WO2016115828A1 - 一种多输入多输出天线、数据卡和终端 - Google Patents

一种多输入多输出天线、数据卡和终端 Download PDF

Info

Publication number
WO2016115828A1
WO2016115828A1 PCT/CN2015/082558 CN2015082558W WO2016115828A1 WO 2016115828 A1 WO2016115828 A1 WO 2016115828A1 CN 2015082558 W CN2015082558 W CN 2015082558W WO 2016115828 A1 WO2016115828 A1 WO 2016115828A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
strip line
output antenna
isolation
input multiple
Prior art date
Application number
PCT/CN2015/082558
Other languages
English (en)
French (fr)
Inventor
蔡凌云
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016115828A1 publication Critical patent/WO2016115828A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure

Definitions

  • This paper relates to the field of communications, and in particular to a multiple-input multiple-output (MIMO) antenna, data card and terminal applicable to a terminal.
  • MIMO multiple-input multiple-output
  • MIMO technology is the core technology of Long Term Evolution (LTE) and fourth-generation mobile communication systems (4G). It is a major breakthrough in antenna technology in the field of wireless mobile communications. It has fully developed space resources and adopted multiple channels for wireless network communication.
  • the antenna performs synchronous transmission and reception, and can increase the capacity of the communication system, improve the communication quality, increase the data transmission rate, improve the spectrum utilization rate, and alleviate the increasingly tight demand for spectrum resources without increasing the bandwidth and the antenna transmission power.
  • This paper provides a MIMO antenna, data card and terminal, which solves the problem that the anti-jamming means of related technologies cannot meet the application requirements.
  • a MIMO antenna comprising:
  • An isolation strip line is disposed between the radiation patches
  • the antenna coupling units are connected together by a connecting strip line, and the connecting strip line transmits an induced current between the antenna coupling units;
  • the connecting strip line is not parallel to the current direction of the strip line.
  • the connecting strip line is orthogonal to a current direction of the isolation strip line.
  • the connecting strip line and the isolation strip line have an angle of 45° to 90°.
  • the multiple input multiple output antenna is integrated on a PCB.
  • the antenna coupling unit has a symmetrical structure on the surface layer.
  • the radiation patch is connected to the short-circuited column through an underlying microstrip feed line, and the short-circuited column is further connected with a surface layer microstrip feed line.
  • the isolation strip line is a set of parallel coupling lines.
  • Also provided herein is a data card comprising a multiple input multiple output antenna as described above.
  • Also provided herein is a terminal comprising a multiple input multiple output antenna as described above.
  • Embodiments of the present invention provide a MIMO antenna, a data card, and a terminal, where the MIMO antenna includes two radiation patches placed on the bottom layer and a pair of couplings disposed on the surface layer corresponding to the radiation patches.
  • a small and easy-to-integrate MIMO antenna is realized, which solves the problem that the anti-interference means of the related technology has insufficient isolation, narrow bandwidth and large size.
  • FIG. 1 is a schematic structural diagram of a MIMO antenna according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a surface layer of a MIMO antenna according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a bottom structure of a MIMO antenna according to an embodiment of the present invention.
  • An embodiment of the present invention provides a MIMO antenna, and the structure thereof is as shown in FIG. 1 , including:
  • the antenna coupling units 102 are connected together by a connecting strip line 103, and the connecting strip line 103 transmits an induced current between the antenna coupling units 102;
  • An isolation strip line 104 is disposed between the radiation patches 101, and the isolation strip line 104 is a set of parallel coupling lines;
  • the connecting strip line 103 is not parallel to the current direction of the isolation strip line 104.
  • the connecting strip line 103 is orthogonal to the current direction of the isolation strip line 104.
  • the MIMO antenna is integrated in the dielectric board 105 and can be located on the PCB board.
  • the antenna coupling unit 102 has a symmetrical structure on the surface layer.
  • the radiating patch 101 is connected to the shorting post 107 through the bottom microstrip feed line 106, and the shorting post 107 is also connected to the surface microstrip feed line 108.
  • the isolation strip line 104 between the two radiation patches on the bottom layer adopts parallel coupling lines to adjust the length and width of the microstrip line, which can form a resonance in the current distribution of the floor, electromagnetically isolate the antenna coupling unit 102 and reduce the antenna.
  • the mutual coupling is achieved by suppressing the propagation of adjacent unit waves. Since the isolation strip line 104 and the surface layer connection strip line 103 are orthogonally distributed, the current of the bottom layer is not coupled to the surface layer, reducing the coupling between the antennas.
  • the connecting strip line 103 of the surface layer connects the two antenna coupling units 102 coupled to the non-closed structure together, and the main function is to transmit the induced current of the antenna from one antenna coupling unit 102 to the other antenna coupling unit 102, but does not pass
  • the shorting post 107 reaches the radiating patch 101, and the induced current generated on the antenna has a different pattern from the main radiation pattern.
  • the pattern is also different from the main radiation direction.
  • the patterns of the induced currents of the two antennas are separated, so that the isolation between the antenna coupling units becomes high.
  • the isolation strip line 104 and the connection strip line 103 are combined, and the direction of the current is orthogonal, which better improves the isolation between the antenna coupling units.
  • the antenna size can be effectively reduced, and the isolation of the antenna can be improved.
  • the MIMO antenna provided by the embodiment of the present invention can be well integrated with the PCB and directly applied to the PCB board of the terminal, and is adjusted according to the layout requirements.
  • the bottom layer of the radiation patch 101 may take other shapes, such as a square shape, a diamond shape, and the like.
  • the embodiment of the present invention does not limit the shape of the radiation patch 101.
  • the spacing between the two antenna coupling units can be adjusted to produce different coupling effects.
