WO2021104228A1 - 天线单元和电子设备 - Google Patents

天线单元和电子设备 Download PDF

Info

Publication number
WO2021104228A1
WO2021104228A1 PCT/CN2020/131026 CN2020131026W WO2021104228A1 WO 2021104228 A1 WO2021104228 A1 WO 2021104228A1 CN 2020131026 W CN2020131026 W CN 2020131026W WO 2021104228 A1 WO2021104228 A1 WO 2021104228A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating arm
antenna unit
control switch
arm structure
millimeter wave
Prior art date
Application number
PCT/CN2020/131026
Other languages
English (en)
French (fr)
Inventor
邾志民
简宪静
王义金
马荣杰
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021104228A1 publication Critical patent/WO2021104228A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching

Definitions

  • the present invention relates to the field of communication technology, and in particular to an antenna unit and electronic equipment.
  • the millimeter wave antenna package antenna (Antenna in package, AiP) module of the prior art has the following disadvantages:
  • AiP modules When AiP modules are placed in electronic devices such as mobile phones, non-metallic materials such as the shell/battery cover of mobile phones and other electronic devices have a greater impact on the millimeter wave antenna, which often causes the resonant frequency and bandwidth of the multi-frequency AiP module to shift. Narrowing, even the disappearance of the bandwidth of some frequency bands, etc.;
  • the bandwidth of the prior art is narrow, and the current dual-frequency solution can only cover the n260 (37.0GHz-40.0GHz) and n261 (27.5GHz-28.35GHz) frequency bands, which cannot meet the multi-band or wide-band design and affect the user's mobile roaming experience;
  • the embodiments of the present invention provide an antenna unit and an electronic device to solve the problem that the antenna in the prior art cannot satisfy the multi-frequency or wide-frequency.
  • the present invention is implemented as follows:
  • an antenna unit including:
  • Metal casing including a groove
  • the radiating arm structure is arranged in the groove
  • the power feeding part is provided corresponding to the two ends of the radiating arm structure, and is insulated from the bottom of the groove;
  • the control switch is arranged outside the metal shell, and the power feeding part passes through the bottom of the groove and is connected to a signal source or a signal reference ground through the control switch.
  • an embodiment of the present invention also provides an electronic device, including the antenna unit described above;
  • the number of the antenna unit is at least one.
  • the metal shell includes a groove
  • the radiating arm structure arranged in the groove corresponds to the feeding parts respectively provided at both ends of the radiating arm structure, and is arranged in the
  • the power feeding part passes through the groove bottom and is connected to the signal source or signal reference ground through the control switch, and the power feeding part is insulated from the groove bottom and can cover more Frequency bands; and, the feeder is connected to the signal source or signal reference ground through the control switch, and the feed point (that is, the connection point between the control switch and the signal source) and the location (that is, the control switch and the signal source) can be performed through the control switch Reference ground connection point) switch to realize the reconfiguration of the pattern; and the use of dual-port feed for the same antenna unit can form a multiple-input multiple-output (MIMO) function to improve data Transmission rate, two can constitute dual polarization, increase the wireless connection capability of the antenna, reduce the probability of communication disconnection, and improve the communication effect and user experience
  • MIMO multiple-input multiple-output
  • Figure 1 shows a cross-sectional view of an antenna unit according to an embodiment of the present invention
  • Fig. 2 shows a schematic structural diagram of an antenna unit according to an embodiment of the present invention
  • Figure 3 shows a top view of an antenna unit according to an embodiment of the present invention
  • FIG. 4 shows one of the top views of the millimeter wave array antenna according to the embodiment of the present invention.
  • FIG. 5 shows the second top view of the millimeter wave array antenna according to the embodiment of the present invention.
  • FIG. 6 shows a schematic diagram of the structure of an electronic device according to an embodiment of the present invention.
  • Fig. 7 shows a reflection coefficient diagram of an antenna unit according to an embodiment of the present invention.
  • Fig. 8 shows a radiation pattern with a frequency of 26 GHz at a time according to an embodiment of the present invention
  • FIG. 9 shows a radiation pattern with a frequency of 39 GHz in the state of an embodiment of the present invention.
  • Fig. 10 shows a radiation pattern with a frequency of 26 GHz in the second state of the embodiment of the present invention
  • Figure 11 shows a radiation pattern with a frequency of 39 GHz in the second state of the embodiment of the present invention
  • FIG. 12 shows a schematic diagram of an electronic device not connected to a hotspot according to an embodiment of the present invention
  • FIG. 13 shows one of the schematic diagrams of the connection between an electronic device and a hotspot according to an embodiment of the present invention
  • FIG. 14 shows the second schematic diagram of the connection between the electronic device and the hotspot according to the embodiment of the present invention.
  • the millimeter wave antenna is often in the form of an independent antenna module. It and existing antennas, such as cellular antennas, and non-cellular antennas, are often set separately, so the overall volume of the system is likely to be affected. The increase makes the overall competitiveness of the product decline.
  • the main antenna unit of the millimeter wave antenna module is patch antenna patch, Yagi-Uda antenna Yagi-Uda, or dipole antenna.
  • These antenna units are relatively narrow-band antennas, such as conventional patches (generally, the relative bandwidth does not exceed 8%, and the millimeter wave frequency band often needs broadband dual-frequency or multi-frequency form, which brings great challenges to the design of millimeter wave antenna modules.
  • broadband, dual-frequency, and even multi-frequency For patches, it is often necessary to slot on the patch radiator or adopt a stacked structure, which is often difficult to achieve dual-polarization or increase the thickness of the millimeter wave antenna module, which is not conducive to the millimeter wave antenna The miniaturization of the module and the integration of the whole machine.
  • the mainstream millimeter wave antenna design scheme mainly adopts AiP technology and process, that is, the millimeter wave array antenna, radio frequency integrated circuit (RFIC) and power management integrated circuit (PMIC) are integrated In a module.
  • this module is placed inside the mobile phone, so it will occupy the space of other antennas at present, resulting in the degradation of antenna performance, thereby affecting the user's wireless experience. Therefore, the embodiments of the present invention provide an antenna unit and an electronic device that can cover all the millimeter wave frequency bands mentioned above, can also enable the antenna to meet the dual-frequency dual-polarization requirements, and can also improve the isolation between adjacent antenna units.
  • an embodiment of the present invention provides an antenna unit, including:
  • the metal shell 6 includes a groove
  • the radiating arm structure 3 is arranged in the groove 6;
  • the power feeder 5 is provided corresponding to the two ends of the radiating arm structure 3, and is insulated from the bottom 2 of the groove;
  • the control switch 4 is arranged outside the metal shell 6, and the power feeding part 5 passes through the groove bottom 2 and is connected to a signal source 7 or a signal reference ground through the control switch 4.
  • the antenna unit may be a millimeter wave antenna unit.
  • the number of the millimeter wave antenna unit may be at least one; in the case of multiple millimeter wave antenna units, the multiple millimeter wave antenna units form a millimeter wave array antenna.
  • the metal casing 6 The setting can improve the isolation between adjacent millimeter wave antenna units.
  • the number of the power feeding parts 5 is twice the number of the radiating arm structures 3, that is, one power feeding part 5 is provided at both ends of the radiating arm 3.
  • the metal housing 6 may be round or square, that is, the accommodation space in the metal housing 6 may be round or square, etc., which is not specifically limited here.
