CDMA).
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • station base transceiver station, BTS
  • BTS can also be wideband code division multiple access
  • a Node B (NodeB, NB) in a (wideband code division multiple access, WCDMA) system, an evolved NodeB (evolved NodeB, eNB or eNodeB) in an LTE system, or a cloud radio access network (cloud).
  • the wireless controller in the radio access network (CRAN) scenario, or the base station may include relay stations, access points, in-vehicle devices, wearable devices, and base stations in future 5G networks or future evolved land public mobile communication networks (public land A base station in a mobile network, PLMN) network, etc., is not limited in this embodiment of the present application.
  • the base station antenna is an important part of the base station. With the evolution of the base station antenna system, the multi-band antenna system has become the current research focus.
  • the radiating element array of one or more frequency bands and their feed networks are all located in the radiation of another frequency band. above the cell array.
  • the induced current on the upper cable will inductively couple with the lower radiating element array, and the induced current will be excited, which will have a great impact on the radiating element array in each frequency band, for example, causing the radiation pattern to distort or cause the radiation pattern to resonate.
  • the present application provides a new multi-band antenna system, which can realize the layout of a multi-band architecture and has good system performance.
  • the multi-band antenna system 100 includes: four radiating element arrays (radiating element array 110, radiating element array 120, radiating element array 130, radiating element array 140), three feeding networks (feeding network 111, feeding network 121, feeding network 131) corresponding to the four radiating element arrays, frequency selective surface FSS 150, and reflecting plate 160.
  • the radiating element array and the feeding network may be in a many-to-one relationship, or may be in a one-to-one relationship, which is not limited in this embodiment of the present application.
  • the radiating element array 110 corresponds to the feeding network 111
  • the radiating element array 120 corresponds to the feeding network 121
  • both the radiating element array 130 and the radiating element array 140 correspond to the feeding network 131 .
  • the radiating element array can be electrically connected to its corresponding feeding network.
  • the radiation element array 110 is electrically connected to the feed network 111
  • the radiation element array 120 is electrically connected to the feed network 121
  • the radiation element array 130 and the radiation element array 140 are both electrically connected to the feed network 131 .
  • the above-mentioned four radiation element arrays are located above the reflective plate 160, and the above-mentioned four radiation element arrays are stacked. It should be noted that, for the stacking arrangement in the embodiments of the present application, reference may be made to the arrangement of the four radiation units in FIG. 1 : as shown in FIG. 1 , the first radiation unit array 110 , the second radiation unit array 120 , the The third radiation element array 130 and the fourth radiation element array 140 are stacked from bottom to top. In a possible design, the planes corresponding to each radiating element are parallel to each other.
  • the above-mentioned three feeding networks can be respectively located above the reflector 160 or below the reflector 160.
  • the feed network 111 can pass through the reflector 160 and be located below the reflector 160.
  • the feeding network 121 and the feeding network 131 may be located above the reflection plate 160, but this is not limited in this embodiment of the present application.
  • an FSS 150 is provided, which is located between the radiating element array 120 and the radiating element array 130.
  • the feed network 131 corresponding to the radiating element array 130 is electrically connected to the FSS 150 .
  • the feed network corresponding to other radiation element arrays can also be electrically connected to the FSS 150, for example, the feed network 121 corresponding to the radiation element array 120 can also be electrically connected to the FSS 150, which is not shown in FIG. 1 .
  • the FSS150 is to be electrically connected to at least one of the feeder networks corresponding to the four radiating element arrays to realize the grounding of the feeder network connected to the FSS150, and the FSS150 is connected to the feeder network corresponding to the radiating element array located on it in the product implementation. easier.
  • Adding FSS between the stacked radiating element arrays can reduce the influence of the induced current generated on the feeding network on each radiating element array.
  • the FSS has a pass-band characteristic to the operating frequency of the antenna, so that the electromagnetic waves radiated by the antenna located under the FSS can pass through the FSS well, thereby reducing the performance of the feed network on the electromagnetic waves radiated by the antenna. Impact. It should be understood that the feeder network is connected to the FSS as a whole, so that the feeder network is integrated into a part of the FSS, and the feeder network above will no longer affect the electromagnetic radiation of the antenna.
  • FIG. 1 only lists one possible design, and the multi-band antenna system of the present application can also be designed with other various structures.
  • FIG. 2 shows another multi-band antenna system 200 of the present application.
  • the radiating element array 120, the radiating element 130 and the radiating element array 140 may be placed above the radiating element array 110, but the radiating element array 120 and the radiation element array 130 are placed on one layer, in other words, the radiation element array 120 and the radiation element array 130 are not stacked.
  • the FSS 150 is located between the radiation element array 110 , the radiation element array 120 , and the radiation element array 130 .
  • the FSS 150 may be electrically connected to the feeder network 121, may also be electrically connected to the feeder network 131, and may also be electrically connected to the feeder network 121 and the feeder network 131, which is not limited in this embodiment of the present application.
  • FIG. 2 For other details of FIG. 2 , reference may be made to the description of FIG. 1 , which will not be repeated here.
  • the multiple radiating element arrays in the multi-band antenna system may be all stacked (as shown in FIG. 1 ), or some of them may be stacked (as shown in FIG. 2 ), which is not limited in this embodiment of the present application. It should be understood that the embodiment of the present application only exemplifies the number of radiating element arrays as 4, but the multi-band antenna system may also have other numbers of radiating element arrays, for example, the number is 2, and the two radiating element arrays are respectively located in the FSS above and below. This is also not limited in the embodiments of the present application.
  • the number of layers of the FSS 150 is only illustrated by one layer.
  • the multi-band antenna system of the embodiment of the present application may include multiple layers of FSS. Exemplary descriptions are given below with reference to FIG. 3 and FIG. 4 .
  • FIG. 3 shows another multi-band antenna system 300 of the present application, including the FSS 150 and the FSS 151, wherein the radiating element array 110, the radiating element array 120, the radiating element array 130 and the radiating element array 140 are stacked from bottom to top Placed, the FSS 151 is located between the radiation element array 110 and the radiation element array 120, and the FSS 150 is located between the radiation element array 120 and the radiation element array 130.
  • the feeding network 121 corresponding to the radiating element array 120 is electrically connected to the FSS 151 .
  • the feed network 131 corresponding to the radiating element array 130 is electrically connected to the FSS 150 .
  • the feeder network 121 corresponding to the above-mentioned radiation element array 120 may also be electrically connected to the FSS 150, that is, the feeder network 121 and the feeder network 131 are both electrically connected to the FSS 150, which is not shown in the figure, but is implemented in this application. The example does not limit this.
  • another layer of FSS may also be disposed between the radiation element array 130 and the radiation element array 140, which is not shown in FIG. 3 .
  • FIG. 3 For other details of FIG. 3 , reference may be made to the description of FIG. 1 , which will not be repeated here.
  • FIG. 4 shows another multi-band antenna system 400 of the present application, including the FSS 150 and the FSS 151, wherein the radiating element array 110, the radiating element array 120, the radiating element array 130 and the radiating element array 140 are stacked from bottom to top Placed, both the FSS 150 and the FSS 151 are located between the radiation element array 120 and the radiation element array 130, that is, the FSS 150 and the FSS 151 are placed adjacent to each other and stacked. Setting up a multi-layer FSS is more conducive to reducing the influence of the induced current generated on the feeding network on each radiating element array.
  • the feed network 131 corresponding to the radiating element array 130 is electrically connected to the FSS 150 .
  • the above-mentioned feeder network 131 can also be electrically connected to the FSS 151, that is, the feeder network 131 is electrically connected to the FSS 150 and FSS 151, or the feeder network 131 is electrically connected to the FSS 150, and the feeder network 121 is electrically connected to the FSS 151.
  • the electrical connection is not shown in the figure, but is not limited in the embodiment of the present application.