  • the shape of the coupled non-closed structure of the antenna coupling unit 102 may take various forms, such as a circular ring, a rectangular ring, etc., and the embodiment of the present invention does not limit the shape of the antenna coupling unit.
  • the size of the antenna coupling unit 102 of the surface layer can be adjusted, and the size of the opening can also be adjusted to couple different frequencies.
  • the spacing, width, and length of the isolation strip line 104 are adjustable, thereby making the MIMO antenna more isolated.
  • connection strip line 103 can be adjusted to make the MIMO antenna more isolated.
  • the shape of the connecting strip line 103 is variable, such as a linear type, a zigzag type, a wave type, etc., which is not limited by the embodiment of the present invention.
  • the shape of the isolation strip line 104 is variable, such as a rectangle, a zigzag type, a wave type, and the like, which is not limited by the embodiment of the present invention.
  • the thickness of the shorting column 107 can be adjusted according to the needs of the design.
  • the position of the isolation strip line 104 and the connection strip line 103 may be orthogonal or at an angle (eg, 45 degrees to 90 degrees), but the isolation of the MIMO antenna must be considered.
  • the surface layer of the MIMO antenna includes an antenna coupling unit 102, a connection strip line 103, a shorting post 107, and a surface layer microstrip feed line 108.
  • the bottom layer of the MIMO antenna is shown in FIG. 3 and includes a radiation patch 101, an isolation strip line 104, a bottom microstrip feed line 106, and a shorting post 107.
  • the MIMO antenna provided by the embodiment of the present invention can be integrated into a product such as a terminal or a data card.
  • the embodiment of the present invention provides a high-isolation MIMO antenna using a combination structure of an isolation strip line and a connection strip line.
  • the MIMO antenna is composed of two completely symmetric antenna coupling units 102, wherein the surface layer is micro
  • the feed line 108 passes through the shorting post 107 to the underlying microstrip feed line 106 up to the radiating patch 101, the inductance of the shorting post 107 itself and the coupling capacitance of the surface microstrip feed line 108 and the underlying microstrip feed line 106, as well as the underlying micro.
  • the non-closed structure of the antenna coupling unit 102 of the surface layer adopts a ring structure, which is coupled with the underlying radiation patch 101 to generate a resonant frequency by adjusting the antenna coupling unit 102.
  • the size of the ring structure can be adjusted to the same frequency of the radiating element to expand the bandwidth, or the ring structure can be adjusted to a new frequency, a multi-frequency antenna appears; the bottom layer of the isolation strip line 104 and the surface layer connection strip
  • the line 103 is combined to form a resonance in the current distribution of the floor 109 by adjusting the length and width of the spacer line 104, electromagnetically isolating the antenna coupling unit 102 and reducing mutual coupling between the antennas, by suppressing adjacent unit waves. Spread to achieve. Since the isolation strip line 104 and the surface layer connection strip line 103 are orthogonally distributed, the current of the bottom layer is not coupled to the surface layer, reducing the coupling between the antennas.
  • the connecting strip line 103 of the surface layer connects the two coupled loop structures together, and the induced current of the antenna is transmitted from one antenna coupling unit to the other antenna coupling unit, but does not reach the radiating patch 101 through the shorting post 107, and the sensing The current generated on the antenna is not the same as the main radiation pattern.
  • the other antenna coupling unit 102 is excited by the MIMO antenna, the direction is different from the main radiation direction, and the induced currents of the two antennas are excited.
  • the pictures are all separated, so the isolation between the antennas becomes high, and the interference problem between the antennas in the MIMO multi-antenna system is solved. Since the combined structure of the isolation strip line 104 and the connection strip line 103 has an orthogonal structure, the direction of the current is vertical, which better improves the isolation between the antennas.
  • the method for adding the combination structure of the isolation strip line and the connection strip line in the example of the present invention is applicable to multiple antenna coupling units working in the same frequency band and different frequency bands, and the isolation strip line and the length of the connection strip line can be reserved through the PCB board.
  • the width of the antenna is adjusted to the isolation of the antenna.
  • the antenna can be operated in multiple frequency bands; by increasing the diameter of the radiation patch, the frequency band can be made lower; by adjusting the thickness of the short-circuited column, the impedance bandwidth of the antenna can be adjusted.
  • the wireless device to which the MIMO antenna can be applied includes, but is not limited to, a mobile phone and a network card, and can also be applied to all places where the antenna technology can be applied, such as wireless routing.
  • Embodiments of the present invention provide a MIMO antenna, a data card, and a terminal, including a pair of coupled non-closed structure antenna coupling units disposed on two bottom layers of the radiation patch and the surface layer;
  • An isolation strip line, the isolation strip line is a set of parallel coupling lines;
  • the antenna coupling units are connected together by a connecting strip line, and the connecting strip line transmits the sensing between the antenna coupling units Current;
  • the connecting strip line is not parallel to the current direction of the strip line.
  • the high-isolation terminal antenna is realized based on the combination structure of the isolation strip line and the connection strip line, further reducing the area of the antenna, solving the interference problem between the antennas in the MIMO multi-antenna system, and the MIMO multi-antenna technology in the mobile phone and the wireless terminal product
  • the embodiment of the invention adopts a combined structure based on the isolation strip line and the connection strip line, thereby realizing a high isolation and miniaturized terminal antenna, which can effectively solve the interference problem caused by transmitting data services by multiple antennas in a small size, and improve the interference problem. Radiation efficiency.
  • the MIMO antenna with the structure can be applied to a variety of terminal systems by adopting a PCB form, compact size, easy integration with a mobile phone circuit board and a data card, and having the advantages of low cost and mass production.