  • the metal casing 6 includes a groove, and the radiating arm structure 3 arranged in the groove corresponds to the power feeder 5 provided at both ends of the radiating arm structure 3, and is arranged
  • the power feeder 5 passes through the groove bottom 2 and is connected to the signal source 7 or signal reference ground through the control switch 4, and the power feeder 5 It is insulated from the groove bottom 2 and can cover multiple frequency bands; and the feeder 5 is connected to the signal source 7 or the signal reference ground through the control switch 4, and the feed point (ie, the control switch 4) 4, the connection point with the signal source 7) and the location (that is, the connection point between the control switch 4 and the signal reference ground) is switched to realize the reconfigurable pattern; and, the use of dual-port feed for the same antenna unit can form a MIMO function ,
  • the second can form dual polarization, increase the wireless connection capability of the antenna, reduce the probability of communication disconnection, and improve the communication effect and
  • the radiating arm structure 3 may include:
  • the second radiating arm 37, the two ends of the first radiating arm 36 are respectively provided with the second radiating arm 37;
  • a third radiating arm 35, one end of the third radiating arm 35 is connected to the second radiating arm 37, and the other end is connected to the feeding part 5.
  • the length of the first radiating arm 36 is greater than the length of the third radiating arm 35.
  • the first radiating arm 36, the second radiating arm 37, and the third radiating arm 35 jointly form a metal ring with an opening; in the same radiating arm structure 3, the length of the first radiating arm 36 It is greater than the length of the third radiating arm 35, that is, the position of the third radiating arm 35 is an opening.
  • the millimeter wave antenna unit is fed through the feeder 5, since the feeder 5 is connected to the third radiating arm 35, it is equivalent to a horizontal metal distance passing through the third radiating arm 35, Then, because the third radiating arm 35 and the second radiating arm 37 are connected, they are connected to the first radiating arm 36 through the second radiating arm 37.
  • the radiating arm structure 3 includes: a first radiating arm structure 31 and a second radiating arm structure 32;
  • first radiating arm 36 of the first radiating arm structure 31 and the first radiating arm 36 of the second radiating arm structure 32 are fixedly connected to form a cross-shaped structure.
  • the two radiating arm structures 3 include: a first radiating arm structure 31 and a second radiating arm structure 32; the first radiating arm structure The middle part of the first radiating arm 36 of 31 and the middle part of the first radiating arm 36 of the second radiating arm structure 32 are fixedly connected to form a cross-shaped structure, which is equivalent to the first radiating arm structure 31 and the second radiating arm structure 32 Together they form two open metal rings that are perpendicular to each other.
  • the cross-shaped structure includes four ends, each connected to a power feeding portion 5, and the four power feeding portions 5 are located on the X axis and the Y axis of the metal shell 6, which is not specifically limited here.
  • control switch 4 includes:
  • the first control switch 41 the feeder 5 connected to one end of the first radiating arm structure 31, is connected to one of the signal source 7 and the signal reference ground through the first control switch 41,
  • the feeder 5 connected to the other end of the first radiating arm structure 31 is connected to the other of the signal source 7 and the signal reference ground through the first control switch 41.
  • control switch 4 may further include:
  • the second control switch 42 the feeder 5 connected to one end of the second radiating arm structure 32, is connected to one of the signal source 7 and the signal reference ground through the second control switch 42,
  • the feeder 5 connected to the other end of the second radiating arm structure 32 is connected to the other of the signal source 7 and the signal reference ground through the second control switch 42;
  • the feeding parts 5 connected to both ends of the first radiating arm structure 31 form a set of vertically polarized feeding structures through the first control switch 41; the feeding parts 5 connected to the second radiating arm structure 32
  • the power feeders 5 at both ends form a group of horizontally polarized power feed structures through the second control switch 42.
  • the number of the radiating arm structure 3 is two
  • the number of the power feeder 5 is four
  • the number of the control switch 4 is two; wherein the two power feeders 5 are connected respectively At both ends of the first radiating arm structure 31, the two feeders 5 are connected to the first control switch 41, and are connected to the signal source 7 or the signal reference ground through the first control switch 41.
  • the other two power feeders 5 are respectively connected to both ends of the second radiating arm structure 32, and the two power feeders 5 are both connected to the second control switch 42, and the signal source 7 is connected through the second control switch 42. Or the signal reference ground connection. That is, two of the four feeders 5 directly feed the millimeter wave antenna unit, and the other two are directly grounded, thereby forming a loop millimeter wave antenna.
  • the feeders 5 connected to the two ends of the first radiating arm structure 31 form a pair of vertically polarized directional patterns.
  • the feed points and locations of the reconfigurable millimeter wave antenna are switched and changed by the first control switch 41.
  • State when the feeder 5 connected to the first end of the first radiating arm structure 31 is connected to the signal source 7, and the feeder 5 connected to the second end of the first radiating arm structure 31 is connected to the signal When the reference ground is connected, the pattern is biased toward the feeder 5 (that is, the location) connected to the second end of the first radiating arm structure 31, which is called state one; when it is connected to the first radiating arm structure 31
  • the power feeder 5 connected to the first radiating arm structure 31 is connected to the signal reference ground, and the power feeder 5 connected to the second end of the first radiating arm structure 31 is connected to the signal source 7, the pattern is biased toward the first radiating arm
  • the power feeder 5 (ie, the location) connected to the first end of the structure 31 is called state two.
  • the feeder 5 connected to the two ends of the second radiating arm structure 32 constitutes a pair of horizontally polarized directional patterns.
  • the feed point and location of the reconfigurable millimeter wave antenna unit, and its working state is the same as that of the vertical polarization.
  • the time is the same, so I won’t repeat them here.
  • the signal amplitudes on the four feeders 5 are the same.
  • the antenna unit may further include:
  • the first insulating medium 11 is disposed in the groove, at least a part of the radiating arm structure 3 is exposed on the surface of the first insulating medium 11, or the radiating arm structure 3 is disposed on the first insulating medium 11 Inside the insulating medium 11.
  • the radiating arm structure 3 can be arranged on the surface of the first insulating medium 11, can also be partially embedded in the first insulating medium 11, or can be completely embedded in the first insulating medium 11, according to The actual process is determined, and there is no specific limitation here.
  • the first insulating medium 11 is a non-conductive material medium.
  • the dielectric constant of the first insulating medium 11 is 2.53, and the loss tangent is 0.003, which is not specifically limited here.
  • the antenna unit may further include:
  • the second insulating medium 12 is arranged between the first insulating medium 11 and the groove bottom 2, and the power feeding part 5 passes through the second insulating medium 12 and is connected to the control switch 4.
  • the groove bottom 1 may be provided with a through hole, and the radiating arm structure 3 passes through the second insulating medium 12, the through hole and the signal source 7 or the signal reference ground through the power feeding portion 5, respectively. Connection, the power feeding part 5 is not in contact with the wall of the through hole, and a third insulating medium 13 may be arranged between the power feeding part 5 and the hole wall, wherein the first insulating medium 11 and the first insulating medium 11
  • the second insulating medium 12 and the third insulating medium 13 may be different dielectric materials or the same dielectric material, which is not specifically limited here.
