WO2017114024A1 - 双极化天线和通信设备 - Google Patents

双极化天线和通信设备 Download PDF

Info

Publication number
WO2017114024A1
WO2017114024A1 PCT/CN2016/106769 CN2016106769W WO2017114024A1 WO 2017114024 A1 WO2017114024 A1 WO 2017114024A1 CN 2016106769 W CN2016106769 W CN 2016106769W WO 2017114024 A1 WO2017114024 A1 WO 2017114024A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna unit
unit
plane
dual
Prior art date
Application number
PCT/CN2016/106769
Other languages
English (en)
French (fr)
Inventor
施学良
张明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017114024A1 publication Critical patent/WO2017114024A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • the embodiments of the present invention relate to the field of antenna technologies, and in particular, to a dual-polarized antenna and a communication device.
  • the mobile terminal device Since the mobile terminal device generally has various wireless communication capabilities such as cellular communication, wireless-fidelity (Wifi), and Bluetooth, the mobile terminal device needs to be configured with multiple antennas or antennas with multiple resonant frequencies to cover more A frequency band for wireless communication. Or when multiple-input multiple-output (MIMO) antenna technology is applied to a mobile terminal device, multiple antennas need to be configured.
  • MIMO multiple-input multiple-output
  • the net space that the antenna can use is more and more limited, and the working environment of the antenna is getting worse.
  • the higher the correlation between multiple antenna elements the corresponding channel capacity of the antenna unit will be reduced, and the correlation between antenna elements needs to be reduced by using spatial diversity or polarization diversity.
  • the centralized arrangement of multiple antenna elements in a compact space will cause great mutual coupling, and the performance of each antenna unit will also decrease.
  • the mutual coupling can be reduced and the isolation can be improved.
  • the size of the current mobile terminal equipment and the number of antenna units Can't exceed 4 at most. Adding a decoupling structure between the antenna elements can reduce the mutual coupling between the antenna elements, but the decoupling structure takes up extra space and increases the antenna clearance area, which is also difficult to implement.
  • Embodiments of the present invention provide a dual-polarized antenna and a communication device for reducing correlation and mutual coupling between multiple antennas in a limited clear space of a communication device.
  • the first aspect provides a dual-polarized antenna, including: a first antenna unit and a second antenna unit;
  • the first antenna unit is disposed on the first antenna plane
  • the second antenna unit is disposed on the second antenna plane
  • the first antenna plane and the second antenna plane are perpendicular
  • a point farthest from a feeding point of the first antenna unit is a feeding point of the second antenna unit, which is closest to a feeding point of the first antenna unit
  • the point is the point at which the current on the second antenna unit is the smallest, and the distance between the feeding point of the first antenna unit and the point at which the current on the second antenna unit is the smallest is less than a preset threshold.
  • the polarization directions of the first antenna unit and the second antenna unit are perpendicular to each other, so that the first antenna unit and the second antenna unit realize polarization diversity, and at the same time
  • the antenna unit and the second antenna unit are located on mutually perpendicular planes, and the electric fields are also perpendicular to each other, and the mutual influence is also small, so that the antenna is reduced under the premise that the correlation and the mutual coupling between the plurality of antennas are small.
  • the occupied space is suitable for communication equipment with high requirements on the net space of the antenna.
  • the first antenna unit is disposed at a corner of the first antenna plane.
  • the first antenna unit is disposed on the first antenna plane and the third antenna plane, and the third antenna plane is perpendicular to the first antenna plane and The second antenna planes are adjacent.
  • the first antenna unit is disposed on the first antenna plane and the third antenna plane, thereby further saving the antenna clear space.
  • the first antenna unit generates at least one first resonant frequency
  • the second antenna unit generates at least one second resonant frequency.
  • the dual-polarized antenna can cover more frequency bands.
  • the first antenna unit and the second antenna unit have the same structure, and the first resonant frequency is the same as the second resonant frequency. Thereby a MIMO antenna can be implemented.
  • the first antenna unit and the second antenna unit are coupled loop antennas, and a grounding point of the coupling loop antenna is located on the same side as a feeding point.
  • a second aspect provides a communication device including an antenna substrate and a side frame, the antenna substrate being perpendicular to the side frame, the antenna substrate including a metal front case of the communication device, a metal back cover of the communication device, or a printed circuit board of a communication device;
  • the communication device further includes at least one dual-polarized antenna, each dual-polarized antenna including a first antenna unit and a second antenna unit;
  • the first antenna unit is disposed on the antenna substrate, and the second antenna unit is disposed on the side frame;
  • a point farthest from a feeding point of the first antenna unit is a feeding point of the second antenna unit, which is closest to a feeding point of the first antenna unit
  • the point is the point at which the current on the second antenna unit is the smallest, and the distance between the feeding point of the first antenna unit and the point at which the current on the second antenna unit is the smallest is less than a preset threshold.
  • the antenna substrate of the communication device is a first antenna plane
  • the side frame of the communication device is a second antenna plane
  • the second side frame of the communication device is a third antenna plane.
  • a third aspect provides a communication device including at least one dual-polarized antenna, each dual-polarized antenna including a first antenna unit and a second antenna unit;
  • the first antenna unit is disposed on a first antenna plane of the communication device, and the second antenna unit is disposed on a second antenna plane of the communication device;
  • the first antenna plane includes a metal housing of the communication device or a printed circuit board of the communication device, and the second antenna plane includes a housing of the communication device that is perpendicular to the first antenna plane;
  • a point farthest from a feeding point of the first antenna unit is a feeding point of the second antenna unit, which is closest to a feeding point of the first antenna unit a point at which a current on the second antenna unit is the smallest, a distance between a feeding point of the first antenna unit and a point at which the current on the second antenna unit is the smallest is less than a preset threshold;
  • the polarization directions of the first antenna unit and the second antenna unit are perpendicular to each other.
  • the dual-polarized antennas are at least two, and the at least two dual-polarized antennas constitute a MIMO antenna.
  • the dual-polarized antenna and the communication device include: a first antenna unit and a second antenna unit, and the second antenna unit is disposed on the second antenna by setting the first antenna unit on the first antenna plane In a plane, wherein the first antenna plane is perpendicular to the second antenna plane, so that the polarization directions of the first antenna unit and the second antenna unit are perpendicular to each other, so that the first antenna unit and the second antenna unit realize polarization diversity, and at the same time Since the first antenna unit and the second antenna unit are located in mutually perpendicular planes, the electric fields are also perpendicular to each other, and the mutual influence is also small, thereby reducing the correlation between the multiple antennas and the mutual coupling less.
  • the net space occupied by the antenna is suitable for communication equipment with high requirements on the net space of the antenna.
  • 1 is a schematic diagram of an antenna layout in a terminal device
  • FIG. 2 is a schematic diagram of an antenna layout in another terminal device
  • FIG. 3 is a schematic diagram of an antenna layout in still another terminal device
  • FIG. 4 is a schematic structural diagram of Embodiment 1 of a dual-polarized antenna according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of Embodiment 2 of a dual-polarized antenna according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of Embodiment 3 of a dual-polarized antenna according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of Embodiment 1 of a communication device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of Embodiment 2 of a communication device according to an embodiment of the present disclosure.
  • FIG. 9A to 9D are schematic diagrams showing the antenna performance of the communication device shown in Fig. 8.
  • the mobile terminal device Since the mobile terminal device has various wireless communication capabilities, it is required to configure a plurality of antennas capable of generating a plurality of resonance frequencies. Moreover, the mobile terminal device has higher and higher requirements on the communication rate, and thus the communication channel capacity provided by the antenna is required to be higher. Due to the limited space in the mobile terminal device, it is generally implemented in the form of an inverted-F antenna (IFA), a Planar Inverted-F Antenna (PIFA), a slot antenna, and the like.
  • IFA inverted-F antenna
  • PIFA Planar Inverted-F Antenna
  • slot antenna Due to the limited space in the mobile terminal device, it is generally implemented in the form of an inverted-F antenna (IFA), a Planar Inverted-F Antenna (PIFA), a slot antenna, and the like.
  • IFA inverted-F antenna
  • PIFA Planar Inverted-F Antenna
  • slot antenna Due to the limited space in the mobile terminal device, it is generally implemented in the form
  • coupling occurs between the antennas. This effect is called mutual coupling between the antennas.
  • the increase of the mutual coupling also increases the correlation between the antennas. Generally, the closer the distance between the antennas is, the larger the mutual coupling is, and the greater the influence on each antenna.
  • MIMO technology may also be required in the mobile terminal device, that is, multiple antennas are configured to form a MIMO antenna system.
  • MIMO technology is one of the main core technologies of LTE.
  • MIMO technology refers to the use of multiple transmit and receive antennas at the transmitting end and the receiving end, respectively, so that signals are transmitted and received through multiple antennas at the transmitting end and the receiving end, thereby improving communication quality.
  • SISO single input single output
  • the adoption of MIMO technology can increase the data throughput of the system by increasing the number of antennas. When applying MIMO technology, there is also a problem in that isolation between multiple antennas is required.
  • FIG. 1 is a schematic diagram of an antenna layout in a terminal device.
  • two antennas including an antenna 1 and an antenna 2 are included.
  • the antenna 1 and the antenna 2 are respectively disposed on the antenna substrate of the terminal device.
  • the antenna substrate is a printed circuit board (PCB) in the terminal device, and the PCB is connected to a ground plane of the terminal device.
  • Antenna 1 and antenna 2 employ a spatial diversity scheme to reduce the correlation between the antennas, even if the distance between antenna 1 and antenna 2 is as far as possible, and the mutual coupling between the antennas is reduced.
  • the spatial diversity scheme can achieve higher isolation, but for lower-frequency antennas, the isolation between antennas cannot be effectively reduced.
