WO2022138508A1 - 含フッ素ポリエーテル化合物 - Google Patents

含フッ素ポリエーテル化合物 Download PDF

Info

Publication number
WO2022138508A1
WO2022138508A1 PCT/JP2021/046847 JP2021046847W WO2022138508A1 WO 2022138508 A1 WO2022138508 A1 WO 2022138508A1 JP 2021046847 W JP2021046847 W JP 2021046847W WO 2022138508 A1 WO2022138508 A1 WO 2022138508A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
compound
formula
group
product
Prior art date
Application number
PCT/JP2021/046847
Other languages
English (en)
French (fr)
Inventor
元志 青山
尚樹 香月
啓吾 松浦
誠人 宇野
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to EP21910653.1A priority Critical patent/EP4269381A1/en
Priority to CN202180086554.6A priority patent/CN116635360A/zh
Priority to JP2022571413A priority patent/JPWO2022138508A1/ja
Publication of WO2022138508A1 publication Critical patent/WO2022138508A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/002Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds
    • C08G65/005Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens
    • C08G65/007Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • This disclosure relates to a fluorine-containing polyether compound.
  • Fluorine-containing compounds are used as surface treatment agents or lubricants because they exhibit excellent lubricity and water / oil repellency.
  • the fluorine-containing polyether compound having an ether bond has excellent lubricity and is used for forming a film for the purpose of protecting the reading head of a magnetic disk or the like.
  • Fluorine-containing polyether compounds can be produced by various methods. Depending on the method used for producing the fluorine-containing polyether compound and the type of raw material, structural units constituting the fluorine-containing polyether compound may be randomly distributed in the backbone, or structural units may be regularly repeated. .. As an example of a method for producing a fluorine-containing polyether compound in which structural units are regularly repeated in a main chain, the production methods described in Patent Document 1 and Patent Document 2 are known.
  • the fluorine-containing polyether compound When applying a fluorine-containing polyether compound to a surface treatment agent, a lubricant, etc., the fluorine-containing polyether compound may be required to have chemical resistance. However, the chemical resistance of the fluorine-containing polyether compound obtained by the production methods described in Patent Document 1 and Patent Document 2 may not always be sufficient.
  • the present disclosure has been made in view of the above-mentioned conventional circumstances, and one form of the present disclosure is intended to provide a fluorine-containing polyether compound having excellent chemical resistance.
  • R 1 independently represents a monovalent hydrocarbon group having 1 to 3 carbon atoms in which a fluorine atom, a hydrogen atom, or a hydrogen atom may be substituted with a fluorine atom.
  • R 2 and R 3 each independently contain a ring structure, may contain an ether bond, and a hydrogen atom may be substituted with a fluorine atom.
  • a divalent hydrocarbon having 3 to 20 carbon atoms. represents a group, however, at least one of R 2 and R 3 contains a ring structure and may contain an ether bond, and is a divalent hydrocarbon having 3 to 20 carbon atoms in which a hydrogen atom is substituted with a fluorine atom.
  • R 4 and R 6 each independently represent a divalent hydrocarbon group having a ring structure and having 3 to 20 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom.
  • R 5 each independently represent an alkylene group having 1 to 16 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom.
  • at least one of R 4 and R 6 contains a ring structure and represents a divalent hydrocarbon group having 3 to 20 carbon atoms in which a hydrogen atom is substituted with a fluorine atom.
  • R 4 and R 6 have different structures from each other.
  • Both R 2 and R 3 in the general formula (1) include one ring structure.
  • R 3 in the general formula (1) is a group represented by ⁇ CH 2 R 3A CH 2 ⁇
  • R 3A is a divalent hydrocarbon group represented by R 3 in the general formula (1).
  • the fluorine-containing polyether compound according to any one of ⁇ 1> to ⁇ 4> which represents a group excluding the two methylene groups constituting the portion bonded to the oxygen atom.
  • Both R4 and R6 in the general formula (2) include one ring structure.
  • ⁇ 7> A fluorine-containing polyether compound containing a structural unit represented by the following general formula (1') or a structural unit represented by the following general formula (2').
  • RF1 independently represents a fluorine atom or a monovalent perfluorohydrocarbon group having 1 to 3 carbon atoms
  • RF2 and RF3 independently represent, respectively.
  • RF4 and RF6 each independently represent a divalent perfluorohydrocarbon group having 3 to 20 carbon atoms including a ring structure, and RF5 independently represents carbon. Represents a perfluoroalkylene group of numbers 1-16. However, RF4 and RF6 have different structures from each other. )
  • the numerical range indicated by using “-" in the present disclosure includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the "fluoroalkylene group” includes a perfluoroalkylene group in which all hydrogen atoms are substituted with fluorine atoms and a fluoroalkylene group in which a part of hydrogen atoms is substituted with fluorine atoms. Further, in the present disclosure, not only the perfluorocycloalkane in which all the hydrogen atoms of the cycloalkane are replaced with the fluorine atom but also a part of the hydrogen atom is replaced with the fluorine atom in the description of "fluorocycloalkane” and the like. Cycloalkanes are also included.
  • the notation that does not describe substitution or non-substitution includes those having no substituent as well as those having a substituent.
  • the number of carbon atoms means the total number of carbon atoms contained in the entire group, and when the group does not have a substituent, it represents the number of carbon atoms forming the skeleton of the group, and the group. When has a substituent, it represents the total number of carbon atoms forming the skeleton of the group plus the number of carbon atoms in the substituent.
  • the number average molecular weight (Mn) and the mass average molecular weight (Mw) are measured by gel permeation chromatography (hereinafter, also referred to as “GPC”).
  • GPC gel permeation chromatography
  • the fluorine-containing polyether compound of the present disclosure includes a structural unit represented by the following general formula (1) or a structural unit represented by the following general formula (2).
  • the structural unit represented by the general formula (1) may be referred to as a unit of the formula (1)
  • the structural unit represented by the general formula (2) may be referred to as a unit of the formula (2).
  • the fluorine-containing polyether compound containing the unit of formula (1) may be referred to as a first fluorine-containing polyether compound
  • the fluorine-containing polyether compound containing a unit of formula (2) may be referred to as a second fluorine-containing polyether compound. .. [-CF 2 -CHR 1 -O-R 2 -O-CHR 1 -CF 2 -OR 3 -O-] ... (1) [-R 5 -OR 4 -OR 5 -OR 6 -O-] ... (2)
  • R 1 independently represents a monovalent hydrocarbon group having 1 to 3 carbon atoms in which a fluorine atom, a hydrogen atom, or a hydrogen atom may be substituted with a fluorine atom.
  • R 2 and R 3 each independently contain a ring structure, may contain an ether bond, and a hydrogen atom may be substituted with a fluorine atom.
  • at least one of R 2 and R 3 contains a ring structure and may contain an ether bond, and represents a divalent hydrocarbon group having 3 to 20 carbon atoms in which a hydrogen atom is substituted with a fluorine atom.
  • R 4 and R 6 each independently represent a divalent hydrocarbon group having a ring structure and having 3 to 20 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom.
  • R 5 each independently represent an alkylene group having 1 to 16 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom.
  • at least one of R 4 and R 6 contains a ring structure and represents a divalent hydrocarbon group having 3 to 20 carbon atoms in which a hydrogen atom is substituted with a fluorine atom.
  • R 4 and R 6 have different structures from each other.
  • R 4 and R 6 "have different structures from each other" means that the number of carbon atoms contained in the divalent hydrocarbon group represented by R 4 and R 6 is different, or the number of carbon atoms is different. The number is the same, but the skeleton of the hydrocarbon group constructed by carbon atoms is different. When determining whether or not the skeletons of the hydrocarbon groups are different, the presence or absence of an unsaturated bond between carbons is not considered. For example, a cyclohexylene group and a phenylene group are considered to have the same skeleton.
  • the fluorine-containing polyether compound of the present disclosure may contain a structural unit represented by the following general formula (1') or a structural unit represented by the following general formula (2').
  • RF1 independently represents a fluorine atom or a monovalent perfluorohydrocarbon group having 1 to 3 carbon atoms
  • RF2 and RF3 independently represent rings.
  • RF4 and RF6 each independently represent a divalent perfluorohydrocarbon group having 3 to 20 carbon atoms including a ring structure, and RF5 independently represents carbon.
  • RF4 and RF6 have different structures from each other.
  • the group represented by RF1 to RF6 may be a perfluoroylated group represented by R1 to R6 .
  • the fluorine-containing polyether compound containing the structural unit represented by the general formula (1') or the structural unit represented by the general formula (2') is the first fluorine-containing polyether compound or the second fluorine-containing polyether. It may be a perfluoroform of the compound.
  • the "perfluorocation" of the group represented by R 1 to R 6 means that the group is fluorinated to the following states.
  • the group represented by R 1 to R 6 does not contain an unsaturated bond between carbon and carbon, all the hydrogen atoms bonded to the carbon atom constituting the group represented by R 1 to R 6 can be fluorinated.
  • the fluorinated state is referred to as "perfluoroization".
  • the group represented by R 1 to R 6 contains an unsaturated bond between carbon and carbon, all the hydrogen atoms bonded to the carbon atom constituting the group represented by R 1 to R 6 can be fluorinated.
  • a fluorine atom is added to each of the two carbon atoms that are fluorinated and form a carbon-carbon unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond, resulting in a carbon-carbon non-carbon atom.
  • the state in which the saturated bond disappears is referred to as "perfluoroization".
  • C C ⁇ is perfluorolated
  • CF-CF ⁇ CF-CF ⁇
  • -C ⁇ C- perfluorolated
  • it becomes -CF 2 -CF 2- a hydrogen atom that can be fluorinated may be bonded to the atom group that can be fluorinated.
  • R F1 is independently R.
  • 1 is a fluorine atom
  • R 1 is a hydrogen atom
  • R 1 represents a fluorine atom
  • R 1 is a monovalent hydrocarbon group
  • R 1 is a monovalent hydrocarbon group
  • the hydrogen group represents a perfluoroylated monovalent perfluorohydrogen group having 1 to 3 carbon atoms
  • RF2 and RF3 are independently represented by a divalent hydrocarbon group represented by R2 or R3.
  • RF4 and RF6 are independently divalent having a divalent hydrocarbon group represented by R4 or R6 and having 3 to 20 carbon atoms.
  • R F1 to R F6 is a perfluoroylated group represented by R 1 to R 6
  • specific examples of the group represented by R F1 to R F6 will be described later. Examples thereof include groups in which the groups represented by R 1 to R 6 are perfluorolated.
  • the fluorine-containing polyether compound of the present disclosure has excellent chemical resistance. The reason is not clear, but it can be inferred as follows. Where the fluorine-containing polyether compounds of the present disclosure include formula (1) units or formula (2) units, R 2 and R 3 in formula (1) units, and R 4 and R in formula (2) units. 6 is a hydrocarbon group containing a ring structure. Therefore, it is presumed that the fluorine-containing polyether compound contains a hydrocarbon group containing a plurality of ring structures in the molecule, and as a result, the chemical resistance of the fluorine-containing polyether compound is improved.
  • the number average molecular weight (Mn) of the fluorine-containing polyether compound of the present disclosure is preferably 1000 to 30,000, more preferably 1500 to 20000, and even more preferably 2000 to 10000. Further, the molecular weight distribution (Mw / Mn) of the fluorine-containing polyether compound of the present disclosure is preferably 1 to 3, more preferably 1 to 2.5, and even more preferably 1 to 2.
  • the fluorine-containing polyether compounds of the present disclosure may have two chain ends.
  • the two chain ends may be the same or different, and are preferably the same.
  • the chain ends include hydroxyl groups, alkyl groups having 1 to 16 carbon atoms in which hydrogen atoms may be substituted with fluorine atoms, and alkoxycarbonyl groups having 1 to 16 carbon atoms in which hydrogen atoms may be substituted with fluorine atoms. Examples thereof include an alkoxy group having 1 to 16 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom, but the present invention is not limited thereto.
  • the unit of the formula (1) contained in the first fluorine-containing polyether compound may be one kind or two or more kinds. Further, the first fluorine-containing polyether compound may contain a structural unit other than the unit of the formula (1).
  • the ratio of the formula (1) unit to all the structural units is preferably 90 mol% or more, more preferably 95 mol% or more. , 99 mol% or more is more preferable. It is particularly preferable that the first fluorine-containing polyether compound does not contain any structural unit other than the unit of formula (1).
  • R 1 is a fluorine atom, and it is more preferable that both of R 1 are fluorine atoms.
  • the carbon number of the divalent hydrocarbon group represented by R 2 and R 3 is preferably 15 or less, more preferably 13 or less, respectively.
  • the carbon number of the divalent hydrocarbon group represented by R 2 and R 3 is independent from the viewpoint of preventing a cyclization reaction when the first fluorine-containing polyether compound is produced by the polymerization reaction described later. 4 or more is preferable, and 5 or more is more preferable.
  • the ring structure contained in the divalent hydrocarbon group represented by R 2 and R 3 is preferably a phenyl ring or a cycloalkyl ring.
  • the divalent hydrocarbon group represented by R 2 and R 3 may be a group represented by the following general formula (A). * -R b -OR a -OR b- * ... (A)
  • Ra represents a cycloalkanediyl group, a fluorocycloalkandyl group, or an arylene group.
  • Examples of the cycloalkanediyl group and the fluorocycloalkanediyl group represented by Ra include a cyclobutanediyl group, a fluorocyclobutanediyl group, a cyclopentanediyl group, a fluorocyclopentanediyl group, a cyclohexanediyl group, and a fluorocyclohexanediyl group.
  • Examples thereof include an adamantandiyl group, a fluoroadamantandiyl group, a norbornandyl group, and a fluoronorbornandyl group.
  • the cycloalkandyl group, the fluorocycloalkandyl group and the arylene group may have an alkyl group having 1 to 3 carbon atoms in which the hydrogen atom may be substituted with a fluorine atom as a substituent.
