WO2021035895A1 - 天线模组及终端 - Google Patents

天线模组及终端 Download PDF

Info

Publication number
WO2021035895A1
WO2021035895A1 PCT/CN2019/111069 CN2019111069W WO2021035895A1 WO 2021035895 A1 WO2021035895 A1 WO 2021035895A1 CN 2019111069 W CN2019111069 W CN 2019111069W WO 2021035895 A1 WO2021035895 A1 WO 2021035895A1
Authority
WO
WIPO (PCT)
Prior art keywords
stub
grounding
branch
feeding
antenna module
Prior art date
Application number
PCT/CN2019/111069
Other languages
English (en)
French (fr)
Inventor
王亚丽
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to JP2019563274A priority Critical patent/JP7064511B2/ja
Priority to KR1020197033674A priority patent/KR102226007B1/ko
Priority to RU2019138731A priority patent/RU2724311C1/ru
Publication of WO2021035895A1 publication Critical patent/WO2021035895A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • H01Q1/46Electric supply lines or communication lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0464Annular ring patch
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to an antenna module and a terminal.
  • the antenna module is the component used to send and receive signals on the terminal. Generally, one antenna module cannot cover multiple frequency bands. Therefore, the terminal needs to be equipped with multiple antenna modules. Each antenna module works in a different frequency band to achieve multiple Support for multiple frequency bands. However, the space of the terminal is limited. If the number of antenna modules configured for the terminal is large, it will occupy too much space of the terminal.
  • the present disclosure provides an antenna module and a terminal, which can solve the problem that the antenna module occupies too much space in the related art.
  • the technical solution is as follows:
  • an antenna module includes: a feeding stub, a first stub, a second stub, a third stub, and a grounding stub;
  • the feeding stub is connected to a feeding point, and the grounding stub is connected to a grounding point;
  • the first branch and the third branch are concave branches
  • the second branch is a bent branch
  • the feeding stub, the first stub, the second stub, the third stub, and the grounding stub are connected in sequence to form a ring structure with a slot;
  • the slot is located between the feeding stub and the grounding stub, and the slot is insulated.
  • the feeding stub and the grounding stub are parallel.
  • the feeding stub includes a first feeding part and a second feeding part, the first feeding part is connected to the first stub, and the first feeding part Connected to the second power feeding part; the first power feeding part and the second power feeding part form an L-shaped branch;
  • the grounding stub includes a first grounding portion and a second grounding portion, the first grounding portion is connected to the third stub, the first grounding portion is connected to the second grounding portion; the first grounding portion Part and the second grounding part form an L-shaped branch;
  • the first power feeding portion is aligned with the first grounding portion, and the second power feeding portion is parallel to the second grounding portion.
  • the first branch includes a first part, a second part, and a third part
  • the first part, the second part, and the third part are connected in sequence, the first part and the second part form an L-shaped branch, and the second part and the third part form an L-shaped branch;
  • the feeding stub is connected to the first part, and the third part is connected to the second stub.
  • the feeding stub includes a first feeding part and a second feeding part, the first feeding part is connected to the first part of the first stub, and the The first power feeding part is connected to the second power feeding part;
  • the first power feeding part and the second power feeding part form an L-shaped branch
  • the first power feeding part and the first part form an L-shaped branch.
  • the first part and the second power feeding part are located on the same side of the first power feeding part, or,
  • the first part and the second power feeding part are located on both sides of the first power feeding part.
  • first part and the second feeding part are located on a side of the first feeding part close to the second stub, or,
  • the first part and the second feeding part are located on a side of the first feeding part away from the second branch.
  • the third branch includes a fourth part, a fifth part, and a sixth part;
  • the fourth part, the fifth part, and the sixth part are connected in sequence, the fourth part and the fifth part form an L-shaped branch, and the fifth part and the sixth part form an L-shaped branch.
  • the grounding stub is connected to the fourth part, and the sixth part is connected to the second stub.
  • the grounding stub includes a first grounding portion and a second grounding portion, the first grounding portion is connected to the fourth portion of the third stub, and the first grounding portion Partly connected to the second ground part;
  • the first grounding portion and the second grounding portion form an L-shaped branch
  • the first ground part and the fourth part constitute an L-shaped branch.
  • the fourth part and the second ground part are located on the same side of the first ground part, or,
  • the fourth part and the second grounding part are located on both sides of the first grounding part.
  • the fourth part and the second grounding part are located on a side of the first grounding part close to the second stub, or,
  • the fourth part and the second grounding part are located on a side of the first grounding part away from the second stub.
  • the material of the antenna module is industrialized liquid crystal polymer.
  • a terminal is provided, and the terminal includes the antenna module described in the foregoing aspect.
  • the antenna module and the terminal provided by the embodiments of the present disclosure utilize the feeding stub, the first stub, the second stub, the third stub, and the grounding stub to form an antenna module combining a loop structure and an inverted F structure.
  • the antenna The module can work in multiple frequency bands, expand the number of working frequency bands, improve the performance of the antenna module, and meet the radiation performance requirements of the MIMO antenna without setting multiple antenna modules, and reduce the antenna module
  • the number of antenna modules reduces the footprint of the antenna module and saves space for the layout of other electronic devices in the terminal.
  • the gaps between the feeding stub and the grounding stub, the first part and the third part, and the fourth and sixth part are used to form a slot antenna, which expands the working frequency band supported by the antenna module, that is, increases the number of working frequency bands.
  • the working frequency band of the antenna module can be adjusted.
  • the resonant frequency of the slot antenna can be adjusted by adjusting the distance between the feeding stub and the grounding stub. Therefore, the structure of the antenna module provided by the embodiments of the present disclosure is suitable for a variety of scenarios, and the versatility and scalability are improved.
  • Fig. 1 is a schematic structural diagram of an antenna module according to an exemplary embodiment
  • Fig. 2 is a schematic structural diagram showing an antenna module according to an exemplary embodiment
  • Fig. 3 is a schematic structural diagram showing an antenna module according to an exemplary embodiment
  • Fig. 4 is a schematic structural diagram showing an antenna module according to an exemplary embodiment
  • Fig. 5 is a schematic structural diagram showing an antenna module according to an exemplary embodiment
  • Fig. 6 is a schematic structural diagram showing an antenna module according to an exemplary embodiment
  • Fig. 7 is a schematic diagram showing the return loss of an antenna module according to an exemplary embodiment
  • Fig. 8 is an impedance diagram according to an exemplary embodiment
  • Fig. 9 is a schematic diagram showing the position of an antenna module according to an exemplary embodiment
  • Fig. 10 is a schematic diagram showing the position of an antenna module according to an exemplary embodiment.
  • FIGS 1 to 6 are schematic diagrams showing the structure of an antenna module according to an exemplary embodiment.