  • the wavelength is 30 cm, which means that in the terminal device, at least 15 cm is required between the two antennas.
  • mobile terminals especially smart phones, generally use 4.7-inch, 5.5-inch or even smaller screens.
  • the outer dimensions of the long sides will not exceed 15 cm, so the use of spatial diversity to improve the isolation between the antennas is not possible in this band.
  • the space diversity scheme can be used to improve the isolation between the antennas
  • the number of antennas will be limited due to the limitation of the size of the terminal equipment.
  • terminal devices that require multiple wireless communication systems even for terminal devices that require MIMO technology, this is difficult to apply.
  • the arrangement position of the antennas will be distributed in various parts of the terminal device.
  • current terminal devices tend to have large-screen borderless designs. In this design trend, generally only the net space is reserved for the terminal in the non-display area of the terminal device, and then spatial diversity is used to increase the isolation between the antennas. The solution does not apply.
  • FIG. 2 is a schematic diagram of an antenna layout in another terminal device.
  • the terminal device shown in FIG. 2 adds a decoupling structure between the two antennas of the antenna 1 and the antenna 2 on the basis of the terminal device shown in FIG.
  • Antenna 1 and antenna 2 employ a spatial diversity scheme to reduce the correlation between the antennas and reduce the mutual coupling between the antennas.
  • Increasing the decoupling structure can reduce the mutual coupling between the antennas to shorten the distance between the antennas.
  • the decoupling structure can be implemented in various forms, such as a large-area grounding portion, or a capacitor component. In fact, the decoupling structure is to improve the mutual coupling between the antenna 1 and the antenna 2 by changing the electric field between the antenna 1 and the antenna 2.
  • the decoupling structure is generally only effective for a certain frequency band, that is, only narrowband decoupling can be realized, and broadband decoupling cannot be realized.
  • decoupling structures are generally It takes a large amount of clean space, which is also difficult to achieve in terminal equipment where space is very limited.
  • the decoupling structure generally only reduces the mutual coupling between the antennas, and when the distance between the antennas is shortened, the correlation between the antennas is correspondingly increased, which also affects the performance of the antenna.
  • antenna 1 and antenna 2 are respectively disposed on two sides on a corner of a terminal device antenna substrate, and antenna 1 and antenna 2 are respectively Vertical to each other. If the antenna 1 and the antenna 2 have the same structure, since the antenna 1 and the antenna 2 are perpendicular to each other, the polarization directions of the antenna 1 and the antenna 2 are also perpendicular to each other, that is, the antenna 1 and the antenna 2 are vertically polarized with each other. Due to the vertical polarization scheme, the correlation between antenna 1 and antenna 2 can be well reduced.
  • the antenna 1 and the antenna 2 are disposed on the same plane, the electric fields generated by the signals radiated by the antennas still have mutual influence, that is, mutual coupling is generated. If the distance between the antennas is close, the mutual coupling is still large. If the distance between the antennas is increased, there is still a problem of occupying an excessively large clear space.
  • FIG. 4 is a schematic structural diagram of Embodiment 1 of a dual-polarized antenna according to an embodiment of the present invention.
  • the dual-polarized antenna provided in this embodiment is disposed in the terminal device 40 as an example, including a first antenna unit. 41 and second antenna unit 42.
  • the terminal device 40 includes a first antenna plane 43 and a second antenna plane 44, the first antenna plane 43 being perpendicular to the second antenna plane 44.
  • the first antenna plane 43 may also be referred to as an antenna substrate, and the first antenna plane 43 includes a metal front case of the terminal device 40, a metal back cover of the terminal device 40, or a printed circuit board of the terminal device 40.
  • the metal front case of the terminal device 40, the metal back cover of the terminal device 40 or the printed circuit board of the terminal device 40 are all connected to the ground plane of the terminal device 40.
  • the second antenna plane 44 of the terminal device 40 may be a side frame of the terminal device, and the second antenna plane 44 may be a metal structure or a non-metal structure.
  • the first antenna unit 41 is disposed on the first antenna plane 43 of the terminal device 40, and the second antenna unit 42 is disposed on the second antenna plane 44 of the terminal device 40.
  • the first antenna unit 41 and the second antenna unit 42 may be implemented by any form of antenna structure, such as an IFA antenna, a PIFA antenna, a slot antenna, a loop antenna, and the like.
  • the first antenna unit 41 generates at least one first resonant frequency
  • the second antenna unit 42 generates at least one second resonant frequency. That is, each of the first antenna unit 41 and the second antenna unit 42 can generate one or more resonant frequencies.
  • the first antenna unit 41 if the first antenna plane is the metal back cover of the terminal device 40 or the metal back cover of the terminal device 40, the first antenna unit 41 can be removed by removing the metal front cover or the metal back cover. Part of the metal layer is available. If the antenna substrate provided by the first antenna unit 41 is a printed circuit board of the terminal device 40, the first antenna unit 41 can be obtained by removing a portion of the copper on the printed circuit board, or the first antenna unit 41 can also be printed. A corresponding feed structure is provided on the circuit board for the copper-clad portion. For the second antenna unit 42, if the second antenna plane 44 is a metal structure, the second antenna unit 42 can be obtained by removing a part of the metal layer on the side frame of the terminal device 40. If the second antenna plane 44 of the second antenna unit 42 is not a metal structure, the second antenna unit 42 can be obtained by setting a corresponding feeding structure on the side frame of the terminal device 40.
  • the first antenna unit 41 and the second antenna unit 42 respectively disposed thereon are also perpendicular to each other, and then the first antenna unit 41 and the second antenna unit 42 are The directions of polarization are also perpendicular to each other.
  • the first antenna unit 41 and the second antenna unit 42 achieve polarization diversity, and a small correlation can be achieved.
  • the first antenna unit 41 and the second antenna unit 42 are respectively disposed on the first antenna plane 43 and the second antenna plane 44, and the first antenna plane 43 and the second antenna plane 44 are in two different planes, so The current generated when one antenna unit 41 and the second antenna unit 42 radiate is also in two different planes. Then, the influence between the electric fields generated when the first antenna unit 41 and the second antenna unit 42 are radiated is also small.
  • the point farthest from the feeding point 45 of the first antenna unit 41 is the feeding point 46 of the second antenna unit 42, which is spaced from the feeding point 45 of the first antenna unit 41.
  • the closest point is the point 47 at which the current on the second antenna unit 42 is the smallest.
  • the feed point 45 and the feed point 46 may be disposed on the first antenna plane 43, or the feed point 45 may be disposed on the first antenna plane 43, and the feed point 46 may be disposed on the second antenna plane 44. According to the radiation principle of the antenna, the electric field strength near the feeding point of the antenna is the largest, so the influence on the other antennas in the vicinity of the feeding point of one antenna is also greater.
  • the feeding point 45 of the first antenna unit 41 and the feeding point 46 of the second antenna unit 42 it is necessary to make the feeding point 45 of the first antenna unit 41 and the feeding point 46 of the second antenna unit 42 as far as possible. . It is thus possible to bring the feed point 45 of the first antenna unit 41 close to the point 47 where the current on the second antenna unit is the smallest, and away from the feed point 46 of the second antenna unit 42.
  • the first antenna unit 41 and the second antenna unit 42 The position is reversed such that the feed point 46 of the second antenna unit 42 is close to the point where the current on the first antenna unit 41 is the smallest, and the feed point 45 away from the first antenna unit 41 can also be realized.
  • the spacing between the feeding point 45 of the first antenna unit 41 and the point at which the current on the second antenna unit 42 is the smallest may be less than a predetermined threshold, so that the dual-polarized antenna provided by the embodiment of the present invention can be applied to the antenna.
  • a predetermined threshold can be less than 5 mm.
  • the dual-polarized antenna is provided in the terminal device as an example, and the dual-polarized antenna provided by the embodiment of the present invention is schematically illustrated.
  • the dual-polarized antenna provided by the embodiment of the present invention is not limited thereto.
  • the dual polarized antenna can also be placed in any device having two antenna planes that are perpendicular to each other.
  • the dual-polarized antenna provided by the embodiment of the present invention includes: a first antenna unit and a second antenna unit, and the second antenna unit is disposed on the second antenna plane by disposing the first antenna unit on the first antenna plane,
  • the first antenna plane is perpendicular to the second antenna plane, so that the polarization directions of the first antenna unit and the second antenna unit are perpendicular to each other, so that the first antenna unit and the second antenna unit implement polarization diversity, and at the same time
  • the antenna unit and the second antenna unit are located on mutually perpendicular planes, and the electric fields are also perpendicular to each other, and the mutual influence is also small, so that the antenna is reduced under the premise that the correlation and the mutual coupling between the plurality of antennas are small.
  • the net space occupied is suitable for devices with high requirements on the net space of the antenna.
  • FIG. 4 is only a schematic illustration of the structure of the dual-polarized antenna provided by the embodiment of the present invention.
  • the dual-polarized antenna provided by the embodiment of the present invention is further described below with a specific antenna structure.
  • FIG. 5 is a schematic structural diagram of Embodiment 2 of a dual-polarized antenna according to an embodiment of the present invention.
  • a first antenna unit and a second antenna unit are used as a coupled loop antenna as an example for illustration.
  • the terminal device 50 includes a first antenna plane 43 and a second antenna plane 44.
  • the first antenna plane 43 is perpendicular to the second antenna plane 44.
  • the first antenna plane 43 is the terminal device 50.
  • the printed circuit board, the second antenna plane 44 is an example of a side frame of the terminal device 50.
  • the printed circuit board of the terminal device 50 is connected to the ground plane of the terminal device 50.
  • the side frame of the terminal device 50 may be a metal structure.
  • the shaded portion is a non-metallic structure, and the white portion is a metal structure.
  • the first antenna unit 41 is disposed on the first antenna plane 43 and the second antenna unit 42 is disposed on the second antenna plane 44.
  • the first antenna unit 41 and the second antenna unit 42 are both coupled loop antennas.
  • the feed point 45 of the first antenna unit 41 is located at the same ground as the ground point 48.
  • the feed point 46 of the second antenna unit 42 is on the same side as the ground point 49.
  • the point farthest from the feeding point 45 of the first antenna unit 41 is the feeding point 46 of the second antenna unit 42, which is closest to the feeding point 45 of the first antenna unit 41.