  • R b may independently contain a ring structure or a branched structure, and the hydrogen atom may be substituted with a fluorine atom, which is a divalent group having 1 to 10 carbon atoms. Represents a hydrocarbon group.
  • Examples of the divalent hydrocarbon group represented by R b include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a fluoromethylene group, a fluoroethylene group, a fluorotrimethylene group, a fluorotetramethylene group and the like. Be done.
  • * represents a bonding portion with an oxygen atom.
  • the divalent hydrocarbon group represented by R 2 and R 3 may be a group represented by any of the following general formulas (B) to (D).
  • the group represented by Ra in the general formulas (B) and (C) is the same as the above general formula ( A ).
  • the group represented by R b in the general formula (D) is the same as that in the general formula (A).
  • R c may independently contain a single bond, a ring structure or a branched structure, and the hydrogen atom may be substituted with a fluorine atom.
  • Examples of the divalent hydrocarbon group represented by R c include a methylene group, an ethylene group, a trimethylene group, a propyridene group, an isopropyridene group, a fluoromethylene group, a fluoroethylene group, a fluorotrimethylene group and a fluoropropyridene group. , Fluoroisopropylidene group and the like.
  • R d represents a cycloalkane-1,1-diyl group having 3 to 6 carbon atoms.
  • * represents a bonding portion with an oxygen atom.
  • the divalent hydrocarbon group represented by R 3 has a methylene group at the portion bonded to the oxygen atom of the divalent hydrocarbon group represented by R 3 . It may be a divalent hydrocarbon group represented by "CH 2 R 3A CH 2- ". Hereinafter, the divalent hydrocarbon group represented by "-CH 2 R 3A CH 2- " may be referred to as a "-CH 2 R 3A CH 2- " group.
  • R 3A in the "-CH 2 R 3A CH 2- " group represents a divalent hydrocarbon group represented by R 3 excluding the two methylene groups constituting the portion bonded to the oxygen atom. Specific examples of the "-CH 2 R 3A CH 2- " group include a group in which the bonding portion with the oxygen atom is a methylene group in the specific example of R 3 .
  • R 2 and R 3 in the general formula (1) may comprise an aliphatic ring and the other may comprise an aromatic ring. Further, in some embodiments, both R 2 and R 3 in the general formula (1) may contain an aliphatic ring. Further, in one embodiment, both R 2 and R 3 in the general formula (1) include one ring structure, and the number of ring members of the ring structure contained in R 2 and the number of ring members of the ring structure contained in R 3 are determined. It may be different.
  • the number of ring structures contained in one of R 2 and R 3 in the general formula (1) may be different from the number of ring structures contained in the other.
  • both R 2 and R 3 in the general formula (1) may be divalent hydrocarbon groups containing an ether bond, and one of R 2 and R 3 may contain an ether bond.
  • One may be a divalent hydrocarbon group containing no ether bond, or both R 2 and R 3 may be a divalent hydrocarbon group containing no ether bond.
  • Examples of the divalent hydrocarbon group represented by the general formula (A) include, but are not limited to, the following groups or the following perfluoroylated groups.
  • Examples of the group satisfying any of the general formulas (B) to (D) include, but are not limited to, the following groups or the following perfluoroylated groups.
  • R 2 and R 3 examples include the combination of the following groups or the combination of the following perfluoroylated groups.
  • the first fluorine-containing polyether compound may be produced by any method.
  • the first fluorine-containing polyether compound is obtained by, for example, polymerizing a fluorine-containing divinyl ether compound represented by the following general formula (3) and a diol compound represented by the following general formula (4) at a predetermined ratio. It can be obtained by modifying the end of the chain as needed.
  • the fluorine-containing divinyl ether compound represented by the general formula (3) may be referred to as a specific divinyl ether compound
  • the diol compound represented by the general formula (4) may be referred to as a specific diol compound.
  • R 1 and R 2 are the same as R 1 and R 2 in the general formula (1), and specific examples thereof are also the same as in the case of the general formula (1).
  • R 3 is the same as R 3 in the general formula (1), and specific examples thereof are also the same as in the case of the general formula (1).
  • the specific diol compound may be a diol compound represented by the following general formula (4'). HO-CH 2 R 3A CH 2 -OH ...
  • R 3A is the same as R 3A in the general formula (1), and specific examples thereof are also the same as in the case of the general formula (1).
  • the specific diol compound is a diol compound represented by the general formula (4')
  • the hydroxyl group is bonded to a methylene group, so that the reactivity depends on the type of the substituent as compared with the diol compound having a phenolic hydroxyl group. It is hard to make a difference. Further, there is an advantage that the applicability of the substrate can be easily expanded and the molecular weight can be easily increased.
  • the reaction between the specific divinyl ether compound and the specific diol compound may be carried out in a solvent or in a solvent-free state without using a solvent.
  • the solvent used is acetonitrile, bis (2-methoxyethyl) ether (diglyme), triethylene glycol dimethyl ether (triglyme), tetraethylene glycol dimethyl ether ( Tetraglyme) or a fluorine-based organic solvent is preferable.
  • the fluorine-based organic solvent include fluorinated alkanes, fluorinated aromatic compounds, and fluoroalkyl ethers.
  • the ratio of the specific divinyl ether compound to the specific diol compound is preferably adjusted according to the molecular weight of the target first fluorine-containing polyether compound.
  • the specific diol compound is preferably 0.01 mol to 100 mol, more preferably 0.1 mol to 10 mol, with respect to 1 mol of the specific divinyl ether compound.
  • the reaction between the specific divinyl ether compound and the specific diol compound is preferably carried out in the presence of an alkaline catalyst.
  • an alkaline catalyst By reacting the specific divinyl ether compound with the specific diol compound in the presence of an alkaline catalyst, the molecular weight and yield of the first fluorine-containing polyether compound produced can be further improved.
  • the alkaline catalyst include NaOH, KOH, Na 2 CO 3 , CsF, K 2 CO 3 , and the like, and NaOH is preferable from the viewpoint of the molecular weight and yield of the first fluoropolyether compound.
  • the reaction temperature between the specific divinyl ether compound and the specific diol compound is preferably 80 ° C to 160 ° C, more preferably 90 ° C to 140 ° C.
  • the reaction time between the specific divinyl ether compound and the specific diol compound is preferably 1 hour to 72 hours, more preferably 2 hours to 48 hours.
  • the first fluorine-containing polyether compound may be produced by a batch method or a continuous method, and a known method can be appropriately adopted.
  • a specific diol compound and a solvent may be previously contained in the reactor, and the specific divinyl ether compound may be directly added into the reactor. Then, a diluted solution obtained by diluting the specific divinyl ether compound with a solvent may be added.
  • the ratio of hydroxyl groups to all chain ends is preferably 10 mol% to 90 mol%.
  • the perfluoroform of the first fluorine-containing polyether compound is, for example, esterified the hydroxyl group existing at the chain end of the first fluorine-containing polyether compound with an acid fluoride compound to form an acyloxydide, and the acyloxydide is perfluoronated to form a perfluoroacyloxydide.
  • the perfluoroacyloxidated product is alkoxylated with an alcohol to form an alkoxycarbonylated product, which can be obtained by reducing the alkoxycarbonylated product.
  • Examples of the acid fluoride compound used for esterification of the hydroxyl group include acid fluoride represented by the following general formula (5).
  • the acid fluoride represented by the general formula (5) may be referred to as a specific acid fluoride.
  • R 4 may contain a ring structure or a branched structure, may contain an ether bond, and a hydrogen atom may be substituted with a fluorine atom and has 2 to 20 carbon atoms.
  • the carbon number of the monovalent hydrocarbon group represented by R4 is preferably 20 or less, more preferably 10 or less, from the viewpoint of ease of purification.
  • the carbon number of the monovalent hydrocarbon group represented by R4 is preferably 3 or more, and more preferably 4 or more, from the viewpoint of suppressing side reactions during perfluoroization.
  • the fluorine atom content is preferably 50 mol% or more, more preferably 75 mol% or more, and 100 mol% ( Perfluorohydrocarbon groups) are more preferred.
  • the fluorine atom content is the ratio at which the hydrogen atom contained in the hydrocarbon group is replaced with the fluorine atom.
  • Specific examples of the specific acid fluoride that can be used in the present disclosure include, but are not limited to, the following compounds. ⁇ CF 3 CF 2 CF 2 -O-CF (CF 3 ) COF ⁇ CF 3 CF 2 CF 2 -O-CF (CF 3 ) CF 2 -O-CF (CF 3 ) COF ⁇ CF 3 -CF (CF 3 ) COF
  • the esterification of the hydroxyl group existing at the chain end of the first fluorine-containing polyether compound may be carried out in a solvent or in a solvent-free state without using a solvent.
  • the solvent is preferably a fluorinated organic solvent, and examples thereof include a fluorinated alkane, a fluorinated aromatic compound, and a fluoroalkyl ether.
  • the esterification of the hydroxyl group is preferably carried out in the presence of a catalyst.
  • a catalyst include NaF, triethylamine and the like, and NaF is preferable from the viewpoint of ease of post-treatment.
  • the reaction temperature is preferably ⁇ 10 ° C. to 100 ° C., more preferably 0 ° C. to 60 ° C. from the viewpoint of the yield of the acyl oxidated product.
  • the reaction time of the esterification reaction is preferably 1 hour to 40 hours, more preferably 2 hours to 20 hours from the viewpoint of the yield of the acyl oxidated product.
  • the reaction pressure of the esterification reaction is preferably atmospheric pressure to 2 MPa (gauge pressure) from the viewpoint of the yield of the acyl oxidated product.
  • the esterification reaction may be carried out by a batch method or a continuous method, and a known method can be appropriately adopted.
  • the esterification reaction is carried out by a batch method, for example, the first fluorine-containing polyether compound may be previously contained in the reactor, and the specific acid fluoride may be directly added into the reactor. From the viewpoint of suppressing the generation of by-products in the esterification reaction, it is preferable to add the specific acid fluoride into the reactor at a rate at which the internal temperature of the reactor does not exceed 40 ° C., and the internal temperature is 20. It is more preferable to carry out at a rate not exceeding ° C.
  • hydrogen fluoride Since hydrogen fluoride (HF) is generated by the above esterification reaction, it is preferable to have a hydrogen fluoride scavenger present in the reaction system.
  • the hydrogen fluoride scavenger include alkali metal fluorides and trialkylamines.
  • the alkali metal fluoride NaF or KF is preferable.
  • the HF scavenger When the HF scavenger is not used, it is preferable to carry out the reaction at a reaction temperature at which the HF can be vaporized, and to accompany the HF with a nitrogen stream and discharge the HF out of the reaction system.
  • the amount of the HF scavenger used is preferably 1 to 10 times mol with respect to the specific acid fluoride.
  • At least one selected from an organic solvent, water and an aqueous solution for adjusting to an appropriate acidity is added to the reaction solution and separated, or the reaction solution is solid-liquid separated and then organic.
  • the phase may be concentrated to give an acyl oxidase. Further, the reaction crude liquid obtained by concentrating the organic phase may be purified to obtain an acyl oxidized product.
  • the perfluorocalcification method of the acyl oxidized product is not particularly limited, and can be carried out by a conventionally known method.
  • perfluoroization can be performed by contacting the acyl oxidase with a fluorine gas.
  • the perfluorocalcification method of the acyl oxidase may be a batch method or a continuous method.
  • the perfluorocationization reaction is preferably carried out by the following ⁇ Method 1> or ⁇ Method 2>, and ⁇ Method 2> is more preferable from the viewpoint of the reaction yield and selectivity of the perfluoroacyloxidized product.
  • the fluorine gas may be diluted with an inert gas such as nitrogen gas before use in either the batch method or the continuous method.
  • Method 1 the acyloxide and the solvent are charged into the reactor, stirring is started, and then the fluorine gas diluted with the inert gas is continuously supplied into the solvent under a predetermined reaction temperature and reaction pressure. It is a method of reacting.
  • Method 2 a solvent is charged into a reactor, the mixture is stirred, and then, under a predetermined reaction temperature and reaction pressure, the fluorine gas diluted with the inert gas and the acyl oxidase are continuously fluorinated in a predetermined molar ratio. It is a method of reacting while supplying inside.
  • a solvent is continuously introduced into the tubular reactor and circulated in the tubular reactor, and then a fluorine gas diluted with an inert gas and a solution in which the acyl oxidase is dissolved are mixed with the fluorine gas and the acyl oxidase. And are continuously supplied to the flow of the solvent in the tubular reactor and mixed at a ratio of a predetermined molar ratio, and the fluorine gas and the acyl oxidase are brought into contact with each other in the tubular reactor to react with each other, and the reaction product is produced.
  • the inert gas examples include rare gases such as helium gas, neon gas, and argon gas, and nitrogen gas. Nitrogen gas and helium gas are preferable, and nitrogen gas is more preferable because it is economically advantageous.
  • the ratio of the fluorine gas (hereinafter, also referred to as “fluorine gas amount”) is preferably 10% by volume to 60% by volume in the total 100% by volume of the fluorine gas and the inert gas.
  • the amount of fluorine gas used is preferably 1.1 mol to 10 mol, more preferably 1.2 mol to 5 mol, with respect to 1 mol of hydrogen atom to be substituted with fluorine in the acyl oxidase.
  • the solvent When perfluorocalcification of the acyl oxidase is carried out in a solvent, the solvent may be preliminarily replaced with nitrogen in order to reduce the oxygen content in the solvent. Further, when the acyl oxidase is introduced into the solvent, the solvent may be replaced with nitrogen in advance, and then the solvent may be further replaced with fluorine.
  • the amount of the fluorine gas for fluorinating the hydrogen atoms in the acyl oxidase is always excessive with respect to all the hydrogen atoms that can be fluorinated in both the batch method and the continuous method.
  • the amount of fluorine gas is preferably 1.1 times equivalent or more, more preferably 1.3 times equivalent or more, the theoretical amount required for fluorinating all hydrogen atoms that can be fluorinated.