  • At least one layer of FSS can also be provided between the radiation element array 110 and the radiation element array 120, and at least one layer of FSS can also be provided between the radiation element array 130 and the radiation element array 140.
  • FIG. 4 reference may be made to the description of FIG. 1 , which will not be repeated here.
  • a multi-layer FSS may be provided between any two adjacent radiation element arrays in the four radiation element arrays, which is more conducive to reducing the effect of the induced current generated on the feeding network on each radiation element array. Impact.
  • At least one layer of FSS may be provided between any two adjacent radiating element arrays, and the feed network corresponding to at least one radiating element array It is electrically connected to the at least one layer of FSS, thereby reducing the influence of the induced current generated by the feeding network on each radiating element array, and improving the performance of the multi-band antenna system.
  • the frequency bands respectively corresponding to the above-mentioned multiple radiation element arrays are at least two different frequency bands.
  • the radiation element array 110 corresponds to the first frequency band
  • the radiation element array 120 corresponds to the second frequency band
  • the first frequency band and the second frequency band are not equal.
  • FIG. 5 shows a schematic diagram of another multi-frequency band antenna system according to an embodiment of the present application.
  • the radiation element array of frequency band 2 is located on the reflector
  • FSS 1 is located above the radiation element array of frequency band 2
  • the radiation element array of frequency band 1 is located above FSS 1, that is, FSS 1 is located on the radiation element of frequency band 1. between the array and the radiating element array of band 2.
  • the feed network corresponding to the radiating unit of the frequency band 1 may be referred to as the feed network of the frequency band 1 for short, and the feed network of the frequency band 1 is electrically connected to the FSS 1 .
  • FIG. 6 shows a schematic diagram of another multi-band antenna system.
  • the multi-band antenna system includes FSS 1 and FSS 2.
  • FSS 1 and FSS 2 are stacked and located between the radiating element array of frequency band 1 and the radiating element array of frequency band 2. between.
  • the feed network of band 1 is electrically connected to FSS 1.
  • the above-mentioned frequency band 1 is a frequency band corresponding to a 4G antenna
  • the above-mentioned frequency band 2 is a frequency band corresponding to a 5G antenna, but this is not limited in this embodiment of the present application.
  • FIG. 7 shows a schematic diagram of another multi-frequency band antenna system according to an embodiment of the present application.
  • the radiation element array of frequency band 2 is located on the reflector
  • FSS 1 is located above the radiation element array of frequency band 2
  • the radiation element array of frequency band 1 and the radiation element array of frequency band 3 are located above FSS 1.
  • the radiation element array of frequency band 1 and the radiation element array of frequency band 3 are located on the same layer.
  • the feed network corresponding to the radiating unit of frequency band 1 may be referred to as the feed network of frequency band 1 for short
  • the feed network corresponding to the radiation unit of frequency band 3 may be referred to as the feed network of frequency band 3
  • the feed network of frequency band 1 and the feed network of frequency band 3 The feed network is electrically connected to the FSS 1.
  • the radiating element arrays of frequency bands 1 and 3 may be fed by a common feeding network, which is electrically connected to the FSS1.
  • FSS 1 (and FSS 2) can transmit the electromagnetic waves radiated by the array in frequency band 2, and at least partially reflect the electromagnetic waves radiated by the array in frequency band 1, thereby reducing the induction generated on the feeding network. The effect of current on individual radiating element arrays.
  • the FSS in this embodiment of the present application is an FSS with a grid, such as a bandpass FSS, as shown in FIG. 8 .
  • the equivalent circuit of the band-pass FSS is a parallel resonant cable, the resonant point is open, and the radiated electromagnetic wave corresponding to the resonant point is fully transmitted at the resonant point.
  • the FSS may be any structure with a transmission function, which is not limited in this embodiment of the present application.
  • FIG. 9 and 10 show two possible schematic diagrams in which the radiating element array of frequency band 1 involved in the above figure is electrically connected to the FSS 1 through the feeding network.
  • the radiating element array of frequency band 1 is connected to FSS 1 by a cable, and a part of the cable is parallel to the plane where FSS 1 is located.
  • the radiating element array of frequency band 1 is fed down through the balun, the balun is connected to the cable, and is connected to the FSS through the cable, and the cable is parallel to the plane where the FSS 1 is located, which is easy to connect.
  • the cables in FIG. 9 and FIG. 10 can also be replaced with transmission lines integrated in the FSS 1, which are not limited in this embodiment of the present application.
  • the above-mentioned cables parallel to the FSS can be arranged on the same side of the FSS 1 as the radiating element array of the frequency band 1, or, the above-mentioned cables parallel to the FSS can be distributed with the radiating element array of the frequency band 1 on both sides of the FSS 1, That is, the cable can be laid out through the FSS 1, which is not limited in this embodiment of the present application.
  • the electrical connection between the feeder network and the FSS is any one of the following: DC connection, coupling connection, or segmented DC connection.
  • the solution is described by taking the electrical connection between the feeder network and the FSS as an example, in another possible design, the feeder network may be integrated on the FSS.
  • the feeding network in this embodiment of the present application may include cables (as shown in FIGS. 11 to 13 ), microstrip lines (as shown in FIGS. 14 and 15 ), or other forms of transmission lines, which are not limited in this embodiment of the present application .
  • Figure 11 is a schematic diagram of the DC connection between the cable and the FSS 1, wherein the cable is in direct contact with the FSS 1;
  • Figure 12 is the coupling connection between the cable and the FSS 1
  • Figure 13 is a schematic diagram of a segmented DC connection between the cable and FSS1, where the cable and FSS1 are in direct contact at the contact point.
  • Fig. 14 is a schematic diagram of a segmented DC connection between the microstrip line and the FSS 1
  • Fig. 15 is a schematic diagram of the microstrip line integrated in the FSS 1.
  • the microstrip line and FSS1 can also be DC connected and segmented.
  • the radiating element array located on the upper layer of the first FSS in the FSS and the radiating element array located on the lower layer of the first FSS are placed in different radomes.
  • the antenna system may include one layer of FSS or multiple layers of FSS.
  • the first FSS may be any layer of FSS in the FSS, which does not limit the protection scope of the embodiments of the present application.
  • the above-mentioned first FSS is FSS 1.
  • the radiation element array of frequency band 1 and FSS 1 are located in radome 1
  • the radiation element array of frequency band 2 is located in radome 2. This is more conducive to the installation and upgrade of the antenna.
  • the multi-band antenna system may include a larger number of radomes to achieve a protective effect, which is not limited in this embodiment of the present application.
  • the multi-band antenna system of the embodiment of the present application may be applied to a network device for receiving signals and transmitting signals to the outside.
  • the multi-band antenna system of the embodiment of the present application may be applied to a base station.
  • FIG. 17 is a schematic block diagram of a base station according to an embodiment of the present application.
  • the base station 1700 shown in FIG. 17 includes a multi-band antenna system 1710 and a radio frequency module 1720 , wherein the multi-band antenna system 1710 is connected to the radio frequency module 1720 .
  • the radio frequency module 1720 is used to convert the baseband signal into a high-frequency current, and transmit the signal in the form of electromagnetic waves through the radiation unit of the multi-band antenna system 1710 .
  • the transmitted high-frequency current (the radiation unit converts the received electromagnetic wave signal into a high-frequency current signal) is converted into a baseband signal.
  • the multi-band antenna system 1710 may be the multi-band antenna system involved in FIG. 1 to FIG. 16 , and through the multi-band antenna system 1710 , the base station can perform information transmission and interaction with the terminal device.
  • the disclosed systems, devices and methods may be implemented in other manners.
  • the embodiments of the base station apparatus described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components may be combined. Either it can be integrated into another system, or some features can be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional module in the embodiments of the present application may be integrated into one processing unit, or each module may exist physically alone, or two or more modules may be integrated into one module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本申请提供了一种多频段天线系统和基站,能够实现多频架构的布局,且系统性能良好。该多频段天线系统包括: 多个辐射单元阵列、与所述多个辐射单元阵列对应的馈电网络、至少一层频率选择表面FSS以及反射板; 其中,该多个辐射单元阵列位于该反射板上方,该多个辐射单元阵列中的全部辐射单元阵列或部分辐射单元阵列层叠放置,该至少一层FSS位于层叠放置的辐射单元阵列之间; 该层叠放置的辐射单元阵列中的至少一个辐射单元阵列对应的馈电网络与该至少一层FSS电连接,或者,该至少一个辐射单元阵列对应的馈电网络集成在至少一层FSS上。