  • the point is the coupling ring 47 of the second antenna unit 42.
  • the coupling loop 47 of the second antenna unit 42 is the point at which the current on the second antenna unit 42 is the smallest.
  • the first antenna unit 41 produces a first resonant frequency and the second antenna unit 42 produces a second resonant frequency.
  • FIG. 5 is a schematic diagram of a specific structure of a dual-polarized antenna according to an embodiment of the present invention, but the dual-polarized antenna provided by the embodiment of the present invention is not limited thereto.
  • FIG. 6 is a schematic structural diagram of Embodiment 3 of a dual-polarized antenna according to an embodiment of the present invention. As shown in FIG. 6 , the dual-polarized antenna provided in this embodiment is different from the embodiment shown in FIG. 5 in that the first antenna unit 41 is used. It is not only disposed on the first antenna plane 43, but on the first antenna plane 43 and the third antenna plane 61, and the third antenna plane 61 is perpendicular to the first antenna plane 43 and adjacent to the second antenna plane 44.
  • the first antenna plane 43 is a printed circuit board of the terminal device
  • the second antenna plane 44 is a side frame of the terminal device
  • the third antenna plane 61 is a second side frame of the terminal device. Since the terminal device has a rectangular structure, the second side frame of the terminal device (ie, the third antenna plane 61) and the second antenna plane 44 of the second antenna unit 42 are perpendicular to each other, and the portion located on the third antenna plane 61 is first.
  • the antenna unit 41 and the second antenna unit 42 are also perpendicular to each other, and their correlation and mutual coupling will also be small. Therefore, the dual-polarized antenna provided in this embodiment does not affect the performance.
  • the dual-polarized antenna provided in this embodiment because the portion of the first antenna unit 41 is disposed on the third antenna plane 61, can reduce the space occupied by the dual-polarized antenna, and is a terminal device for setting the dual-polarized antenna. Provide more space to set up other devices.
  • the dual-polarized antennas shown in FIG. 4 to FIG. 6 can make the two antenna elements have a small correlation when they are close to each other, they can be applied to a terminal device having a high requirement for the net space of the antenna. Therefore, a plurality of dual-polarized antennas as shown in FIGS. 4 to 6 can be disposed in the terminal device, thereby providing more antennas for the terminal devices.
  • FIG. 7 is a schematic structural diagram of Embodiment 1 of a communication device according to an embodiment of the present invention.
  • the communication device provided in this embodiment includes four dual-polarized antennas as shown in FIG. 5, wherein each bipolar The antennas each include a first antenna unit 41 and a second antenna unit 42.
  • the communication device provided by the embodiment of the present invention may be a portable terminal device such as a mobile phone or a tablet computer. It can also be any communication device that has communication capabilities and needs to integrate the antenna into the device.
  • the communication device provided by the embodiment of the present invention is described by taking a terminal device as an example.
  • the current mainstream terminal devices are rectangular in shape, so they include four corners.
  • the metal front case, the metal back cover or the printed circuit board of the terminal device is also rectangular.
  • the first antenna units 41 are respectively disposed at each corner of the antenna substrate of the terminal device, and the antenna substrate may be a metal front case, a metal back cover or a printed circuit board of the terminal device.
  • Four second antenna units 42 corresponding to the first antenna unit 41 are disposed on the side frame of the terminal device.
  • the terminal device includes four dual-polarized antennas as shown in FIG.
  • one first antenna unit 41 and one second antenna unit 42 are disposed at four corners, but for convenience of display, some antenna units are not shown in the drawing.
  • the antenna substrate is the first antenna plane 43 and the side frame of the terminal device is the second antenna plane 44.
  • each of the dual-polarized antennas is located at one corner of the terminal device, the distance between the antenna elements of the dual-polarized antennas is relatively long, and the correlation and mutual coupling between the antenna elements of the dual-polarized antennas are also followed. Smaller. The correlation and mutual coupling between the first antenna unit 41 and the second antenna unit 42 of each dual-polarized antenna are also small from the embodiment shown in FIG. Therefore, in the terminal device shown in this embodiment, the correlation and mutual coupling between the antenna elements will be small. Since the terminal device provided in this embodiment includes a total of 8 antenna units, each antenna unit can generate a resonant frequency. If the resonance frequencies of the antenna elements are different by setting the specific size of each antenna unit, the terminal device of this embodiment can provide eight different resonance frequencies. This is quite advantageous for more integrated terminal devices that will be able to support up to eight different systems of wireless communication capabilities.
  • FIG. 8 is a schematic structural diagram of Embodiment 2 of a communication device according to an embodiment of the present invention.
  • the difference between the embodiment shown in FIG. 8 and FIG. 7 is that each dual-polarized antenna has the structure shown in FIG. 6.
  • one first antenna unit 41 and one second antenna unit 42 are disposed at four corners, but for convenience of display, some antenna elements are not shown in the drawing.
  • FIG. 7 or FIG. 8 only four dual-polarized antennas in the communication device are taken as an example for illustration.
  • the embodiment of the present invention is not limited thereto, and may also be in a communication device.
  • Set other numbers of dual-polarized antennas as long as there is less correlation and mutual coupling between the antenna elements of each dual-polarized antenna.
  • the structure of the dual-polarized antenna provided in accordance with the present invention generally has the best performance in the corners of the communication device.
  • the first antenna unit and the second antenna unit in the dual-polarized antenna respectively generate a first resonant frequency and a second resonant frequency.
  • the first resonant frequency and the second resonant frequency may be different or the same.
  • the dual polarized antenna can cover two frequency bands.
  • the dual-polarized antenna is equivalent to a MIMO antenna, and the capacity of the antenna in the frequency band can be improved.
  • the resonant frequencies of the respective antenna elements may be different or the same. If the resonant frequency of the antenna unit is distinguished, the communication device can provide multiple frequency bands. If the resonant frequency of the antenna unit is set to be the same, the MIMO antenna is equivalent to the communication device.
  • both the first antenna unit and the second antenna unit generate only one resonant frequency, but the dual-polarized antenna and the communication device provided by the embodiments of the present invention are not
  • the first antenna unit and the second antenna unit in each dual-polarized antenna may also generate two or more resonant frequencies respectively.
  • the first antenna unit and the second antenna unit may generate two or more resonant frequencies using any of the existing antenna structures, such as setting a plurality of radiating nodes or setting parasitic branches, coupling branches, and the like.
  • one dual-polarized antenna can generate more than two resonant frequencies, which can increase the coverage frequency of the dual-polarized antenna.
  • the frequencies of the multiple resonant frequencies can be the same, the capacity of the frequency can be increased.
  • FIGS. 9A to 9D are schematic diagrams showing the antenna performance of the communication device shown in Fig. 8. It is assumed that in the communication device shown in FIG. 8, the antenna elements are arranged in the same structure and the generated resonance frequency is also the same, and the communication device shown in FIG. 8 is equivalent to having an 8 MIMO antenna.
  • the communication device has a rectangular shape with long sides and short sides, wherein each of the second antenna elements 42 is disposed on the side frame of the short side. Then, on the side frame of the short side, the coupling and correlation between the two second antenna elements 42 are larger than those of the side frames of the long sides.
  • the second antenna unit 42 of the dual-polarized antenna in the upper right corner of FIG. 8 is the second antenna, and is on the same side frame as the second antenna unit 42 of the dual-polarized antenna in the upper right corner of FIG.
  • the other second antenna unit 42 is a third antenna.
  • the resonant frequency of each antenna unit is located at 2570 MHz to 2630 MHz.
  • FIG. 9A shows a schematic diagram of S parameters between the first antenna, the second antenna, and the third antenna.
  • the curve 91 is the reflection parameter curve of the first antenna, that is, S1, 1;
  • the curve 92 is the transmission parameter curve of the second antenna to the first antenna, that is, S1, 2;
  • the curve 93 is the transmission parameter of the third antenna to the first antenna.
  • the curve 94 is the reflection parameter curve of the second antenna, that is, S2, 2;
  • the curve 95 is the transmission parameter curve of the third antenna to the second antenna, that is, S2, 3;
  • the curve 96 is the third antenna Reflection parameter curve, ie S3, 3.
  • the abscissa in the figure is the frequency, the unit is GHz, and the ordinate is the amplitude, expressed in decibels (dB). It can be seen from the figure that the return loss of each antenna is less than 10 dB, and the isolation between the antennas is also greater than 10 dB.
  • curve 97 in FIG. 9B is a radiation efficiency curve of the first antenna
  • curve 98 is a radiation efficiency curve of the second antenna.
  • the abscissa in the figure is frequency
  • the unit is GHz
  • the ordinate is efficiency.
  • the first antenna and the second antenna are both more efficient than 60% in the radiation band.
  • FIGD shows a correlation diagram between the first antenna, the second antenna, and the third antenna, wherein the curve 101 is a correlation curve between the first antenna and the second antenna, and the curve 102 is the first antenna and the third antenna.
  • a correlation curve between the curves 103 is a correlation curve between the second antenna and the third antenna.
  • the abscissa in the figure is the frequency, the unit is GHz, and the ordinate is the correlation. As can be seen from the figure, the correlation of each antenna in the radiation band is less than 0.01.
  • the communication device provided by the embodiment of the present invention is a communication device such as a miniaturized base station
  • the communication device may include a metal casing and a printed circuit board.
  • the first antenna unit may be disposed on a metal casing of the communication device, or may be disposed on a printed circuit board of the communication device.
  • the second antenna unit may be disposed on the metal casing of the communication device, and the metal casing of the second antenna unit is disposed perpendicular to the metal casing or the printed circuit board on which the first antenna unit is disposed.
  • the specific structure of the communication device provided by the present invention can be referred to the communication device shown in FIG. 7 or FIG. 8 , and the implementation principle and technical effects thereof are similar, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例提供一种双极化天线和通信设备,一种双极化天线包括:第一天线单元(41)和第二天线单元(42);第一天线单元(41)设置于第一天线平面(43),第二天线单元(42)设置于第二天线平面(44),第一天线平面(43)和第二天线平面(44)垂直;在第二天线单元(42)上,与第一天线单元(41)的馈电点(45)相距最远的点为第二天线单元(42)的馈电点46,与第一天线单元(41)的馈电点(45)相距最近的点为第二天线单元(42)上电流最小的点。本发明实施例提供的双极化天线和通信设备,在实现多根天线之间相关性和互耦较小的前提下,减小了天线所占用的净空间。