  • the introduction rate of the fluorinated gas based on the molar basis is set to 1 when the introduction rate of the acyl oxidase into the solvent is set to 1.
  • it may be in the range of 1 to 10 times the rate obtained by multiplying the molar-based introduction rate of the acyl oxidase by the number of hydrogen atoms that can be replaced with fluorine atoms by the fluorine gas contained in the acyl oxydide. It may be in the range of 2 to 7 times.
  • a CH bond-containing compound other than the acyl oxidase to the solvent or to irradiate the solvent with ultraviolet rays. These are preferably performed in the latter stage of the fluorination reaction.
  • the acyl oxidized product existing in the solvent can be efficiently fluorinated, and the yield of the perfluoroacyl oxidized product can be improved.
  • the CH bond-containing compound aromatic hydrocarbons are preferable, and benzene, toluene and the like can be mentioned.
  • the amount of the CH bond-containing compound added is preferably 0.1 mol% to 10 mol%, more preferably 0.1 mol% to 5 mol% with respect to the hydrogen atom in the acyl oxidase. ..
  • the CH bond-containing compound is preferably added in a solvent in which fluorine gas is present. Further, when the CH bond-containing compound is added, it is preferable to pressurize the reaction system.
  • the reaction pressure during pressurization is preferably 0.01 MPa to 5 MPa (gauge pressure).
  • the irradiation time is preferably 0.1 hour to 3 hours.
  • the inside of the reaction system may be replaced with an inert gas such as nitrogen gas, and then the organic phase may be concentrated to obtain a perfluoroacyloxydide. Further, the crude reaction solution obtained by concentrating the organic phase may be purified to obtain a perfluoroacyloxidated product.
  • Alkoxycarbonylated products can be obtained by alkoxylating the perfluoroacyloxylated products with alcohol.
  • the alcohol acting on the perfluoroacyloxydide is not particularly limited. Examples of the alcohol include methanol, ethanol, isopropanol and the like.
  • the reaction between the perfluoroacyloxydide and the alcohol may be carried out in a solvent or in a solvent-free state without using a solvent.
  • the solvent is preferably a fluorinated organic solvent, and examples thereof include fluorinated alkanes, fluorinated aromatic compounds, and fluoroalkyl ethers.
  • the amount of alcohol used for the perfluoroacyloxydide is preferably 2 mol to 20 mol, more preferably 2.1 mol to 15 mol, still more preferably 2.2 mol to 10 mol, relative to 1 mol of the perfluoroacyl oxidated product.
  • the reaction temperature between the perfluoroacyloxydated product and the alcohol is preferably ⁇ 10 ° C. to 60 ° C., more preferably 0 ° C. to 40 ° C.
  • the reaction time between the perfluoroacyloxidated product and the alcohol is preferably 0.5 hour to 48 hours, more preferably 1 hour to 24 hours.
  • the alcohol to the perfluoroacyloxydide at a rate at which the internal temperature of the reactor does not exceed 40 ° C. It is more preferable that the temperature does not exceed 20 ° C.
  • the perfluoroacyloxydide After reacting the perfluoroacyloxydide with the alcohol, add at least one selected from an organic solvent, water and an aqueous solution for adjusting to an appropriate acidity to the reaction solution and separate the solution, or solidify the reaction solution. After liquid separation, the organic phase may be concentrated to obtain an alkoxycarbonylated product. Further, the reaction crude liquid obtained by concentrating the organic phase may be purified to obtain an alkoxycarbonylated product.
  • the method for reducing the alkoxycarbonylated product is not particularly limited, and a conventionally known method can be used.
  • sodium borohydride (NaBH 4 ), sodium cyanoborohydride (NaBH 3 CN), lithium borohydride (LiBH 4 ), and hydrogenation are added to the alkoxycarbonylated product in an alcohol such as a fluorine-based organic solvent, methanol, or ethanol.
  • a reducing agent such as lithium aluminum (LAH) and diisobutylaluminum hydride (DIBAL) can be allowed to act to reduce the alkoxycarbonylated product.
  • the reaction temperature is preferably ⁇ 10 ° C.
  • the reaction time is preferably 0.5 hour to 48 hours, more preferably 1 hour to 24 hours, from the viewpoint of the yield of the perfluoroformed product.
  • an aqueous solution such as hydrochloric acid may be added to the reaction solution to separate the layers, and the mixture may be further washed with water, saturated brine or the like, and the organic phase may be concentrated to obtain a perfluoroform product.
  • the unit of the formula (2) contained in the second fluorine-containing polyether compound may be one kind or two or more kinds. Further, the second fluorine-containing polyether compound may contain a structural unit other than the unit of the formula (2).
  • the ratio of the formula (2) unit to all the structural units is preferably 90 mol% or more, more preferably 95 mol% or more. , 99 mol% or more is more preferable. It is particularly preferable that the second fluorine-containing polyether compound does not contain structural units other than the unit of formula (2).
  • the carbon number of the divalent hydrocarbon group represented by R4 and R6 is preferably 15 or less, more preferably 10 or less, independently of each other.
  • the polymerization reaction proceeds more satisfactorily when the second fluoropolyether compound is produced by the polymerization reaction described later. Therefore, a high molecular weight second fluorine-containing polyether compound can be produced in a high yield.
  • the carbon number of the divalent hydrocarbon group represented by R4 and R6 is independent from the viewpoint of preventing a cyclization reaction when the second fluorine - containing polyether compound is produced by the polymerization reaction described later. 4 or more is preferable, and 5 or more is more preferable.
  • the divalent hydrocarbon group represented by R 4 and R 6 may be a group represented by any of the above general formulas (B) to (D), and specific examples thereof are also as described above. be.
  • R5 is preferably an alkylene group having 1 to 10 carbon atoms, in which a hydrogen atom may be substituted with a fluorine atom, more preferably an alkylene group having 2 to 8 carbon atoms, and 3 carbon atoms. From alkylene group to 6 is more preferable.
  • the alkylene group represented by R5 include an alkylene group such as an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group and a hexamethylene group, a fluoroethylene group, a fluorotrimethylene group, a fluorotetramethylene group and a fluoropentamethylene group. Examples thereof include a fluoroalkylene group such as a group and a fluorohexamethylene group.
  • Examples of the combination of R 4 and R 6 include the combination of the following groups or the combination of the following perfluoroylated groups.
  • the second fluorine-containing polyether compound may be produced by any method.
  • the second fluorine-containing polyether compound is, for example, a diacylfluoride compound represented by the following general formula (6-1) and a difluoroformate compound represented by the following general formula (7-1) in a predetermined ratio. It can be obtained by reacting and modifying the chain end as needed.
  • a diacylfluoride compound represented by the following general formula (6-2) and a difluoroformate compound represented by the following general formula (7-2) are predetermined.
  • the diacylfluoride compound represented by the general formula (6-1) or (6-2) is referred to as a specific diacylfluoride compound, and the difluoro represented by the general formula (7-1) or (7-2).
  • the format compound may be referred to as a specific difluoroformate compound.
  • the group represented by "-R 5A CF 2- " corresponds to R 5 in the general formula (2).
  • Specific examples of the group represented by “-R 5A CF 2- " include those in which the bonding portion with the oxygen atom in contact with R 6 is a perfluoromethylene group among the specific examples of R 5 .
  • a structural unit represented by the following general formula (2B) by reacting a diacylfluoride compound represented by the general formula (6-2) with a difluoroformate compound represented by the general formula (7-2). A second fluorine-containing polyether compound containing the above is produced.
  • the group represented by "-CF 2 R 4A CF 2- " corresponds to R 4 in the general formula (2).
  • Specific examples of the group represented by “-CF 2 R 4A CF 2- " include a group in which the bonding portion with the oxygen atom is a perfluoromethylene group among the specific examples of R4 . [-R 5 -O-CF 2 R 4A CF 2 -OR 5 -OR 6 -O-] ... (2B)
  • the reaction between the specific diacylfluoride compound and the specific difluoroformate compound may be carried out in a solvent or in a solvent-free state without using a solvent.
  • the solvent may be a polar aprotic solvent.
  • the polar aprotic solvent include dimethoxyethane (glyme), diglime, triglyme, tetraglyme, tetrahydrofuran, acetonitrile, dimethyl sulfoxide, dimethylformamide, ethylenepolyoxide dimethyl ether and the like, with tetraglyme and acetonitrile being more preferable. ..
  • the ratio of the specific diacylfluoride compound to the specific difluoroformate compound is preferably adjusted according to the molecular weight of the target second fluorine-containing polyether compound.
  • the specific difluoroformate compound is preferably 0.01 mol to 100 mol, more preferably 0.1 mol to 10 mol, with respect to 1 mol of the specific diacylfluoride compound.
  • the reaction of the specific difluoroformate compound with the specific diacylfluoride compound is carried out in the presence of a fluoride source, preferably a metal fluoride.
  • a fluoride source preferably a metal fluoride.
  • Preferred metal fluorides include, for example, CsF, KF, RbF, AgF and combinations thereof.
  • the metal fluoride may be used as a powder, or the metal fluoride may be carried on carbon, NaF, or CaF 2 .
  • the specific difluoroformate compound can be obtained, for example, by reacting the corresponding diol compound with carbonyl fluoride by a conventional method.
  • the reaction between the specific difluoroformate compound and the specific diacylfluoride compound may be carried out in an autoclave.
  • a metal fluoride, a specific difluoroformate compound, and a solvent are housed in an autoclave, and vacuum degassing is performed after setting the atmosphere in a nitrogen atmosphere, then the specific diacylfluoride compound is added, and the temperature is set to a predetermined time for a predetermined time.
  • the reaction may be carried out to produce a second fluorine-containing polyether compound.
  • the reaction product may be pressure-filtered with a fluororesin filter to remove the metal fluoride. Further, the solvent and the unreacted specific difluoroformate compound and the specific diacylfluoride compound may be removed from the filtrate by distillation or the like to purify the second fluorine-containing polyether compound.
  • the second fluorine-containing polyether compound produced by the above method has a compound in which both chain ends are acylfluoride groups, a compound in which both chain ends are fluoroformate groups, and one of the chain ends is acylfluoride.
  • It contains at least one selected from the group consisting of compounds in which the other one is a fluoroformate group, and may be a mixture containing at least two selected from the group consisting of these compounds.
  • the ratio of the acylfluoride group and the ratio of the fluoroformate group to all the chain ends in the second fluorine-containing polyether compound produced by the above method are not particularly limited.
  • the proportion of acylfluoride groups in all chain ends is preferably 10 mol% to 90 mol%.
  • the fluoroformate group at the end of the chain causes a decarbonylation reaction by heating to 160 ° C to 200 ° C in the presence of alkali metals such as NaOH, KOH, Na 2 CO 3 , K 2 CO 3 , CsF, KF and NaF. It may be converted into an alkyl fluoride group such as a CH 2F group.
  • alkali metals such as NaOH, KOH, Na 2 CO 3 , K 2 CO 3 , CsF, KF and NaF.
  • alkali metals such as NaOH, KOH, Na 2 CO 3 , K 2 CO 3 , CsF, KF and NaF.
  • alkyl fluoride group such as a CH 2F group.
  • It contains at least one selected from the group consisting of a compound having both ends fluorinated alkyl groups and a compound having one of the chain ends having an acylfluoride group and the other having an alkyl fluorinated group. It may be a mixture containing at least two kinds selected from the group consisting of these compounds.
  • the proportion of the acylfluoride group and the proportion of the fluoroalkyl group in all the chain ends in the second fluorine-containing polyether compound produced by the above method are not particularly limited.
  • the proportion of acylfluoride groups in all chain ends is preferably 10 mol% to 90 mol%.
  • the reaction temperature between the specific difluoroformate compound and the specific diacylfluoride compound is preferably 80 ° C. to 160 ° C., more preferably 90 ° C. to 140 ° C.
  • the reaction time between the specific difluoroformate compound and the specific diacylfluoride compound is preferably 1 hour to 72 hours, more preferably 2 hours to 48 hours.
  • the perfluoroformate of the second fluorine-containing polyether compound is, for example, converted into a fluoroformate group into a fluoroalkyl group and esterified with an alcohol acting on the remaining acylfluoride group to obtain a first alkoxycarbonyloxide.
  • the first alkoxycarbonylated product is perfluoronated to obtain a perfluoroalkoxycarbonylated product, and this perfluoroalkoxycarbonylated product is subjected to an ester exchange reaction with an alcohol to obtain a second alkoxycarbonylated product, which is obtained by reducing the second alkoxycarbonylated product. Can be done.
  • the alcohol that acts on the acylfluoride group in obtaining the first alkoxycarbonylated product is not particularly limited. Examples of the alcohol include methanol, ethanol, isopropanol and the like.
  • the esterification of the acylfluoride group may use the alcohol used for esterification as a solvent.
  • a first alkoxycarbonylated product is obtained by adding a second fluorine-containing polyether compound to alcohol and heating as necessary. From the viewpoint of the yield of the first alkoxycarbonylated product, the reaction temperature of the esterification reaction is preferably ⁇ 10 ° C. to 60 ° C., more preferably 0 ° C. to 40 ° C.
  • the reaction time of the esterification reaction is preferably 0.5 hours to 48 hours, more preferably 1 hour to 24 hours.
  • at least one selected from an organic solvent, water and an aqueous solution for adjusting to an appropriate acidity is added to the reaction solution to separate the layers, and then the organic phase is concentrated to make the first alkoxycarbonylated product. May be obtained. Further, the reaction crude liquid obtained by concentrating the organic phase may be purified to obtain a first alkoxycarbonylated product.
  • the method for perfluoroforming the first alkoxycarbonylated product is not particularly limited, and a perfluoroalkoxycarbonylated product can be obtained by adopting the same method as the method for perfluoroforming the first fluorine-containing polyether compound.
  • the alcohol used in the transesterification reaction with the perfluoroalkoxycarbonylated product is not particularly limited. Examples of the alcohol include methanol, ethanol, isopropanol and the like. In the transesterification reaction, the alcohol used in the transesterification reaction may be used as a solvent.