  • the metal casing 6 is a metal frame of an electronic device.
  • the metal housing 6 may be a separate metal component, or may be a metal frame of an electronic device, which is not specifically limited here. If the metal casing 6 is a metal frame of an electronic device, the groove is a groove provided on the metal frame.
  • the metal casing 6 includes a groove, and the radiating arm structure 3 arranged in the groove corresponds to the power feeder 5 provided at both ends of the radiating arm structure 3, and is arranged
  • the power feeder 5 passes through the groove bottom 2 and is connected to the signal source 7 or signal reference ground through the control switch 4, and the power feeder 5 It is insulated from the groove bottom 2 and can cover multiple frequency bands; and the feeder 5 is connected to the signal source 7 or the signal reference ground through the control switch 4, and the feed point (ie, the control switch 4) 4, the connection point with the signal source 7) and the location (that is, the connection point between the control switch 4 and the signal reference ground) is switched to realize the reconfigurable pattern; and, the use of dual-port feed for the same antenna unit can form a MIMO function ,
  • the second can form dual polarization, increase the wireless connection capability of the antenna, reduce the probability of communication disconnection, and improve the communication effect and
  • wireless metropolitan area network Wireless Metropolitan Area Network, WMAN
  • wireless wide area network Wireless Wide Area Network, WWAN
  • wireless local area network Wireless Local Area Network, WLAN
  • Wireless Personal Area Network WPAN
  • MIMO Radio Frequency Identification
  • RFID Radio Frequency Identification
  • NFC Near Field Communication
  • WPC Wireless Power Consortium
  • FM Frequency Modulation, FM
  • other wireless communication design and applications can be applied to the safety and health of the human body, and the compatibility of electronic devices (such as hearing aids or heart rate regulators, etc.) compliance testing and actual design and applications on.
  • an embodiment of the present invention also provides an electronic device, including the antenna unit described in any of the above embodiments, wherein the number of the antenna unit is at least one.
  • the metal housing 6 of the antenna unit may be a metal frame of an electronic device; or the metal frame of the electronic device is provided with at least one accommodating groove, and each accommodating groove is provided with at least one antenna unit .
  • the number of the accommodating slots is set by actual requirements, and is not limited here.
  • any two accommodating slots are arranged at intervals, that is, any two millimeter wave antenna units are arranged at intervals, which can increase the millimeter
  • the isolation between wave antenna units; and, the millimeter wave antenna units may form a millimeter wave array antenna, and the millimeter wave array antenna may be one or more.
  • the separation distance between any two millimeter wave antenna units can be determined according to the isolation between the millimeter wave antenna units and the performance of the scanning angle of the millimeter wave array antenna.
  • the metal frame may also be a metal shell or the like.
  • the metal frame includes a first frame 61, a second frame 62, a third frame 63, and a fourth frame 64.
  • the first frame 61, the second frame 62, the third frame 63, and the fourth frame 64 The metal frame may be connected end to end to form a metal frame, and the first frame 61, the second frame 62, the third frame 63 and the fourth frame 64 may not be connected end to end to form a metal frame.
  • the electronic device may further include:
  • the floor 9 is arranged inside the metal shell 6 and connected to the metal shell 6.
  • the floor 9 may be a printed circuit board, a metal middle shell, a screen, etc., and the floor 9 may be connected to the metal shell 6.
  • the metal housing 6 of the electronic device is a radiator of a non-millimeter-wave antenna 8, and the millimeter-wave antenna unit is disposed on the radiator. Physically.
  • the non-millimeter wave antenna 8 is a communication antenna such as the second generation (2 nd generation, 2G)/third generation (3 rd generation, 3G)/fourth generation (4 th generation, 4G), etc.
  • the wave array antenna is arranged on the radiator of the non-millimeter wave antenna 8, not only can save the internal space of the whole machine, but also can improve the user's wireless experience in multiple millimeter wave frequency bands when roaming around the world.
  • the radiator of the non-millimeter wave antenna 8 may be composed of the third frame 63, a part of the second frame 62, and a part of the fourth frame 64; or the radiator of the non-millimeter wave antenna 8 may be composed of the first frame. It consists of 63 three borders.
  • the radiator of the non-millimeter wave antenna 8 may also be arranged on the first frame 61 or on the second frame 62 and other situations. The composition and position of the radiator of the non-millimeter wave antenna 8 are not limited.
  • FIG. 7 is a reflection coefficient diagram of one of the millimeter wave antenna units, the abscissa is the frequency band, and the ordinate is the reflection coefficient. Calculated by -10dB, it can cover 24.25GHz-29.5GHz and 37GHz-43GHz.
  • the antenna unit can basically cover the world's mainstream 5G millimeter wave frequency bands such as n257, n258, n260, and n261, thereby enhancing the user's mobile roaming experience.
  • Fig. 8 is a radiation pattern with a frequency of 26GHz in the first state, S1 is the radiation range;
  • Fig. 9 is a radiation pattern with a frequency of 39GHz in the first state, and S2 is a radiation range;
  • Fig. 10 is a radiation pattern with a frequency of 26GHz in the second state, S3 is the radiation range;
  • Figure 11 is the radiation pattern with a frequency of 39 GHz in the second state, and S4 is the radiation range.
  • the switch 4 can be controlled to switch between state one and state two to achieve efficient connection of 5G electronic devices with 5G millimeter wave hotspots on the upper building or on the ground.
  • the millimeter wave antenna unit ie, millimeter wave loop antenna built into the metal casing 6 can make the antenna meet the dual-frequency and dual-polarization requirements; moreover, there are multiple different millimeter wave loop antennas.
  • the dual-polarized millimeter wave loop antenna is unbalanced due to the unbalanced feed point (ie the connection point between the control switch 4 and the signal source 7) and the location (ie the connection point between the control switch 4 and the signal reference ground)
  • the directional pattern can be reconfigured by controlling the switch 4 to switch the feed point and location; and, based on the metal frame design of the electronic device, it does not affect the metal texture of the electronic device and keeps the metal frame intact
  • the metal frame itself is used as the reflector of the millimeter wave antenna unit to obtain higher gain.
  • the millimeter wave antenna unit is not sensitive to the environment and components inside the electronic device, which facilitates the design of the electronic device structure stack; and, the millimeter wave antenna unit
  • the antenna unit can be integrated with a non-millimeter wave antenna with a metal frame or metal shell as an antenna, that is, the millimeter wave antenna unit is compatible with a non-millimeter wave antenna with a metal frame or metal shell as the antenna; and, for the same millimeter wave
  • the antenna unit uses dual-port feed, one can form a MIMO function to increase the data transmission rate, and the other can form a dual polarization, increase the antenna's wireless connection capability, reduce the probability of communication disconnection, and improve the communication effect and user experience.
  • the above-mentioned embodiments illustrate the mobile phone as a specific example of the electronic device of the present invention.
  • the mobile phone can also be applied to other electronic devices, such as tablet computers and e-books.
  • moving picture experts compress standard audio layer 3 (Moving Picture Experts Group Audio Layer III, MP3) players
  • moving picture experts compress standard audio layer 4 (Moving Picture Experts Group Audio Layer IV, MP4) players
  • laptops Portable computers, vehicle-mounted computers, desktop computers, set-top boxes, smart TVs, wearable devices, etc. are all within the protection scope of the embodiments of the present invention.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供了一种天线单元和电子设备。该天线单元包括:金属外壳,包括有一凹槽;辐射臂结构,设置于凹槽内;馈电部,对应于所述辐射臂结构的两端分别设置,且与所述凹槽的槽底绝缘;控制开关,设置于所述金属外壳外,所述馈电部穿过所述槽底,并通过所述控制开关与信号源或者信号参考地连接。