Landscapes

  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种多输入多输出天线、数据卡和终端,该多输入多输出天线包括:置于底层的两个辐射贴片和置于表层与所述辐射贴片对应位置的一对耦合的非封闭结构的天线耦合单元;所述辐射贴片间置有隔离带线;所述天线耦合单元间通过连接带线连接在一起,所述连接带线在所述天线耦合单元间传输感应电流;所述连接带线与所述隔离带线的电流方向不平行。

Description

一种多输入多输出天线、数据卡和终端 技术领域
本文涉及通信领域,尤其涉及一种可应用于终端的多输入多输出(Multiple-Input Multiple-Output,MIMO)天线、数据卡和终端。
背景技术
随着无线通信高速向大容量、高传输率和高可靠性方向发展,使无线通讯电子设备同时进行多个频段通讯的需求日益增强。然而这些天线的尺寸、带宽、增益等指标的极限使得天线的小型化技术难度远远超过了其他器件,因此为了设计满足这些极限指标的天线成为了巨大的技术挑战。MIMO技术是长期演进(Long Term Evolution,LTE)和第四代移动通信系统(4G)的核心技术,是无线移动通信领域天线技术的重大突破,充分开发了空间资源,在无线网络通讯时采用多重天线进行同步收发,在不增加带宽和天线发送功率的情况下,能够成倍地增加通信系统的容量、提高通信质量,增加资料传输率,提高频谱利用率,缓解对频谱资源日益紧张的需求。
MIMO在无线通信、无线数据服务领域的高速发展更进一步苛刻地要求了天线尺寸的小型化并同时要求每个天线具有平衡的射频和电磁性能的同时,具有高隔离度和低包络相关性系数,保证良好的辐射性能以及抗干扰能力,因此,多天线在终端产品中的实现难度更大。为了解决这一技术难题,传统天线的布局通常在半个工作波长距离上,天线的隔离度足够大,这样布局是可以达到一定的效果。但是这样的距离要求对于无线终端产品,如手机、数据卡、客户端设备(Customer Premise Equipment,CPE)等产品是非常苛刻的。为了在有效的空间内完成MIMO天线的设计,在保证天线效率的同时还需要提高天线间的隔离度。目前实现高隔离度的方法有几种:一、增大天线间距;二、增加寄生导体或寄生缝隙结构;三、采用多种天线组合;四、增加对消微带;五、通过增加网络来改变天线馈电和相位,从而降低天线互耦;六、引入电磁带隙(Electromagnetic Band Gap,EBG)结构;七、采用缺陷地结构,在地板上开槽。上述方法主要缺陷包括隔离度不够,带宽 比较窄,尺寸比较大等等。
发明内容
本文提供了一种MIMO天线、数据卡和终端,解决了相关技术抗干扰手段不能满足应用需要的问题。
一种MIMO天线,包括:
置于底层的两个辐射贴片和置于表层与所述辐射贴片对应位置的一对耦合的非封闭结构的天线耦合单元;
所述辐射贴片间置有隔离带线;
所述天线耦合单元间通过连接带线连接在一起,所述连接带线在所述天线耦合单元间传输感应电流;
所述连接带线与所述隔离带线的电流方向不平行。
可选的,所述连接带线与所述隔离带线的电流方向正交。
可选的,所述连接带线与所述隔离带线的电流方向呈45°至90°夹角。
可选的,所述多输入多输出天线集成于PCB板上。
可选的,所述天线耦合单元在表层呈对称结构。
可选的,所述辐射贴片通过底层微带馈线连接于短路柱,所述短路柱还连接有表层的微带馈线。
可选的,所述隔离带线为一组平行耦合线。
本文还提供了一种数据卡,包含如上所述的多输入多输出天线。
本文还提供了一种终端,包含如上所述的多输入多输出天线。
本发明实施例提供了一种MIMO天线、数据卡和终端,该MIMO天线包括置于底层的两个辐射贴片和置于表层的与所述辐射贴片对应位置的一对耦 合的非封闭结构的天线耦合单元;所述辐射贴片间置有隔离带线;所述天线耦合单元间通过连接带线连接在一起,所述连接带线在所述天线耦合单元间传输感应电流;所述连接带线与所述隔离带线的电流方向不平行。实现了小型易于集成的MIMO天线,解决了相关技术抗干扰手段隔离度不够、带宽比较窄、尺寸比较大的问题。