Description

多频段天线系统和基站
本申请要求于2020年8月24日提交中国专利局、申请号为202010856708.2、申请名称为“多频段天线系统和基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,更具体地,涉及一种多频段天线系统和基站。
背景技术
基站天线是当前移动通信的基础,在移动通信中占有重要地位。为了满足人们对移动通信速率和带宽日益增长的需求,需要设计更高速率和更大容量的通信系统。基站天线系统目前正在从第四代移动通信技术(4th-generation,4G)向第五代移动通信技术(5th-generation,5G)演进。基站天线包括无源天线和有源天线,有源天线例如可以是大规模多输入多输出(massive MIMO)天线。目前的一个关键技术是为运营商提供有源和无源集成的天线面板解决方案。其中,多频段天线集成等是天线系统中的关键技术。
因此,目前亟需提供一种多频段天线系统。
发明内容
本申请提供一种多频段天线系统和基站,能够实现多频架构的布局,且系统性能良好。
第一方面,提供了一种多频段天线系统,包括:多个辐射单元阵列、与该多个辐射单元阵列分别对应的馈电网络、频率选择表面FSS以及反射板;其中,所述反射板水平放置时,该多个辐射单元阵列位于该反射板上方,该多个辐射单元阵列中的全部辐射单元阵列或部分辐射单元阵列层叠放置;该FSS位于层叠放置的辐射单元阵列之间;该层叠放置的辐射单元阵列中的至少一个辐射单元阵列对应的馈电网络与该FSS电连接,或者,该至少一个辐射单元阵列对应的馈电网络集成在该FSS上。
上述“FSS位于层叠放置的辐射单元阵列之间”可以包括多种可能的实现方式,例如,存在层叠放置的相邻的两个辐射单元阵列,该两个辐射单元阵列之间可以设有一层FSS、或者多层FSS;又例如,每两个层叠放置的相邻的辐射单元阵列之间,都设有一层FSS、或者多层FSS。应理解,该多层FSS是相邻层叠放置的。
上述“至少一个辐射单元阵列对应的馈电网络与FSS电连接”也可以包括多种可能的实现方式,例如,当FSS为一层时,一个辐射单元阵列对应的馈电网络可以与该FSS电连接,或者,多个辐射单元阵列对应的馈电网络可以与该FSS电连接;当FSS为多层时,一个辐射单元阵列对应的馈电网络可以与其中一层FSS电连接,或者,多个辐射单元阵列对应的馈电网络可以与其中一层FSS电连接。
馈电网络可以位于反射板的上方,也可以为与反射板的下方,本申请实施例对此不作 限定。
本申请实施例的多频段天线系统,在层叠放置的辐射单元阵列之间增加至少一层FSS,能够减少馈电网络上产生的感应电流对各个辐射单元阵列的影响,提升多频段天线系统的性能。具体而言,FSS对天线的工作频率呈通带特性,这样天线辐射出的电磁波可以很好地透过该FSS,从而减小了馈电网络对天线辐射出的电磁波的影响。应理解,将馈电网络与FSS连接为一体,使馈电网络融入成为FSS的一部分,上方的馈电网络对天线的电磁辐射不再产生影响。
结合第一方面,在第一方面的某些实现方式中,该FSS为一层,或者多层;当该FSS为多层时,该至少一个辐射单元阵列对应的馈电网络与该FSS电连接包括:该至少一个辐射单元阵列对应的馈电网络与至少一层该FSS电连接;该至少一个辐射单元阵列对应的馈电网络集成在该FSS上包括:该至少一个辐射单元阵列对应的馈电网络集成在至少一层该FSS上。
结合第一方面,在第一方面的某些实现方式中,该多个辐射单元阵列分别对应的频段包括至少两种不同的频段。在一种可能的设计中,上述不同频段可以包括4G天线对应的频段和5G天线对应的频段。
结合第一方面,在第一方面的某些实现方式中,该电连接方式为下列任一种:直流连接、耦合连接、或者分段直流连接。
结合第一方面,在第一方面的某些实现方式中,该馈电网络包括电缆。
结合第一方面,在第一方面的某些实现方式中,至少部分该电缆和该FSS平行。
结合第一方面,在第一方面的某些实现方式中,该馈电网络为微带结构,或者说该馈电网络包括微带线。
结合第一方面,在第一方面的某些实现方式中,该FSS包括第一FSS,在该多个辐射单元阵列中,位于该第一FSS上层的辐射单元阵列和位于该第一FSS下层的辐射单元阵列分别置于不同的天线罩内。这样更有利于天线的安装和后续的升级。
应理解,这里的第一FSS指至少一层FSS中的任意一层FSS,并不对本申请实施例的保护范围造成限定。在其他可能的实现方式中,多频段天线系统可以包括更多数量的天线罩,以实现保护作用,本申请实施例对此不作限定。
结合第一方面,在第一方面的某些实现方式中,该FSS包括第一FSS,位于该第一FSS上层的辐射单元阵列包括多个分别对应至少两个不同频段的辐射单元阵列,和/或,位于该第一FSS下层的辐射单元阵列包括多个分别对应至少两个不同频段的辐射单元阵列。
结合第一方面,在第一方面的某些实现方式中,该FSS中的至少一层为具有栅格的FSS。
第二方面,提供了一种基站,该基站包括第一方面或者第一方面中的任意一种实现方式中的多频段天线系统和射频模块,该射频模块与该多频段天线系统相连。
附图说明
图1示出了本申请实施例的多频段天线系统的示意图。
图2示出了本申请实施例的另一多频段天线系统的示意图。
图3示出了本申请实施例的另一多频段天线系统的示意图。
图4示出了本申请实施例的另一多频段天线系统的示意图。
图5示出了本申请实施例的另一多频段天线系统的示意图。
图6示出了本申请实施例的另一多频段天线系统的示意图。
图7示出了本申请实施例的另一多频段天线系统的示意图。
图8示出了带栅格的FSS的示意图。
图9示出了辐射单元阵列通过馈电网络与FSS电连接的一种示意图。
图10示出了辐射单元阵列通过馈电网络与FSS电连接的另一种示意图。
图11示出了线缆和FSS直流连接的示意图。
图12示出了线缆和FSS耦合连接的示意图。
图13示出了线缆和FSS分段直流连接的示意图。
图14示出了微带线缆和FSS耦合连接的示意图。
图15示出了微带线缆和FSS集成的示意图。
图16示出了本申请实施例的另一多频段天线系统的示意图。
图17示出了本申请实施例的基站的示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)、设备到设备(device to device,D2D)系统、车联网(vehicle to everything,V2X)系统等。
首先,对本申请实施例所涉及的术语做简单介绍。
1、天线
天线可以包括辐射单元、反射板(或者称,底板、天线面板)、馈电网络(或者称,功率分配网络)以及天线罩中的一个或者多个。其中,天线振子可以构成天线的辐射单元。天线振子可以简称为振子,具有导向和放大电磁波的作用。
