WO2021129774A1 - 天线单元和电子设备 - Google Patents

天线单元和电子设备 Download PDF

Info

Publication number
WO2021129774A1
WO2021129774A1 PCT/CN2020/139204 CN2020139204W WO2021129774A1 WO 2021129774 A1 WO2021129774 A1 WO 2021129774A1 CN 2020139204 W CN2020139204 W CN 2020139204W WO 2021129774 A1 WO2021129774 A1 WO 2021129774A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
feeder
radiator
dielectric layer
cavity
Prior art date
Application number
PCT/CN2020/139204
Other languages
English (en)
French (fr)
Inventor
马荣杰
邾志民
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021129774A1 publication Critical patent/WO2021129774A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation

Definitions

  • the present invention relates to the field of communication, in particular to an antenna unit and electronic equipment.
  • the millimeter wave antenna is often in the form of an independent antenna module. It and the existing antennas, such as cellular antennas and non-cellular antennas, are often set separately, which is easier to cause the overall system.
  • the increase in volume size has led to a decline in the overall competitiveness of the product.
  • the main antenna elements of millimeter wave antenna modules are patch antennas, Yagi-Uda antennas or dipole antennas. These antenna elements are relatively narrowband antennas, such as conventional patches. Generally, the relative bandwidth of the antenna (patch) is basically no more than 8%, and the millimeter wave frequency band often requires a broadband dual-frequency or multi-frequency form, which brings great challenges to the design of the millimeter wave antenna module.
  • the current mainstream millimeter wave antenna design schemes mainly use the technology and process of antenna in package (Antenna in package, AiP), that is, the radio frequency integrated circuit (RFIC) of millimeter wave array antenna and The Power Management Integrated Circuit (PMIC) is integrated in a module.
  • AiP antenna in package
  • RFIC radio frequency integrated circuit
  • PMIC Power Management Integrated Circuit
  • this module is placed inside the mobile phone, which occupies the space of other antennas at present, resulting in the degradation of antenna performance and the inability to cover wider antennas. Frequency band, thereby affecting the user's wireless experience.
  • the present invention provides an antenna unit and electronic equipment to solve the problems of the existing antennas that it is difficult to obtain a good impedance bandwidth, the performance of the antenna to transmit signals is low, and the overall volume is large.
  • the present invention adopts the following technical solutions:
  • an antenna unit includes: a dielectric layer; a first metal member, the first metal member is provided on the dielectric layer and defines a first metal cavity;
  • a second metal piece, the second metal piece defines a second metal cavity, the second metal cavity is located in the first metal cavity, and the first metal piece and the second metal piece are grounded;
  • the M power feeding parts are located in the first metal cavity and arranged around the second metal part, and the power feeding parts are insulated from the ground;
  • the first radiator is arranged on the dielectric layer
  • a second radiator, the second radiator is arranged between the first radiator and the M power feeders;
  • the M power feeders are coupled to the first radiator and the second radiator, and M is an integer greater than 1.
  • the first metal piece includes:
  • a plurality of first metal pillars are arranged at intervals along the edge of the dielectric layer to define the first metal cavity, and the plurality of first metal pillars are all grounded.
  • the second metal piece includes:
  • a plurality of second metal pillars are provided in the first metal cavity to define the second metal cavity, and the plurality of second metal pillars are all grounded.
  • first metal pillar and the second metal pillar are arranged parallel to each other.
  • the M power feeders include:
  • At least one first power feeder the first power feeder includes a first feeder and a first probe, and the first feeder is connected to the first probe;
  • the second feeder includes a second feeder and a second probe, the second feeder is connected to the second probe, the first feeder is connected to the second feeder Respectively coupled to the first radiator and the second radiator;
  • the M feeders are located between the second radiator and the second metal cavity, and the projections of the first feeder and the second feeder are respectively at least partially located in the second metal cavity.
  • each of the first feeders includes two first feeders and two first probes, each of the first probes is respectively connected to the corresponding first feeder, and each Each of the second feeders includes two second feeders and two second probes, each of the second probes is respectively connected to the corresponding second feeder, and the first The extension directions of the feeder line and the second feeder line are perpendicular and coplanar.
  • first probe and the second probe are located outside the second metal cavity, and the first probe, the second probe and the second metal cavity are located at the The first feeder line and the second feeder line are on the same side.
  • the first radiator includes:
  • At least one first metal sheet the second radiator includes at least one second metal sheet
  • the dielectric layer includes a first dielectric layer and a second dielectric layer
  • the first metal sheet is disposed on the first dielectric layer
  • the second metal sheet is disposed on the second dielectric layer, and the first metal sheet and the second metal sheet are not in contact.
  • the cross section of the first metal cavity and the cross section of the second metal cavity are squares respectively, and two diagonal lines of the cross section of the first metal cavity intersect at a first intersection point, The two diagonal lines of the cross section of the second metal cavity intersect at a second intersection point, and the first intersection point and the second intersection point are located on the axis of the first metal cavity.
  • an electronic device includes the antenna unit of the above-mentioned embodiment.
  • the dielectric layer, the first metal member is disposed on the dielectric layer and defines a first metal cavity
  • the second metal member defines a second metal cavity
  • the second metal cavity is located at the In the first metal cavity
  • the first metal piece and the second metal piece are grounded
  • M power feeding parts are located in the first metal cavity and arranged around the second metal piece
  • the power feeding parts are insulated from the ground
  • the first radiator is provided
  • the second radiator is arranged between the first radiator and the M power feeders
  • the M power feeders are coupled to the first radiator and the second radiator.
  • the second metal cavity is conducive to obtaining a good impedance bandwidth.
  • the coupling of the body and the second radiator can generate resonance and improve the performance of the antenna unit.
  • the structure of the antenna unit is simple in design, which is beneficial to reduce the overall volume and facilitate miniaturization and integration.
  • Figure 1 is a schematic diagram of an existing array antenna
  • FIG. 2 is a cross-sectional view of the antenna unit according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the first dielectric layer in the antenna unit of the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the second dielectric layer in the antenna unit according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of the third dielectric layer in the antenna unit according to the embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of the fourth dielectric layer in the antenna unit according to the embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the reflection coefficient of the antenna unit according to the embodiment of the present invention.
  • Fig. 8 is a directional diagram of the antenna unit of the embodiment of the present invention at a frequency of 26 GHz;
  • Fig. 9 is a directional diagram of the antenna unit of the embodiment of the present invention at a frequency of 28 GHz;
  • FIG. 10 is a directional diagram of the antenna unit of the embodiment of the present invention at a frequency of 39 GHz;
  • FIG. 11 is a schematic diagram of an arrangement of antennas according to an embodiment of the present invention.
  • the first metal pillar 10 The first metal pillar 10;
  • Second metal pillar 20
  • First probe 40 second probe 41;
  • the antenna unit according to the embodiment of the present invention will be described in detail below.
  • the antenna unit includes a dielectric layer, a first metal piece, a second metal piece, M power feeding parts, a first radiator, and a second radiator.
  • the dielectric layer may be an insulating material layer
  • the first metal member is disposed on the dielectric layer and defines a first metal cavity
  • the second metal member defines a second metal cavity
  • the second metal cavity is located at the In the first metal cavity
  • the first metal piece and the second metal piece are grounded
  • M power feeding parts are located in the first metal cavity and arranged around the second metal piece, the power feeding parts are insulated from the ground
  • the first radiator is provided In the dielectric layer