Description

双极化天线和通信设备
本申请要求于2015年12月30日提交中国专利局、申请号为201511025387.7、发明名称为“双极化天线和通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及天线技术领域,尤其涉及一种双极化天线和通信设备。
背景技术
随着移动通信技术的发展,目前的移动通信技术已经来到以长期演进(Long Term Evolution,LTE)为代表的第四代移动通信(4th Generation,4G)时代。
由于移动终端设备一般都具备蜂窝通信、无线保真(Wireless-Fidelity,Wifi)、蓝牙等多种无线通信能力,因此移动终端设备需要配置多根天线或者具备多个谐振频率的天线,以覆盖多种无线通信的频段。或者在移动终端设备中应用多入多出(Multiple-Input Multiple-Output,MIMO)天线技术时,也需要配置多根天线。但是在移动终端设备简薄化的设计趋势下,天线能够使用的净空间越来越有限,天线的工作环境越来越差。首先,多个天线单元之间的相关性越高,天线单元对应的信道容量将降低,需要采用空间分集或极化分集的方式降低天线单元之间的相关性。同时,多个天线单元集中设置在紧凑的空间中会引起很大的互耦,各天线单元的性能也将随之下降。天线单元之间的距离越近,互耦越大、隔离度越低;天线单元之间的距离增加时,可以降低互耦、提高隔离度,但以目前移动终端设备的尺寸,天线单元的数量最多不能超过4个。在天线单元之间增加去耦结构可以降低天线单元之间的互耦,但是去耦结构会占用额外的空间,增加天线净空区,这同样是难以实现的。
那么,如何在移动终端设备有限的空间中实现天线单元之间的高隔离度,是在移动终端设备中设置更多天线单元的前提,也是当前移动终端设备中天 线设计的难点。
发明内容
本发明实施例提供一种双极化天线和通信设备,用于在通信设备有限的净空间中,减小多根天线之间相关性和互耦。
第一方面提供一种双极化天线,包括:第一天线单元和第二天线单元;
所述第一天线单元设置于第一天线平面,所述第二天线单元设置于第二天线平面,所述第一天线平面和所述第二天线平面垂直;
在所述第二天线单元上,与所述第一天线单元的馈电点相距最远的点为所述第二天线单元的馈电点,与所述第一天线单元的馈电点相距最近的点为所述第二天线单元上电流最小的点,所述第一天线单元的馈电点与所述第二天线单元上电流最小的点之间的间距小于预设阈值。
由于第一天线平面与第二天线平面垂直,使第一天线单元和第二天线单元的极化方向相互垂直,这样第一天线单元和第二天线单元就实现了极化分集,同时由于第一天线单元和第二天线单元位于相互垂直的平面,其电场也是相互垂直的,相互影响也较小,从而在实现多根天线之间相关性和互耦较小的前提下,减小了天线所占用的净空间,适用于对天线净空间要求较高的通信设备中。
在本发明实施例的一种实现方式中,所述第一天线单元设置在所述第一天线平面的一个角上。将双极化天线设置在第一天线平面的角上,可以进一步降低双极化天线所需净空间。
在本发明实施例的一种实现方式中,所述第一天线单元设置在所述第一天线平面和第三天线平面上,所述第三天线平面与所述第一天线平面垂直并与所述第二天线平面相邻。第一天线单元设置在第一天线平面和第三天线平面上,进一步节约了天线净空间。
在本发明实施例的一种实现方式中,所述第一天线单元至少产生一个第一谐振频率,所述第二天线单元产生至少一个第二谐振频率。当第一天线单元和第二天线单元产生两个以上的谐振时,该双极化天线可以覆盖更多的频段。
在本发明实施例的一种实现方式中,所述第一天线单元和所述第二天线单元结构相同,所述第一谐振频率与所述第二谐振频率相同。从而可以实现MIMO天线。
在本发明实施例的一种实现方式中,所述第一天线单元和所述第二天线单元为耦合环天线,所述耦合环天线的接地点与馈电点位于同侧。
第二方面提供一种通信设备,包括天线基板和侧边框,所述天线基板与所述侧边框垂直,所述天线基板包括所述通信设备的金属前壳、所述通信设备的金属背盖或通信设备的印刷电路板;
所述通信设备中还包括至少一个双极化天线,每个双极化天线包括第一天线单元和第二天线单元;
所述第一天线单元设置于所述天线基板上,所述第二天线单元设置于所述侧边框上;
在所述第二天线单元上,与所述第一天线单元的馈电点相距最远的点为所述第二天线单元的馈电点,与所述第一天线单元的馈电点相距最近的点为所述第二天线单元上电流最小的点,所述第一天线单元的馈电点与所述第二天线单元上电流最小的点之间的间距小于预设阈值。
其中通信设备的天线基板为第一天线平面,通信设备的侧边框为第二天线平面,通信设备的第二侧边框为第三天线平面。
第三方面提供一种通信设备,包括至少一个双极化天线,每个双极化天线包括第一天线单元和第二天线单元;
所述第一天线单元设置于所述通信设备的第一天线平面上,所述第二天线单元设置于所述通信设备的第二天线平面上;
所述第一天线平面包括所述通信设备的金属外壳或所述通信设备的印刷电路板,所述第二天线平面包括与设置所述第一天线平面垂直的所述通信设备的外壳;
在所述第二天线单元上,与所述第一天线单元的馈电点相距最远的点为所述第二天线单元的馈电点,与所述第一天线单元的馈电点相距最近的点为所述第二天线单元上电流最小的点,所述第一天线单元的馈电点与所述第二天线单元上电流最小的点之间的间距小于预设阈值;
所述第一天线单元和所述第二天线单元的极化方向相互垂直。
在本发明实施例的一种实现方式中,所述双极化天线为至少两个,所述至少两个双极化天线组成MIMO天线。
本发明实施例提供的双极化天线和通信设备,包括:第一天线单元和第二天线单元,通过将第一天线单元设置在第一天线平面上,将第二天线单元设置在第二天线平面上,其中第一天线平面与第二天线平面垂直,使第一天线单元和第二天线单元的极化方向相互垂直,这样第一天线单元和第二天线单元就实现了极化分集,同时由于第一天线单元和第二天线单元位于相互垂直的平面,其电场也是相互垂直的,相互影响也较小,从而在实现多根天线之间相关性和互耦较小的前提下,减小了天线所占用的净空间,适用于对天线净空间要求较高的通信设备中。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为一种终端设备中的天线布局示意图;
图2为另一种终端设备中的天线布局示意图;
图3为再一种终端设备中的天线布局示意图;
图4为本发明实施例提供的双极化天线实施例一的结构示意图
图5为本发明实施例提供的双极化天线实施例二的结构示意图;
图6为本发明实施例提供的双极化天线实施例三的结构示意图;
图7为本发明实施例提供的通信设备实施例一的结构示意图;
图8为本发明实施例提供的通信设备实施例二的结构示意图;
图9A至图9D为图8所示通信设备的天线性能示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整 地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
由于移动终端设备具有多种无线通信能力,因此需要为其配置能够产生多个谐振频率的多根天线。并且移动终端设备对于通信速率的要求越来越高,那么需要天线提供的通信信道容量更高。由于移动终端设备中的空间有限,一般地,采用倒F天线(Inverted-F Antenna,IFA)、平面倒F天线(Planar Inverted-F Antenna,PIFA)、缝隙天线等形式实现。上述天线形式对空间需求较小,但由于移动终端设备中一般都需要配置多根天线,各天线辐射的电磁波会产生相互的影响。相邻天线之间的相互影响程度用相关性来表示,相关性越高则天线之间的相互影响越大,相关性越高那么天线所提供的信道容量越低。同时,天线之间还会产生耦合,这种影响称之为天线之间的互耦,互耦的增加还会同时提高天线之间的相关性。一般地,天线之间的距离越近,互耦越大,对各天线的影响也越大。
目前降低天线之间的相关性可以采用两种方案,分别为空间分集和极化分集。空间分集就是增大天线之间的距离,减小天线之间的相关性,但两天线之间的距离至少要达到半个波长才能具有较小的相关性;极化分集就是控制天线之间的极化方向,相邻的两个天线在垂直交叉极化时相关性最小。从本质上来说,空间分集和极化分集都是通过降低天线之间的相关性提高天线性能。同时,还需要降低天线之间的互耦,从而才能使天线提供的通信信道容量较高。
另外,移动终端设备中还可能需要采用MIMO技术,即配置多根天线组成MIMO天线系统。其中,MIMO技术是LTE的主要核心技术之一。MIMO技术是指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,从而改善通信质量。随着网络中终端数量和网络传输速度的增加,LTE系统的数据吞吐量在不断增加,传统的单入单出(Single Input Single Output,SISO)天线在信道容量上具有一个不可突破的瓶颈,那就是香农容量的限制。而采用MIMO技术可以通过增加天线的数量来提高系统的数据吞吐量。在应用MIMO技术时,多根天线之间同样存在需要提高隔离度的问题。