  • the antenna module includes a feeding stub 1, a first stub 2, a second stub 3 , The third branch 4 and the grounding branch 5.
  • the feeding stub 1 is connected to the feeding point 6, the grounding stub 5 is connected to the grounding point 7, the first stub 2 and the third stub 4 are concave stubs, and the second stub 3 is a bent stub.
  • the input impedance of the antenna module can be adjusted.
  • the ratio between the output impedance and the input impedance is the standing wave ratio.
  • the standing wave ratio is used to indicate the matching degree of the impedance of the feeder and the impedance of the antenna.
  • the standing wave ratio is 1, the impedance of the feeder and the impedance of the antenna are completely matched. , At this time, all high-frequency energy is radiated by the antenna, and there is no energy reflection loss; when the standing wave ratio is infinite, it means that the energy is not radiated at all. Therefore, by adjusting the distance between the feed point 6 and the ground point 7, the standing wave ratio of the antenna module can be adjusted.
  • the feeding stub 1, the first stub 2, the second stub 3, the third stub 4 and the grounding stub 5 are connected in sequence to form a slotted ring structure, and the slot is located between the feeding stub 1 and the grounding stub 5, And the slot is insulated. That is, one end of the feeding stub 1 is connected to one end of the first stub 2, the other end of the first stub 2 is connected to one end of the second stub 3, and the other end of the second stub 3 is connected to one end of the third stub 4 Connected, the other end of the third stub 4 is connected to one end of the grounding stub 5 to form a ring-shaped structure with a slot.
  • the feed point stub 1 and the ground stub 5 are only conducted through the first stub 2, the second stub 3, and the third stub 4, and not through the structure in the slot.
  • the feeding stub 1, the first stub 2, the second stub 3, the third stub 4, and the grounding stub 5 are sequentially connected to form an inverted F structure. Adjust the length, height, width, etc. of the feeding stub 1, the first stub 2, the second stub 3, the third stub 4, and the grounding stub 5, and the intensity of the tuning effect of each stub on the antenna will change accordingly.
  • the tuning effect of wall 2 is greater than that of wall 1.
  • the tuning effect is more obvious; adjust the length of wall 1 and wall 2, when the antenna module works at 4400MHz ⁇ 5000MHz, the tuning effect of wall 1 is more obvious than that of wall 2.
  • the first branch 2 may be located on the left side of the third branch 4 or on the right side of the third branch 4.
  • the feeding stub 1 may be located on the left side of the grounding stub 5 or on the right side of the grounding stub 5.
  • the branches of the antenna module can be connected by welding or other methods, or other connections can be used for connection.
  • the feeding stub 1 and the grounding stub 5 are parallel, and a slot is formed between the parallel portions, thereby forming a radiation gap.
  • the resonant frequency of the slot antenna can be adjusted by adjusting the distance between the feeding stub 1 and the grounding stub 5.
  • the feeding stub 1 includes a first feeding part and a second feeding part, the first feeding part is connected to the first stub 2, and the first feeding part is connected to the second feeding part.
  • Connection; the first feeding part and the second feeding part constitute an L-shaped branch;
  • the grounding branch 5 includes a first grounding part and a second grounding part, the first grounding part is connected to the third branch 4, the first grounding part and the first The two grounding parts are connected; the first grounding part and the second grounding part form an L-shaped branch; the first power feeding part is aligned with the first grounding part, and the second power feeding part is parallel to the second grounding part.
  • the feeding stub 1 and the grounding stub 5 are the same and aligned
  • the first stub 2 and the third stub 4 are the same and aligned
  • the antenna module has a symmetrical structure about the axis.
  • the working frequency band of the antenna module can include: LTE (Long Term Evolution), B5 B8 (824MHz ⁇ 960MHz), WiFi 2.4G (2400MHz ⁇ 2500MHz), WiFi 5G (5250MHz ⁇ 5750MHz), Sub 6G (Sub The 6th Generation Mobile Communication Technology, secondary sixth-generation mobile communication technology) N41 (2496MHz ⁇ 2690MHz), Sub 6G N78 (3300MHz ⁇ 3800MHz), Sub 6G N79 (4400MHz ⁇ 5000MHz) and other frequency bands.
  • the LTE B5 B8 frequency band is generated by the quarter mode of the antenna module wavelength
  • the WiFi 2.4G frequency band is generated by the half mode of the antenna module wavelength
  • the WiFi 5G frequency band is generated by the antenna module wavelength.
  • the sub 6G N41 frequency band is generated by the half mode of the antenna module wavelength
  • the Sub 6G N78 frequency band is generated by the three-half mode of the antenna module wavelength.
  • Sub 6G N79 frequency band It is produced by the five-half mode of the wavelength of the antenna module.
  • each part of the antenna module will affect the working frequency band of the antenna module.
  • Different antenna modules have different working frequency bands and are suitable for different scenarios, so that the antenna modules can meet actual needs.
  • the material of the antenna module can be LCP (Liquid Crystal Polymer), LDS (Laser Direct Structuring) or FPC (Flexible Printed Circuit, flexible circuit board).
  • the material of the antenna module is LCP.
  • the antenna module made of LCP is smaller, which can realize the miniaturization of the antenna.
  • the antenna module made of LCP material has a stronger folding ability and a more free fit, so there is no limitation on the available space, thereby improving the space utilization rate.
  • the size of the antenna module is affected by the space environment where it is located.
  • the antenna module is suitable for different terminals, such as tablet computers, personal computers, outdoor displays, smart phones, etc.
  • the size of the antenna module is determined by the working frequency band and the space environment.
  • the space environment refers to the height of the space, the size of the clearance, and the distance between the surrounding metal If the space environment is sufficient, the radiation ability of the antenna will be stronger.
  • the antenna module provided by the embodiment of the present disclosure utilizes the feeding stub, the first stub, the second stub, the third stub, and the grounding stub to form an antenna module with a combination of a slotted ring structure and an inverted F structure.
  • the antenna module can work in multiple frequency bands, expand the number of working frequency bands, improve the performance of the antenna module, and meet the radiation performance requirements of the MIMO antenna without setting multiple antenna modules, and reduce the antenna
  • the number of modules reduces the footprint of the antenna module and saves space for the layout of other electronic devices in the terminal.
  • the slot antenna is formed by the slot between the feed stub and the ground stub, which expands the working frequency band supported by the antenna module, that is, increases the number of working frequency bands.
  • the working frequency band of the antenna module can be adjusted.
  • the resonant frequency of the slot antenna can be adjusted by adjusting the distance between the feeding stub and the grounding stub. Therefore, the structure of the antenna module provided by the embodiments of the present disclosure is suitable for a variety of scenarios, and the versatility and scalability are improved.
  • the first branch 2 includes a first part, a second part and a third part; the first part, the second part and the third part are connected in sequence, and the first part and the second part constitute L
  • the second part and the third part form an L-shaped branch, the first part is connected to the feeding branch 1, and the third part is connected to the second branch 3.
  • the feeding branch 1 includes a first feeding part and a second feeding part.
  • the first feeding part is connected to the second feeding part, and the first feeding part is connected to the second feeding part.
  • An L-shaped stub is formed, the first feeding part is connected to the first part of the first stub 2, and the first feeding part and the first part form an L-shaped stub.