Description

天线单元和电子设备
相关申请的交叉引用
本申请主张在2019年11月29日在中国提交的中国专利申请号No.201911198724.0的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,特别涉及一种天线单元和电子设备。
背景技术
目前,现有技术的毫米波天线封装天线(Antenna in package,AiP)模组具有如下缺点:
AiP模组置入手机等电子设备的时候,由于手机等电子设备的外壳/电池盖等非金属材质对毫米波天线的影响较大,常会造成多频AiP模组的谐振频率发生偏移、带宽缩窄、甚至是某些频段的带宽消失等;
现有技术的带宽窄,目前双频的方案仅能够覆盖n260(37.0GHz-40.0GHz),n261(27.5GHz-28.35GHz)频段,不能满足多频或宽频的设计,影响用户的移动漫游体验;
并且,现有的技术方案极易受到周边金属器件的影响,如金属框、金属背盖、喇叭、扬声器等金属器件的影响,导致天线性能急剧下降。对于金属外观的终端,需要为毫米波天线设置一定的窗口,或者降低电子设备的金属占比。
发明内容
本发明实施例提供一种天线单元和电子设备,以解决现有技术的天线不能满足多频或者宽频的问题。
为了解决上述技术问题,本发明是这样实现的:
第一方面,本发明实施例提供了一种天线单元,包括:
金属外壳,包括有一凹槽;
辐射臂结构,设置于所述凹槽内;
馈电部,对应于所述辐射臂结构的两端分别设置,且与所述凹槽的槽底绝缘;
控制开关,设置于所述金属外壳外,所述馈电部穿过所述槽底,并通过所述控制开关与信号源或者信号参考地连接。
第二方面,本发明实施例还提供了一种电子设备,包括如上所述的天线单元;
其中,所述天线单元的数量为至少一个。
这样,本发明实施例中,通过金属外壳,包括有一凹槽,设置于所述凹槽内的辐射臂结构,对应于所述辐射臂结构的两端分别设置的馈电部,设置于所述金属外壳外的控制开关,所述馈电部穿过所述槽底,并通过所述控制开关与信号源或者信号参考地连接,且所述馈电部与所述槽底绝缘,可以覆盖多个频段;并且,所述馈电部通过所述控制开关与信号源或者信号参考地连接,可以通过控制开关进行馈点(即控制开关与信号源的连接点)和地点(即控制开关与信号参考地连接点)切换来实现方向图可重构;并且,对同一个天线单元使用双端口馈电,一可形成多输入多输出(Multiple-Input Multiple-Output,MIMO)功能,以提升数据的传输速率,二可构成双极化,增加天线的无线连接能力,减少通信断线的机率,提升通信效果和用户体验。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本发明实施例的天线单元的剖视图;
图2表示本发明实施例的天线单元的结构示意图;
图3表示本发明实施例的天线单元的俯视图;
图4表示本发明实施例的毫米波阵列天线的俯视图之一;
图5表示本发明实施例的毫米波阵列天线的俯视图之二;
图6表示本发明实施例的电子设备的结构示意图;
图7表示本发明实施例的天线单元的反射系数图;
图8表示本发明实施例状态一时频率为26GHz的辐射方向图;
图9表示本发明实施例状态一时频率为39GHz的辐射方向图;
图10表示本发明实施例状态二时频率为26GHz的辐射方向图;
图11表示本发明实施例状态二时频率为39GHz的辐射方向图;
图12表示本发明实施例的电子设备与热点未连接示意图;
图13表示本发明实施例的电子设备与热点的连接示意图之一;
图14表示本发明实施例的电子设备与热点的连接示意图之二;
附图标记说明:
11-第一绝缘介质,12-第二绝缘介质,13-第三绝缘介质,2-底板,3-辐射臂结构,31-第一辐射臂结构,32-第二辐射臂结构,35-第一辐射臂,36-第二辐射臂,37-第三辐射臂,4-控制开关,41-第一控制开关,42-第二控制开关,5-馈电部,6-金属外壳,61-第一边框,62-第二边框,63-第三边框,64-第四边框,7-信号源,8-非毫米波天线,9-地板。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
目前,全金属、高屏占比、超薄机身、与多天线通讯已成为电子设备的现今主流与未来趋势,且随着第五代移动通信(5 th generation mobile communication,5G)的发展,毫米波天线的设计渐渐被引入到一些小的电子设备上,如手机、平板、甚至是笔记本电脑,故而在保持系统整体有竞争力的尺寸下,各天线所分得的有效辐射空间往往因而更加减少,进而使得天线性能下降,而造成用户无线体验的劣化。或是为容纳多个分立的天线,而增加系统整体的体积尺寸,故而使产品整体竞争力下降。毫米波天线往往是一独立天线模块的形态,其与既存的天线,如蜂窝(cellular)天线,与非蜂窝(non- cellular)天线,常为分立设置,故较易造成系统整体的体积尺寸的增加,使得产品整体竞争力下降。
并且,在目前规划的5G毫米波段有以28GHz为主的n257(26.5GHz-29.5GHz),n258(24.25GHz-27.5GHz),与n261(27.5GHz-28.35GHz)频段及以39GHz为主的n260(37.0GHz-40.0GHz)与暂定的n259(40.5GHz-43.5GHz)等频段。故除了上述的无线性能的空间维度要求,尚有频率维度的漫游需求。毫米波天线模组的主要天线单元贴片天线patch、八木宇田天线Yagi-Uda、或者偶极子天线dipole,这些天线单元相对而言皆是窄带天线,比如常规的patch(一般相对带宽基本不超过8%,而毫米波频段往往需求宽带的双频或者多频的形式,这给毫米波天线模组的设计带来了很大的挑战。为了满足宽频带、双频、甚至多频的需求,对于patch来说,往往需要在patch的辐射片上开槽或者采用叠层stacked的结构,这往往难以实现双极化dual-polarization或是会增加毫米波天线模组的厚度,故不利于毫米波天线模组的小型化及整机集成。
目前主流毫米波的天线设计方案主要是采用AiP的技术与工艺,即把毫米波的阵列天线,射频集成电路(Radio Frequency Integrated Circuit,RFIC)以及电源管理集成电路(Power Management Integrated Circuit,PMIC)集成在一个模块内。在实际应用中,便将此模块置入手机内部,故会占据了目前其他天线的空间,导致天线性能的下降,从而影响用户的无线体验。因此,本发明实施例提供了一种天线单元和电子设备,能够覆盖上述所有毫米波频段,还能够使得天线满足双频双极化要求,还能够提升相邻的天线单元之间的隔离度。
具体的,如图1所示,本发明实施例提供了一种天线单元,包括:
金属外壳6,包括有一凹槽;
辐射臂结构3,设置于所述凹槽6内;
馈电部5,对应于所述辐射臂结构3的两端分别设置,且与所述凹槽的槽底2绝缘;
控制开关4,设置于所述金属外壳6外,所述馈电部5穿过所述槽底2,并通过所述控制开关4与信号源7或者信号参考地连接。
可选的,所述天线单元可以为毫米波天线单元。