  • the second radiator is arranged between the first radiator and M feeders, and the M feeders are coupled to the first radiator and the second radiator
  • M is an integer greater than 1.
  • the antenna unit is mainly composed of a dielectric layer, a first metal piece, a second metal piece, M feeding parts, a first radiator and a second radiator, where the dielectric layer is an insulating material layer or non-metal, For example, it may be an insulating plastic layer or an inorganic non-metallic material layer.
  • the first metal piece may be provided on the dielectric layer, and the dielectric layer has a supporting function.
  • the first metal piece may define a first metal cavity, and the first metal piece may be
  • the metal tube can also be formed by connecting a plurality of metal rods, and the first metal cavity can avoid external interference to the inside of the first metal cavity.
  • the second metal piece may define a second metal cavity, the second metal cavity is located in the first metal cavity, the second metal piece may be arranged in the first metal cavity, the second metal piece may be a metal tube, and can also pass through A plurality of metal rods are connected, and the first metal piece and the second metal piece are grounded.
  • M power feeders are located in the first metal cavity, M power feeders are arranged around the second metal piece, M power feeders can be located on the same plane, M power feeders are respectively insulated from the ground, and M power feeders
  • the part can generate a feed signal.
  • the first radiator may be provided on the dielectric layer, the second radiator may be provided between the first radiator and the M power feeders, and at least one of the first radiator and the second radiator may be provided on the first metal Inside the cavity, for example, the second radiator is arranged in the first metal cavity, the first radiator is arranged outside the first metal cavity, and M power feeders are coupled to the first radiator and the second radiator, and M is If it is an integer greater than 1, the coupling between the M feeders and the first radiator and the second radiator can generate resonance, so that the antenna unit can cover more frequency bands, enhance the radiation capability of the antenna, and improve the performance of the antenna unit.
  • arranging the feeding part in the first metal cavity can avoid external interference to the signal, and the second metal cavity is conducive to obtaining a good impedance bandwidth, through the feeding part and the first radiator
  • the coupling of the second radiator can generate new resonance, enhance the radiation ability of the antenna, and improve the performance of the antenna unit.
  • the structure of the antenna unit is simple in design, which is conducive to reducing the overall volume and facilitating miniaturization and integration.
  • the first metal member may include a plurality of first metal pillars 10, and the plurality of first metal pillars 10 may be arranged at intervals along the edge of the dielectric layer to define The first metal cavity, the plurality of first metal pillars 10 are all grounded, the entire first metal cavity may be columnar, the plurality of first metal pillars 10 may be arranged parallel to each other, and the plurality of first metal pillars 10 may be along the dielectric layer. The edges of the dielectric layer are evenly spaced.
  • a plurality of through holes can be evenly spaced on the edge of the dielectric layer, and each first metal pillar 10 is inserted into the corresponding through hole, and then passes through the plurality of first metal pillars 10 Defining the first metal cavity, and using the first metal pillar 10 to define the first metal cavity can reduce the amount of metal material and the weight, reduce the cost, and be beneficial to lightness.
  • the second metal member may include a plurality of second metal pillars 20, and the plurality of second metal pillars 20 may be provided in the first metal cavity to A second metal cavity is defined, and the plurality of second metal pillars 20 are all grounded.
  • a plurality of second metal pillars 20 may also be arranged on the dielectric layer, and the plurality of second metal pillars 20 may be arranged parallel to each other.
  • the first metal pillars 10 and the second metal pillars 20 may be arranged parallel to each other, and the first metal pillars 20 may be arranged parallel to each other.
  • the pillar 10 and the second metal pillar 20 may be parallel to the axis of the first metal cavity.
  • a plane perpendicular to the second metal pillar 20 may be used as the first plane, and the projections of the M power feeding parts on the first plane may be located on the projections of the second metal cavity on the first plane.
  • the second metal cavity defined by the second metal pillar 20 can obtain a good impedance bandwidth, and at the same time, reduce the amount and weight of metal materials, reduce costs, and be beneficial to lightness.
  • the second metal cavity is located inside the first metal cavity. , Does not occupy additional space, is conducive to the miniaturization of the antenna unit, and is convenient for processing.
  • the M power feeders include at least one first power feeder and at least one second power feeder.
  • the M power feeders may include a first power feeder and a second power feeder.
  • the feeder, the first feeder includes a first feeder 30 and a first probe 40, the first feeder 30 is connected to the first probe 40, and the second feeder includes a second feeder 31 and a second probe 41,
  • the second feeder 31 is connected to the second probe 41, the first feeder 30 and the second feeder 31 are respectively coupled to the first radiator and the second radiator;
  • M feeders are located in the second radiator and the second metal cavity Between the bodies, the projections of the first feeder 30 and the second feeder 31 are respectively at least partially located in the second metal cavity.
  • the first feeder 30 and the second feeder 31 can be respectively L-shaped coupled feeders, which is beneficial to reduce the size of the antenna.
  • the feed signal can be transmitted to the first feeder 30 through the first probe 40, and the feeder signal can be transmitted to the first feeder 30 through the second probe 41
  • the second feeder 31 transmits the feed signal.
  • the first feeder 30 and the second feeder 31 are coupled to the first radiator and the second radiator respectively, which can generate resonance, so that the antenna unit can cover more frequency bands and enhance the antenna’s performance. Radiation ability.
  • each first feeder may include two first feeders 30 and two first probes 40, and the two first feeders 30 may be arranged opposite to each other, and each first probe 40 is respectively connected to
  • each second feeder may include two second feeders 31 and two second probes 41, and the two second feeders 31 may be arranged opposite to each other, and each second probe 41 is respectively Connected to the corresponding second feeder 31.
  • the extension directions of the first feeder 30 and the second feeder 31 are perpendicular and coplanar, which is conducive to generating orthogonal polarization.
  • the first feeder 30 and the second feeder 31 are respectively connected to the first radiator. , The second radiator is coupled and connected.
  • the first probe 40 and the second probe 41 are located outside the second metal cavity, and the first probe 40, the second probe 41 and the second metal cavity are located on the same side of the first feeder 30 and the second feeder 31 , To avoid the interference of the first probe 40 and the second probe 41 on signal transmission or radiation, and avoid the first probe 40 and the second probe 41 from resonating or polarizing the first feeder 30 and the second feeder 31 .
  • the two first feeders 30 form a pair of +45° polarized feeds, and the amplitudes of the signal sources connected to the two first feeders 30 are equal,
  • the phase difference is 180°, so that the two second feeders 31 form a -45° polarized feed, the amplitudes of the signal sources connected to the two second feeders 31 are also equal, and the phases are also 180° apart.
  • the first radiator includes at least one first metal sheet 52
  • the second radiator includes at least one second metal sheet 51, for example, the first metal sheet 52 and the second metal sheet 52.
  • the dielectric layer may include a first dielectric layer 61 and a second dielectric layer 62
  • the first metal sheet 52 is provided on the first dielectric layer 61
  • the second metal sheet 51 is provided on the second dielectric layer 62
  • the first metal sheet 52 and the second metal sheet 51 are not in contact
  • the first feeder line 30 and the second feeder line 31 are coupled to the first metal sheet 52 and the second metal sheet 51 respectively, which is beneficial to generate resonance and enhance the radiation ability of the antenna .
  • the first metal sheet 52 and the second metal sheet 51 may each have one, the first metal sheet 52 and the second metal sheet 51 may be spaced apart along the axis of the first metal cavity, and the first metal sheet 52 and the second metal sheet 52 may be spaced apart from each other along the axis of the first metal cavity.
  • the planes of the two metal sheets 51 are respectively perpendicular to the axis of the first metal cavity, that is, the first metal sheet 52 and the second metal sheet 51 may be perpendicular to the first metal pillar 10 and the second metal pillar 20 respectively.