  • a second alkoxycarbonylated product is obtained by adding a perfluoroalkoxycarbonylated product to an alcohol and heating as necessary. From the viewpoint of the yield of the second alkoxycarbonylated product, the reaction temperature of the transesterification reaction is preferably ⁇ 10 ° C. to 60 ° C., more preferably 0 ° C. to 40 ° C.
  • the reaction time of the transesterification reaction is preferably 0.5 hours to 48 hours, more preferably 1 hour to 24 hours.
  • at least one selected from an organic solvent, water and an aqueous solution for adjusting to an appropriate acidity is added to the reaction solution to separate the layers, and then the organic phase is concentrated to form a second alkoxycarbonylated product. May be obtained. Further, the reaction crude liquid obtained by concentrating the organic phase may be purified to obtain a second alkoxycarbonylated product.
  • the method for reducing the alkoxycarbonylated product is not particularly limited.
  • a perfluoroform product can be obtained by adopting the same method as the method for reducing the first fluorine-containing polyether compound.
  • a 1-inch reaction tube made of Inconel was filled with glass beads and heated to 330 ° C.
  • the compound represented by the formula F was diluted with nitrogen gas to 10% by volume and introduced into the reaction tube.
  • the purified gas was cooled and collected at the outlet of the reaction tube, and purified and distilled to obtain 87 g of the target compound represented by the formula G.
  • the reaction was stopped, concentrated to remove acetonitrile, hydrochloric acid was added, and the mixture was stirred and mixed, and then the two layers were separated into organic layers. Was recovered. This was designated as product 1-1-1.
  • the recovered liquid product 1-1-1 was 867 g.
  • the molecular weight distribution (Mw / Mn) for product 1-1-1 was 1.70.
  • the product 1-1-1 contained compounds represented by the following formulas 1-1-1A, 1-1-1B and 1-1-1C. The average n number was 2.
  • the terminal functional groups in the whole product 1-1-1 were 76 mol% alcohol and 24 mol% vinyl ether.
  • the compound represented by the formula 1-1-1C is not affected, and the compound represented by the formula 1-1-2C is represented by the formula 1-1. It is the same as the compound represented by -1C.
  • the average n number was 2.
  • the terminal functional groups in the whole product 1-1-2 were 76 mol% ester and 24 mol% vinyl ether.
  • the reaction was recovered from the autoclave and concentrated to give 937 g of product 1-1-3.
  • the molecular weight distribution (Mw / Mn) for product 1-1-3 was 1.66.
  • the product 1-1-3 contained compounds represented by the following formulas 1-1-3A, 1-1-3B and 1-1-3C.
  • the average n number was 2.
  • the terminal functional groups in the whole product 1-1-3 were 72 mol% of the ester and 28 mol% of the CF 3 terminal.
  • the compound represented by the formula 1-1-3C is not affected, and the compound represented by the formula 1-1-4C is represented by the formula 1-1. It is the same as the compound represented by -3C.
  • the average n number was 2.
  • the terminal functional groups in the whole product 1-1-4 were 72 mol% of the ester and 28 mol% of the CF 3 terminal.
  • product 1-1-5 The molecular weight distribution (Mw / Mn) for product 1-1-5 was 1.72.
  • the product 1-1-5 contained compounds represented by the following formulas 1-1-5A, 1-1-5B and 1-1-5C. In the reaction for synthesizing the product 1-1-5, the compound represented by the formula 1-1-4C is not affected, and the compound represented by the formula 1-1-5C is represented by the formula 1-1. It is the same as the compound represented by -4C. The average n number was 2.
  • the terminal functional groups in the whole product 1-1-5 were 72 mol% alcohol and 28 mol% CF 3 terminal.
  • the compound having CF 3 at both ends was 10%, and the compound had CF 3 and OH. It was found that (the compound represented by the formula 1-1-5B) was contained in a ratio of 36%, and the compound having both terminal OHs (the compound represented by the formula 1-1-5A) was contained in a ratio of 54%.
  • the reaction was stopped, concentrated to remove acetonitrile, hydrochloric acid was added, and the mixture was stirred and mixed, and then the two layers were separated into organic layers. Was recovered.
  • the recovered liquid product 1-2-1 was 805 g.
  • the product 1-2-1 was purified by column chromatography, and 464 g of both terminal alcohols (compound represented by the formula 1-2-1A) was recovered.
  • the molecular weight distribution (Mw / Mn) for the compound represented by the formula 1-2-1A was 1.55.
  • the average n number was 3. 174 g of a single-ended alcohol and a single-ended vinyl compound (compound represented by the formula 1-2-1B) and 86.9 g of a double-ended vinyl compound (a compound represented by the formula 1-2-1C) were recovered. ..
  • the reaction solution was recovered from the autoclave and concentrated to obtain 234 g of the compound represented by the formula 1-2-3A.
  • the molecular weight distribution (Mw / Mn) of the compound represented by the formula 1-2-3A was 1.66, and the average n number was 3.
  • the organic layer was washed once with water and once with saturated brine, and then concentrated to obtain 118 g of the compound represented by the formula 1-2-5A.
  • the molecular weight distribution (Mw / Mn) for the compound represented by the formula 1-2-5A was 1.61.
  • the average n number was 3.
  • the reaction was stopped, concentrated to remove acetonitrile, hydrochloric acid was added, and the mixture was stirred and mixed, and then the two layers were separated into organic layers.
  • the recovered liquid product 1-3-1 was 192 g.
  • the product 1-3-1 was purified by column chromatography, and 124 g of a two-terminal alcohol compound and a two-terminal phenolic hydroxyl group (compound represented by the formula 1-3-1A) was recovered.
  • the molecular weight distribution (Mw / Mn) for the compound represented by the formula 1-3-1A was 1.72.
  • the average n number was 2. 3.
  • the reaction solution was recovered from the autoclave and concentrated to obtain 155 g of the compound represented by the formula 1-3-3A.
  • the molecular weight distribution (Mw / Mn) for the compound represented by the formula 1-3-3A was 1.74.
  • the average n number was 2.
  • the reaction solution was recovered from the autoclave and concentrated to obtain 93 g of the compound represented by the formula 1-4-3A.
  • the molecular weight distribution (Mw / Mn) for the compound represented by the formula 1-4-3A was 1.82.
  • the average n number was 2.
  • the organic layer was washed once with water and once with saturated brine, and then concentrated to obtain 44 g of the compound represented by the formula 1-4-5A.
  • the molecular weight distribution (Mw / Mn) for the compound represented by the formula 1-4-5A was 1.81.
  • the average n number was 2.
  • the mixture was stirred and mixed at 40 ° C., and 85.1 g of the compound represented by the formula G was added dropwise. Then, it was heated to 90 degreeC, and the progress of a reaction was followed while confirming by NMR. After confirming that the residual amounts of the diol compound and the divinyl ether compound in the reaction system were reduced, the reaction was stopped, concentrated to remove acetonitrile, hydrochloric acid was added, and the mixture was stirred and mixed, and then the two layers were separated into organic layers. Was recovered. This was designated as product 2-1-1.
  • the recovered liquid product 2-1-1 was 121 g.
  • the product 2-1-1 was purified by column chromatography, and 87 g of both-terminal alcohol (compound represented by the formula 2-1-1A) was recovered.
  • the molecular weight distribution (Mw / Mn) for the compound represented by the formula 2-1-1A was 1.46.
  • the average n number was 3. 15 g of a single-ended alcohol and a single-ended vinyl compound (compound represented by the formula 2-1-1B) and 6.6 g of a double-ended vinyl compound (a compound represented by the formula 2-1-1C) were recovered. ..
  • the reaction solution was recovered from the autoclave and concentrated to obtain 91 g of the compound represented by the formula 2-1-3A.
  • the molecular weight distribution (Mw / Mn) for the compound represented by the formula 2-1-3A was 1.47.
  • the average n number was 3.
  • the molecular weight distribution (Mw / Mn) for the compound represented by the formula 3-1-1A was 1.60.
  • the average n number was 2. 26.9 g of a one-ended alcohol and a one-ended vinyl compound (compound represented by the formula 3-1-1B), and 3.4 g of a two-ended vinyl compound (a compound represented by the formula 3-1-1C), respectively. Collected.
  • the organic layer was washed once with water and once with saturated brine, and then concentrated to obtain 11 g of the compound represented by the formula 3-1-5A.
  • the molecular weight distribution (Mw / Mn) for the compound represented by the formula 3-1-5A was 1.64.
  • the average n number was 2.
  • n number was 2. 30.4 g of a one-ended alcohol and a one-ended vinyl compound (compound represented by the formula 3-2-1B), and 3.8 g of a two-ended vinyl compound (a compound represented by the formula 3-2-1C), respectively. Collected.
  • the reaction solution was recovered from the autoclave and concentrated to obtain 25 g of the compound represented by the formula 3-2-3A.
  • the molecular weight distribution (Mw / Mn) for the compound represented by the formula 3-2-3A was 1.52.
  • the average n number was 2.
  • 0.3 g of NaBH 4 powder was taken into a 500 mL three-necked flask, and 10 g of AC-2000 was added.
  • a liquid containing 10 g of the compound represented by the formula 3-2-4A, 0.6 g of methanol, and 10 g of AC-2000 was added dropwise so as not to exceed 10 ° C.
  • a solution obtained by further mixing 0.6 g of methanol and 10 g of AC-2000 was added dropwise. Then, the temperature was set to 20 ° C. and stirring was continued. After 12 hours, hydrochloric acid was added dropwise until the aqueous solution became acidic, and the two layers were separated to recover the organic layer.
  • the product 4-1-1 contained compounds represented by the following formulas 4-1-1A, 4-1-1B and 4-1-1C.
  • the product 4-1-1 is considered to have been produced through a mixture of compounds represented by the following formulas 4-1-1A', 4-1-1B' and 4-1-1C'.
  • the compound represented by the formula 4-1-1C is the same as the compound represented by the formula 4-1-1C'.
  • the weight average molecular weight of the product 4-1-1 was 1500, and the terminal groups in the entire product 4-1-1 had CH 2 F of 45 mol% and CF 2 COF of 55 mol%.
  • the product 4-1-2 contained compounds represented by the following formulas 4-1-2A, 4-1-2B and 4-1-2C.
  • the compound represented by the formula 4-1-1A is not affected, and the compound represented by the formula 4-1-2A is represented by the formula 4-1. It is the same as the compound represented by -1A.
  • the terminal groups in the whole product 4-1-2 had CH 2 F in 45 mol% and CF 2 COOCH 2 CH 3 in 55 mol%.
  • the ratio of CH 2 F was the same as the ratio of CH 2 F for product 4-1-1.
  • the reaction was recovered from the autoclave and concentrated to give 69 g of product 4-1-3.
  • the product 4-1-3 contained compounds represented by the following formulas 4-1-3A, 4-1-3B and 4-1-3C.
  • the terminal groups in the whole product 4-1-3 were CF 3 in 45 mol% and CF 2 COOCF 2 CF 3 in 55 mol%.
  • product 4-1-4 contained compounds represented by the following formulas 4-1-4A, 4-1-4B and 4-1-4C.
  • the compound represented by the formula 4-1-4A is not affected, and the compound represented by the formula 4-1-4A is represented by the formula 4-1. It is the same as the compound represented by -3A.
  • the terminal groups in the whole product 4-1-4 were CF 3 in 45 mol% and CF 2 COOCH 2 CH 3 in 55 mol%.
  • the product 4-1-5 contained compounds represented by the following formulas 4-1-5A, 4-1-5B and 4-1-5C.
  • the compound represented by the formula 4-1-4A was not affected, and the compound represented by the formula 4-1-4A was represented by the formula 4-1. It is the same as the compound represented by -5A.
  • the terminal groups in the whole product 4-1-5 were CF 3 in 45 mol% and CF 2 CH 2 OH in 55 mol%.
  • the reaction was continued at 170 ° C. for 60 hours. After the reaction, the low boiling gas was purged to recover 68 g of the produced polymer.
  • the recovered polymer was designated as product 5-1-1.
  • the product 5-1-1 contained compounds represented by the following formulas 5-1-1A, 5-1-1B and 5-1-1C.
  • the product 5-1-1 is considered to have been produced through a mixture of compounds represented by the following formulas 5-1-1A', 5-1-1B' and 5-1-1C'.
  • the compound represented by the formula 5-1-1C is the same as the compound represented by the formula 5-1-1C'.
  • the weight average molecular weight of the product 5-1-1 was 2000, and the terminal groups in the entire product 5-1-1 had CH 2 F of 45 mol% and CF 2 COF of 55 mol%.
  • the product 5-1-2 contained compounds represented by the following formulas 5-1-2A, 5-1-2B and 5-1-2C. In the reaction for synthesizing the product 5-1-2, the compound represented by the formula 5-1-1A is not affected, and the compound represented by the formula 5-1-2A is represented by the formula 5-1.
  • the reaction was recovered from the autoclave and concentrated to give 65 g of product 5-1-3.
  • the product 5-1-3 contained compounds represented by the following formulas 5-1-3A, 5-1-3B and 5-1-3C.
  • the terminal groups in the whole product 5-1-3 were CF 3 in 45 mol% and CF 2 COOCF 2 CF 3 in 55 mol%.
  • product 5-1-4 14 g of ethanol was added in advance to a 500 mL PFA flask, and 65 g of product 5-1-3 was added dropwise. The dropping rate was adjusted so that the temperature did not exceed 10 ° C. when dropping. Then, the reaction was carried out at 40 ° C. for 5 hours, washed with water, separated into two layers, and then the organic layer was concentrated to recover 60 g of the organic layer. This was designated as product 5-1-4.
  • the product 5-1-4 contained compounds represented by the following formulas 5-1-4A, 5-1-4B and 5-1-4C.