  • the first part and the second feeding part are located on the same side of the first feeding part, the first part and the second feeding part are located on the side of the first feeding part close to the second branch 3, or the first part and the second feeding part
  • the feeding part is located on the side of the first feeding part away from the second branch 3.
  • the first part and the second feeding part are located on both sides of the first feeding part, the first part is located on the side of the first feeding part close to the second branch 3, and the second feeding part is located far away from the first feeding part.
  • One side of the second stub 3, or the first part is located on the side of the first feeding part away from the second stub 3, and the second feeding part is located on the side of the first feeding part close to the second stub 3.
  • the third branch 4 includes a fourth part, a fifth part, and a sixth part; the fourth part, the fifth part, and the sixth part are connected in sequence, and the fourth part is connected to the fifth part.
  • Part forms an L-shaped branch
  • the fifth part and the sixth part form an L-shaped branch
  • the fourth part is connected to the grounding branch 5
  • the sixth part is connected to the second branch 3.
  • the grounding branch 5 includes a first grounding part and a second grounding part.
  • the first grounding part is connected to the second grounding part.
  • the first grounding part and the second grounding part form an L-shaped branch.
  • the grounding part is connected to the fourth part of the third branch 4, and the first grounding part and the fourth part form an L-shaped branch.
  • the fourth part and the second ground part are located on the same side of the first ground part, the fourth part and the second ground part are located on the side of the first ground part close to the second branch 3, or the fourth part and the second ground part The part is located on the side of the first grounding part away from the second branch 3.
  • the fourth part and the second grounding part are located on both sides of the first grounding part, the fourth part is located on the side of the first grounding part close to the second branch 3, and the second grounding part is located at the first grounding part away from the second branch 3 Or, the fourth part is located on the side of the first grounding part away from the second stub 3, and the second grounding part is located on the side of the first grounding part close to the second stub 3.
  • the positional relationship between the feeding stub 1, the first stub 2, the second stub 3, the third stub 4, and the grounding stub 5 can include the following situations:
  • the second feeding part is located on the side of the first feeding part away from the second branch 3, the first part is located on the side of the first feeding part close to the second branch 3, and the second grounding part is located at the first The grounding part is away from the side of the second stub 3, and the fourth part is located on the side of the first grounding part close to the second stub 3.
  • the second feeding part is located on the side of the first feeding part close to the second branch 3
  • the first part is located on the side of the first feeding part away from the second branch 3
  • the second grounding part is located at the first
  • the grounding part is close to the side of the second branch 3
  • the fourth part is located on the side of the first grounding part away from the second branch 3.
  • the second feeding part is located at the side of the first feeding part close to the second branch 3
  • the first part is located at the side of the first feeding part close to the second branch 3
  • the second grounding part is located at the first The grounding part is close to the side of the second branch 3
  • the fourth part is located on the side of the first grounding part close to the second branch 3.
  • the second feeding part is located on the side of the first feeding part away from the second stub 3
  • the first part is located on the side of the first feeding part away from the second stub 3
  • the second grounding part is located at the first
  • the grounding part is on the side away from the second branch 3
  • the fourth part is located on the side of the first grounding part away from the second branch 3.
  • the second feeding part is located on the side of the first feeding part away from the second stub 3
  • the first part is located on the side of the first feeding part close to the second stub 3
  • the second grounding part is located in the first
  • the grounding part is on the side away from the second stub 3
  • the fourth part is located on the side of the first grounding part away from the second stub 3.
  • the second feeding part is located at the side of the first feeding part close to the second branch 3
  • the first part is located at the side of the first feeding part close to the second branch 3
  • the second grounding part is located at the first The grounding part is close to the side of the second branch 3
  • the fourth part is located on the side of the first grounding part away from the second branch 3.
  • the antenna module provided by the embodiment of the present disclosure utilizes the slots between the first part and the third part in the first stub, and the slot between the fourth part and the sixth part of the third stub to form a slot antenna, which expands the antenna module
  • the supported working frequency bands means that the number of working frequency bands has been increased.
  • the working frequency band of the slot antenna can be adjusted through the distance between the first part and the third part, and the fourth part and the sixth part. Therefore, the structure of the antenna module provided by the embodiments of the present disclosure is suitable for a variety of scenarios, and the versatility and scalability are improved.
  • FIG. 7 is a schematic diagram of the return loss of the antenna module of the above embodiment. Among them, the abscissa is the frequency and the ordinate is the return loss. Figure 7 provides the five resonance points generated by the antenna module. The impedance circle shown in Figure 8 reflects the five resonance points shown in Figure 7 when they work. A correspondence between impedance and reflection coefficient.
  • the frequency corresponding to resonance point 1 is 2.36GHz (gigahertz), and the return loss is 9.1047dB (decibel); the frequency corresponding to resonance point 2 is 0.88GHz, and the return loss is 17.038dB; the frequency corresponding to resonance point 3 is 3.672 GHz, the return loss is 21.914dB; the frequency corresponding to resonance point 4 is 4.5285GHz, and the return loss is 23.575dB; the frequency corresponding to resonance point 5 is 6.088GHz, and the return loss is 11.627dB.
  • the embodiments of the present disclosure also provide a terminal.
  • the terminal includes the antenna module involved in the above-mentioned embodiments, and includes all the structure and functions of the antenna module, which will not be repeated here.
  • the position of the antenna module on the terminal can include the following situations:
  • the terminal includes a back cover, and the antenna module is located inside the back cover.
  • the back cover can be made of metal material or non-metal material, and the non-metal material can be plastic material, glass material or other materials.
  • the upper area of the antenna module is made of non-metallic material.
  • the antenna module of the embodiment of the present disclosure When the antenna module of the embodiment of the present disclosure is arranged on the inner side of the back cover, other antenna modules already arranged on the terminal will not be affected, and the operability is improved.
  • the terminal includes a frame, the antenna module can be located on the frame, and the frame where the antenna module is located is made of non-metallic material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Support Of Aerials (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本公开提供了一种天线模组及终端,属于通信技术领域。该设备包括:馈电枝节、第一枝节、第二枝节、第三枝节和接地枝节;所述馈电枝节与馈电点连接,所述接地枝节与接地点连接;所述第一枝节和所述第三枝节为凹形枝节;所述第二枝节为弯折形枝节;所述馈电枝节、所述第一枝节、所述第二枝节、所述第三枝节和所述接地枝节依次连接,构成具有开槽的环形结构,所述开槽位于所述馈电枝节和所述接地枝节之间,且所述开槽内绝缘。本公开实施例提供了一种环形结构和倒F结构结合的天线模组,天线模组可工作在多个频段,提高了天线模组的性能,无需设置多个天线模组即可满足MIMO天线的辐射性能要求,为终端的其他电子器件的布局节省空间。 (图1)