  • At least one of the first metal sheet 52 and the second metal sheet 51 may be located in the first metal cavity, and the first metal sheet 52 and the second metal sheet 51 may be coupled to the first feeder line 30 and the second feeder line 31, respectively.
  • Two resonances of low frequency or high frequency are generated, so that the antenna unit can cover more frequency bands, enhance the radiation ability of the antenna, and improve the mobile roaming experience of different users.
  • the cross section of the first metal cavity and the cross section of the second metal cavity are squares respectively, and the two diagonal lines of the cross section of the first metal cavity intersect at the first intersection point, The two diagonal lines of the cross section of the second metal cavity intersect at the second intersection point, and the first intersection point and the second intersection point are located on the axis of the first metal cavity, so that good impedance can be obtained through the second metal cavity bandwidth.
  • the first diagonal line of the cross section of the first metal cavity may be perpendicular to the two mutually parallel sides of the cross section of the second metal cavity, and the second line of the cross section of the first metal cavity is opposite to each other.
  • the angle line may be perpendicular to the other two parallel sides of the cross section of the second metal cavity, which is beneficial for generating uniform and symmetrical resonance.
  • the axes of the first metal cavity, the second metal cavity, the first metal sheet 52, and the second metal sheet 51 may be collinear, so that the entire antenna unit is symmetrical, which is beneficial for the metal sheet in the first metal cavity.
  • a uniform and symmetrical resonance is generated between the first feeder line 30 and the second feeder line 31 in the chamber.
  • the first radiator includes a first metal sheet 52
  • the second radiator includes a second metal sheet 51.
  • Low frequency can be generated between the first feeder 30, the second feeder 31 and the second metal sheet 51.
  • the introduction of the first metal sheet 52 can generate new resonances at high frequencies, further increasing the frequency band of the antenna unit.
  • Fig. 7 is a schematic diagram of the reflection coefficient of the antenna unit according to the embodiment of the present invention.
  • the coordinates of point 1 are (24.033, -9.9954)
  • the coordinates of point 2 are (29.987, -10.026)
  • the coordinates of point 3 are (42.249,- 9.9974)
  • the coordinates of point 4 are (43.163, -6.0552), and it can be seen from the frequency range in FIG.
  • the antenna unit in the embodiment of the present invention has a wider frequency band range. Due to the introduction of the L-shaped coupling feeder and the metal sheet, the antenna unit generates multiple resonance points, which can well cover the 24GHz-42GHz frequency band, basically covering n257 (26.5GHz-29.5GHz), n258 (24.25GHz-27.5GHz) , N260 (37.0GHz-40.0GHz), n261 (27.5GHz-28.35GHz) and other global mainstream 5G millimeter wave frequency bands that have been defined by 3GPP, thereby enhancing the user's mobile roaming experience.
  • a pattern of the antenna unit of the embodiment of the present invention at a frequency of 26 GHz may be as shown in FIG. 8.
  • frequency (Frequency) 26 GHz
  • main lobe maximum gain 4.71 dB
  • main lobe direction 0.0 deg
  • 3 dB beam width Angular width
  • negative lobe level side lobe level
  • -14.0 dB the antenna unit of the embodiment of the present invention is at a frequency of 28 GHz
  • a directional pattern can be shown in Figure 9.
  • frequency (Frequency) 28GHz
  • main lobe maximum gain (Main lobe magnitude) 5.26dB
  • main lobe direction (Main lobe direction) 0.0deg
  • 3dB beam Angular width 79.8 deg
  • side lobe level -15.2 dB
  • a pattern of the antenna unit of the embodiment of the present invention at a frequency of 39 GHz may be as shown in FIG. 10.
  • Using a symmetrical differential orthogonal feed method for the same antenna unit can form a Multiple-Input Multiple-Output (MIMO) function, which can increase the data transmission rate, and can also form a dual polarization to increase the antenna’s power.
  • MIMO Multiple-Input Multiple-Output
  • the wireless connection capability reduces the probability of communication disconnection, and improves the communication effect and user experience; in addition, it can significantly improve the isolation between ports and reduce the coupling between antenna units, thereby increasing the overall system efficiency and improving the beamforming characteristics of the array antenna .
  • the dielectric layer may include one or more layers.
  • the dielectric layer may include a first dielectric layer 61, a second dielectric layer 62, and a third dielectric layer 63.
  • the fourth dielectric layer 64, the first dielectric layer 61, the second dielectric layer 62, the third dielectric layer 63, and the fourth dielectric layer 64 can be arranged sequentially from top to bottom, and the size and shape of the four dielectric layers can be the same.
  • the plurality of first metal pillars 10 may respectively penetrate the four dielectric layers, and the plurality of first metal pillars 10 may be spaced apart along the edges of the four dielectric layers to define a first metal cavity.
  • the plurality of first metal pillars 10 are mutually Parallel setting.
  • a first metal sheet 52 may be provided on the upper surface of the first dielectric layer 61
  • a second metal sheet 51 may be provided on the upper surface of the second dielectric layer 62
  • the first feeder 30 and the second feeder may be provided on the upper surface of the third dielectric layer 63 31.
  • the second metal pillar 20 is disposed on the fourth dielectric layer 64
  • the first probe 40 penetrates the third dielectric layer 63 and the fourth dielectric layer 64 to connect to the first feeder
  • the second probe 41 penetrates the third dielectric layer 63 and the fourth dielectric layer 64 are connected to the second feeder 31, and the structure in the antenna unit can be supported by the dielectric layer without causing interference.
  • the laminated structure is simple and the processing difficulty is reduced.
  • PCB printed circuit board
  • substrate processing technology or LTCC low temperature co-fired ceramic
  • An embodiment of the present invention also provides an antenna, and the antenna includes the antenna unit described in the foregoing embodiment.
  • the antenna can include one or more antenna elements. When there are multiple antenna elements, the antenna elements can be arranged in an array. As shown in Figure 11, the four antenna elements can be arranged in an array, and each antenna element can be arranged in an array. A certain separation distance, the separation distance can be determined according to the isolation between the antenna elements and the performance of the scanning angle of the array.
  • a ground wall can be formed by punching around each antenna unit, and the ground wall encloses a cavity structure to improve the isolation between adjacent antenna units.
  • the antenna with the antenna unit has strong anti-interference performance, is beneficial to obtain a good impedance bandwidth, improves the performance of the antenna, is suitable for signals in a variety of frequency bands, is beneficial to reduce the overall volume, and facilitates miniaturization.
  • An embodiment of the present invention also provides an electronic device, and the electronic device includes the antenna unit described in the foregoing embodiment.
  • the electronic device with the antenna unit has good antenna performance, strong signal transmission and reception capabilities, and is suitable for signals in multiple frequency bands, which is conducive to the miniaturization of electronic devices and enhances the user's mobile roaming experience.
  • the antenna unit in the embodiment of the present invention can be applied to wireless intercity network (WMAN), wireless wide area network (WWAN), wireless local area network (WLAN), wireless personal network (WPAN), multiple input multiple output (MIMO) , Radio frequency identification (RFID), even near field communication (NFC), wireless charging (WPC) or frequency modulation broadcasting (FM) and other wireless communication design and application.
  • WMAN wireless intercity network
  • WWAN wireless wide area network
  • WLAN wireless local area network
  • WPAN wireless personal network
  • MIMO multiple input multiple output
  • RFID Radio frequency identification
  • NFC near field communication
  • WPC wireless charging
  • FM frequency modulation broadcasting
  • the antenna unit in the embodiment of the present invention can be applied not only to mobile electronic devices (such as mobile phones), but also to electromagnetic wave absorption rate (Specific Absorption Rate, SAR) or hearing aid compatibility (Hearing Aid Compatibility, HAC). Compatibility testing of devices (such as hearing aids or heart rate regulators, etc.) and actual design applications.
  • mobile electronic devices such as mobile phones
  • electromagnetic wave absorption rate Specific Absorption Rate, SAR
  • hearing aid compatibility Hearing Aid Compatibility, HAC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明实施例提供一种天线单元和电子设备,天线单元包括:介质层;第一金属件,第一金属件设在介质层上且限定出第一金属腔体;第二金属件限定出第二金属腔体,第二金属腔体位于第一金属腔体内,第一金属件和第二金属件接地;M个馈电部位于第一金属腔体内且围绕第二金属件设置,馈电部与地绝缘;第一辐射体设于介质层;第二辐射体,第二辐射体设于第一辐射体与M个馈电部之间;M个馈电部与第一辐射体、第二辐射体耦合连接。