所述毫米波天线单元的数量可以为至少一个;在所述毫米波天线单元为多个的情况下,多个所述毫米波天线单元形成毫米波阵列天线,此时,通过所述金属外壳6的设置可以提高相邻的毫米波天线单元之间的隔离度。
具体的,所述馈电部5的数量为所述辐射臂结构3的数量的两倍,即一个所述辐射臂3的两端各设置有一个馈电部5。
具体的,如图4和5所示,所述金属外壳6可为圆形或者方形等,即所述金属外壳6内的容置空间可为圆形或者方形等,在此不做具体限定。
本发明上述实施例中,通过金属外壳6,包括有一凹槽,设置于所述凹槽内的辐射臂结构3,对应于所述辐射臂结构3的两端分别设置的馈电部5,设置于所述金属外壳6外的控制开关4,所述馈电部5穿过所述槽底2,并通过所述控制开关4与信号源7或者信号参考地连接,且所述馈电部5与所述槽底2绝缘,可以覆盖多个频段;并且,所述馈电部5通过所述控制开关4与信号源7或者信号参考地连接,可以通过控制开关4进行馈点(即控制开关4与信号源7的连接点)和地点(即控制开关4与信号参考地连接点)切换来实现方向图可重构;并且,对同一个天线单元使用双端口馈电,一可形成MIMO功能,以提升数据的传输速率,二可构成双极化,增加天线的无线连接能力,减少通信断线的机率,提升通信效果和用户体验。
可选的,如图1所示,所述辐射臂结构3可以包括:
第一辐射臂36;
第二辐射臂37,所述第一辐射臂36的两端分别设置有所述第二辐射臂37;
第三辐射臂35,所述第三辐射臂35的一端与所述第二辐射臂37连接,另一端与所述馈电部5连接。
可选的,如图1所示,在同一所述辐射臂结构3中,所述第一辐射臂36的长度大于所述第三辐射臂35的长度。
具体的,所述第一辐射臂36、第二辐射臂37以及第三辐射臂35共同形成一具有开口的金属环;在同一所述辐射臂结构3中,所述第一辐射臂36的长度大于所述第三辐射臂35的长度,即所述第三辐射臂35处为开口处。
具体的,通过所述馈电部5馈入毫米波天线单元,由于所述馈电部5与所述第三辐射臂35连接,相当于经过所述第三辐射臂35的一段水平金属距离,然后由于所述第三辐射臂35和所述第二辐射臂37连接,通过所述第二辐射臂37与所述第一辐射臂36连接。
可选的,如图2和3所示,所述辐射臂结构3包括:第一辐射臂结构31和第二辐射臂结构32;
其中,所述第一辐射臂结构31的第一辐射臂36和所述第二辐射臂结构32的第一辐射臂36固定连接形成十字形结构。
具体的,在所述辐射臂结构3的数量为两个的情况下,两个所述辐射臂结构3包括:第一辐射臂结构31和第二辐射臂结构32;所述第一辐射臂结构31的第一辐射臂36的中间部位和所述第二辐射臂结构32的第一辐射臂36的中间部位固定连接形成十字形结构,相当于第一辐射臂结构31和第二辐射臂结构32共同形成两根相互垂直的开口金属环。其中,十字形结构包括四端,分别各连接一个馈电部5,四个馈电部5位于所述金属外壳6的X轴和Y轴上,在此不做具体限定。
可选的,如图1所示,所述控制开关4包括:
第一控制开关41,与所述第一辐射臂结构31的一端连接的馈电部5,通过所述第一控制开关41与所述信号源7和所述信号参考地中的一者连接,与所述第一辐射臂结构31的另一端连接的馈电部5,通过所述第一控制开关41与所述信号源7和所述信号参考地中的另一者连接。
可选的,如图1所示,所述控制开关4还可以包括:
第二控制开关42,与所述第二辐射臂结构32的一端连接的馈电部5,通过所述第二控制开关42与所述信号源7和所述信号参考地中的一者连接,与所述第二辐射臂结构32的另一端连接的馈电部5,通过所述第二控制开关42与所述信号源7和所述信号参考地中的另一者连接;
其中,连接于所述第一辐射臂结构31的两端的馈电部5,通过所述第一控制开关41形成一组垂直极化的馈电结构;连接于所述第二辐射臂结构32的两端的馈电部5,通过所述第二控制开关42形成一组水平极化的馈电结构。
具体的,在所述辐射臂结构3的数量为两个的情况下,所述馈电部5的 数量为4个,控制开关4的数量为两个;其中,两个馈电部5分别连接在所述第一辐射臂结构31的两端,上述两个馈电部5均与第一控制开关41连接,通过所述第一控制开关41与信号源7或者信号参考地连接。另外两个馈电部5分别连接在所述第二辐射臂结构32的两端,上述两个馈电部5均与第二控制开关42连接,通过所述第二控制开关42与信号源7或者信号参考地连接。即,4个馈电部5中有两个直接对毫米波天线单元馈电,另外两个直接接地,从而形成一个环形毫米波天线。
具体的,连接于所述第一辐射臂结构31的两端的馈电部5构成一对垂直极化的方向图可重构毫米波天线的馈点和地点,由第一控制开关41进行切换变更状态;当与所述第一辐射臂结构31的第一端连接的馈电部5与信号源7连接,且与所述第一辐射臂结构31的第二端连接的馈电部5与信号参考地连接时,方向图偏向与所述第一辐射臂结构31的第二端连接的馈电部5(即地点),称为状态一;当与所述第一辐射臂结构31的第一端连接的馈电部5与信号参考地连接,且与所述第一辐射臂结构31的第二端连接的馈电部5与信号源7连接时,方向图偏向与所述第一辐射臂结构31的第一端连接的馈电部5(即地点),称为状态二。同理,与所述第二辐射臂结构32的两端连接的馈电部5构成一对水平极化的方向图可重构毫米波天线单元的馈点和地点,其工作状态与垂直极化时相同,在此不做赘述。其中,四个馈电部5上的信号幅度相同。
可选的,如图1至5所示,所述天线单元还可以包括:
设置于所述凹槽中的中的第一绝缘介质11,所述辐射臂结构3的至少一部分裸露在所述第一绝缘介质11的表面,或者所述辐射臂结构3设置于所述第一绝缘介质11内部。
具体的,所述辐射臂结构3可以设置于所述第一绝缘介质11的表面,也可以部分嵌入所述第一绝缘介质11中,也可以全部嵌入所述第一绝缘介质11中,可以根据实际工艺决定,在此不做具体限定。
其中,所述第一绝缘介质11为非导电材料介质,优选的可以选择所述第一绝缘介质11的介电常数为2.53,损耗角正切为0.003,在此不做具体限定。
可选的,所述天线单元还可以包括:
设置于所述第一绝缘介质11与所述槽底2之间的第二绝缘介质12,所述馈电部5穿过所述第二绝缘介质12与所述控制开关4连接。
具体的,所述槽底1可以设置有通孔,所述辐射臂结构3通过馈电部5分别穿过所述第二绝缘介质12、所述通孔与所述信号源7或者信号参考地连接,所述馈电部5不与所述通孔的孔壁接触,可以在馈电部5与孔壁之间设置第三绝缘介质13,其中,所述第一绝缘介质11、所述第二绝缘介质12和第三绝缘介质13可以为不同的介电材料,也可以为相同的介电材料,在此不做具体限定。
可选的,所述金属外壳6为电子设备的金属边框。
具体的,所述金属外壳6可以为单独的金属部件,也可以为电子设备的金属边框,在此不做具体限定。如果金属外壳6为电子设备的金属边框,则所述凹槽为金属边框上设置的凹槽。
本发明上述实施例中,通过金属外壳6,包括有一凹槽,设置于所述凹槽内的辐射臂结构3,对应于所述辐射臂结构3的两端分别设置的馈电部5,设置于所述金属外壳6外的控制开关4,所述馈电部5穿过所述槽底2,并通过所述控制开关4与信号源7或者信号参考地连接,且所述馈电部5与所述槽底2绝缘,可以覆盖多个频段;并且,所述馈电部5通过所述控制开关4与信号源7或者信号参考地连接,可以通过控制开关4进行馈点(即控制开关4与信号源7的连接点)和地点(即控制开关4与信号参考地连接点)切换来实现方向图可重构;并且,对同一个天线单元使用双端口馈电,一可形成MIMO功能,以提升数据的传输速率,二可构成双极化,增加天线的无线连接能力,减少通信断线的机率,提升通信效果和用户体验。