馈电网络实现馈电功能,馈电即供电。在天线领域,馈电可以是指向天线供电,或者说,提供能量。馈电网络的作用是把信号按照一定的幅度、相位馈送到天线的各个辐射单元,或者把从各个辐射单元接收的信号按照一定的幅度、相位馈送至基站的信号处理单元。馈电网络通常由受控的阻抗传输线构成,馈电网络可以包括移相器等器件。
2、频率选择表面(frequency selective surface,FSS)
FSS是一种二维周期阵列结构,可以有效控制入射电磁波的透射和反射。FSS可以是一个空间滤波器,与电磁波相互作用表现出明显的带通或带阻的滤波特性。FSS具有特定的频率选择作用。FSS通常有两种,一种对谐振情况下的入射波呈现出透射性,另一种对谐振情况下的入射波呈现出反射性。
3、基站
本申请实施例中的基站可以是用于与终端设备通信的设备,包括全球移动通信(global  system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址
(wideband code division multiple access,WCDMA)系统中的节点B(NodeB,NB),还可以是LTE系统中的演进型节点B(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该基站可以包括中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的基站或者未来演进的陆上公用移动通信网(public land mobile network,PLMN)网络中的基站等,本申请实施例并不限定。
基站天线是基站的重要组成部分,随着基站天线系统的演进,多频段天线系统已成为目前的研究重点。
在一种多频段天线系统的设计中,当天线水平放置时(例如,天线的反射板呈水平放置),某一个或多个频段的辐射单元阵列及其馈电网络全部位于另一个频段的辐射单元阵列的上方。上方电缆上的感应电流会与下方辐射单元阵列之间感性耦合,激励起感应电流,对各个频段的辐射单元阵列的产生较大影响,例如,导致辐射方向图畸变、或者导致辐射方向图谐振。
有鉴于此,本申请提供了一种新的多频段天线系统,能够实现多频架构的布局,且系统性能良好。
图1示出了本申请实施例的多频段天线系统100的示意图,在该多频段天线系统100中,包括:四个辐射单元阵列(辐射单元阵列110、辐射单元阵列120、辐射单元阵列130、辐射单元阵列140)、与该四个辐射单元阵列对应的三个馈电网络(馈电网络111、馈电网络121、馈电网络131)、频率选择表面FSS 150以及反射板160。
在本申请实施例中,辐射单元阵列和馈电网络之间可以是多对一的关系,也可以是一对一的关系,本申请实施例对此不作限定。如图1所示,辐射单元阵列110对应馈电网络111,辐射单元阵列120对应馈电网络121,辐射单元阵列130和辐射单元阵列140均对应馈电网络131。辐射单元阵列可以和其对应的馈电网络电连接。例如,辐射单元阵列110与馈电网络111电连接,辐射单元阵列120与馈电网络121电连接,辐射单元阵列130和辐射单元阵列140均与馈电网络131电连接。
当反射板160水平放置时,
上述四个辐射单元阵列位于反射板160的上方,且上述四个辐射单元阵列层叠放置。需要说明的是,本申请实施例中所指的层叠放置的方式可以参见图1中四个辐射单元的放置方式:如图1所示,第一辐射单元阵列110、第二辐射单元阵列120、第三辐射单元阵列130以及第四辐射单元阵列140从下往上层叠放置。在一种可能的设计中,各个辐射单元所对应的平面之间是互相平行的。
上述三个馈电网络可以分别位于反射板160的上方,也可以位于反射板160的下方,在一种可能的设计中,馈电网络111可以穿过反射板160,位于反射板160的下方,馈电网络121和馈电网络131可以位于反射板160的上方,但本申请实施例对此不作限定。
在多频段天线系统100中,设置有FSS 150,位于辐射单元阵列120和辐射单元阵列 130之间。辐射单元阵列130对应的馈电网络131与该FSS 150电连接。可选地,其它辐射单元阵列对应的馈电网络也可以与该FSS 150电连接,例如,辐射单元阵列120对应的馈电网络121也可以与该FSS 150电连接,图1中未示出。FSS150要与四个辐射单元阵列对应的馈电网络中的至少一个电连接,以实现与FSS150连接的馈电网络的接地,FSS150与位于其上的辐射单元阵列对应的馈电网络连接在产品实现时更加容易。
在层叠放置的辐射单元阵列(辐射单元阵列120和辐射单元阵列130)之间增加FSS,能够减少馈电网络上产生的感应电流对各个辐射单元阵列的影响。具体而言,FSS对天线的工作频率呈通带特性,这样位于FSS之下的天线辐射出的电磁波可以很好地透过该FSS,从而减小了馈电网络对天线辐射出的电磁波的性能的影响。应理解,将馈电网络与FSS连接为一体,使馈电网络融入成为FSS的一部分,上方的馈电网络对天线的电磁辐射不再产生影响。
需要说明的是,本申请实施例的技术方案均可以是在反射板水平放置的场景下,以下不再赘述。图1仅仅列出了一种可能的设计,本申请的多频段天线系统还可以设计为其他多种结构。图2示出了本申请的另一种多频段天线系统200,在图2中,辐射单元阵列120、辐射单元130以及辐射单元阵列140可以放置在辐射单元阵列110的上方,但是,辐射单元阵列120和辐射单元阵列130放置于一层,换句话说,辐射单元阵列120和辐射单元阵列130没有层叠放置。FSS 150位于辐射单元阵列110和辐射单元阵列120、辐射单元阵列130之间。FSS 150可以与馈电网络121电连接,也可以与馈电网络131电连接,还可以与馈电网络121和馈电网络131电连接,本申请实施例对此不作限定。关于图2的其他细节可以参照图1的描述,此处不再赘述。
多频段天线系统中的多个辐射单元阵列可以是全部层叠放置的(如图1所示),也可以是其中的部分层叠放置(如图2所示),本申请实施例对此不作限定。应理解,本申请实施例仅以辐射单元阵列的数量为4进行了示例性说明,但多频段天线系统还可以具有其他数量的辐射单元阵列,例如数量为2,两个辐射单元阵列分别位于FSS的上方和下方。本申请实施例对此也不作限定。
上述图1和图2中,FSS 150层数仅以一层进行示意,在另一种可能的设计中,本申请实施例的多频段天线系统可以包括多层FSS。下面结合图3和图4进行示例性说明。