Description

天线单元和电子设备
相关申请的交叉引用
本申请主张在2019年12月26日在中国提交的中国专利申请No.201911365095.6的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信领域,具体涉及一种天线单元和电子设备。
背景技术
全金属、高屏占比、超薄机身以及多天线通讯已成为终端的主流与未来趋势,且随着第五代移动通信(5G)的发展,毫米波天线的设计渐渐被引入到一些小的移动终端上,如手机、平板,甚至是笔记本电脑,在保持系统整体有竞争力的尺寸下,各天线所分得的有效辐射空间往往更少,使得天线性能下降,而造成用户无线体验的劣化。或是为容纳多个分立的天线,而增加系统整体的体积尺寸,导致产品整体竞争力下降。
既有技术中,毫米波天线往往是一独立天线模块的形态,其与既存的天线,如蜂窝(cellular)天线、非蜂窝(non-cellular)天线,常为分立设置,较易造成系统整体的体积尺寸增加,导致产品整体竞争力下降。
毫米波天线模组的主要天线单元有贴片天线(patch)、八木宇田天线(Yagi-Uda)或偶极子天线(dipole),这些天线单元相对而言皆是窄带天线,比如常规的贴片天线(patch)一般相对带宽基本不超过8%,而毫米波频段往往需求宽带的双频或者多频的形式,这给毫米波天线模组的设计带来了很大的挑战。为了满足宽频带、双频、甚至多频的需求,对于贴片天线(patch)来说,往往需要在贴片天线(patch)的辐射片上开槽或者采用叠层的结构,这往往难以实现双极化(dual-polarization)或是会增加毫米波天线模组的厚度,不利于毫米波天线模组的小型化及整机集成。
如图1所示,目前主流毫米波的天线设计方案主要是采用封装天线(Antenna in package,AiP)的技术与工艺,即把毫米波的阵列天线射频集成 电路(Radio Frequency Integrated Circuit,RFIC)以及电源管理集成电路(Power Management Integrated Circuit,PMIC)集成在一个模块内,在实际应用中,将此模块置入手机内部,占据了目前其他天线的空间,导致天线性能的下降,不能覆盖较宽的频段,从而影响用户的无线体验。
发明内容
有鉴于此,本发明提供一种天线单元和电子设备,用以解决现有天线不易获得良好的阻抗带宽,天线传输信号的性能低,整体体积大的问题。
为解决上述技术问题,本发明采用以下技术方案:
第一方面,根据本发明实施例的天线单元,包括:介质层;第一金属件,所述第一金属件设在所述介质层且限定出第一金属腔体;
第二金属件,所述第二金属件限定出第二金属腔体,所述第二金属腔体位于所述第一金属腔体内,所述第一金属件和所述第二金属件接地;
M个馈电部,所述M个馈电部位于所述第一金属腔体内,且围绕所述第二金属件设置,所述馈电部与地绝缘;
第一辐射体,设于所述介质层;
第二辐射体,所述第二辐射体设于所述第一辐射体与所述M个馈电部之间;
所述M个馈电部与所述第一辐射体、所述第二辐射体耦合连接,M为大于1的整数。
其中,所述第一金属件包括:
多个第一金属柱,多个所述第一金属柱沿所述介质层的边沿间隔设置以限定出所述第一金属腔体,多个所述第一金属柱均接地。
其中,所述第二金属件包括:
多个第二金属柱,多个所述第二金属柱设在所述第一金属腔体中以限定出所述第二金属腔体,多个所述第二金属柱均接地。
其中,所述第一金属柱和所述第二金属柱相互平行设置。
其中,所述M个馈电部包括:
至少一个第一馈电部,所述第一馈电部包括第一馈线和第一探针,所述 第一馈线与所述第一探针连接;
至少一个第二馈电部,所述第二馈电部包括第二馈线和第二探针,所述第二馈线与所述第二探针连接,所述第一馈线与所述第二馈线分别和所述第一辐射体、所述第二辐射体耦合连接;
所述M个馈电部位于所述第二辐射体与所述第二金属腔体之间,所述第一馈线与所述第二馈线的投影分别至少部分位于所述第二金属腔体内。
其中,每个所述第一馈电部包括两个所述第一馈线和两个所述第一探针,每个所述第一探针分别连接在对应的所述第一馈线上,每个所述第二馈电部包括两个所述第二馈线和两个所述第二探针,每个所述第二探针分别连接在对应的所述第二馈线上,所述第一馈线和所述第二馈线的延伸方向垂直且共面。
其中,所述第一探针和所述第二探针位于所述第二金属腔体的外部,且所述第一探针、所述第二探针和所述第二金属腔体位于所述第一馈线与所述第二馈线的同一侧。
其中,所述第一辐射体包括:
至少一个第一金属片,所述第二辐射体包括至少一个第二金属片,所述介质层包括第一介质层和第二介质层,所述第一金属片设在所述第一介质层上,所述第二金属片设在所述第二介质层上,且所述第一金属片与所述第二金属片未接触。
其中,所述第一金属腔体的横截面与所述第二金属腔体的横截面分别为四方形,所述第一金属腔体的横截面的两条对角线相交于第一交点,所述第二金属腔体的横截面的两条对角线相交于第二交点,所述第一交点与所述第二交点位于所述第一金属腔体的轴线上。
第二方面,根据本发明实施例的电子设备包括上述实施例的天线单元。
本发明的上述技术方案的有益效果如下:
根据本发明实施例的天线单元,介质层,第一金属件设在介质层且限定出第一金属腔体,第二金属件限定出第二金属腔体,所述第二金属腔体位于所述第一金属腔体内,第一金属件和第二金属件接地,M个馈电部位于第一金属腔体内,且围绕第二金属件设置,馈电部与地绝缘,第一辐射体设于介 质层,第二辐射体设于第一辐射体与M个馈电部之间,M个馈电部与第一辐射体、第二辐射体耦合连接。在本发明实施例的天线单元中,将馈电部设置于第一金属腔体内能够避免外界对信号的干扰,第二金属腔体有利于获得良好的阻抗带宽,通过馈电部与第一辐射体、第二辐射体的耦合能够产生谐振,提高天线单元的性能,该天线单元结构设计简单,有利于减小整体体积,便于小型化集成。
附图说明
图1为现有阵列天线的一个示意图;
图2为本发明实施例的天线单元的一个剖视图;
图3为本发明实施例的天线单元中第一介质层的一个截面图;