并且,本发明上述实施例,可应用于无线城际网路(Wireless Metropolitan Area Network,WMAN)、无线广域网路(Wireless Wide Area Network,WWAN)、无线区域网路(Wireless Local Area Network,WLAN)、无线个人网路(Wireless Personal Area Network,WPAN)、MIMO、射频识别(Radio Frequency Identification,RFID),甚至是近场通信(Near Field Communication,NFC) 无线充电(Wireless Power Consortium,WPC),或调频(Frequency Modulation,FM)等无线通信设计与应用上;并且,可应用于对人体安全、健康,与佩戴 的电子器件(如助听器或心率调整器等)相容性的法规测试与实际设计及应用上。
如图6所示,本发明实施例还提供了一种电子设备,包括如上任一实施例中所述的天线单元,其中,所述天线单元的数量为至少一个。
具体的,所述天线单元的金属外壳6可以是电子设备的金属边框;或者所述电子设备的金属边框上设置有至少一个容置槽,每一容置槽中设置有至少一所述天线单元。所述容置槽的数量由实际需求设定,在此并不进行限定。
在所述容置槽为至少两个的情况下,在所述金属边框上,任意两个所述容置槽之间间隔设置,即任意两个毫米波天线单元之间间隔设置,可以提高毫米波天线单元之间的隔离度;并且,所述毫米波天线单元可以形成毫米波阵列天线,所述毫米波阵列天线可以为一个或多个。其中,任意两个毫米波天线单元之间的间隔距离,可以根据毫米波天线单元之间的隔离度以及毫米波阵列天线的扫描角度的性能来确定。
具体的,所述金属边框也可以为金属壳等。金属边框包括第一边框61、第二边框62、第三边框63以及第四边框64,所述第一边框61、所述第二边框62、所述第三边框63以及所述第四边框64可以收尾相连形成金属边框,所述第一边框61、所述第二边框62、所述第三边框63以及所述第四边框64也可以不首尾相连形成金属边框。
进一步的,如图6所示,在所述天线单元的金属外壳6是电子设备的金属边框的情况下,所述电子设备还可以包括:
设置于所述金属外壳6的内侧,并且与所述金属外壳6连接的地板9。
具体的,所述地板9可以是印刷电路板、金属中壳、屏等,且所述地板9可以与金属外壳6相连。
进一步的,如图6所示,在所述天线单元为毫米波天线单元时,所述电子设备的金属外壳6为非毫米波天线8的辐射体,所述毫米波天线单元设置在所述辐射体上。
具体的,所述非毫米波天线8为第二代(2 nd generation,2G)/第三代(3 rd generation,3G)/第四代(4 th generation,4G)等通信天线,所述毫米波阵列天线设置在所述非毫米波天线8的辐射体上,不仅可以节省在整机内部空间, 还可以提高全球漫游时用户的多个毫米波频段的无线体验。
其中,所述非毫米波天线8的辐射体可以由所述第三边框63、部分第二边框62以及部分第四边框64组成;或者所述非毫米波天线8的辐射体可以由所述第三边框63组成。所述非毫米波天线8的辐射体还可以设置在所述第一边框61上,或者设置在所述第二边框62上等多种情况。所述非毫米波天线8的辐射体的组成和位置并不限定。
具体的,图7为其中一个毫米波天线单元的反射系数图,横坐标为频段,纵坐标为反射系数。以-10dB计算,可以覆盖24.25GHz-29.5GHz和37GHz-43GHz,该天线单元基本可以覆盖n257、n258、n260、n261等全球主流5G毫米波频段,从而提升了用户的移动漫游体验。图8为状态一时频率为26GHz的辐射方向图,S1为辐射范围;图9为状态一时频率为39GHz的辐射方向图,S2为辐射范围;图10为状态二时频率为26GHz的辐射方向图,S3为辐射范围;图11为状态二时频率为39GHz的辐射方向图,S4为辐射范围。
如图12所示,为5G电子设备水平放置时(即位于XY平面),其扫描方向为XY平面,而5G热点(即5G毫米波热点)通常位于上侧的建筑物上或者地面上;若其方向图为正X轴方向时,此时存在无法有效建立连接的情况。如图13和14所示,可以通过控制开关4在切换状态一和状态二,以此来实现5G电子设备与上侧的建筑物上或者地面上的5G毫米波热点的高效连接。
本发明上述实施例中,通过内置于所述金属外壳6的毫米波天线单元(即毫米波环形天线),可以使得天线满足双频双极化要求;并且,毫米波环形天线存在着多条不同长度的电流路径,因此可以在低频处可以覆盖24.25GHz-29.5GHz,在高频处可以覆盖37GHz-40GHz,基本可以覆盖n257、n258、n260、n261等全球主流5G毫米波频段,从而提升了用户的移动通信体验;并且,双极化毫米波环形天线因为存在馈点(即控制开关4与信号源7的连接点)和地点(即控制开关4与信号参考地连接点)不平衡而导致其存在波束倾斜的现象,因此可以通过控制开关4进行馈点和地点切换来实现方向图可重构;并且,基于电子设备的金属边框设计,而不影响电子设备的金属质感,保持金属边框的完整性,同时使用金属边框本身作为毫米波天线单元的反射器,以获得较高增益,同时毫米波天线单元对电子设备内部的环境和器件不敏感, 便于电子设备结构堆叠的设计;并且,毫米波天线单元可与金属边框或者金属壳作为天线的非毫米波天线相整合为一体,即让毫米波天线单元兼容在金属边框或金属壳作为天线的非毫米波天线内;并且,对同一个毫米波天线单元使用双端口馈电,一可形成MIMO功能,以提升数据的传输速率,二可构成双极化,增加天线的无线连接能力,减少通信断线的机率,提升通信效果和用户体验。
为了便于说明,上述实施例是将手机作为本发明电子设备的具体实例进行说明,本领域技术人员可以理解,除了手机作为电子设备之外,亦可适用于其它电子设备,如平板电脑、电子书阅读器、动态影像专家压缩标准音频层面3(Moving Picture Experts Group Audio Layer III,MP3)播放器、动态影像专家压缩标准音频层面4(Moving Picture Experts Group Audio Layer IV,MP4)播放器、膝上型便携计算机、车载电脑、台式计算机、机顶盒、智能电视机、可穿戴设备等等均在本发明实施例的保护范围之内。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本发明实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上所述的是本发明的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本发明所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本发明的保护范围内。