  • the compound represented by the formula 5-1-3A is not affected, and the compound represented by the formula 5-1-4A is represented by the formula 5-1. It is the same as the compound represented by -3A.
  • the terminal groups in the whole product 5-1-4 were CF 3 in 45 mol% and CF 2 COOCH 2 CH 3 in 55 mol%.
  • the product 5-1-5 contained compounds represented by the following formulas 5-1-5A, 5-1-5B and 5-1-5C.
  • the compound represented by the formula 5-1-4A is not affected, and the compound represented by the formula 5-1-4A is represented by the formula 5-1. It is the same as the compound represented by -5A.
  • the terminal groups in the whole product 5-1-5 were CF 3 in 45 mol% and CF 2 CH 2 OH in 55 mol%.
  • the reaction was continued at 170 ° C. for 45 hours. After the reaction, the low boiling gas was purged to recover 187 g of the produced polymer.
  • the recovered polymer was designated as product 6-1-1.
  • the product 6-1-1 contained compounds represented by the following formulas 6-1-1A, 6-1-1B and 6-1-1C.
  • the product 6-1-1 is considered to have been produced through a mixture of compounds represented by the following formulas 6-1-1A', 6-1-1B' and 6-1-1C'.
  • the compound represented by the formula 6-1-1C is the same as the compound represented by the formula 6-1-1C'.
  • the weight average molecular weight of the product 6-1-1 was 1500, and the terminal groups in the whole product 6-1-1 had CH 2 F of 43 mol% and> CHCOF of 57 mol%.
  • the product 6-1-2 contained compounds represented by the following formulas 6-1-2A, 6-1-2B and 6-1-2C. In the reaction for synthesizing the product 6-1-2, the compound represented by the formula 6-1-1A is not affected, and the compound represented by the formula 6-1-2A is represented by the formula 6-1.
  • the reaction was recovered from the autoclave and concentrated to give 229 g of product 6-1-3.
  • the product 6-1-3 contained compounds represented by the following formulas 6-1-3A, 6-1-3B and 6-1-3C.
  • the terminal groups in the whole product 6-1-3 were 43 mol% CF 3 and 57 mol% CFCOOCF 2 CF 3 .
  • product 6-1-4 contained compounds represented by the following formulas 6-1-4A, 6-1-4B and 6-1-4C.
  • the compound represented by the formula 6-1-4A is not affected, and the compound represented by the formula 6-1-4A is represented by the formula 6-1. It is the same as the compound represented by -3A.
  • the terminal groups in the whole product 6-1-4 were 43 mol% CF 3 and 57 mol% CFCOOCH 2 CH 3 .
  • the product 6-1-5 contained compounds represented by the following formulas 6-1-5A, 6-1-5B and 6-1-5C.
  • the compound represented by the formula 6-1-4A was not affected, and the compound represented by the formula 6-1-4A was represented by the formula 6-1. It is the same as the compound represented by -5A.
  • the terminal groups in the whole product 6-1-5 were 43 mol% CF 3 and 57 mol% CFCH 2 OH.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Abstract

含フッ素ポリエーテル化合物は、式(1)単位又は式(2)単位を含む。R1はフッ素原子等を表し、R2及びR3は環構造を含む炭素数3~20の2価の炭化水素基を表す。R2及びR3の少なくとも一方は、水素原子がフッ素原子により置換された炭化水素基を表す。R4及びR6は環構造を含む炭素数3~20の2価の炭化水素基を表し、R5は水素原子がフッ素原子により置換されていてもよい炭素数1~16のアルキレン基を表す。R4及びR6の少なくとも一方は、水素原子がフッ素原子により置換された炭化水素基を表す。R4及びR6は互いに異なる構造を有する。 [-CF2-CHR1-O-R2-O-CHR1-CF2-O-R3-O-]・・・(1) [-R5-O-R4-O-R5-O-R6-O-]・・・(2)

Description

含フッ素ポリエーテル化合物
 本開示は、含フッ素ポリエーテル化合物に関する。
 含フッ素化合物は、優れた潤滑性及び撥水撥油性等を示すことから、表面処理剤又は潤滑剤等に使用される。含フッ素化合物の中でも、エーテル結合を有する含フッ素ポリエーテル化合物は、潤滑性に優れ、磁気ディスクの読取ヘッド等の保護を目的とした被膜形成に用いられている。
 含フッ素ポリエーテル化合物は、種々の方法により製造されうる。含フッ素ポリエーテル化合物の製造に用いられる方法及び原料の種類により、主鎖中に含フッ素ポリエーテル化合物を構成する構造単位がランダムに分布したものや、構造単位が規則的に繰り返すものが得られる。
 主鎖中に構造単位が規則的に繰り返す含フッ素ポリエーテル化合物の製造方法の一例として、特許文献1及び特許文献2に記載の製造方法が知られている。
国際公開第2019/243403号 国際公開第2019/243404号
 含フッ素ポリエーテル化合物を表面処理剤又は潤滑剤等に適用するに際し、含フッ素ポリエーテル化合物に耐薬品性が求められる場合がある。しかしながら、特許文献1及び特許文献2に記載の製造方法により得られる含フッ素ポリエーテル化合物の耐薬品性は、必ずしも十分でない場合があった。
 本開示は上記従来の事情に鑑みてなされたものであり、本開示の一形態は、耐薬品性に優れる含フッ素ポリエーテル化合物を提供することを目的とする。
 前記課題を達成するための具体的手段は以下の通りである。
  <1> 下記一般式(1)で表される構造単位又は下記一般式(2)で表される構造単位を含む含フッ素ポリエーテル化合物。
 [-CF-CHR-O-R-O-CHR-CF-O-R-O-]・・・(1)
 [-R-O-R-O-R-O-R-O-]・・・(2)
(一般式(1)中、Rは、それぞれ独立して、フッ素原子、水素原子、又は水素原子がフッ素原子により置換されていてもよい炭素数1~3の1価の炭化水素基を表し、R及びRは、それぞれ独立して、環構造を含み、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数3~20の2価の炭化水素基を表す。ただし、R及びRの少なくとも一方は、環構造を含み、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換された炭素数3~20の2価の炭化水素基を表す。
 一般式(2)中、R及びRは、それぞれ独立して、環構造を含み、水素原子がフッ素原子により置換されていてもよい炭素数3~20の2価の炭化水素基を表し、Rは、それぞれ独立して、水素原子がフッ素原子により置換されていてもよい炭素数1~16のアルキレン基を表す。ただし、R及びRの少なくとも一方は、環構造を含み、水素原子がフッ素原子により置換された炭素数3~20の2価の炭化水素基を表す。また、R及びRは、互いに異なる構造を有する。)
  <2> 一般式(1)におけるR及びRの一方が脂肪族環を含み、他の一方が芳香族環を含む<1>に記載の含フッ素ポリエーテル化合物。
  <3> 一般式(1)におけるR及びRが共に1つの環構造を含み、
 Rに含まれる環構造の環員数とRに含まれる環構造の環員数とが、異なる<1>又は<2>に記載の含フッ素ポリエーテル化合物。
  <4> 一般式(1)におけるR及びRの一方に含まれる前記環構造の数と他方に含まれる前記環構造の数とが、異なる<1>~<3>のいずれか1項に記載の含フッ素ポリエーテル化合物。
  <5> 一般式(1)におけるRが、-CH3ACH-で表される基であり、R3Aは一般式(1)におけるRで表される2価の炭化水素基から酸素原子と結合する部分を構成する2つのメチレン基を除いた基を表す<1>~<4>のいずれか1項に記載の含フッ素ポリエーテル化合物。
  <6> 一般式(2)におけるR及びRが共に1つの環構造を含み、
 Rに含まれる環構造の環員数とRに含まれる環構造の環員数とが、異なる<1>~<5>のいずれか1項に記載の含フッ素ポリエーテル化合物。
  <7> 下記一般式(1’)で表される構造単位又は下記一般式(2’)で表される構造単位を含む含フッ素ポリエーテル化合物。
 [-CF-CFRF1-O-RF2-O-CFRF1-CF-O-RF3-O-]・・・(1’)
 [-RF5-O-RF4-O-RF5-O-RF6-O-]・・・(2’)
(一般式(1’)中、RF1は、それぞれ独立して、フッ素原子、又は炭素数1~3の1価のペルフルオロ炭化水素基を表し、RF2及びRF3は、それぞれ独立して、環構造を含み、エーテル結合を含んでいてもよい炭素数3~20の2価のペルフルオロ炭化水素基を表す。
 一般式(2’)中、RF4及びRF6は、それぞれ独立して、環構造を含む炭素数3~20の2価のペルフルオロ炭化水素基を表し、RF5は、それぞれ独立して、炭素数1~16のペルフルオロアルキレン基を表す。ただし、RF4及びRF6は、互いに異なる構造を有する。)
 本開示の一形態によれば、耐薬品性に優れる含フッ素ポリエーテル化合物を提供できる。
 以下、本開示を実施するための形態について詳細に説明する。但し、本開示は以下の実施形態に限定されない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示において、「フルオロアルキレン基」には、水素原子が全てフッ素原子に置換されたペルフルオロアルキレン基及び水素原子の一部がフッ素原子に置換されたフルオロアルキレン基が包含される。また、本開示において、「フルオロシクロアルカン」等の記載にも、シクロアルカンが有する水素原子が全てフッ素原子に置換されたペルフルオロシクロアルカンだけではなく、水素原子の一部がフッ素原子に置換されたシクロアルカンも包含される。
 本開示の基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。
 本開示において、炭素数とは、ある基全体に含まれる炭素原子の総数を意味し、該基が置換基を有さない場合は当該基の骨格を形成する炭素原子の数を表し、該基が置換基を有する場合は当該基の骨格を形成する炭素原子の数に置換基中の炭素原子の数を加えた総数を表す。
 本開示において、数平均分子量(Mn)及び質量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィ(以下、「GPC」ともいう。)により測定する。GPCによる測定は、特開2001-208736号公報に記載する方法に従い、下記条件にて行う。
・移動相:R-225(AGC株式会社製、商品名: アサヒクリン(登録商標)AK-225SECグレード1)及びヘキサフルオロイソプロピルアルコール(HFIP)の混合溶媒(R-225:HFIP=99:1(体積比))
・分析カラム:PLgel MIXED-Eカラム(ポリマーラボラトリーズ社製)を2 本直列に連結したもの
・分子量測定用標準試料:分子量分布(Mw/Mn)が1.1未満且つMnが2,000~10,000のペルフルオロポリエーテル4種、及びMw/Mnが1.1以上且つMnが1,300のペルフルオロポリエーテル1種
・移動相流速:1.0mL/分
・カラム温度:37℃
・検出器:蒸発光散乱検出器
<含フッ素ポリエーテル化合物>