Description

天线模组及终端 技术领域
本公开涉及通信技术领域,尤其涉及一种天线模组及终端。
背景技术
随着通信技术的不断发展,目前已逐步进入多网络时代,4G(The 4th Generation Mobile Communication Technology,第四代移动通信技术)、WIFI(Wireless-Fidelity,无线网络)、5G(The 5th Generation Mobile Communication Technology,第五代移动通信技术)等多种通信网络逐渐兴起。由于不同通信网络的频段不同,为了兼容不同的通信网络,满足MIMO(Multiple-Input Multiple-Output,多输入多输出系统)天线的辐射性能要求,需要终端支持多个通信网络的频段。
天线模组为终端上用于收发信号的部件,通常一个天线模组无法覆盖多个频段,因此需要终端配置多个天线模组,每个天线模组在不同的频段下工作,以实现对多个频段的支持。但是,终端的空间有限,如果终端配置的天线模组的数量较多,会占用终端过大的空间。
发明内容
本公开提供一种天线模组及终端,可以解决相关技术中存在的天线模组占用空间过大的问题。所述技术方案如下:
根据本公开实施例提供的第一方面,提供了一种天线模组,所述天线模组包括:馈电枝节、第一枝节、第二枝节、第三枝节和接地枝节;
所述馈电枝节与馈电点连接,所述接地枝节与接地点连接;
所述第一枝节和所述第三枝节为凹形枝节;
所述第二枝节为弯折形枝节;
所述馈电枝节、所述第一枝节、所述第二枝节、所述第三枝节和所述接地枝节依次连接,构成具有开槽的环形结构;
所述开槽位于所述馈电枝节和所述接地枝节之间,且所述开槽内绝缘。
在一种可能实现方式中,所述馈电枝节和所述接地枝节平行。
在另一种可能实现方式中,所述馈电枝节包括第一馈电部分和第二馈电部分,所述第一馈电部分与所述第一枝节连接,所述第一馈电部分与所述第二馈电部分连接;所述第一馈电部分与所述第二馈电部分构成L形枝节;
所述接地枝节包括第一接地部分和第二接地部分,所述第一接地部分与所述第三枝节连接,所述第一接地部分与所述第二接地部分连接;所述第一接地部分与所述第二接地部分构成L形枝节;
所述第一馈电部分与所述第一接地部分对齐,所述第二馈电部分与所述第二接地部分平行。
在另一种可能实现方式中,所述第一枝节包括第一部分、第二部分和第三部分;
所述第一部分、所述第二部分和所述第三部分依次连接,所述第一部分与所述第二部分构成L形枝节,所述第二部分与所述第三部分构成L形枝节;
所述馈电枝节与所述第一部分连接,所述第三部分与所述第二枝节连接。
在另一种可能实现方式中,所述馈电枝节包括第一馈电部分和第二馈电部分,所述第一馈电部分与所述第一枝节的所述第一部分连接,所述第一馈电部分与所述第二馈电部分连接;
所述第一馈电部分与所述第二馈电部分构成L形枝节;
所述第一馈电部分与所述第一部分构成L形枝节。
在另一种可能实现方式中,所述第一部分与所述第二馈电部分位于所述第一馈电部分的同一侧,或者,
所述第一部分与所述第二馈电部分位于所述第一馈电部分的两侧。
在另一种可能实现方式中,所述第一部分与所述第二馈电部分位于所述第一馈电部分靠近所述第二枝节的一侧,或者,
所述第一部分与所述第二馈电部分位于所述第一馈电部分远离所述第二枝节的一侧。
在另一种可能实现方式中,所述第三枝节包括第四部分、第五部分和第六部分;
所述第四部分、所述第五部分和所述第六部分依次连接,所述第四部分与所述第五部分构成L形枝节,所述第五部分与所述第六部分构成L形枝节;
所述接地枝节与所述第四部分连接,所述第六部分与所述第二枝节连接。
在另一种可能实现方式中,所述接地枝节包括第一接地部分和第二接地部分,所述第一接地部分与所述第三枝节的所述第四部分连接,所述第一接地部分与所述第二接地部分连接;
所述第一接地部分与所述第二接地部分构成L形枝节;
所述第一接地部分与所述第四部分构成L形枝节。
在另一种可能实现方式中,所述第四部分与所述第二接地部分位于所述第一接地部分的同一侧,或者,
所述第四部分与所述第二接地部分位于所述第一接地部分的两侧。
在另一种可能实现方式中,所述第四部分与所述第二接地部分位于所述第一接地部分靠近所述第二枝节的一侧,或者,
所述第四部分与所述第二接地部分位于所述第一接地部分远离所述第二枝节的一侧。
在另一种可能实现方式中,所述天线模组的材质为工业化液晶聚合物。
根据本公开实施例提供的第二方面,提供了一种终端,所述终端包括上述方面所述的天线模组。
本公开实施例提供的技术方案带来的有益效果至少包括:
本公开实施例提供的天线模组及终端,利用馈电枝节、第一枝节、第二枝节、第三枝节和接地枝节,构成了环形结构和倒F结构结合的天线模组,该天线模组能够工作在多个频段,扩展了工作频段的数量,提高了天线模组的性能,在无需设置多个天线模组的情况下即可满足MIMO天线的辐射性能要求,缩减了天线模组的数量,降低了天线模组的占用空间,为终端中的其他电子器件的布局节省了空间。
并且,利用馈电枝节与接地枝节、第一部分与第三部分、第四部分与第六部分之间的缝隙形成缝隙天线,扩展了天线模组支持的工作频段,即增加了工作频段的数量。并且,通过调整天线模组中各部分的间距、长度、高度、宽度,以及电容、电感、电阻或其他电子器件等,能够调整天线模组的工作频段。例如通过调整馈电枝节与接地枝节之间的间距来调整缝隙天线的谐振频率。因此,本公开实施例提供的天线模组的结构适用于多种场景,提高了通用性和扩展性。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种天线模组的结构示意图;
图2是根据一示例性实施例示出的一种天线模组的结构示意图;
图3是根据一示例性实施例示出的一种天线模组的结构示意图;
图4是根据一示例性实施例示出的一种天线模组的结构示意图;
图5是根据一示例性实施例示出的一种天线模组的结构示意图;
图6是根据一示例性实施例示出的一种天线模组的结构示意图;
图7是根据一示例性实施例示出的一种天线模组的回波损耗的示意图;
图8是根据一示例性实施例示出的一种阻抗圆图;
图9是根据一示例性实施例示出的一种天线模组的位置示意图;
图10是根据一示例性实施例示出的一种天线模组的位置示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
图1至图6是根据一示例性实施例示出的一种天线模组的结构示意图,参见图1至图6,该天线模组包括馈电枝节1、第一枝节2、第二枝节3、第三枝节4和接地枝节5。
馈电枝节1与馈电点6连接,接地枝节5与接地点7连接,第一枝节2和第三枝节4为凹形枝节,第二枝节3为弯折形枝节。
其中,通过调整馈电点6到接地点7之间的间距,可以调整天线模组的输入阻抗。
并且,输出阻抗与输入阻抗之间的比例为驻波比,驻波比用于表示馈线的阻抗和天线的阻抗的匹配程度,驻波比为1时,表示馈线的阻抗和天线的阻抗完全匹配,此时高频能量全部被天线辐射出去,没有能量的反射损耗;驻波比为无穷大时,表示能量完全没有辐射出去。因此通过调整馈电点6到接地点7之间的间距,可以调整天线模组的驻波比。
馈电枝节1、第一枝节2、第二枝节3、第三枝节4和接地枝节5依次连接,构成具有开槽的环形结构,开槽位于馈电枝节1和接地枝节5之间,且开槽内绝缘。也就是馈电枝节1的一端与第一枝节2的一端连接,第一枝节2的另一端与第二枝节3的一端连接,第二枝节3的另一端与第三枝节4的一端连接,第三枝节4的另一端与接地枝节5的一端连接,构成具有开槽的环形结构。
其中,由于开槽内绝缘,因此馈点枝节1与接地枝节5仅通过第一枝节2、第二枝节3、第三枝节4导通,不通过开槽内的结构导通。
馈电枝节1、第一枝节2、第二枝节3、第三枝节4和接地枝节5依次连接构成倒F结构。调整馈电枝节1、第一枝节2、第二枝节3、第三枝节4和接地枝节5的长度、高度、宽度等,各枝节对天线的调谐作用的强烈程度也会相应地变化。
以第一枝节2为壁1,第三枝节4为壁2为例,调整壁1和壁2的长度,当天线模组工作在3300MHz~3800MHz时,壁2的调谐作用比壁1的调谐作用更明显;调整壁1和壁2的长度,当天线模组工作在4400MHz~5000MHz时,壁1的调谐作用比壁2的调谐作用更明显。
其中,第一枝节2可以位于第三枝节4的左侧,或者位于第三枝节4的右侧。馈电枝节1可以位于接地枝节5的左侧,或者位于接地枝节5的右侧。
其中,可以通过焊接等方式将天线模组的各个枝节进行连接,或者采用其他连接进行连接。
在一种可能实现方式中,馈电枝节1和接地枝节5平行,平行的部分之间形成开槽,从而形成辐射缝隙。如图1所示,通过调整馈电枝节1和接地枝节5之间的间距可以调整缝隙天线的谐振频率。