图4为本发明实施例的天线单元中第二介质层的一个截面图;
图5为本发明实施例的天线单元中第三介质层的一个截面图;
图6为本发明实施例的天线单元中第四介质层的一个截面图;
图7为本发明实施例的天线单元的一个反射系数示意图;
图8为本发明实施例的天线单元在频率26GHz时的一个方向图;
图9为本发明实施例的天线单元在频率28GHz时的一个方向图;
图10为本发明实施例的天线单元在频率39GHz时的一个方向图;
图11为本发明实施例的天线的一个排列示意图。
附图标记
第一金属柱10;
第二金属柱20;
第一馈线30;第二馈线31;
第一探针40;第二探针41;
第一介质层61;第二介质层62;第三介质层63;第四介质层64。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
下面具体描述根据本发明实施例的天线单元。
如图2至图6所示,根据本发明实施例的天线单元包括介质层、第一金属件、第二金属件、M个馈电部、第一辐射体和第二辐射体。
具体而言,介质层可以是绝缘材料层,第一金属件设在介质层且限定出第一金属腔体,第二金属件限定出第二金属腔体,所述第二金属腔体位于所述第一金属腔体内,第一金属件和第二金属件接地,M个馈电部位于第一金属腔体内,且围绕第二金属件设置,馈电部与地绝缘,第一辐射体设于介质层,第二辐射体设于第一辐射体与M个馈电部之间,M个馈电部与第一辐射体、第二辐射体耦合连接,M为大于1的整数。
也就是说,天线单元主要由介质层、第一金属件、第二金属件、M个馈电部、第一辐射体和第二辐射体构成,其中,介质层为绝缘材料层或非金属,比如可以为绝缘的塑料层或无机非金属材料层,第一金属件可以设在介质层上,介质层具有支撑作用,第一金属件可以限定出第一金属腔体,第一金属件可以为金属管状,还可以通过多个金属杆连接构成,第一金属腔体能够避免外界对第一金属腔体内部的干扰。第二金属件可以限定出第二金属腔体,第二金属腔体位于第一金属腔体内,第二金属件可以设在第一金属腔体内,第二金属件可以为金属管状,还可以通过多个金属杆连接构成,第一金属件和第二金属件接地。
M个馈电部位于第一金属腔体内,M个馈电部围绕第二金属件设置,M个馈电部可以位于同一平面上,M个馈电部分别与地绝缘,通过M个馈电部可以产生馈电信号。第一辐射体可以设于介质层上,第二辐射体可以设于第一辐射体与M个馈电部之间,第一辐射体和第二辐射体中的至少一个可以设置于第一金属腔体内,比如,第二辐射体设置于第一金属腔体内,第一辐射体设置于第一金属腔体外部,M个馈电部与第一辐射体、第二辐射体耦合连接,M为大于1的整数,M个馈电部与第一辐射体、第二辐射体之间耦合可 以产生谐振,使得该天线单元可以覆盖更多的频段,增强天线的辐射能力,提升天线单元的性能。
根据本发明实施例的天线单元,将馈电部设置于第一金属腔体内能够避免外界对信号的干扰,第二金属腔体有利于获得良好的阻抗带宽,通过馈电部与第一辐射体、第二辐射体的耦合能够产生新的谐振,增强天线的辐射能力,提高天线单元的性能,该天线单元结构设计简单,有利于减小整体体积,便于小型化集成。
在本发明的一些实施例中,如图2和图3所示,第一金属件可以包括多个第一金属柱10,多个第一金属柱10可以沿介质层的边沿间隔设置以限定出第一金属腔体,多个第一金属柱10均接地,第一金属腔体整体可以为柱状,多个第一金属柱10可以相互平行设置,多个第一金属柱10可以沿着介质层的边沿均匀间隔开设置,比如,可以在介质层的边沿均匀间隔开设置多个通孔,将每个第一金属柱10分别穿入相应的通孔中,进而通过多个第一金属柱10限定出第一金属腔体,利用第一金属柱10限定第一金属腔体能够减少金属材料用量以及重量,降低成本,有利于轻型化。
在本发明的另一些实施例中,如图2和图6所示,第二金属件可以包括多个第二金属柱20,多个第二金属柱20可以设在第一金属腔体中以限定出第二金属腔体,多个第二金属柱20均接地。多个第二金属柱20也可以设置在介质层上,多个第二金属柱20可以相互平行设置,可选地,第一金属柱10和第二金属柱20可以相互平行设置,第一金属柱10和第二金属柱20可以与第一金属腔体的轴线平行。可以将垂直于第二金属柱20的一个平面作为第一平面,M个馈电部在第一平面上的投影可以位于第二金属腔体在第一平面上的投影上。通过第二金属柱20限定出的第二金属腔体可以获得良好的阻抗带宽,同时,减少金属材料用量以及重量,降低成本,有利于轻型化,第二金属腔体位于第一金属腔体内部,不占用额外的空间,有利于天线单元的小型化,便于加工。
在本发明的一些实施例中,M个馈电部包括至少一个第一馈电部和至少一个第二馈电部,比如,M个馈电部可以包括一个第一馈电部和一个第二馈电部,第一馈电部包括第一馈线30和第一探针40,第一馈线30与第一探针 40连接,第二馈电部包括第二馈线31和第二探针41,第二馈线31与第二探针41连接,第一馈线30与第二馈线31分别和第一辐射体、第二辐射体耦合连接;M个馈电部位于第二辐射体与第二金属腔体之间,第一馈线30与第二馈线31的投影分别至少部分位于第二金属腔体内。第一馈线30和第二馈线31可以分别为L型耦合馈线,有利于减小天线的体积,通过第一探针40可以向第一馈线30传输馈电信号,通过第二探针41可以向第二馈线31传输馈电信号,第一馈线30与第二馈线31分别和第一辐射体、第二辐射体耦合连接,能够产生谐振,使得该天线单元可以覆盖更多的频段,增强天线的辐射能力。
在一些实施例中,每个第一馈电部可以包括两个第一馈线30和两个第一探针40,两个第一馈线30可以相对设置,每个第一探针40分别连接在对应的第一馈线30上,每个第二馈电部可以包括两个第二馈线31和两个第二探针41,两个第二馈线31可以相对设置,每个第二探针41分别连接在对应的第二馈线31上,第一馈线30和第二馈线31的延伸方向垂直且共面,有利于产生正交极化,第一馈线30与第二馈线31分别和第一辐射体、第二辐射体耦合连接。第一探针40和第二探针41位于第二金属腔体的外部,第一探针40、第二探针41和第二金属腔体位于第一馈线30和第二馈线31的同一侧,避免第一探针40和第二探针41对信号传输或辐射的干扰,避免第一探针40和第二探针41对第一馈线30和第二馈线31产生谐振或极化的影响。通过第一馈线30与第二馈线31的对称正交设置,使得两个第一馈线30构成一对+45°极化的馈电,两个第一馈线30连接的信号源的幅值相等,相位相差180°,使得两个第二馈线31构成-45°极化的馈电,两个第二馈线31连接的信号源的幅值也相等,相位也相差180°。