图3示出了本申请的另一种多频段天线系统300,包括FSS 150和FSS 151,其中,辐射单元阵列110、辐射单元阵列120、辐射单元阵列130以及辐射单元阵列140从下往上层叠放置,FSS 151位于辐射单元阵列110和辐射单元阵列120之间,FSS 150位于辐射单元阵列120和辐射单元阵列130之间。辐射单元阵列120对应的馈电网络121与该FSS 151电连接。辐射单元阵列130对应的馈电网络131与该FSS 150电连接。
可替换地,上述辐射单元阵列120对应的馈电网络121也可以与FSS 150电连接,即馈电网络121和馈电网络131均与FSS 150电连接,图中未示出,但本申请实施例对此不作限定。
可选地,辐射单元阵列130和辐射单元阵列140之间也可以再设有一层FSS,图3中未示出。关于图3的其他细节可以参照图1的描述,此处不再赘述。
图4示出了本申请的另一种多频段天线系统400,包括FSS 150和FSS 151,其中,辐射单元阵列110、辐射单元阵列120、辐射单元阵列130以及辐射单元阵列140从下往 上层叠放置,FSS 150和FSS 151均位于辐射单元阵列120和辐射单元阵列130之间,即FSS 150和FSS 151相邻且层叠放置。设置多层FSS更有利于减少馈电网络上产生的感应电流对各个辐射单元阵列的影响。辐射单元阵列130对应的馈电网络131与该FSS 150电连接。
可替换地,上述馈电网络131也可以与FSS 151电连接,即馈电网络131与FSS 150和FSS 151电连接,或者,馈电网络131与FSS 150电连接,馈电网络121与FSS 151电连接,图中未示出,但本申请实施例对此不作限定。
可选地,辐射单元阵列110和辐射单元阵列120之间也可以再设有至少一层FSS,辐射单元阵列130和辐射单元阵列140之间也可以再设有至少一层FSS,图4中未示出。关于图4的其他细节可以参照图1的描述,此处不再赘述。
在本申请实施例中,四个辐射单元阵列中的任意两个相邻的辐射单元阵列之间都可以设有多层FSS,更有利于减少馈电网络上产生的感应电流对各个辐射单元阵列的影响。
综上所述,在本申请实施例的层叠放置的辐射单元阵列中,任意两个相邻的辐射单元阵列之间都可以设有至少一层FSS,且至少一个辐射单元阵列对应的馈电网络与该至少一层FSS电连接,从而减少馈电网络产生的感应电流对各个辐射单元阵列的影响,提升多频段天线系统的性能。
可选地,上述多个辐射单元阵列分别对应的频段为至少两个不同的频段。例如,辐射单元阵列110对应第一频段,辐射单元阵列120对应第二频段,该第一频段和第二频段不相等。
以两个频段的天线系统为例,图5示出了本申请实施例的另一多频段天线系统的示意图。在图5中,频段2的辐射单元阵列位于反射板之上,FSS 1位于频段2的辐射单元阵列之上,频段1的辐射单元阵列位于FSS 1之上,即FSS 1位于频段1的辐射单元阵列和频段2的辐射单元阵列之间。频段1的辐射单元对应的馈电网络可以简称为频段1的馈电网络,该频段1的馈电网络与FSS 1电连接。
图6示出了另一多频段天线系统的示意图,该多频段天线系统包括FSS 1和FSS 2,FSS 1和FSS 2层叠放置,均位于频段1的辐射单元阵列和频段2的辐射单元阵列之间。频段1的馈电网络与FSS 1电连接。
在一种可能的设计中,上述频段1为4G天线对应的频段,上述频段2为5G天线对应的频段,但本申请实施例对此不作限定。
以三个频段的天线系统为例,图7示出了本申请实施例的另一多频段天线系统的示意图。在图7中,频段2的辐射单元阵列位于反射板之上,FSS 1位于频段2的辐射单元阵列之上,频段1的辐射单元阵列和频段3的辐射单元阵列位于FSS 1之上。频段1的辐射单元阵列和频段3的辐射单元阵列位于同一层。频段1的辐射单元对应的馈电网络可以简称为频段1的馈电网络,频段3的辐射单元对应的馈电网络可以简称为频段3的馈电网络,频段1的馈电网络和频段3的馈电网络与FSS 1电连接。在一种可能的设计中,可以由一个公共的馈电网络为频段1和频段3的辐射单元阵列馈电,该公共的馈电网络与FSS1电连接。在上述图5至图7中,FSS 1(以及FSS 2)可以对频段2的阵列辐射的电磁波实现透射,对频段1的阵列辐射的电磁波实现至少部分反射,从而减少馈电网络上产生的感应电流对各个辐射单元阵列的影响。
可选地,本申请实施例的FSS为带有栅格的FSS,例如带通FSS,如图8所示。带通FSS的等效电路为并联谐振电缆,谐振点开路,在该谐振点对该谐振点对应的辐射电磁波全透射。FSS可以为具有透射功能的任何结构,本申请实施例对此不作限定。
图9和图10示出了上图涉及的频段1的辐射单元阵列通过馈电网络与FSS 1电连接的两种可能的示意图。在图9中,频段1的辐射单元阵列通过线缆连接至FSS 1,且线缆的一部分与FSS 1所在的平面平行。在图10中,频段1的辐射单元阵列通过巴伦向下馈电,巴伦与线缆连接,并通过线缆连接至FSS,且线缆与FSS 1所在的平面平行,这种连接方式易于实现。图9和图10中的线缆也可以替换为集成于该FSS 1的传输线,本申请实施例对此不作限定。
可选地,上述与FSS平行的电缆可以和频段1的辐射单元阵列设置在FSS 1的同侧,或者,上述与FSS平行的电缆可以与频段1的辐射单元阵列分布在FSS 1的两侧,即线缆可以穿过FSS 1布局,本申请实施例对此不作限定。
作为一个可选的实施例,馈电网络和FSS的电连接方式为下列任一种:直流连接、耦合连接、或者分段直流连接。
虽然在前述实施例中,以馈电网络与FSS电连接为例进行方案的阐述,在另一种可能的设计中,馈电网络可以集成在FSS上。
本申请实施例的馈电网络可以包括电缆(如图11至图13所示)、微带线(如图14和图15所示),或者其它形式的传输线,本申请实施例对此不作限定。以频段1的辐射单元对应的馈电网络与FSS 1电连接为例,图11为线缆和FSS 1直流连接的示意图,其中线缆和FSS1直接接触;图12为线缆和FSS 1耦合连接的示意图,其中线缆和FSS1之间保持一定的距离;图13为线缆和FSS 1分段直流连接的示意图,在接触点上,线缆和FSS1直接接触。图14为微带线和FSS 1分段直流连接的示意图,图15为微带线集成于FSS 1的示意图。当然微带线和FSS1还可以直流连接和分段直流连接。
作为一个可选的实施例,在上述多个辐射单元阵列中,位于FSS中的第一FSS上层的辐射单元阵列和位于该第一FSS下层的辐射单元阵列置于不同的天线罩内。应理解,天线系统中可以包括一层FSS或者多层FSS。当天线系统中包括多层FSS时,第一FSS可以是FSS中的任意一层FSS,并不对本申请实施例的保护范围造成限定。