 本開示の含フッ素ポリエーテル化合物は、下記一般式(1)で表される構造単位又は下記一般式(2)で表される構造単位を含む。以下、一般式(1)で表される構造単位を式(1)単位と称し、一般式(2)で表される構造単位を式(2)単位と称することがある。また、式(1)単位を含む含フッ素ポリエーテル化合物を第1含フッ素ポリエーテル化合物と称し、式(2)単位を含む含フッ素ポリエーテル化合物を第2含フッ素ポリエーテル化合物と称することがある。
 [-CF-CHR-O-R-O-CHR-CF-O-R-O-]・・・(1)
 [-R-O-R-O-R-O-R-O-]・・・(2)
 一般式(1)中、Rは、それぞれ独立して、フッ素原子、水素原子、又は水素原子がフッ素原子により置換されていてもよい炭素数1~3の1価の炭化水素基を表し、R及びRは、それぞれ独立して、環構造を含み、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数3~20の2価の炭化水素基を表す。ただし、R及びRの少なくとも一方は、環構造を含み、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換された炭素数3~20の2価の炭化水素基を表す。
 一般式(2)中、R及びRは、それぞれ独立して、環構造を含み、水素原子がフッ素原子により置換されていてもよい炭素数3~20の2価の炭化水素基を表し、Rは、それぞれ独立して、水素原子がフッ素原子により置換されていてもよい炭素数1~16のアルキレン基を表す。ただし、R及びRの少なくとも一方は、環構造を含み、水素原子がフッ素原子により置換された炭素数3~20の2価の炭化水素基を表す。また、R及びRは、互いに異なる構造を有する。
 本開示において、R及びRが「互いに異なる構造を有する」とは、R及びRで表される2価の炭化水素基に含まれる炭素原子の数が異なるか、又は炭素原子の数は同じであるものの炭素原子により構築される炭化水素基の骨格が異なることをいう。なお、炭化水素基の骨格が異なるか否かを判断する場合に、炭素-炭素間の不飽和結合の有無は考慮しない。例えば、シクロヘキシレン基及びフェニレン基は、同じ骨格と見なす。
 本開示の含フッ素ポリエーテル化合物は、下記一般式(1’)で表される構造単位又は下記一般式(2’)で表される構造単位を含むものであってもよい。
 [-CF-CFRF1-O-RF2-O-CFRF1-CF-O-RF3-O-]・・・(1’)
 [-RF5-O-RF4-O-RF5-O-RF6-O-]・・・(2’)
 一般式(1’)中、RF1は、それぞれ独立して、フッ素原子、又は炭素数1~3の1価のペルフルオロ炭化水素基を表し、RF2及びRF3は、それぞれ独立して、環構造を含み、エーテル結合を含んでいてもよい炭素数3~20の2価のペルフルオロ炭化水素基を表す。
 一般式(2’)中、RF4及びRF6は、それぞれ独立して、環構造を含む炭素数3~20の2価のペルフルオロ炭化水素基を表し、RF5は、それぞれ独立して、炭素数1~16のペルフルオロアルキレン基を表す。ただし、RF4及びRF6は、互いに異なる構造を有する。
 RF1~RF6で表される基は、R~Rで表される基がペルフルオロ化されたものであってもよい。つまり、一般式(1’)で表される構造単位又は一般式(2’)で表される構造単位を含む含フッ素ポリエーテル化合物は、第1含フッ素ポリエーテル化合物又は第2含フッ素ポリエーテル化合物のペルフルオロ化物であってもよい。
 R~Rで表される基の「ペルフルオロ化」とは、当該基が以下の状態にまでフッ素化することをいう。
 R~Rで表される基が炭素-炭素間の不飽和結合を含まない場合、R~Rで表される基を構成する炭素原子に結合したフッ素化されうる水素原子の全てがフッ素化された状態を、「ペルフルオロ化」と称する。
 R~Rで表される基が炭素-炭素間の不飽和結合を含む場合、R~Rで表される基を構成する炭素原子に結合したフッ素化されうる水素原子の全てがフッ素化され、且つ、炭素-炭素二重結合又は炭素-炭素三重結合等の炭素-炭素間の不飽和結合を形成する2つの炭素原子の各々にフッ素原子が付加されて炭素-炭素間の不飽和結合が消滅した状態を、「ペルフルオロ化」と称する。例えば、>C=C<がペルフルオロ化されると>CF-CF<に、-C≡C-がペルフルオロ化されると-CF-CF-になる。また、フッ素化されうる原子団にはフッ素化されうる水素原子が結合していてもよく、たとえば、-CH=CH-がペルフルオロ化されると-CF-CF-になる。
 RF1~RF6で表される基が、R~Rで表される基がペルフルオロ化されたものである場合、一般式(1’)中、RF1は、それぞれ独立して、Rがフッ素原子の場合にはフッ素原子を表し、Rが水素原子の場合にはフッ素原子を表し、Rが1価の炭化水素基の場合にはRで表される1価の炭化水素基がペルフルオロ化された炭素数1~3の1価のペルフルオロ炭化水素基を表し、RF2及びRF3は、それぞれ独立して、R又はRで表される2価の炭化水素基がペルフルオロ化された炭素数3~20の2価のペルフルオロ炭化水素基を表す。また、一般式(2’)中、RF4及びRF6は、それぞれ独立して、R又はRで表される2価の炭化水素基がペルフルオロ化された炭素数3~20の2価のペルフルオロ炭化水素基を表し、RF5は、それぞれ独立して、炭素数1~16のペルフルオロアルキレン基を表す。
 RF1~RF6で表される基が、R~Rで表される基がペルフルオロ化されたものである場合、RF1~RF6で表される基の具体例としては、後述のR~Rで表される基がペルフルオロ化された基が挙げられる。
 本開示の含フッ素ポリエーテル化合物は、耐薬品性に優れる。その理由は明確ではないが、以下のように推察される。
 本開示の含フッ素ポリエーテル化合物は、式(1)単位又は式(2)単位を含むものであるところ、式(1)単位におけるR及びR、並びに、式(2)単位におけるR及びRはいずれも環構造を含む炭化水素基である。そのため、含フッ素ポリエーテル化合物は複数の環構造を含む炭化水素基を分子内に含むことになり、その結果として含フッ素ポリエーテル化合物の耐薬品性が向上すると推察される。
 本開示の含フッ素ポリエーテル化合物の数平均分子量(Mn)は、1000~30000が好ましく、1500~20000がより好ましく、2000~10000がさらに好ましい。
 また、本開示の含フッ素ポリエーテル化合物の分子量分布(Mw/Mn)は、1~3が好ましく、1~2.5がより好ましく、1~2がさらに好ましい。
 本開示の含フッ素ポリエーテル化合物は、2つの鎖末端を有してもよい。本開示の含フッ素ポリエーテル化合物が2つの鎖末端を有する場合、2つの鎖末端は同じであってもよいし異なっていてもよく、同じであることが好ましい。
 鎖末端としては、水酸基、水素原子がフッ素原子により置換されていてもよい炭素数1~16のアルキル基、水素原子がフッ素原子により置換されていてもよい炭素数1~16のアルコキシカルボニル基、水素原子がフッ素原子により置換されていてもよい炭素数1~16のアルコキシ基等が挙げられるが、これらに限定されない。
 以下、本開示の含フッ素ポリエーテル化合物の構造、並びに、本開示の含フッ素ポリエーテル化合物の製造に用いられる原料及び製法等について説明する。
[第1含フッ素ポリエーテル化合物]
 第1含フッ素ポリエーテル化合物に含まれる式(1)単位は、1種類であっても2種類以上であってもよい。また、第1含フッ素ポリエーテル化合物には、式(1)単位以外の構造単位が含まれていてもよい。
 第1含フッ素ポリエーテル化合物が式(1)単位以外の構造単位を含む場合、全ての構造単位に占める式(1)単位の割合は、90モル%以上が好ましく、95モル%以上がより好ましく、99モル%以上がさらに好ましい。第1含フッ素ポリエーテル化合物は、式(1)単位以外の構造単位を含まないことが特に好ましい。
 一般式(1)中、Rは、潤滑性の観点から、Rの少なくとも一方がフッ素原子であることが好ましく、Rの両方がフッ素原子であることがより好ましい。
 一般式(1)中、R及びRで表される2価の炭化水素基の炭素数は、それぞれ独立して、15以下が好ましく、13以下がより好ましい。R及びRで表される2価の炭化水素基の炭素数を15以下とすることにより、第1含フッ素ポリエーテル化合物を後述の重合反応により製造する際に重合反応がより良好に進行するため、高分子量の第1含フッ素ポリエーテル化合物を高収率で製造できる。
 R及びRで表される2価の炭化水素基の炭素数は、第1含フッ素ポリエーテル化合物を後述の重合反応により製造する際に環化反応を防止する観点から、それぞれ独立して、4以上が好ましく、5以上がより好ましい。
 R及びRで表される2価の炭化水素基に含まれる環構造は、フェニル環又はシクロアルキル環であることが好ましい。
 R及びRで表される2価の炭化水素基は、以下の一般式(A)で表される基であってもよい。
*-R-O-R-O-R-*・・・(A)
 一般式(A)中、Rは、シクロアルカンジイル基、フルオロシクロアルカンジイル基、又はアリーレン基を表す。
 Rで表されるシクロアルカンジイル基及びフルオロシクロアルカンジイル基としては、例えば、シクロブタンジイル基、フルオロシクロブタンジイル基、シクロペンタンジイル基、フルオロシクロペンタンジイル基、シクロヘキサンジイル基、フルオロシクロヘキサンジイル基、アダマンタンジイル基、フルオロアダマンタンジイル基、ノルボルナンジイル基、フルオロノルボルナンジイル基等が挙げられる。シクロアルカンジイル基、フルオロシクロアルカンジイル基及びアリーレン基は、水素原子がフッ素原子により置換されていてもよい炭素数1~3のアルキル基を置換基として有していてもよい。
 一般式(A)中、Rは、それぞれ独立して、環構造や分岐構造を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい、炭素数1~10の2価の炭化水素基を表す。
 Rで表される2価の炭化水素基としては、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、フルオロメチレン基、フルオロエチレン基、フルオロトリメチレン基、フルオロテトラメチレン基等が挙げられる。
 なお、一般式(A)中、*は、酸素原子との結合部分を表す。
 また、R及びRで表される2価の炭化水素基は、以下の一般式(B)~(D)のいずれかで表される基であってもよい。
*-R-R-R-*・・・(B)
*-R-R-R-*・・・(C)
*-R-R-R-*・・・(D)
 一般式(B)及び(C)中におけるRが表す基は、上記一般式(A)と同様である。
 一般式(D)中におけるRが表す基は、上記一般式(A)と同様である。
 また、一般式(B)及び(C)中、Rは、それぞれ独立して、単結合、又は環構造や分岐構造を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい、炭素数1~10の2価の炭化水素基を表す。
 Rで表される2価の炭化水素基としては、例えば、メチレン基、エチレン基、トリメチレン基、プロピリデン基、イソプロピリデン基、フルオロメチレン基、フルオロエチレン基、フルオロトリメチレン基、フルオロプロピリデン基、フルオロイソプロピリデン基等が挙げられる。
 また、一般式(D)中、Rは、炭素数3~6のシクロアルカン-1,1-ジイル基を表す。
 なお、一般式(B)~一般式(D)中、*は、酸素原子との結合部分を表す。
 一般式(1)中、Rで表される2価の炭化水素基は、Rで表される2価の炭化水素基のうちの酸素原子と結合する部分がメチレン基とされた「-CH3ACH-」で表される2価の炭化水素基であってもよい。以下、「-CH3ACH-」で表される2価の炭化水素基を、「-CH3ACH-」基と称することがある。「-CH3ACH-」基におけるR3Aは、Rで表される2価の炭化水素基から酸素原子と結合する部分を構成する2つのメチレン基を除いた基を表す。「-CH3ACH-」基の具体例としては、Rの具体例のうちの、酸素原子との結合部分がメチレン基である基が挙げられる。
 一般式(1)におけるR及びRで表される2価の炭化水素基の組み合わせは特に限定されるものではない。
 ある態様では、一般式(1)におけるR及びRの一方が脂肪族環を含み、他の一方が芳香族環を含んでもよい。
 また、ある態様では、一般式(1)におけるR及びRの両方が脂肪族環を含んでもよい。
 また、ある態様では、一般式(1)におけるR及びRが共に1つの環構造を含み、Rに含まれる環構造の環員数とRに含まれる環構造の環員数とが、異なってもよい。
 また、ある態様では、一般式(1)におけるR及びRの一方に含まれる環構造の数と他方に含まれる環構造の数とが、異なってもよい。
 また、ある態様では、一般式(1)におけるR及びRの両方がエーテル結合を含む2価の炭化水素基であってもよいし、R及びRの一方がエーテル結合を含み他の一方がエーテル結合を含まない2価の炭化水素基であってもよいし、R及びRの両方がエーテル結合を含まない2価の炭化水素基であってもよい。
 一般式(A)で表される2価の炭化水素基としては、以下の基又はペルフルオロ化された以下の基が挙げられるが、これに限定されない。
Figure JPOXMLDOC01-appb-C000001

 
 一般式(B)~一般式(D)のいずれかを満たす基としては、以下の基又はペルフルオロ化された以下の基が挙げられるが、これに限定されない。
Figure JPOXMLDOC01-appb-C000002

 
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000004

 
 R及びRの組み合わせとしては、例えば、以下の基の組み合わせ又はペルフルオロ化された以下の基の組み合わせが挙げられる。
Figure JPOXMLDOC01-appb-C000005

 
(第1含フッ素ポリエーテル化合物の製造方法)
 第1含フッ素ポリエーテル化合物は、いかなる方法により製造されたものであってもよい。第1含フッ素ポリエーテル化合物は、例えば、下記一般式(3)で表される含フッ素ジビニルエーテル化合物と下記一般式(4)で表されるジオール化合物とを、所定の比率で重合反応させ、必要に応じて鎖末端を変性して得ることができる。以下、一般式(3)で表される含フッ素ジビニルエーテル化合物を特定ジビニルエーテル化合物と称し、一般式(4)で表されるジオール化合物を特定ジオール化合物と称することがある。
 CF=CR-O-R-O-CR=CF・・・(3)
 HO-R-OH・・・(4)
 一般式(3)中、R及びRは、一般式(1)におけるR及びRと同様であり、その具体例等も一般式(1)の場合と同様である。
 一般式(4)中、Rは、一般式(1)におけるRと同様であり、その具体例等も一般式(1)の場合と同様である。