图1为一种终端设备中的天线布局示意图,在图1所示终端设备中,包括天线1和天线2两个天线。天线1和天线2分别设置在终端设备的天线基板上,一般地,该天线基板为终端设备中的印刷电路板(Printed Circuit Board,PCB),该PCB与终端设备的地平面连接。天线1和天线2采用空间分集的方案来降低天线之间的相关性,即使天线1和天线2的距离尽可能远离,并且降低天线之间的互耦。
但是,由于天线之间的相关性需要在天线的距离至少达到半个波长时,才能有较低的相关性和较低的互耦。对于频率较高的高频段天线,采用空间分集方案可以得到较高的隔离度,但是对于频率较低的天线则不能有效降低天线之间的隔离度。例如对于1GHz的频段,其波长为30厘米,这意味着在终端设备中,两个天线之间至少需要距离15厘米。而目前的移动终端设备,特别是智能手机,普遍采用4.7英寸、5.5英寸甚至尺寸更小的屏幕。对于应用4.7英寸屏幕的终端设备,其长边的外尺寸也不会超过15厘米,那么采用空间分集的方案提高天线间的隔离度在这个频段是无法实现的。
而对于较高频段的天线,虽然可以采用空间分集的方案提高天线间的隔离度,但是受制于终端设备尺寸的限制,天线数量将得到限制。对于需要多种无线通信制式的终端设备,甚至于需要采用MIMO技术的终端设备而言,这也难以应用。
再有,为了保证天线之间的距离,天线的设置位置将分布在终端设备的各个部位。而目前的终端设备都是趋向于大屏幕无边框的设计,在这种设计趋势下,一般只会在终端设备的非显示区域为终端预留净空间,那么采用空间分集增大天线之间隔离度的方案也并不适用。
图2为另一种终端设备中的天线布局示意图,图2所示的终端设备在图1所示终端设备的基础上,在天线1和天线2两个天线之间增加了去耦结构。天线1和天线2采用空间分集的方案来降低天线之间的相关性,并且降低天线之间的互耦。增加去耦结构可以减小天线之间的互耦,以缩短天线之间的距离。去耦结构可以采用多种形式实现,例如大面积的接地部,或者电容组件等。实际上去耦结构就是通过改变天线1和天线2之间的电场来达到改善天线1和天线2之间的互耦的。但是去耦结构一般只对某一个频段有效,也就是只能实现窄带的去耦,而无法实现宽带的去耦。另外,去耦结构一般都 需要占用较大的净空间,这在空间十分有限的终端设备中也难以实现。并且,去耦结构一般只能降低天线之间的互耦,而当天线之间的距离缩短后,天线之间的相关性也会相应增高,同样会影响天线的性能。
图3为再一种终端设备中的天线布局示意图,在图3所示终端设备中,天线1和天线2分别设置于终端设备天线基板的角落上的两个边上,并且天线1和天线2相互垂直。若天线1和天线2采用同种结构,那么由于天线1和天线2相互垂直,则天线1和天线2的极化方向也相互垂直,即天线1和天线2互为垂直极化。由于采用了垂直极化方案,天线1和天线2之间的相关性可以得到很好地降低。但是由于天线1和天线2是设置在同一平面上的,那么各天线所辐射的信号产生的电场仍然会产生相互的影响,即产生互耦。若天线之间的距离较近,则互耦仍然较大。若将天线之间的距离增大,则仍然会出现占用过大净空间的问题。
综上所述,在终端设备中,如何在有限空间中解决多个天线之间的相关性和互耦的问题,是终端设备中亟待解决的问题。
图4为本发明实施例提供的双极化天线实施例一的结构示意图,如图4所示,以本实施例提供的双极化天线设置在终端设备40中为例,包括第一天线单元41和第二天线单元42。
终端设备40包括第一天线平面43和第二天线平面44,第一天线平面43与第二天线平面44垂直。在终端设备40中,第一天线平面43也可称为天线基板,第一天线平面43包括终端设备40的金属前壳、终端设备40的金属背盖或终端设备40的印刷电路板。其中终端设备40的金属前壳、终端设备40的金属背盖或终端设备40的印刷电路板都与终端设备40的地平面连接。终端设备40的第二天线平面44可以为终端设备的侧边框,第二天线平面44可以为金属结构,也可以是非金属结构。
第一天线单元41设置于终端设备40的第一天线平面43上,第二天线单元42设置于终端设备40的第二天线平面44上。第一天线单元41和第二天线单元42可以采用任意形式的天线结构实现,例如IFA天线、PIFA天线、缝隙天线、环天线等。第一天线单元41至少产生一个第一谐振频率,第二天线单元42至少产生一个第二谐振频率。也就是说,第一天线单元41和第二天线单元42中的每个天线单元都可以产生一个或多个谐振频率。
对于第一天线单元41,若其设置的第一天线平面为终端设备40的金属前壳或终端设备40的金属背盖,则第一天线单元41可以通过去除金属前壳或金属背盖上的部分金属层来得到。若第一天线单元41设置的天线基板为终端设备40的印刷电路板,则第一天线单元41可以通过去除印刷电路板上的部分覆铜来得到,或者第一天线单元41还可以通过在印刷电路板上为覆铜的部分设置相应的馈电结构来得到。对于第二天线单元42,若其设置的第二天线平面44为金属结构,则第二天线单元42可以通过去除终端设备40的侧边框上的部分金属层来得到。若第二天线单元42其设置的第二天线平面44非为金属结构,则第二天线单元42可以在终端设备40的侧边框上设置相应的馈电结构来得到。
由于第一天线平面43和第二天线平面44相互垂直,那么分别设置在其上的第一天线单元41和第二天线单元42也相互垂直,则第一天线单元41和第二天线单元42的极化方向也相互垂直。这样第一天线单元41和第二天线单元42就实现了极化分集,可以实现较小的相关性。另外,第一天线单元41和第二天线单元42分别设置在第一天线平面43和第二天线平面44上,而第一天线平面43和第二天线平面44处于两个不同的平面,因此第一天线单元41和第二天线单元42辐射时产生的电流也处于两个不同的平面。那么第一天线单元41和第二天线单元42辐射时产生的电场之间影响也较小。
另外,在第二天线单元42上,与第一天线单元41的馈电点45相距最远的点为第二天线单元42的馈电点46,与第一天线单元41的馈电点45相距最近的点为第二天线单元42上电流最小的点47。其中馈电点45和馈电点46可以设置在第一天线平面43上,或者馈电点45设置在第一天线平面43上、馈电点46设置在第二天线平面44上。根据天线的辐射原理,天线的馈电点附近的电场强度是最大的,因此在某一天线的馈电点处对附近的其他天线的影响也越大。因此,为了尽量消除第一天线单元41和第二天线单元42之间的互耦,需要使第一天线单元41的馈电点45和第二天线单元42的馈电点46离得尽可能远。因此可以使第一天线单元41的馈电点45靠近第二天线单元上电流最小的点47,并且远离第二天线单元42的馈电点46。当然,将第一天线单元41和第二天线单元42的 位置调换,使得第二天线单元42的馈电点46靠近第一天线单元41上电流最小的点,并远离第一天线单元41的馈电点45也可以实现。
第一天线单元41的馈电点45与第二天线单元42上电流最小的点之间的间距可以小于一个预设阈值,从而使得本发明实施例提供的双极化天线能够应用于对天线净空间要求较高的设备中。一般地,该预设阈值可以小于5毫米。
本实施例以双极化天线设置于终端设备中为例,对本发明实施例提供的双极化天线进行了示意性说明,但本发明实施例提供的双极化天线不以此为限,该双极化天线还可以设置于任一具有相互垂直的两个天线平面的设备中。
本发明实施例提供的双极化天线,包括:第一天线单元和第二天线单元,通过将第一天线单元设置在第一天线平面上,将第二天线单元设置在第二天线平面上,其中第一天线平面与第二天线平面垂直,使第一天线单元和第二天线单元的极化方向相互垂直,这样第一天线单元和第二天线单元就实现了极化分集,同时由于第一天线单元和第二天线单元位于相互垂直的平面,其电场也是相互垂直的,相互影响也较小,从而在实现多根天线之间相关性和互耦较小的前提下,减小了天线所占用的净空间,适用于对天线净空间要求较高的设备中。
图4所示实施例仅示意性地示出本发明实施例提供的双极化天线的结构,下面以一具体天线结构示意图对本发明实施例提供的双极化天线进行进一步说明。图5为本发明实施例提供的双极化天线实施例二的结构示意图,在图5中,以第一天线单元和第二天线单元为耦合环天线为例进行示意性说明。如图5所示,终端设备50包括第一天线平面43和第二天线平面44,第一天线平面43与第二天线平面44垂直,本实施例中以第一天线平面43为终端设备50的印刷电路板,第二天线平面44为终端设备50的侧边框为例。终端设备50的印刷电路板与终端设备50的地平面连接。终端设备50的侧边框可以为金属结构。在图中阴影部分为非金属结构,白色部分为金属结构。第一天线单元41设置于第一天线平面43上,第二天线单元42设置于第二天线平面44上。第一天线单元41和第二天线单元42均为耦合环天线。第一天线单元41馈电点45与接地点48位于同 侧,第二天线单元42的馈电点46与接地点49位于同侧。