在另一种可能实现方式中,馈电枝节1包括第一馈电部分和第二馈电部分,第一馈电部分与第一枝节2连接,第一馈电部分与第二馈电部分连接;第一馈电部分与第二馈电部分构成L形枝节;接地枝节5包括第一接地部分和第二接地部分,第一接地部分与第三枝节4连接,第一接地部分与第二接地部分连接;第一接地部分与第二接地部分构成L形枝节;第一馈电部分与第一接地部分对齐,第二馈电部分与第二接地部分平行。
在另一种可能实现方式中,馈电枝节1与接地枝节5相同且对齐,第一枝节2与第三枝节4相同且对齐,天线模组关于轴线呈对称结构。
天线模组的工作频段可以包括:LTE(Long Term Evolution,长期演进技术)、B5 B8(824MHz~960MHz)、WiFi 2.4G(2400MHz~2500MHz)、WiFi 5G(5250MHz~5750MHz)、Sub 6G(Sub The 6th Generation Mobile Communication Technology,次级第六代移动通信 技术)N41(2496MHz~2690MHz)、Sub 6G N78(3300MHz~3800MHz)、Sub 6G N79(4400MHz~5000MHz)等多个频段。
其中,LTE B5 B8频段是由该天线模组波长的四分之一模式产生,WiFi 2.4G频段是由该天线模组波长的二分之一模式产生,WiFi 5G频段是由该天线模组波长的二分之七模式产生,Sub 6G N41频段是由该天线模组波长的二分之一模式产生,Sub 6G N78频段是由该天线模组波长的二分之三模式产生,Sub 6G N79频段是由该天线模组波长的二分之五模式产生。
需要说明的是,天线模组中各部分的间距、长度、高度、宽度,以及电容、电感、电阻或其他电子器件等,都会对天线模组的工作频段产生影响。不同的天线模组的工作频段不同,适合于不同的场景,从而使天线模组满足实际需要。
天线模组的材质可以为LCP(Liquid Crystal Polymer,工业化液晶聚合物)、LDS(Laser Direct Structuring,激光镭射挂镀塑料)或FPC(Flexible Printed Circuit,柔性电路板)材质等。在一种可能实现方式中,天线模组的材质为LCP。与LDS和FPC材质的天线模组相比,LCP材质的天线模组更小,可实现天线小型化。且LCP材质的天线模组的折叠能力更强,具有较自由的贴合性从而对可利用空间无局限性,从而提高空间利用率。
需要说明的是,天线模组的尺寸受所在空间环境的影响。
天线模组适用于不同的终端,例如平板电脑、个人电脑、户外显示器、智能手机等,天线模组的尺寸由工作频段和空间环境决定,该空间环境是指空间高度、净空大小、周围金属距离等,若所在空间环境充足,则天线的辐射能力更强。
本公开实施例提供的天线模组,利用馈电枝节、第一枝节、第二枝节、第三枝节和接地枝节,构成了具有开槽的环形结构和倒F结构结合的天线模组,该天线模组能够工作在多个频段,扩展了工作频段的数量,提高了天线模组的性能,在无需设置多个天线模组的情况下即可满足MIMO天线的辐射性能要求,缩减了天线模组的数量,降低了天线模组的占用空间,为终端中的其他电子器件的布局节省了空间。
并且,利用馈电枝节与接地枝节之间的开槽形成缝隙天线,扩展了天线模组支持的工作频段,即增加了工作频段的数量。并且,通过调整天线模组中各部分的间距、长度、高度、宽度,以及电容、电感、电阻或其他电子器件等,能够调整天线模组的工作频段。例如通过调整馈电枝节与接地枝节之间的间距来调整缝隙天线的谐振频率。因此,本公开实施例提供的天线模组的结构适用于多种场景,提高了通用性和扩展性。
在一种可能实现方式中,参见图1,第一枝节2包括第一部分、第二部分和第三部分;第一部分、第二部分和第三部分依次连接,第一部分与第二部分构成L形枝节,第二部分与第三部分构成L形枝节,第一部分与馈电枝节1连接,第三部分与第二枝节3连接。
在另一种可能实现方式中,馈电枝节1包括第一馈电部分和第二馈电部分,第一馈电部分与第二馈电部分连接,第一馈电部分与第二馈电部分构成L形枝节,第一馈电部分与第一枝节2的第一部分连接,第一馈电部分与第一部分构成L形枝节。
当第一部分与第二馈电部分位于第一馈电部分的同一侧时,第一部分与第二馈电部分位于第一馈电部分靠近第二枝节3的一侧,或者,第一部分与第二馈电部分位于第一馈电部分远离第二枝节3的一侧。
当第一部分与第二馈电部分位于第一馈电部分的两侧时,第一部分位于第一馈电部分靠近第二枝节3的一侧,第二馈电部分位于第一馈电部分远离第二枝节3的一侧,或者,第一部分位于第一馈电部分远离第二枝节3的一侧,第二馈电部分位于第一馈电部分靠近第二枝节3的一侧。
在一种可能实现方式中,参见图1,第三枝节4包括第四部分、第五部分和第六部分;第四部分、第五部分和第六部分依次连接,第四部分与第五部分构成L形枝节,第五部分与第六部分构成L形枝节,第四部分与接地枝节5连接,第六部分与第二枝节3连接。
在另一种可能实现方式中,接地枝节5包括第一接地部分和第二接地部分,第一接地部分与第二接地部分连接,第一接地部分与第二接地部分构成L形枝节,第一接地部分与第三枝节4的第四部分连接,第一接地部分与第四部分构成L形枝节。
当第四部分与第二接地部分位于第一接地部分的同一侧时,第四部分与第二接地部分位于第一接地部分靠近第二枝节3的一侧,或者,第四部分与第二接地部分位于第一接地部分远离第二枝节3的一侧。
当第四部分与第二接地部分位于第一接地部分的两侧时,第四部分位于第一接地部分靠近第二枝节3的一侧,第二接地部分位于第一接地部分远离第二枝节3的一侧,或者,第四部分位于第一接地部分远离第二枝节3的一侧,第二接地部分位于第一接地部分靠近第二枝节3的一侧。
天线模组中,馈电枝节1、第一枝节2、第二枝节3、第三枝节4和接地枝节5的位置关系可以包括以下几种情况:
1、参见图1,第二馈电部分位于第一馈电部分远离第二枝节3的一侧,第一部分位于第一馈电部分靠近第二枝节3的一侧,第二接地部分位于第一接地部分远离第二枝节3的一侧,第四部分位于第一接地部分靠近第二枝节3的一侧。
2、参见图2,第二馈电部分位于第一馈电部分靠近第二枝节3的一侧,第一部分位于第一馈电部分远离第二枝节3的一侧,第二接地部分位于第一接地部分靠近第二枝节3的一侧,第四部分位于第一接地部分远离第二枝节3的一侧。
3、参见图3,第二馈电部分位于第一馈电部分靠近第二枝节3的一侧,第一部分位于第一馈电部分靠近第二枝节3的一侧,第二接地部分位于第一接地部分靠近第二枝节3的一侧,第四部分位于第一接地部分靠近第二枝节3的一侧。
4、参见图4,第二馈电部分位于第一馈电部分远离第二枝节3的一侧,第一部分位于第一馈电部分远离第二枝节3的一侧,第二接地部分位于第一接地部分远离第二枝节3的一侧,第四部分位于第一接地部分远离第二枝节3的一侧。
5、参见图5,第二馈电部分位于第一馈电部分远离第二枝节3的一侧,第一部分位 于第一馈电部分靠近第二枝节3的一侧,第二接地部分位于第一接地部分远离第二枝节3的一侧,第四部分位于第一接地部分远离第二枝节3的一侧。
6、参见图6,第二馈电部分位于第一馈电部分靠近第二枝节3的一侧,第一部分位于第一馈电部分靠近第二枝节3的一侧,第二接地部分位于第一接地部分靠近第二枝节3的一侧,第四部分位于第一接地部分远离第二枝节3的一侧。
本公开实施例提供的天线模组,利用第一枝节中的第一部分与第三部分、第三枝节的第四部分与第六部分之间的开槽形成缝隙天线,扩展了天线模组支持的工作频段,即增加了工作频段的数量。并且,通过第一部分与第三部分、第四部分与第六部分之间的间距,能够调整缝隙天线的工作频段。因此,本公开实施例提供的天线模组的结构适用于多种场景,提高了通用性和扩展性。
图7是上述实施例的天线模组的回波损耗的示意图。其中,横坐标为频率,纵坐标为回波损耗,图7提供了天线模组产生的五个谐振点,图8所示的阻抗圆图反映了图7所示的五个谐振点工作时归一化阻抗与反射系数之间的对应关系。
其中谐振点1对应的频率为2.36GHz(千兆赫),回波损耗为9.1047dB(分贝);谐振点2对应的频率为0.88GHz,回波损耗为17.038dB;谐振点3对应的频率为3.672GHz,回波损耗为21.914dB;谐振点4对应的频率为4.5285GHz,回波损耗为23.575dB;谐振点5对应的频率为6.088GHz,回波损耗为11.627dB。
本公开实施例还提供了一种终端,该终端包括上述实施例中涉及的天线模组,包含该天线模组的全部结构和功能,在此不再赘述。
天线模组在终端上的位置,可以包括以下几种情况:
1、参见图9,终端包括后盖,天线模组位于后盖的内侧。其中,该后盖可以是金属材质,也可以是非金属材质,该非金属材质可以为塑料材质、玻璃材质或其他材质。天线模组的上方区域为非金属材质。
在后盖的内侧设置本公开实施例的天线模组时,不会影响终端上已设置的其他天线模组,提高了可操作性。
2、参见图10,终端包括边框,天线模组可以位于边框上,天线模组所在边框为非金属材质。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (13)