在本发明的实施例中,如图2所示,第一辐射体包括至少一个第一金属片52,第二辐射体包括至少一个第二金属片51,比如,第一金属片52和第二金属片51分别具有一个,介质层可以包括第一介质层61和第二介质层62,第一金属片52设在第一介质层61上,第二金属片51设在第二介质层62上,且第一金属片52与第二金属片51未接触,第一馈线30与第二馈线31分别和第一金属片52与第二金属片51耦合连接,利于产生谐振,增强天线的辐 射能力。
可选地,第一金属片52和第二金属片51可以分别具有一个,第一金属片52与第二金属片51可以沿第一金属腔体的轴线间隔设置,第一金属片52与第二金属片51所在平面分别垂直于第一金属腔体的轴线,也即是,第一金属片52与第二金属片51可以分别和第一金属柱10与第二金属柱20垂直。第一金属片52和第二金属片51中的至少一个可以位于第一金属腔体中,第一金属片52和第二金属片51分别和第一馈线30与第二馈线31耦合连接,可以产生低频或高频的两个谐振,使得该天线单元可以覆盖更多的频段,增强天线的辐射能力,提升不同用户的移动漫游体验。
在本发明的实施例中,第一金属腔体的横截面与第二金属腔体的横截面分别为四方形,第一金属腔体的横截面的两条对角线相交于第一交点,第二金属腔体的横截面的两条对角线相交于第二交点,第一交点与第二交点位于第一金属腔体的轴线上,使得通过第二金属腔体有利于获得良好的阻抗带宽。进一步地,第一金属腔体的横截面的第一条对角线可以垂直于第二金属腔体的横截面的两条相互平行的边,第一金属腔体的横截面的第二条对角线可以垂直于第二金属腔体的横截面的另外两条相互平行的边,有利于产生均匀对称的谐振。
在一些实施例中,第一金属腔体、第二金属腔体和第一金属片52、第二金属片51的轴线可以共线,使得整个天线单元对称,有利于金属片在第一金属腔室中与第一馈线30和第二馈线31之间产生均匀对称的谐振。
如图2所示,第一辐射体包括一个第一金属片52,第二辐射体包括一个第二金属片51,第一馈线30、第二馈线31与第二金属片51之间可以产生低频的两个谐振,第一金属片52的引入可以在高频处产生新的谐振,进一步增加该天线单元的频段。图7为本发明实施例的天线单元的一个反射系数示意图,图7中,点1坐标为(24.033,-9.9954),点2坐标为(29.987,-10.026),点3坐标为(42.249,-9.9974),点4坐标为(43.163,-6.0552),从图7中的频率范围可以看出本发明实施例中的天线单元具有较宽的频段范围。由于L型耦合馈线以及金属片的引入,使得天线单元产生多个谐振点,能够很好地覆盖24GHz-42GHz频段,基本可以覆盖n257(26.5GHz-29.5GHz)、n258 (24.25GHz-27.5GHz)、n260(37.0GHz-40.0GHz)、n261(27.5GHz-28.35GHz)等3GPP已经定义的全球主流5G毫米波频段,从而提升了用户的移动漫游体验。
在实际应用时,本发明实施例的天线单元在频率26GHz时的一个方向图可以如图8所示,在图8中,频率(Frequency)=26GHz,主瓣最大增益(Main lobe magnitude)=4.71dB,主瓣方向(Main lobe direction)=0.0deg,3dB波束宽度(Angular width)=84.8deg,负瓣电平(side lobe level)=-14.0dB;本发明实施例的天线单元在频率28GHz时的一个方向图可以如图9所示,在图9中,频率(Frequency)=28GHz,主瓣最大增益(Main lobe magnitude)=5.26dB,主瓣方向(Main lobe direction)=0.0deg,3dB波束宽度(Angular width)=79.8deg,负瓣电平(side lobe level)=-15.2dB;本发明实施例的天线单元在频率39GHz时的一个方向图可以如图10所示,在图10中,频率(Frequency)=39GHz,主瓣最大增益(Main lobe magnitude)=6.22dB,主瓣方向(Main lobe direction)=0.0deg,3dB波束宽度(Angular width)=70.9deg,负瓣电平(side lobe level)=-19.6dB。可见,从图8至图10中可以看到不同频率下的辐射方向情况,由于采用对称的差分馈电形式,本发明实施例中的天线单元的最大辐射方向均指向正z方向,适合组成阵列进行波束赋形。对同一个天线单元使用对称差分正交馈电方式,可以形成多输入多输出系统(Multiple-Input Multiple-Output,MIMO)功能,能够提升数据的传输速率,还可构成双极化,增加天线的无线连接能力,减少通信断线的机率,提升通信效果和用户体验;另外,可以明显改善端口间的隔离度,减少天线单元间的耦合,从而提高整体系统效率,改善阵列天线的波束赋形特性。
在本发明的实施例中,如图2至图6所示,介质层可以包括一层或多层,比如,介质层可以包括第一介质层61、第二介质层62、第三介质层63和第四介质层64,第一介质层61、第二介质层62、第三介质层63和第四介质层64可以从上至下依次设置,四层介质层的大小和形状可以相同。多个第一金属柱10可以分别贯穿四层介质层,多个第一金属柱10可以沿四层介质层的边沿间隔开设置以限定出第一金属腔体,多个第一金属柱10相互平行设置。可以在第一介质层61的上表面设置第一金属片52,在第二介质层62的上表 面设置第二金属片51,在第三介质层63上表面设置第一馈线30和第二馈线31,第二金属柱20设置在第四介质层64上,第一探针40贯穿第三介质层63和第四介质层64与第一馈线30连接,第二探针41贯穿第三介质层63和第四介质层64与第二馈线31连接,通过介质层能够对天线单元中的结构件进行支撑,又不会造成干扰,叠层结构简单,降低了加工难度。在天线单元加工过程中,可以采用PCB(印制电路板)加工工艺、基板加工工艺或者LTCC(低温共烧陶瓷)加工工艺,可以更灵活地进行天线设计和叠层设计。