附图概述
图1为本发明的实施例提供的一种MIMO天线的结构示意图;
图2为本发明的实施例提供的MIMO天线的表层结构示意图;
图3为本发明的实施例提供的MIMO天线的底层结构示意图。
本发明的实施方式
MIMO在无线通信、无线数据服务领域的高速发展更进一步苛刻地要求了天线尺寸的小型化并同时要求每个天线具有平衡的射频和电磁性能的同时,具有高隔离度和低包络相关性系数,保证良好的辐射性能以及抗干扰能力,因此,多天线在终端产品中的实现难度更大。为了解决上述问题,本发明的实施例提供了一种MIMO天线。下文中将结合附图对本发明的实施方式进行详细说明。需要说明的是,在不冲突的情况下,本文中的实施例及实施例中的特征可以相互任意组合。
首先结合附图,对本发明的实施例一进行说明。
本发明实施例提供了一种MIMO天线,其结构如图1所示,包括:
置于底层的两个辐射贴片101和置于表层与所述辐射贴片101对应位置的一对耦合的非封闭结构的天线耦合单元102;
所述天线耦合单元102间通过连接带线103连接在一起,所述连接带线103在所述天线耦合单元102间传输感应电流;
所述辐射贴片101间置有隔离带线104,所述隔离带线104为一组平行耦合线;
所述连接带线103与所述隔离带线104的电流方向不平行。
可选的,所述连接带线103与所述隔离带线104的电流方向正交。
可选的,所述MIMO天线集成于介质板105,可位于PCB板上。
可选的,所述天线耦合单元102在表层呈对称结构。
可选的,所述辐射贴片101通过底层微带馈线106连接于短路柱107,所述短路柱107还连接有表层的微带馈线108。
底层两个辐射贴片间的隔离带线104,采用平行耦合线,调整微带线的长度和宽度,可以在地板的电流分布中形成一个谐振,对天线耦合单元102进行电磁隔离和减小天线间的互耦,通过抑制临近单元波的传播来实现。由于隔离带线104和表层的连接带线103呈正交分布,底层的电流不会耦合到表层,减小了天线间的耦合。表层的连接带线103将两个耦合非封闭结构的天线耦合单元102连接在一起,主要作用是将天线的感应电流从一个天线耦合单元102传输到另一个天线耦合单元102,但是并不会通过短路柱107到达辐射贴片101,而感应电流在天线上产生的方向图和主辐射方向图并不相同,当另一个天线耦合单元102由MIMO天线所激励起的方向图也和主辐射方向不同,两个天线的感应电流激励起的方向图都是分离的,所以使得天线耦合单元间的隔离度变高。将隔离带线104和连接带线103组合在一起,电流的方向是正交的,更好的提高了天线耦合单元间的隔离度。采用本实施例的技术方案,可以有效的降低天线尺寸,提高天线的隔离度。
本发明实施例提供的MIMO天线可以很好的和PCB集成,直接应用到终端的PCB板上,根据布局的需要,进行调整。
可选的,底层的辐射贴片101可以采取其他的形状,比如方形、菱形等,本发明的实施例对辐射贴片101的形状不作限定。
可选的,两个天线耦合单元间的间距可以调节,从而产生不同的耦合效果。
可选的,天线耦合单元102的耦合非封闭结构的形状可以采取各种形式,比如圆环形、矩形环等,本发明的实施例对天线耦合单元的形状不作限定。
可选的,表层的天线耦合单元102的大小可以调节,开口大小也可以调节,耦合出不同的频率。
可选的,隔离带线104的间距,宽度、长度是可以调节的,从而使得MIMO天线隔离度更高。
可选的,连接带线103的宽度、位置是可以调节的,从而使得MIMO天线隔离度更高。
可选的,连接带线103的形状是可变的,比如直线型、锯齿型、波浪型等,本发明的实施例对此不作限定。
可选的,隔离带线104的形状可变的,比如矩形、锯齿型、波浪型等,本发明的实施例对此不作限定。
可选的,短路柱107的粗细可根据设计的需要进行调整。