 特定ジオール化合物は、下記一般式(4’)で表されるジオール化合物であってもよい。
 HO-CH3ACH-OH・・・(4’)
 一般式(4’)中、R3Aは、一般式(1)におけるR3Aと同様であり、その具体例等も一般式(1)の場合と同様である。特定ジオール化合物が一般式(4’)で表されるジオール化合物であると、水酸基がメチレン基に結合していることからフェノール性水酸基を有するジオール化合物に比較して置換基の種類による反応性の違いが生じにくい。さらに、基質適用性が広がりやすく、分子量を大きくしやすい利点がある。
 特定ジビニルエーテル化合物と特定ジオール化合物との反応は、溶媒中で行われてもよいし、溶媒を用いることなく無溶媒の状態で行われてもよい。
 特定ジビニルエーテル化合物と特定ジオール化合物との反応が溶媒中で行われる場合、溶媒としては、アセトニトリル、ビス(2-メトキシエチル)エーテル(ジグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、テトラエチレングリコールジメチルエーテル(テトラグライム)又はフッ素系有機溶媒が好ましい。フッ素系有機溶媒としては、フッ素化アルカン、フッ素化芳香族化合物、フルオロアルキルエーテル等が挙げられる。
 特定ジビニルエーテル化合物と特定ジオール化合物との比率は、目的とする第1含フッ素ポリエーテル化合物の分子量に合わせて調整するのが好ましい。例えば、特定ジビニルエーテル化合物1molに対して特定ジオール化合物は0.01mol~100molが好ましく、0.1mol~10molがより好ましい。
 特定ジビニルエーテル化合物と特定ジオール化合物との反応は、アルカリ触媒の存在下において行うことが好ましい。アルカリ触媒の存在下、特定ジビニルエーテル化合物と特定ジオール化合物とを反応させることにより、製造される第1含フッ素ポリエーテル化合物の分子量及び収率をより向上できる。
 アルカリ触媒としては、例えば、NaOH、KOH、NaCO、CsF及びKCO等が挙げられ、第1含フッ素ポリエーテル化合物の分子量及び収率の観点からは、NaOHが好ましい。
 第1含フッ素ポリエーテル化合物の分子量及び収率の観点から、特定ジビニルエーテル化合物と特定ジオール化合物との反応温度は、80℃~160℃が好ましく、90℃~140℃がより好ましい。
 第1含フッ素ポリエーテル化合物の分子量及び収率の観点から、特定ジビニルエーテル化合物と特定ジオール化合物との反応時間は、1時間~72時間が好ましく、2時間~48時間がより好ましい。
 第1含フッ素ポリエーテル化合物の製造は、バッチ方式で行っても連続方式で行ってもよく、公知の方式を適宜採用できる。
 第1含フッ素ポリエーテル化合物の製造をバッチ方式により行う場合、例えば、反応器に予め特定ジオール化合物及び必要に応じて溶媒を収容し、反応器内に特定ジビニルエーテル化合物を直接添加してもよいし、特定ジビニルエーテル化合物を溶媒で希釈した希釈液を添加してもよい。
 特定ジビニルエーテル化合物と特定ジオール化合物とを反応させた後、有機溶媒、水及び適切な酸性度に調整するための水溶液から選択される少なくとも1つを反応液に加えて分液した後、有機相を濃縮して第1含フッ素ポリエーテル化合物を得てもよい。また、有機相を濃縮することにより得られる反応粗液を精製して第1含フッ素ポリエーテル化合物を得てもよい。
 上記方法により製造される第1含フッ素ポリエーテル化合物は、鎖末端の両方が水酸基である化合物、鎖末端の両方が「-O-CR=CF」基である化合物、及び鎖末端の一方が水酸基で他の一方が「-O-CR=CF」基である化合物からなる群より選択される少なくとも1種を含むものであり、これら化合物からなる群より選択される少なくとも2種を含む混合物であってもよい。
 上記方法により製造される第1含フッ素ポリエーテル化合物における、全ての鎖末端に占める水酸基の割合及び「-O-CR=CF」基の割合は、特に限定されるものではない。例えば、全ての鎖末端に占める水酸基の割合は、10モル%~90モル%が好ましい。
-第1含フッ素ポリエーテル化合物のペルフルオロ化-
 第1含フッ素ポリエーテル化合物のペルフルオロ化物は、例えば、第1含フッ素ポリエーテル化合物の鎖末端に存在する水酸基を酸フルオリド化合物でエステル化してアシルオキシ化物とし、このアシルオキシ化物をペルフルオロ化してペルフルオロアシルオキシ化物とし、このペルフルオロアシルオキシ化物をアルコールでアルコキシ化してアルコキシカルボニル化物とし、このアルコキシカルボニル化物を還元することで得ることができる。
 なお、第1含フッ素ポリエーテル化合物の鎖末端が「-O-CR=CF」基である場合、アシルオキシ化物をペルフルオロ化する段階で、「-O-CR=CF」基が「-O-CFRF1CF」基に変換される。ここで、RF1は、上述のとおりである。
 水酸基のエステル化に用いられる酸フルオリド化合物としては、例えば、下記一般式(5)で表される酸フルオリドが挙げられる。以下、一般式(5)で表される酸フルオリドを特定酸フルオリドと称することがある。
 RCOF・・・(5)
 一般式(5)中、Rは、環構造や分岐構造を含んでいてもよく、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数2~20の1価の炭化水素基を表す。
 Rで表される1価の炭化水素基の炭素数は、精製のしやすさの観点から20以下が好ましく、10以下がより好ましい。一方、Rで表される1価の炭化水素基の炭素数は、ペルフルオロ化時の副反応を抑える観点から、3以上が好ましく、4以上がより好ましい。
 Rで表される1価の炭化水素基における水素原子がフッ素原子により置換されている場合、フッ素原子含有率は、50モル%以上が好ましく、75モル%以上がより好ましく、100モル%(ペルフルオロ炭化水素基)がさらに好ましい。ただし、フッ素原子含有率とは、炭化水素基に含まれる水素原子がフッ素原子に置換されている割合である。
 本開示で使用可能な特定酸フルオリドの具体例としては、以下のような化合物が挙げられるが、これに限定されない。
・CFCFCF-O-CF(CF)COF
・CFCFCF-O-CF(CF)CF-O-CF(CF)COF
・CF-CF(CF)COF
 第1含フッ素ポリエーテル化合物の鎖末端に存在する水酸基のエステル化は、溶媒中で行われてもよいし、溶媒を用いることなく無溶媒の状態で行われてもよい。水酸基のエステル化が溶媒中で行われる場合、溶媒としては、フッ素系有機溶媒が好ましく、フッ素化アルカン、フッ素化芳香族化合物、フルオロアルキルエーテル等が挙げられる。
 水酸基のエステル化は、触媒の存在下において行うことが好ましい。触媒の存在下、特定酸フルオリドを水酸基に作用させることにより、アシルオキシ化物の収率をより向上できる。
 触媒としては、例えば、NaF、トリエチルアミン等が挙げられ、後処理の簡便さの観点からは、NaFが好ましい。
 特定酸フルオリドを水酸基に作用させる場合、アシルオキシ化物の収率の観点から、反応温度は-10℃~100℃が好ましく、0℃~60℃がより好ましい。
 特定酸フルオリドを水酸基に作用させる場合、アシルオキシ化物の収率の観点から、エステル化反応の反応時間は、1時間~40時間が好ましく、2時間~20時間がより好ましい。
 特定酸フルオリドを水酸基に作用させる場合、アシルオキシ化物の収率の観点から、エステル化反応の反応圧力は、大気圧~2MPa(ゲージ圧)が好ましい。
 エステル化反応は、バッチ方式で行っても連続方式で行ってもよく、公知の方式を適宜採用できる。
 エステル化反応をバッチ方式により行う場合、例えば、反応器に予め第1含フッ素ポリエーテル化合物を収容し、反応器内に特定酸フルオリドを直接添加してもよい。
 エステル化反応は、副生成物の発生を抑制する観点から、反応器内への特定酸フルオリドの添加は、反応器の内温が40℃を超えない速度で行うことが好ましく、内温が20℃を超えない速度で行うことがより好ましい。
 上記エステル化反応によりフッ化水素(HF)が発生するため、反応系中にフッ化水素捕捉剤を存在させることが好ましい。フッ化水素捕捉剤としては、アルカリ金属フッ化物、トリアルキルアミン等が挙げられる。アルカリ金属フッ化物としては、NaFまたはKFが好ましい。HF捕捉剤を使用しない場合には、HFが気化しうる反応温度で反応を行い、かつ、HFを窒素気流に同伴させて反応系外に排出することが好ましい。HF捕捉剤の使用量は、特定酸フルオリドに対して1倍モル~10倍モルが好ましい。
 エステル化反応の後、有機溶媒、水及び適切な酸性度に調整するための水溶液から選択される少なくとも1つを反応液に加えて分液するか、又は反応液を固液分離した後、有機相を濃縮してアシルオキシ化物を得てもよい。また、有機相を濃縮することにより得られる反応粗液を精製してアシルオキシ化物を得てもよい。
 アシルオキシ化物のペルフルオロ化方法は特に限定されるものではなく、従来公知の方法により行うことができる。例えば、アシルオキシ化物にフッ素ガスを接触させることにより、ペルフルオロ化を行うことができる。
 アシルオキシ化物のペルフルオロ化方法は、バッチ方式でもよく連続方式でもよい。ペルフルオロ化反応は、下記の<方法1>又は<方法2>により実施することが好ましく、ペルフルオロアシルオキシ化物の反応収率と選択率の点からは、<方法2>がより好ましい。フッ素ガスは、バッチ方式で実施する場合及び連続方式で実施する場合のいずれにおいても、窒素ガス等の不活性ガスで希釈して使用してもよい。
<方法1>
 方法1は、反応器に、アシルオキシ化物と溶媒とを仕込み、撹拌を開始し、次いで所定の反応温度と反応圧力下で、不活性ガスで希釈したフッ素ガスを溶媒中に連続的に供給しながら反応させる方法である。
<方法2>
 方法2は、反応器に溶媒を仕込み、撹拌し、次いで所定の反応温度と反応圧力下で、不活性ガスで希釈したフッ素ガスとアシルオキシ化物とを所定のモル比で連続的にフッ素化反応溶媒中に供給しながら反応させる方法である。
<方法3>
 方法3は、管状反応器に溶媒を連続的に導入して管状反応器内を流通させ、次に、不活性ガスで希釈したフッ素ガスと、アシルオキシ化物を溶解した溶液とをフッ素ガスとアシルオキシ化物とが所定のモル比となる割合でそれぞれ連続的に管状反応器内の溶媒の流れに供給して混合し、管状反応器内でフッ素ガスとアシルオキシ化物とを接触させて反応させ、反応生成物を含む溶媒を管状反応器から取り出す方法である。この方法において、溶媒を循環させ、循環されている溶媒から反応生成物を取り出すことにより、連続方式でペルフルオロ化反応を行うことができる。
 不活性ガスとしては、ヘリウムガス、ネオンガス、アルゴンガス等の希ガスや窒素ガスが挙げられ、窒素ガス、ヘリウムガスが好ましく、経済的に有利である点から窒素ガスがより好ましい。フッ素ガスの割合(以下、「フッ素ガス量」とも記す。)は、フッ素ガスと不活性ガスとの合計100体積%中、10体積%~60体積%が好ましい。
 使用するフッ素ガスの使用量は、アシルオキシ化物中におけるフッ素置換する水素原子1molに対して、1.1mol~10molの比率が好ましく、1.2mol~5molの比率がより好ましい。フッ素ガス使用量の比率を上記数値範囲内とすることにより、ペルフルオロアシルオキシ化物の収率を向上できる。
 アシルオキシ化物のペルフルオロ化を溶媒内において行う場合、溶媒中の酸素含有量を低減するため、溶媒が予め窒素置換されていてもよい。
 また、アシルオキシ化物を溶媒内に導入する場合、溶媒を予め窒素置換した後、さらに溶媒をフッ素置換してもよい。
 ペルフルオロ化反応においては、バッチ方式においても連続方式においても、アシルオキシ化物中のフッ素化されうる水素原子のすべてに対して、これらをフッ素化するフッ素ガスの量が常に過剰量とすることが好ましい。フッ素ガスの量は、フッ素化されうる水素原子のすべてをフッ素化するために必要な理論量の1.1倍当量以上が好ましく、1.3倍当量以上がより好ましい。
 アシルオキシ化物のペルフルオロ化を、フッ素ガス及びアシルオキシ化物を溶媒内に導入することにより行う場合、アシルオキシ化物の溶媒内へのモル基準の導入速度を1としたときに、フッ素ガスのモル基準の導入速度が、アシルオキシ化物のモル基準の導入速度にアシルオキシ化物に含まれるフッ素ガスによってフッ素原子に置換されうる水素原子の数を乗じて得られた速度の1倍~10倍の範囲であってもよく、2倍~7倍の範囲であってもよい。導入速度の関係を上記数値範囲内とすることにより、ペルフルオロアシルオキシ化物の収率を向上できる。
 アシルオキシ化物のフッ素化反応を効率的に進行させるためには、溶媒中にアシルオキシ化物以外のC-H結合含有化合物を添加するか、又は溶媒に紫外線を照射することが好ましい。これらはフッ素化反応後期に行うことが好ましい。これにより、溶媒中に存在するアシルオキシ化物を効率的にフッ素化でき、ペルフルオロアシルオキシ化物の収率を向上させうる。
 C-H結合含有化合物としては、芳香族炭化水素が好ましく、ベンゼン、トルエン等が挙げられる。C-H結合含有化合物の添加量は、アシルオキシ化物中の水素原子に対して0.1モル%~10モル%である量が好ましく、0.1モル%~5モル%である量がより好ましい。
 C-H結合含有化合物は、フッ素ガスが存在する溶媒中に添加することが好ましい。さらに、C-H結合含有化合物を加えた場合には、反応系を加圧することが好ましい。加圧時の反応圧力としては、0.01MPa~5MPa(ゲージ圧)が好ましい。
 反応系に紫外線を照射する場合、照射時間は、0.1時間~3時間が好ましい。
 フッ素化反応の後、窒素ガス等の不活性ガスで反応系内を置換した後、有機相を濃縮してペルフルオロアシルオキシ化物を得てもよい。また、有機相を濃縮することにより得られる反応粗液を精製してペルフルオロアシルオキシ化物を得てもよい。
 ペルフルオロアシルオキシ化物をアルコールでアルコキシ化することで、アルコキシカルボニル化物が得られる。
 ペルフルオロアシルオキシ化物に作用させるアルコールは特に限定されるものではない。アルコールとしては、メタノール、エタノール、イソプロパノール等が挙げられる。
 ペルフルオロアシルオキシ化物とアルコールとの反応は、溶媒中で行われてもよいし、溶媒を用いることなく無溶媒の状態で行われてもよい。
 ペルフルオロアシルオキシ化物とアルコールとの反応が溶媒中で行われる場合、溶媒としては、フッ素系有機溶媒が好ましく、フッ素化アルカン、フッ素化芳香族化合物、フルオロアルキルエーテル等が挙げられる。
 ペルフルオロアシルオキシ化物に対するアルコールの使用量は、ペルフルオロアシルオキシ化物1molに対してアルコールは2mol~20molが好ましく、2.1mol~15molがより好ましく、2.2mol~10molがさらに好ましい。