  1. 一种天线模组,其特征在于,所述天线模组包括:馈电枝节、第一枝节、第二枝节、第三枝节和接地枝节;
    所述馈电枝节与馈电点连接,所述接地枝节与接地点连接;
    所述第一枝节和所述第三枝节为凹形枝节;
    所述第二枝节为弯折形枝节;
    所述馈电枝节、所述第一枝节、所述第二枝节、所述第三枝节和所述接地枝节依次连接,构成具有开槽的环形结构;
    所述开槽位于所述馈电枝节和所述接地枝节之间,且所述开槽内绝缘。
  2. 根据权利要求1所述的天线模组,其特征在于,所述馈电枝节和所述接地枝节平行。
  3. 根据权利要求1所述的天线模组,其特征在于,所述馈电枝节包括第一馈电部分和第二馈电部分,所述第一馈电部分与所述第一枝节连接,所述第一馈电部分与所述第二馈电部分连接;所述第一馈电部分与所述第二馈电部分构成L形枝节;
    所述接地枝节包括第一接地部分和第二接地部分,所述第一接地部分与所述第三枝节连接,所述第一接地部分与所述第二接地部分连接;所述第一接地部分与所述第二接地部分构成L形枝节;
    所述第一馈电部分与所述第一接地部分对齐,所述第二馈电部分与所述第二接地部分平行。
  4. 根据权利要求1所述的天线模组,其特征在于,所述第一枝节包括第一部分、第二部分和第三部分;
    所述第一部分、所述第二部分和所述第三部分依次连接,所述第一部分与所述第二部分构成L形枝节,所述第二部分与所述第三部分构成L形枝节;
    所述馈电枝节与所述第一部分连接,所述第三部分与所述第二枝节连接。
  5. 根据权利要求4所述的天线模组,其特征在于,所述馈电枝节包括第一馈电部分和第二馈电部分,所述第一馈电部分与所述第一枝节的所述第一部分连接,所述第一馈电部分与所述第二馈电部分连接;
    所述第一馈电部分与所述第二馈电部分构成L形枝节;
    所述第一馈电部分与所述第一部分构成L形枝节。
  6. 根据权利要求5所述的天线模组,其特征在于,所述第一部分与所述第二馈电部分位于所述第一馈电部分的同一侧,或者,
    所述第一部分与所述第二馈电部分位于所述第一馈电部分的两侧。
  7. 根据权利要求6所述的天线模组,其特征在于,所述第一部分与所述第二馈电部分位于所述第一馈电部分靠近所述第二枝节的一侧,或者,
    所述第一部分与所述第二馈电部分位于所述第一馈电部分远离所述第二枝节的一侧。
  8. 根据权利要求1所述的天线模组,其特征在于,所述第三枝节包括第四部分、第五部分和第六部分;
    所述第四部分、所述第五部分和所述第六部分依次连接,所述第四部分与所述第五部分构成L形枝节,所述第五部分与所述第六部分构成L形枝节;
    所述接地枝节与所述第四部分连接,所述第六部分与所述第二枝节连接。
  9. 根据权利要求8所述的天线模组,其特征在于,所述接地枝节包括第一接地部分和第二接地部分,所述第一接地部分与所述第三枝节的所述第四部分连接,所述第一接地部分与所述第二接地部分连接;
    所述第一接地部分与所述第二接地部分构成L形枝节;
    所述第一接地部分与所述第四部分构成L形枝节。
  10. 根据权利要求9所述的天线模组,其特征在于,所述第四部分与所述第二接地部分位于所述第一接地部分的同一侧,或者,
    所述第四部分与所述第二接地部分位于所述第一接地部分的两侧。
  11. 根据权利要求10所述的天线模组,其特征在于,所述第四部分与所述第二接地部分位于所述第一接地部分靠近所述第二枝节的一侧,或者,
    所述第四部分与所述第二接地部分位于所述第一接地部分远离所述第二枝节的一侧。
  12. 根据权利要求1所述的天线模组,其特征在于,所述天线模组的材质为工业化液晶聚合物。
  13. 一种终端,其特征在于,所述终端包括权利要求1至12任一项所述的天线模组。
PCT/CN2019/111069 2019-08-30 2019-10-14 天线模组及终端 WO2021035895A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019563274A JP7064511B2 (ja) 2019-08-30 2019-10-14 アンテナモジュール及び端末
KR1020197033674A KR102226007B1 (ko) 2019-08-30 2019-10-14 안테나 모듈 단말기
RU2019138731A RU2724311C1 (ru) 2019-08-30 2019-10-14 Антенный модуль и терминал