可选的,隔离带线104和连接带线103的位置可以是正交或成一定角度(如45度到90度),但一定要考虑MIMO天线的隔离度。
该MIMO天线的表层如图2所示,包括天线耦合单元102、连接带线103、短路柱107和表层的微带馈线108。
该MIMO天线的底层如图3所示,包括辐射贴片101、隔离带线104、底层的微带馈线106和短路柱107。
本发明实施例提供的MIMO天线可集成于终端、数据卡等产品中。
下面结合附图,对本发明的实施例二进行说明。
在数据卡的PCB电路板上远离USB接口的地方留出一块净空区域用于MIMO天线的布局。
本发明实施例提供了一种采用隔离带线和连接带线的组合结构的高隔离度MIMO天线,如图1所示,该MIMO天线由两个完全对称的天线耦合单元102组成,其中表层微带馈线108通过短路柱107到底层的微带馈线106一直到辐射贴片101,短路柱107自身的电感以及表层的微带馈线108和底层的微带馈线106产生的耦合电容,以及底层的微带馈线106和地板109之间的 开槽产生的耦合电容相抵消,从而扩展了带宽;表层的天线耦合单元102的非封闭结构采用了环状结构,它和底层的辐射贴片101耦合出一个谐振频率,通过调节天线耦合单元102的大小,可以将该环状结构调整到辐射单元相同的频率从而扩大带宽,或是将该环状结构调整到一个新的频率,出现多频天线;底层的隔离带线104和表层的连接带线103组合结构,通过调整隔离带线104的长度和宽度,在地板109的电流分布中形成一个谐振,对天线耦合单元102进行电磁隔离和减小天线间的互耦,通过抑制临近单元波的传播来实现。由于隔离带线104和表层的连接带线103呈正交分布,底层的电流不会耦合到表层,减小了天线间的耦合。表层的连接带线103将两个耦合环状结构连接在一起,天线的感应电流从一个天线耦合单元传输到另一个天线耦合单元,但是并不会通过短路柱107到达辐射贴片101,而感应电流在天线上产生的方向图和主辐射方向图并不相同,当另一个天线耦合单元102由MIMO天线所激励起的方向图也和主辐射方向不同,两个天线的感应电流激励起的方向图都是分离的,所以使得天线间的隔离度变高,解决了MIMO多天线系统中天线间的干扰问题。由于隔离带线104和连接带线103的组合结构呈正交结构,电流的方向是垂直的,更好的提高了天线间的隔离度。
本发明实例中增加的隔离带线和连接带线的组合结构的方式,适用于工作在同一频段和不同频段的多个天线耦合单元,可以通过PCB板上预留隔离带线和连接带线长短、宽度等对天线的隔离度进行调整。通过调节环状结构的大小,可以使天线工作在多频段;通过增大辐射贴片口径,可以把频段做到更低;通过调节短路柱的粗细,可以调节天线的阻抗带宽。
需要说明的是,本发明的实施例中,可应用该MIMO天线的无线设备包括但不限于手机、网卡,也可以应用在无线路由等所有可以应用该天线技术的场所。
本发明的实施例提供了一种MIMO天线、数据卡和终端,包括置于底层的两个辐射贴片和表层的一对耦合的非封闭结构的天线耦合单元;所述辐射贴片间置有隔离带线,所述隔离带线为一组平行耦合线;所述天线耦合单元间通过连接带线连接在一起,所述连接带线在所述天线耦合单元间传输感应 电流;所述连接带线与所述隔离带线的电流方向不平行。实现了小型易于集成的MIMO天线,解决了相关技术抗干扰手段隔离度不够、带宽比较窄、尺寸比较大的问题。
基于隔离带线和连接带线的组合结构实现高隔离度的终端天线,进一步减少了天线的面积,解决了MIMO多天线系统中天线间的干扰问题,为MIMO多天线技术在手机和无线终端产品等小型化设备中的应用奠定了基础。
工业实用性
本发明实施例采用了一种基于隔离带线和连接带线的组合结构,从而实现高隔离度小型化终端天线,可以有效解决在小尺寸上多天线发射数据业务时带来的干扰问题,提高了辐射效率。具有该结构的MIMO天线可采用PCB形式,体积小巧,便于与手机电路板、数据卡集成,并且具有低成本,便于批量生产等优点,能够适用于多种终端系统。