在第二天线单元42上,与第一天线单元41的馈电点45相距最远的点为第二天线单元42的馈电点46,与第一天线单元41的馈电点45相距最近的点为第二天线单元42的耦合环47。第二天线单元42的耦合环47为第二天线单元42上电流最小的点。
第一天线单元41产生一个第一谐振频率,第二天线单元42产生一个第二谐振频率。
图5给出了一种本发明实施例提供的双极化天线的具体结构示意图,但本发明实施例提供的双极化天线不以此为限。图6为本发明实施例提供的双极化天线实施例三的结构示意图,如图6示,本实施例提供的双极化天线与图5所示实施例的区别在于,第一天线单元41并不仅设置于第一天线平面43上,而是设置在第一天线平面43和第三天线平面61上,第三天线平面61与第一天线平面43垂直且与第二天线平面44相邻。在本实施例中,第一天线平面43为终端设备的印刷电路板,第二天线平面44为终端设备的侧边框,那么第三天线平面61为终端设备的第二侧边框。由于终端设备为矩形结构,终端设备的第二侧边框(即第三天线平面61)与设置第二天线单元42的第二天线平面44相互垂直,那么位于第三天线平面61上的部分第一天线单元41与第二天线单元42也是相互垂直的,其相关性和互耦也将较小。因此,本实施例提供的双极化天线并不会对性能产生影响。而本实施例提供的双极化天线由于将第一天线单元41的部分设置在第三天线平面61上,将能够减小双极化天线占用的空间,为设置该双极化天线的终端设备提供更多的空间设置其他器件。
由于图4至图6所示的双极化天线能够使得两个天线单元在距离很近时,具有较小的相关性,那么可以将其应用于对天线净空间要求较高的终端设备中。因此在终端设备中可以将设置多个如图4至图6所示的双极化天线,从而为终端设备提供更多的天线。
图7为本发明实施例提供的通信设备实施例一的结构示意图,如图7所示,本实施例提供的通信设备包括4个如图5所示的双极化天线,其中每个双极化天线都包括一个第一天线单元41和一个第二天线单元42。本发明实施例提供的通信设备可以为手机、平板电脑等便携式终端设备, 也可以是任一具有通信能力,需要将天线集成于设备中的通信设备。在本实施例中,以终端设备为例,对本发明实施例提供的通信设备进行说明。
为了便于携带和使用,目前的主流终端设备的外形都是矩形的,因此其包括四个角。在本实施例中,以终端设备外形为矩形为例,那么终端设备的金属前壳、金属背盖或印刷电路板也为矩形。第一天线单元41分别设置在终端设备的天线基板的每个角上,该天线基板可以为终端设备的金属前壳、金属背盖或印刷电路板。在终端设备的侧边框上设置有4个与第一天线单元41对应的第二天线单元42。这样终端设备就包括4个如图5所示的双极化天线。图中所示终端设备中,4个角上都设置有一个第一天线单元41和一个第二天线单元42,但为了便于展示,部分天线单元在图中未示出。在本实施例中,以天线基板为第一天线平面43,终端设备的侧边框为第二天线平面44为例。
由于每个双极化天线分别位于终端设备的一个角上,各双极化天线的天线单元之间距离较远,各双极化天线的天线单元之间的相关性和互耦也都随之较小。而各双极化天线的第一天线单元41和第二天线单元42之间的相关性和互耦从图5所示实施例中可知,也较小。因此,本实施例所示的终端设备中,各天线单元之间的相关性和互耦都将较小。由于本实施例提供的终端设备一共包括8个天线单元,每个天线单元都能够产生一个谐振频率。若通过设置各天线单元的具体尺寸,使各天线单元的谐振频率都不同,那么本实施例的终端设备将可以提供8个不同的谐振频率。这对于集成度越来越高的终端设备而言,是相当有利的,该终端设备将可以最多支持8个不同制式的无线通信能力。
同样地,将4个如图6所示的双极化天线设置于通信设备中也能够实现上述效果。图8为本发明实施例提供的通信设备实施例二的结构示意图,图8所示实施例与图7的区别在于,每个双极化天线都为图6所示结构。图中所示通信设备中,4个角上都设置有一个第一天线单元41和一个第二天线单元42,但为了便于展示,部分天线单元在图中未示出。
在图7或图8本实施例中,仅以通信设备中包括4个双极化天线为例进行了示意性说明。但本发明实施例不以此为限,也可以在通信设备中 设置其他数量的双极化天线,只要保证各双极化天线的天线单元之间具有较小的相关性和互耦即可。但根据本发明提供的双极化天线的结构,一般将其设置在通信设备的角上性能最好。
在图4至图6所示实施例中,本发明实施例提供的双极化天线中的第一天线单元和第二天线单元分别产生第一谐振频率和第二谐振频率。第一谐振频率和第二谐振频率可以不同,也可以相同。当第一谐振频谱和第二谐振频率不同时,该双极化天线可以覆盖两个频段。当第一谐振频谱和第二谐振频率相同时,该双极化天线相当于MIMO天线,可以提高该天线在该频段的容量。同样地,在图7或图8所示实施例中,通信设备包括的多个双极化天线中,各天线单元的谐振频率可以不同也可以相同。若将天线单元的谐振频率区分开,则通信设备可以提供多个频段,若将天线单元的谐振频率设置相同,则通信设备中相当于设置了MIMO天线。
需要说明的是,图4至图8所示实施例中,第一天线单元和第二天线单元都仅产生一个谐振频率,但本发明实施例提供的双极化天线和通信设备不以此为限,每一双极化天线中的第一天线单元和第二天线单元还可以分别产生两个或两个以上的谐振频率。第一天线单元和第二天线单元可以采用任一种现有的天线结构产生两个或两个以上的谐振频率,例如设置多个辐射枝节或者设置寄生枝节、耦合枝节等。使第一天线单元和第二天线单元分别产生两个或两个以上的谐振频率,那么一个双极化天线即可产生多于两个谐振频率,可以增加该双极化天线的覆盖频带,若将多个谐振频率的频率设置相同,则可以增加该频率的容量。
图9A至图9D为图8所示通信设备的天线性能示意图。假设在图8所示通信设备中,设置的各天线单元结构均相同,产生的谐振频率也相同,那么图8所示通信设备相当于具有8MIMO天线。在图8所示实施例中,可以看出,通信设备为矩形,具有长边和短边,其中各第二天线单元42设置在短边的侧边框上。那么在短边的侧边框上,两个第二天线单元42之间的耦合以及相关性要比长边的侧边框上大。因此,在这里仅需关注通信设备中一个角上的双极化天线以及附近的一个第二天线单元之间的关系。以图8中右上角的双极化天线中的第一天线单元41为第一天 线,以图8中右上角的双极化天线中的第二天线单元42为第二天线,以与图8中右上角的双极化天线中的第二天线单元42处于同一侧边框上的另一第二天线单元42为第三天线。其中各天线单元的谐振频率位于2570MHz~2630MHz。
图9A示出上述第一天线、第二天线和第三天线之间的S参数示意图。其中曲线91为第一天线的反射参数曲线,即S1,1;曲线92为第二天线到第一天线的传输参数曲线,即S1,2;曲线93为第三天线到第一天线的传输参数曲线,即S1,3;曲线94为第二天线的反射参数曲线,即S2,2;曲线95为第三天线到第二天线的传输参数曲线,即S2,3;曲线96为第三天线的反射参数曲线,即S3,3。其中,图中的横坐标为频率,单位为GHz,纵坐标为幅度,以分贝(dB)表示。从图中可以看出,各天线的回波损耗均小于10dB,各天线之间的隔离度也均大于10dB。
图9B和图9C示出第一天线和第二天线的辐射效率示意图。其中图9B中曲线97为第一天线的辐射效率曲线,曲线98为第二天线的辐射效率曲线。其中,图中的横坐标为频率,单位为GHz,纵坐标为效率。从图中可以看出,第一天线和第二天线在辐射频带内效率都高于60%。
图9D示出第一天线、第二天线和第三天线之间的相关性示意图,其中曲线101为第一天线和第二天线之间的相关性曲线,曲线102为第一天线和第三天线之间的相关性曲线,曲线103为第二天线和第三天线之间的相关性曲线。其中,图中的横坐标为频率,单位为GHz,纵坐标为相关性。从图中可以看出,各天线在辐射频带内相关性都小于0.01。
另外,若本发明实施例提供的通信设备为小型化基站等通信设备,那么该通信设备可以包括金属外壳和印刷电路板。本发明实施例提供的双极化天线中,第一天线单元可以设置于通信设备的金属外壳上,也可以设置于通信设备的印刷电路板上。第二天线单元可以设置于通信设备的金属外壳上,并且设置第二天线单元的金属外壳与设置第一天线单元的金属外壳或印刷电路板垂直。本发明提供的通信设备的具体结构可以参照图7或图8所示的通信设备,其实现原理和技术效果类似,此处不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非 对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