示例性地,上述第一FSS为FSS 1,在图16中,频段1的辐射单元阵列和FSS 1位于天线罩1内,频段2的辐射单元阵列位于天线罩2内。这样更有利于天线的安装和升级。
在其他可能的实现方式中,多频段天线系统可以包括更多数量的天线罩,以实现保护作用,本申请实施例对此不作限定。
本申请实施例的多频段天线系统可以应用在网络设备中,用于接收信号和向外发射信号,示例性地,本申请实施例的多频段天线系统可以应用在基站中。
图17是本申请实施例的基站的示意性框图。图17所示的基站1700包括多频段天线系统1710和射频模块1720,其中,多频段天线系统1710与射频模块1720相连。射频模块1720用于将基带信号转化为高频电流,并通过多频段天线系统1710的辐射单元以电磁波的形式将信号发射出去,另外,射频模块1720还可以通过多频段天线系统1710中的辐射单元传输过来的高频电流(辐射单元将接收到的电磁波信号转化为高频电流信号)转化为基带信号。
应理解,多频段天线系统1710可以是图1至图16中所涉及的多频段天线系统,通过该多频段天线系统1710,基站能够与终端设备之间进行信息的传输和交互。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的基站装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请实施例中的各功能模块可以集成在一个处理单元中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种多频段天线系统,其特征在于,包括:
    多个辐射单元阵列、与所述多个辐射单元阵列分别对应的馈电网络、频率选择表面FSS以及反射板;
    其中,所述反射板水平放置时,所述多个辐射单元阵列位于所述反射板上方,所述多个辐射单元阵列中的全部辐射单元阵列或部分辐射单元阵列层叠放置;
    所述FSS位于层叠放置的辐射单元阵列之间;
    所述层叠放置的辐射单元阵列中的至少一个辐射单元阵列对应的馈电网络与所述FSS电连接,或者,所述至少一个辐射单元阵列对应的馈电网络集成在所述FSS上。
  2. 根据权利要求1所述的多频段天线系统,其特征在于,所述FSS为一层,或者多层;
    当所述FSS为多层时,
    所述至少一个辐射单元阵列对应的馈电网络与所述FSS电连接包括:所述至少一个辐射单元阵列对应的馈电网络与至少一层所述FSS电连接;
    所述至少一个辐射单元阵列对应的馈电网络集成在所述FSS上包括:所述至少一个辐射单元阵列对应的馈电网络集成在至少一层所述FSS上。
  3. 根据权利要求2所述的多频段天线系统,其特征在于,当所述FSS为多层时,所述FSS中的至少两层是相邻放置的。
  4. 根据权利要求1至3任一项所述的多频段天线系统,其特征在于,所述多个辐射单元阵列包括第一辐射单元阵列和第二辐射单元阵列,所述第一辐射单元阵列对应的频段为第一频段,所述第二辐射单元阵列对应的频段为第二频段,所述第一频段与所述第二频段不同。
  5. 根据权利要求1至4任一项所述的多频段天线系统,其特征在于,所述电连接方式为下列任一种:
    直流连接、耦合连接、或者分段直流连接。
  6. 根据权利要求1至5中任一项所述的多频段天线系统,其特征在于,所述馈电网络包括电缆。
  7. 根据权利要求6所述的多频段天线系统,其特征在于,至少部分所述电缆和所述FSS平行。
  8. 根据权利要求1至5中任一项所述的多频段天线系统,其特征在于,所述馈电网络包括微带线。
  9. 根据权利要求1至8中任一项所述的多频段天线系统,其特征在于,所述FSS包括第一FSS,在所述多个辐射单元阵列中,位于所述第一FSS上层的辐射单元阵列和位于所述第一FSS下层的辐射单元阵列分别置于不同的天线罩内。
  10. 根据权利要求1至9中任一项所述的多频段天线系统,其特征在于,所述FSS包括第一FSS,位于所述第一FSS上层的辐射单元阵列包括多个分别对应至少两个不同频段的辐射单元阵列,和/或,位于所述第一FSS下层的辐射单元阵列包括多个分别对应至少两个不同频段的辐射单元阵列。
  11. 根据权利要求1至10中任一项所述的多频段天线系统,其特征在于,所述FSS中的至少一层为具有栅格的FSS。
  12. 一种基站,其特征在于,包括如权利要求1至11中任一项所述的多频段天线系统以及与所述多频段天线系统相连的射频模块。
PCT/CN2021/109718 2020-08-24 2021-07-30 多频段天线系统和基站 WO2022042206A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237008924A KR20230047491A (ko) 2020-08-24 2021-07-30 멀티-대역 안테나 시스템 및 기지국
JP2023513234A JP2023538684A (ja) 2020-08-24 2021-07-30 マルチバンドアンテナシステムおよび基地局
BR112023003238A BR112023003238A2 (pt) 2020-08-24 2021-07-30 Sistema de antena multibanda e estação base
EP21860046.8A EP4195413A4 (en) 2020-08-24 2021-07-30 MULTI-BAND ANTENNA SYSTEM AND BASE STATION
US18/173,965 US20230216205A1 (en) 2020-08-24 2023-02-24 Multi-band antenna system and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010856708.2A CN114094347B (zh) 2020-08-24 2020-08-24 多频段天线系统和基站
CN202010856708.2 2020-08-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/173,965 Continuation US20230216205A1 (en) 2020-08-24 2023-02-24 Multi-band antenna system and base station