Claims (11)

  1. 一种天线单元,包括:
    金属外壳(6),包括有一凹槽;
    辐射臂结构(3),设置于所述凹槽内;
    馈电部(5),对应于所述辐射臂结构(3)的两端分别设置,且与所述凹槽的槽底(2)绝缘;
    控制开关(4),设置于所述金属外壳(6)外,所述馈电部(5)穿过所述槽底(2),并通过所述控制开关(4)与信号源(7)或者信号参考地连接。
  2. 根据权利要求1所述的天线单元,其中,所述辐射臂结构(3)包括:
    第一辐射臂(36);
    第二辐射臂(37),所述第一辐射臂(36)的两端分别设置有所述第二辐射臂(37);
    第三辐射臂(35),所述第三辐射臂(35)的一端与所述第二辐射臂(37)连接,另一端与所述馈电部(5)连接。
  3. 根据权利要求2所述的天线单元,其中,在同一所述辐射臂结构(3)中,所述第一辐射臂(36)的长度大于所述第三辐射臂(35)的长度。
  4. 根据权利要求1所述的天线单元,其中,所述辐射臂结构(3)包括:第一辐射臂结构(31)和第二辐射臂结构(32);
    其中,所述第一辐射臂结构(31)的第一辐射臂(36)和所述第二辐射臂结构(32)的第一辐射臂(36)固定连接形成十字形结构。
  5. 根据权利要求4所述的天线单元,其中,所述控制开关(4)包括:
    第一控制开关(41),与所述第一辐射臂结构(31)的一端连接的馈电部(5),通过所述第一控制开关(41)与所述信号源(7)和所述信号参考地中的一者连接,与所述第一辐射臂结构(31)的另一端连接的馈电部(5),通过所述第一控制开关(41)与所述信号源(7)和所述信号参考地中的另一者连接。
  6. 根据权利要求5所述的天线单元,其中,所述控制开关(4)还包括:
    第二控制开关(42),与所述第二辐射臂结构(32)的一端连接的馈电部 (5),通过所述第二控制开关(42)与所述信号源(7)和所述信号参考地中的一者连接,与所述第二辐射臂结构(32)的另一端连接的馈电部(5),通过所述第二控制开关(42)与所述信号源(7)和所述信号参考地中的另一者连接;
    其中,连接于所述第一辐射臂结构(31)的两端的馈电部(5),通过所述第一控制开关(41)形成一组垂直极化的馈电结构;连接于所述第二辐射臂结构(32)的两端的馈电部(5),通过所述第二控制开关(42)形成一组水平极化的馈电结构。
  7. 根据权利要求1所述的天线单元,其中,所述天线单元还包括:
    设置于所述凹槽中的中的第一绝缘介质(11),所述辐射臂结构(3)的至少一部分裸露在所述第一绝缘介质(11)的表面,或者所述辐射臂结构(3)设置于所述第一绝缘介质(11)内部。
  8. 根据权利要求7所述的天线单元,其中,所述天线单元还包括:
    设置于所述第一绝缘介质(11)与所述槽底(2)之间的第二绝缘介质(12),所述馈电部(5)穿过所述第二绝缘介质(12)与所述控制开关(4)连接。
  9. 根据权利要求1所述的天线单元,其中,所述金属外壳(6)为电子设备的金属边框。
  10. 根据权利要求1至9任一项所述的天线单元,其中,所述天线单元为毫米波天线单元。
  11. 一种电子设备,包括如权利要求1至10任一项所述的天线单元;
    其中,所述天线单元的数量为至少一个。
PCT/CN2020/131026 2019-11-29 2020-11-24 天线单元和电子设备 WO2021104228A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911198724.0A CN110911816B (zh) 2019-11-29 2019-11-29 一种天线单元和电子设备
CN201911198724.0 2019-11-29