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910817109.7A CN112448140B (zh) 2019-08-30 2019-08-30 天线模组及终端
CN201910817109.7 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021035895A1 true WO2021035895A1 (zh) 2021-03-04

Family

ID=68887288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111069 WO2021035895A1 (zh) 2019-08-30 2019-10-14 天线模组及终端

Country Status (7)

Country Link
US (1) US10985444B2 (zh)
EP (1) EP3787113B1 (zh)
JP (1) JP7064511B2 (zh)
KR (1) KR102226007B1 (zh)
CN (1) CN112448140B (zh)
RU (1) RU2724311C1 (zh)
WO (1) WO2021035895A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114069207B (zh) * 2020-07-29 2023-08-22 北京小米移动软件有限公司 天线结构和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997165A (zh) * 2010-10-27 2011-03-30 惠州Tcl移动通信有限公司 一种封闭型多频段天线及其无线通讯装置
CN101998689A (zh) * 2009-08-14 2011-03-30 联想(上海)有限公司 用于移动终端上的多频段天线及移动终端
US20120229348A1 (en) * 2011-03-08 2012-09-13 Auden Techno Corp. Antenna structure and electronic device having the same
CN104716431A (zh) * 2013-12-17 2015-06-17 展讯通信(上海)有限公司 一种多频天线
US20160111786A1 (en) * 2014-10-16 2016-04-21 Microsoft Corporation Loop antenna with a magnetically coupled element