  1. 一种双极化天线,其特征在于,包括:第一天线单元(41)和第二天线单元(42);
    所述第一天线单元(41)设置于第一天线平面(43),所述第二天线单元(42)设置于第二天线平面(44),所述第一天线平面(43)和所述第二天线平面(44)垂直;
    在所述第二天线单元(42)上,与所述第一天线单元(41)的馈电点(45)相距最远的点为所述第二天线单元(42)的馈电点(46),与所述第一天线单元(41)的馈电点(45)相距最近的点为所述第二天线单元(42)上电流最小的点,所述第一天线单元(41)的馈电点(45)与所述第二天线单元(42)上电流最小的点之间的间距小于预设阈值所述第一天线单元和所述第二天线单元的极化方向相互垂直。
  2. 根据权利要求1所述的双极化天线,其特征在于,所述第一天线单元(41)设置在所述第一天线平面(43)的一个角上。
  3. 根据权利要求2所述的双极化天线,其特征在于,所述第一天线单元(41)设置在所述第一天线平面(43)和第三天线平面(61)上,所述第三天线平面(61)与所述第一天线平面(43)垂直并与所述第二天线平面(44)相邻。
  4. 根据权利要求1~3任一项所述的双极化天线,其特征在于,所述第一天线单元(41)和所述第二天线单(42)元为耦合环天线,所述耦合环天线的接地点与馈电点位于同侧。
  5. 一种通信设备,其特征在于,包括天线基板和侧边框,所述天线基板与所述侧边框垂直,所述天线基板包括所述通信设备的金属前壳、所述通信设备的金属背盖或所述通信设备的印刷电路板;
    所述通信设备中还包括至少一个双极化天线,每个双极化天线包括第一天线单元(41)和第二天线单元(42);
    所述第一天线单元(41)设置于所述天线基板上,所述第二天线单元(42)设置于所述侧边框上;
    在所述第二天线单元(42)上,与所述第一天线单元(41)的馈电点(45)相距最远的点为所述第二天线单元(42)的馈电点(46),与所述 第一天线单元(41)的馈电点(45)相距最近的点为所述第二天线单元(42)上电流最小的点,所述第一天线单元(41)的馈电点(45)与所述第二天线单元(42)上电流最小的点之间的间距小于预设阈值。
  6. 根据权利要求5所述的通信设备,其特征在于,所述第一天线单元(41)设置在所述天线基板的至少一个角上,所述侧边框上设置有与每个第一天线单元(41)对应的第二天线单元(42)。
  7. 根据权利要求6所述的通信设备,其特征在于,所述第一天线单元(41)设置在所述天线基板和所述通信设备的第二侧边框上,所述第二侧边框与设置所述第二天线单元(42)的侧边框相邻。
  8. 根据权利要求5~7任一项所述的通信设备,其特征在于,所述双极化天线为至少两个,所述至少两个双极化天线组成多入多出MIMO天线。
  9. 根据权利要求5~8任一项所述的通信设备,其特征在于,所述第一天线单元(41)和所述第二天线单元(42)为耦合环天线,所述耦合环天线的接地点与馈电点位于同侧。
PCT/CN2016/106769 2015-12-30 2016-11-22 双极化天线和通信设备 WO2017114024A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511025387.7 2015-12-30
CN201511025387.7A CN106935952B (zh) 2015-12-30 2015-12-30 双极化天线和通信设备