本发明实施例还提供一种天线,天线包括如上述实施例所述的天线单元。天线可以包括一个或多个天线单元,具有多个天线单元时,天线单元可以呈阵列状排列设置,如图11所示,四个天线单元可以呈阵列状排列,每个天线单元之间可以具有一定间隔距离,间隔距离可以根据天线单元之间的隔离度以及阵列的扫描角度的性能来确定。可以在每个天线单元的四周通过打孔形成地墙,地墙围成一个腔体结构,提升相邻天线单元间的隔离度。具有天线单元的天线抗干扰性能强,有利于获得良好的阻抗带宽,提高天线的性能,适用于多种频段信号,有利于减小整体体积,便于小型化。
本发明实施例还提供一种电子设备,电子设备包括如上述实施例所述的天线单元。具有该天线单元的电子设备,天线的性能好,信号收发能力强,适用于多种频段信号,有利于电子设备的小型化,提升用户的移动漫游体验。
本发明实施例中的天线单元可应用于无线城际网路(WMAN)、无线广域网路(WWAN)、无线区域网路(WLAN)、无线个人网路(WPAN)、多输入多输出(MIMO)、射频识别(RFID),甚至是近场通信(NFC)、无线充电(WPC)或调频广播(FM)等无线通信设计与应用上。
本发明实施例中的天线单元不仅可以应用于移动电子设备上(比如手机),还应用于电磁波吸收比值(Specific Absorption Rate,SAR)或助听器兼容性(Hearing Aid Compatibility,HAC)等与佩戴的电子器件(如助听器或心率调整器等)相容性的法规测试与实际设计应用上。
除非另作定义,本发明中使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来 区分不同的组成部分。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种天线单元,包括:
    介质层;
    第一金属件,所述第一金属件设在所述介质层且限定出第一金属腔体;
    第二金属件,所述第二金属件限定出第二金属腔体,所述第二金属腔体位于所述第一金属腔体内,所述第一金属件和所述第二金属件接地;
    M个馈电部,所述M个馈电部位于所述第一金属腔体内,且围绕所述第二金属件设置,所述馈电部与地绝缘;
    第一辐射体,设于所述介质层;
    第二辐射体,所述第二辐射体设于所述第一辐射体与所述M个馈电部之间;
    所述M个馈电部与所述第一辐射体、所述第二辐射体耦合连接,M为大于1的整数。
  2. 根据权利要求1所述的天线单元,其中,所述第一金属件包括:
    多个第一金属柱,多个所述第一金属柱沿所述介质层的边沿间隔设置以限定出所述第一金属腔体,多个所述第一金属柱均接地。
  3. 根据权利要求2所述的天线单元,其中,所述第二金属件包括:
    多个第二金属柱,多个所述第二金属柱设在所述第一金属腔体中以限定出所述第二金属腔体,多个所述第二金属柱均接地。
  4. 根据权利要求3所述的天线单元,其中,所述第一金属柱和所述第二金属柱相互平行设置。
  5. 根据权利要求1所述的天线单元,其中,所述M个馈电部包括:
    至少一个第一馈电部,所述第一馈电部包括第一馈线和第一探针,所述第一馈线与所述第一探针连接;
    至少一个第二馈电部,所述第二馈电部包括第二馈线和第二探针,所述第二馈线与所述第二探针连接,所述第一馈线与所述第二馈线分别和所述第一辐射体、所述第二辐射体耦合连接;
    所述M个馈电部位于所述第二辐射体与所述第二金属腔体之间,所述第 一馈线与所述第二馈线的投影分别至少部分位于所述第二金属腔体内。
  6. 根据权利要求5所述的天线单元,其中,每个所述第一馈电部包括两个所述第一馈线和两个所述第一探针,每个所述第一探针分别连接在对应的所述第一馈线上,每个所述第二馈电部包括两个所述第二馈线和两个所述第二探针,每个所述第二探针分别连接在对应的所述第二馈线上,所述第一馈线和所述第二馈线的延伸方向垂直且共面。
  7. 根据权利要求5所述的天线单元,其中,所述第一探针和所述第二探针位于所述第二金属腔体的外部,且所述第一探针、所述第二探针和所述第二金属腔体位于所述第一馈线与所述第二馈线的同一侧。
  8. 根据权利要求1所述的天线单元,其中,所述第一辐射体包括至少一个第一金属片,所述第二辐射体包括至少一个第二金属片,所述介质层包括第一介质层和第二介质层,所述第一金属片设在所述第一介质层上,所述第二金属片设在所述第二介质层上,且所述第一金属片与所述第二金属片未接触。
  9. 根据权利要求5所述的天线单元,其中,所述第一金属腔体的横截面与所述第二金属腔体的横截面分别为四方形,所述第一金属腔体的横截面的两条对角线相交于第一交点,所述第二金属腔体的横截面的两条对角线相交于第二交点,所述第一交点与所述第二交点位于所述第一金属腔体的轴线上。
  10. 一种电子设备,包括如权利要求1-9中任一项所述的天线单元。
PCT/CN2020/139204 2019-12-26 2020-12-25 天线单元和电子设备 WO2021129774A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911365095.6A CN111129704B (zh) 2019-12-26 2019-12-26 一种天线单元和电子设备
CN201911365095.6 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021129774A1 true WO2021129774A1 (zh) 2021-07-01