Publications (1)

Publication Number Publication Date
WO2022042206A1 true WO2022042206A1 (zh) 2022-03-03

Family

ID=80295446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109718 WO2022042206A1 (zh) 2020-08-24 2021-07-30 多频段天线系统和基站

Country Status (7)

Country Link
US (1) US20230216205A1 (zh)
EP (1) EP4195413A4 (zh)
JP (1) JP2023538684A (zh)
KR (1) KR20230047491A (zh)
CN (2) CN114094347B (zh)
BR (1) BR112023003238A2 (zh)
WO (1) WO2022042206A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021244357A1 (en) 2020-03-24 2022-11-17 Outdoor Wireless Networks LLC Base station antennas having an active antenna module and related devices and methods
CA3172688A1 (en) 2020-03-24 2021-09-30 Haifeng Li Radiating elements having angled feed stalks and base station antennas including same
US11611143B2 (en) 2020-03-24 2023-03-21 Commscope Technologies Llc Base station antenna with high performance active antenna system (AAS) integrated therein
KR20220036179A (ko) * 2020-09-15 2022-03-22 타이코에이엠피 주식회사 안테나 장치
US11843187B2 (en) * 2021-04-26 2023-12-12 Amazon Technologies, Inc. Antenna module grounding for phased array antennas
CN117525819A (zh) * 2022-07-30 2024-02-06 华为技术有限公司 一种天线系统及基站
CN117673746A (zh) * 2022-09-08 2024-03-08 华为技术有限公司 天线结构件、天线和基站
CN117673771A (zh) * 2022-09-08 2024-03-08 华为技术有限公司 基站天线和基站