Publications (1)

Publication Number Publication Date
WO2017114024A1 true WO2017114024A1 (zh) 2017-07-06

Family

ID=59224485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106769 WO2017114024A1 (zh) 2015-12-30 2016-11-22 双极化天线和通信设备

Country Status (2)

Country Link
CN (1) CN106935952B (zh)
WO (1) WO2017114024A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111641028A (zh) * 2020-05-09 2020-09-08 东莞职业技术学院 双极化天线结构及其无线通信设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935962A (zh) * 2017-12-15 2019-06-25 西安中兴新软件有限责任公司 一种垂直极化mimo天线和具有mimo天线的终端
CN110518337B (zh) * 2018-05-22 2021-09-24 深圳市超捷通讯有限公司 天线结构及具有该天线结构的无线通信装置
CN110718746B (zh) * 2018-07-13 2023-09-01 中兴通讯股份有限公司 天线及通信设备
CN109103576B (zh) * 2018-08-03 2020-03-17 瑞声精密制造科技(常州)有限公司 天线系统及移动终端
CN109904592B (zh) * 2019-04-02 2021-07-20 维沃移动通信有限公司 一种天线结构及通信终端
WO2021008690A1 (en) * 2019-07-16 2021-01-21 Huawei Technologies Co., Ltd. Dual-polarization antenna elements and antenna array
CN112886245B (zh) * 2019-11-29 2023-08-22 RealMe重庆移动通信有限公司 穿戴式电子设备
CN112002997A (zh) * 2020-07-15 2020-11-27 中山大学 一种应用于5g的紧凑型三单元双极化多输入多输出天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2658958Y (zh) * 2002-12-05 2004-11-24 凯瑟雷恩工厂两合公司 二维天线阵
CN202127088U (zh) * 2011-05-31 2012-01-25 深圳光启高等理工研究院 一种双极化天线及具有该双极化天线的mimo天线
US8120536B2 (en) * 2008-04-11 2012-02-21 Powerwave Technologies Sweden Ab Antenna isolation
CN104167611A (zh) * 2013-05-17 2014-11-26 西门子公司 一种双向双极化天线

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201210523Y (zh) * 2008-06-20 2009-03-18 富港电子(东莞)有限公司 双极化天线
US8730110B2 (en) * 2010-03-05 2014-05-20 Blackberry Limited Low frequency diversity antenna system
KR101378847B1 (ko) * 2012-07-27 2014-03-27 엘에스엠트론 주식회사 광대역 특성을 갖는 내장형 안테나
CN202917622U (zh) * 2012-10-29 2013-05-01 耀登科技股份有限公司 显示器的金属框架天线
CN104103890B (zh) * 2013-04-03 2018-06-19 深圳富泰宏精密工业有限公司 天线结构及应用该天线结构的无线通信装置
CN104241844B (zh) * 2013-06-06 2017-06-27 深圳富泰宏精密工业有限公司 天线结构及应用该天线结构的无线通信装置
CN103633450B (zh) * 2013-11-11 2016-07-06 联想(北京)有限公司 一种天线及电子设备
CN204834871U (zh) * 2015-08-04 2015-12-02 常熟泓淋电子有限公司 复合型4g金属环天线
CN106921038A (zh) * 2015-12-24 2017-07-04 华为技术有限公司 多输入多输出天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2658958Y (zh) * 2002-12-05 2004-11-24 凯瑟雷恩工厂两合公司 二维天线阵
US8120536B2 (en) * 2008-04-11 2012-02-21 Powerwave Technologies Sweden Ab Antenna isolation
CN202127088U (zh) * 2011-05-31 2012-01-25 深圳光启高等理工研究院 一种双极化天线及具有该双极化天线的mimo天线
CN104167611A (zh) * 2013-05-17 2014-11-26 西门子公司 一种双向双极化天线

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111641028A (zh) * 2020-05-09 2020-09-08 东莞职业技术学院 双极化天线结构及其无线通信设备

Also Published As

Publication number Publication date
CN106935952B (zh) 2020-02-21
CN106935952A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
WO2017114024A1 (zh) 双极化天线和通信设备
CN106575815B (zh) 无线通信设备中的天线装置
JP6737486B2 (ja) アンテナモジュール、mimoアンテナ、および端末
EP3780270B1 (en) Antenna system and terminal device
JP6374971B2 (ja) アンテナユニット及び端末
WO2021023182A1 (zh) 天线模组及电子设备
KR101378847B1 (ko) 광대역 특성을 갖는 내장형 안테나
CN104037500B (zh) 天线装置和用于设置天线装置的方法
US10263336B1 (en) Multi-band multi-antenna array
US11909098B2 (en) Antenna structure and high-frequency wireless communications terminal
US10980035B2 (en) Supplemental use of millimeter wave spectrum
CN105375108B (zh) 具有mimo天线的移动终端
EP3130034B1 (en) Capacitively-coupled isolator assembly
JP2018107783A (ja) マルチアンテナ通信装置
CN109728422A (zh) 混合闭槽lte天线
US11962099B2 (en) Antenna structure and high-frequency multi-band wireless communication terminal
WO2021104228A1 (zh) 天线单元和电子设备
CN108879112B (zh) 天线阵列及终端
CN108429012A (zh) 一种移动终端的天线及移动终端
US20190157751A1 (en) Antenna and mobile terminal
CN104332719A (zh) 天线装置、电子设备和用于设置天线装置的方法
WO2016115828A1 (zh) 一种多输入多输出天线、数据卡和终端
WO2021035895A1 (zh) 天线模组及终端
CN105186133B (zh) 一种天线通信系统及电子设备
US20230299491A1 (en) Antenna module and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880814

Country of ref document: EP

Kind code of ref document: A1