Family

ID=70502899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139204 WO2021129774A1 (zh) 2019-12-26 2020-12-25 天线单元和电子设备

Country Status (2)

Country Link
CN (1) CN111129704B (zh)
WO (1) WO2021129774A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129704B (zh) * 2019-12-26 2021-10-29 维沃移动通信有限公司 一种天线单元和电子设备
CN112332097A (zh) * 2020-11-13 2021-02-05 上海安费诺永亿通讯电子有限公司 一种新型叠层的双频双极化毫米波天线
CN112467397B (zh) * 2020-11-19 2022-06-24 成都天锐星通科技有限公司 一种相控阵天线单元及模组
WO2023070394A1 (zh) * 2021-10-27 2023-05-04 京东方科技集团股份有限公司 阵列天线及其制备方法、电子装置
CN116454606A (zh) * 2023-03-31 2023-07-18 荣耀终端有限公司 一种天线结构及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120256796A1 (en) * 2010-08-31 2012-10-11 Siklu Communication ltd. Compact millimeter-wave radio systems and methods
CN110212300A (zh) * 2019-05-22 2019-09-06 维沃移动通信有限公司 一种天线单元及终端设备
CN110391493A (zh) * 2018-04-23 2019-10-29 三星电机株式会社 天线装置、天线模块及电子设备
CN110474158A (zh) * 2019-08-30 2019-11-19 维沃移动通信有限公司 一种天线单元及终端设备
CN111129704A (zh) * 2019-12-26 2020-05-08 维沃移动通信有限公司 一种天线单元和电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101119267B1 (ko) * 2010-04-13 2012-03-16 고려대학교 산학협력단 매칭 기판을 이용한 유전체 공진기 안테나
CN103066385B (zh) * 2012-12-22 2015-08-05 西安电子科技大学 用于系统级封装的ltcc双层微带天线
JP5936719B2 (ja) * 2013-02-07 2016-06-22 三菱電機株式会社 アンテナ装置およびアレーアンテナ装置
CN104681981B (zh) * 2015-02-27 2018-02-27 中天宽带技术有限公司 毫米波介质集成短背射天线
EP3788675A1 (en) * 2018-05-04 2021-03-10 Telefonaktiebolaget LM Ericsson (publ) A cavity-backed antenna element and array antenna arrangement
CN110137672B (zh) * 2019-04-01 2020-07-07 华为技术有限公司 一种集边射和端射于一体的波束扫描天线阵列
CN110137675B (zh) * 2019-05-22 2021-03-12 维沃移动通信有限公司 一种天线单元及终端设备
CN110518340B (zh) * 2019-08-30 2022-01-11 维沃移动通信有限公司 一种天线单元及终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120256796A1 (en) * 2010-08-31 2012-10-11 Siklu Communication ltd. Compact millimeter-wave radio systems and methods
CN110391493A (zh) * 2018-04-23 2019-10-29 三星电机株式会社 天线装置、天线模块及电子设备
CN110212300A (zh) * 2019-05-22 2019-09-06 维沃移动通信有限公司 一种天线单元及终端设备
CN110474158A (zh) * 2019-08-30 2019-11-19 维沃移动通信有限公司 一种天线单元及终端设备
CN111129704A (zh) * 2019-12-26 2020-05-08 维沃移动通信有限公司 一种天线单元和电子设备

Also Published As

Publication number Publication date
CN111129704B (zh) 2021-10-29
CN111129704A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
US11973280B2 (en) Antenna element and terminal device
WO2021129774A1 (zh) 天线单元和电子设备
WO2020034681A1 (zh) 天线模组及移动终端
EP4053998A1 (en) Antenna module and electronic device
WO2021104191A1 (zh) 天线单元及电子设备
EP3975332A1 (en) Antenna unit and terminal device
CN112290193B (zh) 毫米波模组、电子设备及毫米波模组的调节方法
WO2021104239A1 (zh) 天线单元和电子设备
WO2021104228A1 (zh) 天线单元和电子设备
WO2021083214A1 (zh) 天线单元及电子设备
WO2021083223A1 (zh) 天线单元及电子设备
WO2021104229A1 (zh) 天线单元和电子设备
CN210350084U (zh) 一种天线和电子设备
CN109742515B (zh) 一种用于移动终端的毫米波圆极化天线
WO2021104238A1 (zh) 天线单元和电子设备
CN111969304B (zh) 天线结构及电子设备
CN110808454B (zh) 一种天线单元及电子设备
WO2021083212A1 (zh) 天线单元及电子设备
WO2021083218A1 (zh) 天线单元及电子设备
WO2021083213A1 (zh) 天线单元及电子设备
WO2021083220A1 (zh) 天线单元及电子设备
WO2021083219A1 (zh) 天线单元及电子设备
CN210576433U (zh) 一种天线单元及电子设备
CN209448012U (zh) 一种用于移动终端的毫米波相控阵天线装置
CN110600858A (zh) 一种天线单元及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904810

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 13.01..2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20904810

Country of ref document: EP

Kind code of ref document: A1