Claims (9)

  1. 一种多输入多输出天线,包括置于底层的两个辐射贴片和置于表层与所述辐射贴片对应位置的一对耦合的非封闭结构的天线耦合单元;
    所述辐射贴片间置有隔离带线;
    所述天线耦合单元间通过连接带线连接在一起,所述连接带线在所述天线耦合单元间传输感应电流;
    所述连接带线与所述隔离带线的电流方向不平行。
  2. 根据权利要求1所述的多输入多输出天线,其中,
    所述连接带线与所述隔离带线的电流方向正交。
  3. 根据权利要求1所述的多输入多输出天线,其中,所述连接带线与所述隔离带线的电流方向呈45°至90°夹角。
  4. 根据权利要求1所述的多输入多输出天线,其中,所述多输入多输出天线集成于PCB板上。
  5. 根据权利要求1所述的多输入多输出天线,其中,所述天线耦合单元在表层呈对称结构。
  6. 根据权利要求1所述的多输入多输出天线,其中,所述辐射贴片通过底层微带馈线连接于短路柱,所述短路柱还连接有表层的微带馈线。
  7. 根据权利要求1所述的多输入多输出天线,其中,所述隔离带线为一组平行耦合线。
  8. 一种数据卡,包含如权利要求1至7中任一所述的多输入多输出天线。
  9. 一种终端,包含如权利要求1至7中任一所述的多输入多输出天线。
PCT/CN2015/082558 2015-01-20 2015-06-26 一种多输入多输出天线、数据卡和终端 WO2016115828A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520041859.7U CN204391264U (zh) 2015-01-20 2015-01-20 一种多输入多输出天线、数据卡和终端
CN201520041859.7 2015-01-20

Publications (1)

Publication Number Publication Date
WO2016115828A1 true WO2016115828A1 (zh) 2016-07-28

Family

ID=53363955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082558 WO2016115828A1 (zh) 2015-01-20 2015-06-26 一种多输入多输出天线、数据卡和终端