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020075186A1 (en) * 2000-12-20 2002-06-20 Hiroki Hamada Chip antenna and method of manufacturing the same
JP2003078323A (ja) * 2001-09-03 2003-03-14 Anten Corp アンテナ及びアンテナの製造方法
JP2004112044A (ja) 2002-09-13 2004-04-08 Furukawa Electric Co Ltd:The ループアンテナ
US7307591B2 (en) * 2004-07-20 2007-12-11 Nokia Corporation Multi-band antenna
JP2006140667A (ja) * 2004-11-11 2006-06-01 Yokowo Co Ltd アンテナ装置
TWI398038B (zh) * 2008-02-04 2013-06-01 Quanta Comp Inc Multi - frequency antenna
US20120235879A1 (en) * 2009-04-21 2012-09-20 Molex Incorporated Three dimensional antenna
KR101081398B1 (ko) * 2009-10-23 2011-11-08 주식회사 에이스테크놀로지 루프 구조를 이용한 광대역 내장형 안테나
US9166279B2 (en) * 2011-03-07 2015-10-20 Apple Inc. Tunable antenna system with receiver diversity
CN102299406B (zh) * 2011-06-16 2014-09-24 上海安费诺永亿通讯电子有限公司 一种用于移动终端的多频天线
CN202817173U (zh) * 2012-01-17 2013-03-20 上海安费诺永亿通讯电子有限公司 一种多谐振宽带环天线系统
CN103915682A (zh) * 2013-01-06 2014-07-09 华为技术有限公司 印刷电路板天线和印刷电路板
CN103219585B (zh) * 2013-03-22 2016-01-27 瑞声精密制造科技(常州)有限公司 天线模组及应用该天线模组的移动终端
TWI511377B (zh) * 2013-06-06 2015-12-01 Chiun Mai Comm Systems Inc 天線結構及應用該天線結構的無線通訊裝置
US20150123871A1 (en) * 2013-11-06 2015-05-07 Acer Incorporated Mobile device and antenna structure with conductive frame
CN105027352B (zh) * 2013-12-27 2017-10-17 华为终端有限公司 天线和终端
US10535921B2 (en) * 2014-09-05 2020-01-14 Smart Antenna Technologies Ltd. Reconfigurable multi-band antenna with four to ten ports
CN104282982A (zh) * 2014-10-20 2015-01-14 国网河南省电力公司漯河供电公司 一种装有内置天线的电脑电池板
JP6011752B1 (ja) 2015-01-30 2016-10-19 株式会社村田製作所 アンテナ装置および電子機器
CN104577334B (zh) * 2015-02-11 2017-07-21 小米科技有限责任公司 天线模块及移动终端
TW201714351A (zh) * 2015-10-05 2017-04-16 智易科技股份有限公司 多頻天線
CN107026314B (zh) * 2016-01-29 2020-02-07 北京小米移动软件有限公司 移动终端的天线
US10290924B2 (en) * 2016-02-19 2019-05-14 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
CN106848594B (zh) * 2017-03-06 2019-10-11 北京小米移动软件有限公司 天线模块及电子设备
CN207977463U (zh) * 2018-04-09 2018-10-16 北京小米移动软件有限公司 天线模组、电子设备
CN108598666B (zh) * 2018-05-28 2020-11-13 北京小米移动软件有限公司 终端壳体及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998689A (zh) * 2009-08-14 2011-03-30 联想(上海)有限公司 用于移动终端上的多频段天线及移动终端
CN101997165A (zh) * 2010-10-27 2011-03-30 惠州Tcl移动通信有限公司 一种封闭型多频段天线及其无线通讯装置
US20120229348A1 (en) * 2011-03-08 2012-09-13 Auden Techno Corp. Antenna structure and electronic device having the same
CN104716431A (zh) * 2013-12-17 2015-06-17 展讯通信(上海)有限公司 一种多频天线
US20160111786A1 (en) * 2014-10-16 2016-04-21 Microsoft Corporation Loop antenna with a magnetically coupled element

Also Published As

Publication number Publication date
CN112448140B (zh) 2022-03-01
KR102226007B1 (ko) 2021-03-10
US20210066787A1 (en) 2021-03-04
JP2022501841A (ja) 2022-01-06
EP3787113B1 (en) 2023-09-13
CN112448140A (zh) 2021-03-05
EP3787113A1 (en) 2021-03-03
RU2724311C1 (ru) 2020-06-22
US10985444B2 (en) 2021-04-20
JP7064511B2 (ja) 2022-05-10

Similar Documents

Publication Publication Date Title
US10601116B2 (en) Wireless terminal
JP7103556B2 (ja) アンテナシステム及び端末デバイス
US9590304B2 (en) Broadband antenna
JP2017533675A (ja) ワイヤレス電子デバイスのための周期スロットを有するストリップライン結合アンテナ
WO2017114024A1 (zh) 双极化天线和通信设备
US20150288061A1 (en) Capacitively-coupled isolator assembly
WO2024027258A1 (zh) 天线结构及电子设备
US10930998B2 (en) Antenna system and electronic device
WO2020134328A1 (zh) 天线模组及移动终端
WO2021035895A1 (zh) 天线模组及终端
CN112736419A (zh) 天线系统
WO2022199307A1 (zh) 天线组件及电子设备
CN113839209B (zh) 天线结构
CN106159420B (zh) 一种天线结构及无线装置
WO2024046200A1 (zh) 一种电子设备
WO2024046199A1 (zh) 一种电子设备
WO2020156063A1 (zh) 天线结构、多入多出mimo天线及终端
JP7243966B2 (ja) アンテナシステム及び端末デバイス
US20230238700A1 (en) Antenna structure and electronic device using the same
Koul et al. Antenna Design Requirements
TWI648912B (zh) 可控天線模組及具有可控天線模組的電子裝置
JP2023084706A (ja) 通信装置
CN117977199A (zh) 天线装置及电子设备
CN117748134A (zh) 天线及电子设备
CN116207483A (zh) 通信装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019563274

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943365

Country of ref document: EP

Kind code of ref document: A1