Publications (1)

Publication Number Publication Date
WO2021104228A1 true WO2021104228A1 (zh) 2021-06-03

Family

ID=69820555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131026 WO2021104228A1 (zh) 2019-11-29 2020-11-24 天线单元和电子设备

Country Status (2)

Country Link
CN (1) CN110911816B (zh)
WO (1) WO2021104228A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911816B (zh) * 2019-11-29 2023-01-24 维沃移动通信有限公司 一种天线单元和电子设备
CN111029739B (zh) * 2019-11-29 2022-10-11 维沃移动通信有限公司 一种天线单元和电子设备
CN111900534B (zh) * 2020-08-03 2022-11-08 维沃移动通信有限公司 天线结构及电子设备
CN111969304B (zh) * 2020-08-18 2023-04-25 维沃移动通信有限公司 天线结构及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100136924A1 (en) * 2008-12-02 2010-06-03 Takayoshi Ito Antenna device and wireless communication system
CN106887674A (zh) * 2017-03-28 2017-06-23 联想(北京)有限公司 多输入输出电线
CN109687116A (zh) * 2019-02-01 2019-04-26 桂林电子科技大学 C波段的小型化宽带宽波束圆极化微带天线
CN109728447A (zh) * 2018-12-28 2019-05-07 维沃移动通信有限公司 天线结构及高频多频段无线通信终端
CN110911816A (zh) * 2019-11-29 2020-03-24 维沃移动通信有限公司 一种天线单元和电子设备
CN111029739A (zh) * 2019-11-29 2020-04-17 维沃移动通信有限公司 一种天线单元和电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008041651A1 (de) * 2008-08-28 2010-03-04 Robert Bosch Gmbh Elektrogerät
CN106159444A (zh) * 2015-03-31 2016-11-23 联想(北京)有限公司 天线组件、移动终端及其控制方法
US10594019B2 (en) * 2016-12-03 2020-03-17 International Business Machines Corporation Wireless communications package with integrated antenna array
CN107046167B (zh) * 2016-12-26 2023-12-08 东莞东山精密制造有限公司 超宽频带双极化天线
US10665959B2 (en) * 2017-07-24 2020-05-26 Apple Inc. Millimeter wave antennas having dual patch resonating elements
US10270174B2 (en) * 2017-07-25 2019-04-23 Apple Inc. Millimeter wave antennas having cross-shaped resonating elements
CN109672023B (zh) * 2018-12-22 2024-02-27 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种基于开口谐振环的差分双极化贴片天线
CN110137675B (zh) * 2019-05-22 2021-03-12 维沃移动通信有限公司 一种天线单元及终端设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100136924A1 (en) * 2008-12-02 2010-06-03 Takayoshi Ito Antenna device and wireless communication system
CN106887674A (zh) * 2017-03-28 2017-06-23 联想(北京)有限公司 多输入输出电线
CN109728447A (zh) * 2018-12-28 2019-05-07 维沃移动通信有限公司 天线结构及高频多频段无线通信终端
CN109687116A (zh) * 2019-02-01 2019-04-26 桂林电子科技大学 C波段的小型化宽带宽波束圆极化微带天线
CN110911816A (zh) * 2019-11-29 2020-03-24 维沃移动通信有限公司 一种天线单元和电子设备
CN111029739A (zh) * 2019-11-29 2020-04-17 维沃移动通信有限公司 一种天线单元和电子设备

Also Published As

Publication number Publication date
CN110911816A (zh) 2020-03-24
CN110911816B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
WO2020233477A1 (zh) 天线单元及终端设备
WO2021104228A1 (zh) 天线单元和电子设备
CN110649366B (zh) 一种天线和电子设备
WO2021104239A1 (zh) 天线单元和电子设备
WO2021104229A1 (zh) 天线单元和电子设备
US11909098B2 (en) Antenna structure and high-frequency wireless communications terminal
US11962099B2 (en) Antenna structure and high-frequency multi-band wireless communication terminal
CN106935952B (zh) 双极化天线和通信设备
WO2021104191A1 (zh) 天线单元及电子设备
CN110212283A (zh) 一种天线单元及终端设备
WO2021129774A1 (zh) 天线单元和电子设备
EP3852195B1 (en) Terminal device antenna
WO2021083223A1 (zh) 天线单元及电子设备
CN210350084U (zh) 一种天线和电子设备
CN110635244B (zh) 一种天线和电子设备
CN110828985A (zh) 一种天线单元及电子设备
CN110649370B (zh) 一种天线单元和电子设备
WO2021104238A1 (zh) 天线单元和电子设备
CN111969304B (zh) 天线结构及电子设备
CN110649376B (zh) 一种天线和电子设备
CN109509961B (zh) 移动电子装置
WO2021083218A1 (zh) 天线单元及电子设备
CN111755840B (zh) 移动装置和天线结构
CN110635243A (zh) 一种天线单元和电子设备
CN110600858A (zh) 一种天线单元及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892744

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20892744

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20892744

Country of ref document: EP

Kind code of ref document: A1