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557292A (en) * 1994-06-22 1996-09-17 Space Systems/Loral, Inc. Multiple band folding antenna
CN102403572A (zh) * 2011-12-13 2012-04-04 华南理工大学 一种宽带双频移动通信基站天线
CN104852158A (zh) * 2015-04-13 2015-08-19 复旦大学 P波段宽带高隔离度双圆极化薄膜阵列天线
CN107331952A (zh) * 2017-07-12 2017-11-07 广东通宇通讯股份有限公司 多系统共面集成天线
CN109004370A (zh) * 2018-07-24 2018-12-14 山西大学 一种三频段可开关超材料吸波器/反射器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917458A (en) * 1995-09-08 1999-06-29 The United States Of America As Represented By The Secretary Of The Navy Frequency selective surface integrated antenna system
SE9802883L (sv) * 1998-08-28 2000-02-29 Ericsson Telefon Ab L M Antennanordning
JP3462102B2 (ja) * 1998-12-02 2003-11-05 三菱電機株式会社 アレーアンテナ
US7411565B2 (en) * 2003-06-20 2008-08-12 Titan Systems Corporation/Aerospace Electronic Division Artificial magnetic conductor surfaces loaded with ferrite-based artificial magnetic materials
US9431709B2 (en) * 2012-04-03 2016-08-30 Wemtec, Inc. Artificial magnetic conductor antennas with shielded feedlines
US10396460B2 (en) * 2015-09-29 2019-08-27 Nec Corporation Multiband antenna and wireless communication device
US10396461B2 (en) * 2016-08-24 2019-08-27 Raytheon Company Low profile, ultra-wide band, low frequency modular phased array antenna with coincident phase center
CN106410396A (zh) * 2016-10-26 2017-02-15 华南理工大学 一种高低频滤波阵子交织排列的紧凑型多波束天线阵列
US10644411B2 (en) * 2016-12-19 2020-05-05 L3 Technologies, Inc. Scalable antenna array
US10424847B2 (en) * 2017-09-08 2019-09-24 Raytheon Company Wideband dual-polarized current loop antenna element
CN108110428B (zh) * 2017-11-29 2020-02-21 上海无线电设备研究所 一种适用于电磁开关的有源频率选择表面
CN109473769A (zh) * 2018-10-19 2019-03-15 湖北航天技术研究院总体设计所 一种弹载小型化多频段可重构共形天线
CN109524796B (zh) * 2018-12-11 2021-06-25 中国电子科技集团公司信息科学研究院 一种宽频带低剖面低散射缝隙阵列天线
CN109786976B (zh) * 2018-12-20 2021-02-09 西安工业大学 基于多层fss结构多功能圆极化转换器阵列、无线通信系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557292A (en) * 1994-06-22 1996-09-17 Space Systems/Loral, Inc. Multiple band folding antenna
CN102403572A (zh) * 2011-12-13 2012-04-04 华南理工大学 一种宽带双频移动通信基站天线
CN104852158A (zh) * 2015-04-13 2015-08-19 复旦大学 P波段宽带高隔离度双圆极化薄膜阵列天线
CN107331952A (zh) * 2017-07-12 2017-11-07 广东通宇通讯股份有限公司 多系统共面集成天线
CN109004370A (zh) * 2018-07-24 2018-12-14 山西大学 一种三频段可开关超材料吸波器/反射器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4195413A4

Also Published As

Publication number Publication date
US20230216205A1 (en) 2023-07-06
KR20230047491A (ko) 2023-04-07
EP4195413A1 (en) 2023-06-14
EP4195413A4 (en) 2024-01-17
CN116845566A (zh) 2023-10-03
BR112023003238A2 (pt) 2023-03-28
CN114094347B (zh) 2023-07-18
CN114094347A (zh) 2022-02-25
JP2023538684A (ja) 2023-09-08

Similar Documents

Publication Publication Date Title
WO2022042206A1 (zh) 多频段天线系统和基站
WO2017114030A1 (zh) 一种天线单元及mimo天线和终端
EP3051629B1 (en) Multi-antenna terminal
EP3497750B1 (en) Antenna stack
CN112290193B (zh) 毫米波模组、电子设备及毫米波模组的调节方法
WO2017114024A1 (zh) 双极化天线和通信设备
EP3826105B1 (en) Antenna system and base station
US11735815B2 (en) Reconfigurable antenna systems integrated with metal case
EP3574552B1 (en) Method and apparatus for multi-feed multi-band mimo antenna system
WO2020119010A1 (en) Shared ground mmwave and sub 6 ghz antenna system
US20230344113A1 (en) Base station antenna
CN111600130A (zh) 一种去耦芯片
US20220320712A1 (en) Package Antenna Apparatus and Wireless Communication Apparatus
KR20220037913A (ko) 안테나 구조 및 이를 포함하는 전자 장치
CN115882223A (zh) 双频双圆极化天线和天线系统
WO2023231752A1 (zh) 一种天线及基站
WO2024051773A1 (zh) 基站天线和基站
WO2024131483A1 (zh) 一种馈电装置、天线装置及通信设备
WO2023051471A1 (zh) 一种天线系统及基站天馈系统
US11735829B2 (en) Compact modular active-passive antenna systems with minimized antenna blockage
WO2024021780A1 (zh) 一种天线和通信设备
EP4254662A1 (en) Antenna structure and electronic device comprising same
EP4128548B1 (en) Antenna array grouping
WO2024051767A1 (zh) 天线结构件、天线和基站
TWM610140U (zh) 多頻段天線整合結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023513234

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023003238

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021860046

Country of ref document: EP

Effective date: 20230306

ENP Entry into the national phase

Ref document number: 20237008924

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023003238

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230222