Country Status (2)

Country Link
CN (1) CN204391264U (zh)
WO (1) WO2016115828A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204391264U (zh) * 2015-01-20 2015-06-10 中兴通讯股份有限公司 一种多输入多输出天线、数据卡和终端
CN104993233B (zh) * 2015-07-17 2018-01-30 中国科学院上海高等研究院 高隔离度具有辐射分集特性微带贴片mimo天线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070069960A1 (en) * 2005-09-27 2007-03-29 Samsung Electronics Co., Ltd. Flat-plate MIMO array antenna with isolation element
JP2011077608A (ja) * 2009-09-29 2011-04-14 Alps Electric Co Ltd アンテナ装置
CN102280707A (zh) * 2011-05-26 2011-12-14 上海联能科技有限公司 高隔离度的支持mimo技术的无线数据卡天线
CN102334236A (zh) * 2009-02-27 2012-01-25 株式会社Mobitech 具有寄生元件的mimo天线
CN102760949A (zh) * 2011-04-27 2012-10-31 鸿富锦精密工业(深圳)有限公司 多输入输出天线
US20130162496A1 (en) * 2011-12-26 2013-06-27 Funai Electric Co., Ltd. Multi-antenna device and communication apparatus
CN204391264U (zh) * 2015-01-20 2015-06-10 中兴通讯股份有限公司 一种多输入多输出天线、数据卡和终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070069960A1 (en) * 2005-09-27 2007-03-29 Samsung Electronics Co., Ltd. Flat-plate MIMO array antenna with isolation element
CN102334236A (zh) * 2009-02-27 2012-01-25 株式会社Mobitech 具有寄生元件的mimo天线
JP2011077608A (ja) * 2009-09-29 2011-04-14 Alps Electric Co Ltd アンテナ装置
CN102760949A (zh) * 2011-04-27 2012-10-31 鸿富锦精密工业(深圳)有限公司 多输入输出天线
CN102280707A (zh) * 2011-05-26 2011-12-14 上海联能科技有限公司 高隔离度的支持mimo技术的无线数据卡天线
US20130162496A1 (en) * 2011-12-26 2013-06-27 Funai Electric Co., Ltd. Multi-antenna device and communication apparatus
CN204391264U (zh) * 2015-01-20 2015-06-10 中兴通讯股份有限公司 一种多输入多输出天线、数据卡和终端

Also Published As

Publication number Publication date
CN204391264U (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
JP6374971B2 (ja) アンテナユニット及び端末
CN110061349B (zh) 一种基于正交模式对的宽带5g mimo手机天线
US10044111B2 (en) Wideband dual-polarized patch antenna
US9312608B2 (en) Multiple-input multiple-output antenna device
WO2012088837A1 (zh) 一种移动终端的阵列天线及其实现方法
WO2012071848A1 (zh) 一种多输入多输出天线系统
WO2017114024A1 (zh) 双极化天线和通信设备
CN105281031A (zh) 一种超宽频双极化低频振子单元及其多频段阵列天线
WO2015161445A1 (zh) 多极化基片集成波导天线
CN206506025U (zh) 可重构的多输入多输出天线以及移动终端
CN102570028A (zh) 临近频段间实现天线高隔离的系统及方法
CN102593565A (zh) 电介质波导管的输入输出连接构造
CN105896084B (zh) 一种全频段车载天线
CN109672019A (zh) 一种终端mimo天线装置及实现天线信号传输方法
WO2016123924A1 (zh) 一种多输入多输出天线及终端
JP5908486B2 (ja) Mimoアンテナシステム
CN206432384U (zh) 多输入多输出天线系统及移动终端
WO2016115828A1 (zh) 一种多输入多输出天线、数据卡和终端
JP6117833B2 (ja) ダイバーシティアンテナ装置
Ali et al. Dual bandmicrostrip patch antenna array for next generation wireless sensor network applications
US11056781B2 (en) Antenna and mobile terminal
CN205508998U (zh) 一种全频段车载天线
KR101588224B1 (ko) 안테나 모듈
CN103915685B (zh) 一种基于印刷电路板的小尺寸宽带宽的四单元mimo天线
CN108054511A (zh) 一种微带传输线与微带天线间耦合消除结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878500

Country of ref document: EP

Kind code of ref document: A1