 アルコキシカルボニル化物の収率の観点から、ペルフルオロアシルオキシ化物とアルコールとの反応温度は、-10℃~60℃が好ましく、0℃~40℃がより好ましい。
 アルコキシカルボニル化物の収率の観点から、ペルフルオロアシルオキシ化物とアルコールとの反応時間は、0.5時間~48時間が好ましく、1時間~24時間がより好ましい。
 副生成物の発生を抑制する観点から、ペルフルオロアシルオキシ化物とアルコールとの反応において、ペルフルオロアシルオキシ化物へのアルコールの添加は、反応器の内温が40℃を超えない速度で行うことが好ましく、内温が20℃を超えない速度で行うことがより好ましい。
 ペルフルオロアシルオキシ化物とアルコールとを反応させた後、有機溶媒、水及び適切な酸性度に調整するための水溶液から選択される少なくとも1つを反応液に加えて分液するか、又は反応液を固液分離した後、有機相を濃縮してアルコキシカルボニル化物を得てもよい。また、有機相を濃縮することにより得られる反応粗液を精製してアルコキシカルボニル化物を得てもよい。
 アルコキシカルボニル化物の還元方法は特に限定されるものではなく、従来公知の方法により行うことができる。例えば、フッ素系有機溶媒、メタノール、エタノール等のアルコール中でアルコキシカルボニル化物に水素化ホウ素ナトリウム(NaBH)、シアノ水素化ホウ素ナトリウム(NaBHCN)、水素化ホウ素リチウム(LiBH)、水素化リチウムアルミニウム(LAH)及び水素化ジイソブチルアルミニウム(DIBAL)等の還元剤を作用させてアルコキシカルボニル化物の還元を行うことができる。
 アルコキシカルボニル化物の還元反応は、ペルフルオロ化物の収率の観点から、反応温度は-10℃~80℃が好ましく、-5℃~50℃がより好ましい。
 アルコキシカルボニル化物の還元反応は、ペルフルオロ化物の収率の観点から、反応時間は、0.5時間~48時間が好ましく、1時間~24時間がより好ましい。
 還元反応の後、例えば、塩酸等の水溶液を反応液に加えて分液し、さらに水、飽和食塩水等で洗浄し、有機相を濃縮してペルフルオロ化物を得てもよい。
[第2含フッ素ポリエーテル化合物]
 第2含フッ素ポリエーテル化合物に含まれる式(2)単位は、1種類であっても2種類以上であってもよい。また、第2含フッ素ポリエーテル化合物には、式(2)単位以外の構造単位が含まれていてもよい。
 第2含フッ素ポリエーテル化合物が式(2)単位以外の構造単位を含む場合、全ての構造単位に占める式(2)単位の割合は、90モル%以上が好ましく、95モル%以上がより好ましく、99モル%以上がさらに好ましい。第2含フッ素ポリエーテル化合物は、式(2)単位以外の構造単位を含まないことが特に好ましい。
 一般式(2)中、R及びRで表される2価の炭化水素基の炭素数は、それぞれ独立して、15以下が好ましく、10以下がより好ましい。R及びRで表される2価の炭化水素基の炭素数を15以下とすることにより、第2含フッ素ポリエーテル化合物を後述の重合反応により製造する際に重合反応がより良好に進行するため、高分子量の第2含フッ素ポリエーテル化合物を高収率で製造できる。
 R及びRで表される2価の炭化水素基の炭素数は、第2含フッ素ポリエーテル化合物を後述の重合反応により製造する際に環化反応を防止する観点から、それぞれ独立して、4以上が好ましく、5以上がより好ましい。
 R及びRで表される2価の炭化水素基は、上述の一般式(B)~(D)のいずれかで表される基であってもよく、その具体例も上述のとおりである。
 一般式(2)中、Rは、水素原子がフッ素原子により置換されていてもよい、炭素数1~10のアルキレン基が好ましく、炭素数2~8のアルキレン基がより好ましく、炭素数3~6のアルキレン基がさらに好ましい。
 Rで表されるアルキレン基としては、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基及びヘキサメチレン基等のアルキレン基、フルオロエチレン基、フルオロトリメチレン基、フルオロテトラメチレン基、フルオロペンタメチレン基及びフルオロヘキサメチレン基等のフルオロアルキレン基などが挙げられる。
 R及びRの組み合わせとしては、例えば、以下の基の組み合わせ又はペルフルオロ化された以下の基の組み合わせが挙げられる。
Figure JPOXMLDOC01-appb-C000006

 
(第2含フッ素ポリエーテル化合物の製造方法)
 第2含フッ素ポリエーテル化合物は、いかなる方法により製造されたものであってもよい。
 第2含フッ素ポリエーテル化合物は、例えば、下記一般式(6-1)で表されるジアシルフルオリド化合物と下記一般式(7-1)で表されるジフルオロホルメート化合物とを所定の比率で反応させ、必要に応じて鎖末端を変性して得ることができる。
 また、第2含フッ素ポリエーテル化合物は、例えば、下記一般式(6-2)で表されるジアシルフルオリド化合物と下記一般式(7-2)で表されるジフルオロホルメート化合物とを所定の比率で反応させ、必要に応じて鎖末端を変性して得ることができる。
 以下、一般式(6-1)又は(6-2)で表されるジアシルフルオリド化合物を特定ジアシルフルオリド化合物と称し、一般式(7-1)又は(7-2)で表されるジフルオロホルメート化合物を特定ジフルオロホルメート化合物と称することがある。
 F-C(=O)-R5A-O-R-O-R5A-C(=O)-F・・・(6-1)
 F-C(=O)O-R-OC(=O)-F・・・(7-1)
 F-C(=O)-R4A-C(=O)-F・・・(6-2)
 F-C(=O)O-R-O-R-O-R-OC(=O)-F・・・(7-2)
 一般式(6-1)、一般式(7-1)又は一般式(7-2)中、R、R及びRは、一般式(2)におけるR、R及びRと同様であり、その具体例等も一般式(2)の場合と同様である。
 一般式(6-1)で表されるジアシルフルオリド化合物と一般式(7-1)で表されるジフルオロホルメート化合物とを反応させることで、下記一般式(2A)で表される構造単位を含む第2含フッ素ポリエーテル化合物が製造される。一般式(2A)中、「-R5ACF-」で表される基が、一般式(2)におけるRに該当する。「-R5ACF-」で表される基の具体例としては、Rの具体例のうちの、Rと接する酸素原子との結合部分がペルフルオロメチレン基であるものが挙げられる。
 [-CF5A-O-R-O-R5ACF-O-R-O-]・・・(2A)
 一般式(6-2)で表されるジアシルフルオリド化合物と一般式(7-2)で表されるジフルオロホルメート化合物とを反応させることで、下記一般式(2B)で表される構造単位を含む第2含フッ素ポリエーテル化合物が製造される。一般式(2B)中、「-CF4ACF-」で表される基が、一般式(2)におけるRに該当する。「-CF4ACF-」で表される基の具体例としては、Rの具体例のうちの、酸素原子との結合部分がペルフルオロメチレン基である基が挙げられる。
 [-R-O-CF4ACF-O-R-O-R-O-]・・・(2B)
 特定ジアシルフルオリド化合物と特定ジフルオロホルメート化合物との反応は、溶媒中で行われてもよいし、溶媒を用いることなく無溶媒の状態で行われてもよい。
 特定ジアシルフルオリド化合物と特定ジフルオロホルメート化合物との反応が溶媒中で行われる場合、溶媒は極性非プロトン性溶媒であってもよい。極性非プロトン性溶媒の具体例としては、ジメトキシエタン(グライム)、ジグライム、トリグライム、テトラグライム、テトラヒドロフラン、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、エチレンポリオキシドジメチルエーテル等が挙げられ、テトラグライム及びアセトニトリルがより好ましい。
 特定ジアシルフルオリド化合物と特定ジフルオロホルメート化合物との比率は、目的とする第2含フッ素ポリエーテル化合物の分子量に合わせて調整するのが好ましい。例えば、特定ジアシルフルオリド化合物1molに対して特定ジフルオロホルメート化合物は0.01mol~100molが好ましく、0.1mol~10molがより好ましい。
 特定ジフルオロホルメート化合物と特定ジアシルフルオリド化合物との反応は、フッ化物源、好ましくは金属フッ化物の存在下で行われる。好ましい金属フッ化物は、例えば、CsF、KF、RbF、AgF及びそれらの組み合わせが挙げられる。
 金属フッ化物は粉体のまま使用されてもよいし、金属フッ化物が炭素、NaF、又はCaF上に担持されていてもよい。
 なお、特定ジフルオロホルメート化合物は、例えば、対応するジオール化合物とフッ化カルボニルとを定法で反応させて得られる。
 特定ジフルオロホルメート化合物と特定ジアシルフルオリド化合物との反応は、オートクレーブ内で行ってもよい。
 例えば、オートクレーブ内に金属フッ化物と特定ジフルオロホルメート化合物と溶媒とを収容し、窒素雰囲気下とした後に真空脱気を実施し、次いで特定ジアシルフルオリド化合物を加え、所定の温度で所定の時間反応させて第2含フッ素ポリエーテル化合物を製造してもよい。
 特定ジフルオロホルメート化合物と特定ジアシルフルオリド化合物とを反応させた後、反応生成物をフッ素樹脂製のフィルターで加圧濾過し、金属フッ化物を除去してもよい。また、濾液から溶媒及び未反応の特定ジフルオロホルメート化合物と特定ジアシルフルオリド化合物とを蒸溜等により除去して第2含フッ素ポリエーテル化合物を精製してもよい。
 上記方法により製造される第2含フッ素ポリエーテル化合物は、鎖末端の両方がアシルフルオリド基である化合物、鎖末端の両方がフルオロホルメート基である化合物、及び鎖末端の一方がアシルフルオリド基で他の一方がフルオロホルメート基である化合物からなる群より選択される少なくとも1種を含むものであり、これら化合物からなる群より選択される少なくとも2種を含む混合物であってもよい。
 上記方法により製造される第2含フッ素ポリエーテル化合物における、全ての鎖末端に占めるアシルフルオリド基の割合及びフルオロホルメート基の割合は、特に限定されるものではない。例えば、全ての鎖末端に占めるアシルフルオリド基の割合は、10モル%~90モル%が好ましい。
 鎖末端のフルオロホルメート基は、NaOH、KOH、NaCO、KCO、CsF、KF、NaF等のアルカリ金属存在下、160℃~200℃に加熱することで脱カルボニル反応を生じさせ、CHF基等のフッ化アルキル基に変換してもよい。
 第2含フッ素ポリエーテル化合物の鎖末端のフルオロホルメート基がフッ化アルキル基に変換されている場合、第2含フッ素ポリエーテル化合物は、鎖末端の両方がアシルフルオリド基である化合物、鎖末端の両方がフッ化アルキル基である化合物、及び鎖末端の一方がアシルフルオリド基で他の一方がフッ化アルキル基である化合物からなる群より選択される少なくとも1種を含むものであり、これら化合物からなる群より選択される少なくとも2種を含む混合物であってもよい。
 上記方法により製造される第2含フッ素ポリエーテル化合物における、全ての鎖末端に占めるアシルフルオリド基の割合及びフッ化アルキル基の割合は、特に限定されるものではない。例えば、全ての鎖末端に占めるアシルフルオリド基の割合は、10モル%~90モル%が好ましい。
 第2含フッ素ポリエーテル化合物の分子量及び収率の観点から、特定ジフルオロホルメート化合物と特定ジアシルフルオリド化合物との反応温度は、80℃~160℃が好ましく、90℃~140℃がより好ましい。
 第2含フッ素ポリエーテル化合物の分子量及び収率の観点から、特定ジフルオロホルメート化合物と特定ジアシルフルオリド化合物との反応時間は、1時間~72時間が好ましく、2時間~48時間がより好ましい。
-第2含フッ素ポリエーテル化合物のペルフルオロ化-
 第2含フッ素ポリエーテル化合物のペルフルオロ化物は、例えば、フルオロホルメート基をフッ化アルキル基に変換し、残りのアシルフルオリド基に対してアルコールを作用させてエステル化して第一アルコキシカルボニル化物とし、この第一アルコキシカルボニル化物をペルフルオロ化してペルフルオロアルコキシカルボニル化物とし、このペルフルオロアルコキシカルボニル化物をアルコールでエステル交換反応させて第二アルコキシカルボニル化物とし、この第二アルコキシカルボニル化物を還元することで得ることができる。
 第一アルコキシカルボニル化物を得る際に、アシルフルオリド基に対して作用させるアルコールは特に限定されるものではない。アルコールとしては、メタノール、エタノール、イソプロパノール等が挙げられる。
 アシルフルオリド基のエステル化は、エステル化に用いられるアルコールを溶媒として用いてもよい。アルコール中に第2含フッ素ポリエーテル化合物を添加し、必要に応じて加熱することで、第一アルコキシカルボニル化物が得られる。
 第一アルコキシカルボニル化物の収率の観点から、エステル化反応の反応温度は、-10℃~60℃が好ましく、0℃~40℃がより好ましい。
 第一アルコキシカルボニル化物の収率の観点から、エステル化反応の反応時間は、0.5時間~48時間が好ましく、1時間~24時間がより好ましい。
 エステル化反応の後、有機溶媒、水及び適切な酸性度に調整するための水溶液から選択される少なくとも1つを反応液に加えて分液した後、有機相を濃縮して第一アルコキシカルボニル化物を得てもよい。また、有機相を濃縮することにより得られる反応粗液を精製して第一アルコキシカルボニル化物を得てもよい。
 第一アルコキシカルボニル化物のペルフルオロ化方法は特に限定されるものではなく、第1含フッ素ポリエーテル化合物のペルフルオロ化方法と同様の方法を採用してペルフルオロアルコキシカルボニル化物を得ることができる。
 ペルフルオロアルコキシカルボニル化物に対してエステル交換反応をする際に用いられるアルコールは、特に限定されるものではない。アルコールとしては、メタノール、エタノール、イソプロパノール等が挙げられる。
 エステル交換反応は、エステル交換反応に用いられるアルコールを溶媒として用いてもよい。アルコール中にペルフルオロアルコキシカルボニル化物を添加し、必要に応じて加熱することで、第二アルコキシカルボニル化物が得られる。
 第二アルコキシカルボニル化物の収率の観点から、エステル交換反応の反応温度は、-10℃~60℃が好ましく、0℃~40℃がより好ましい。
 第二アルコキシカルボニル化物の収率の観点から、エステル交換反応の反応時間は、0.5時間~48時間が好ましく、1時間~24時間がより好ましい。
 エステル交換反応の後、有機溶媒、水及び適切な酸性度に調整するための水溶液から選択される少なくとも1つを反応液に加えて分液した後、有機相を濃縮して第二アルコキシカルボニル化物を得てもよい。また、有機相を濃縮することにより得られる反応粗液を精製して第二アルコキシカルボニル化物を得てもよい。
 アルコキシカルボニル化物の還元方法は特に限定されるものではない。第1含フッ素ポリエーテル化合物の還元方法と同様の方法を採用してペルフルオロ化物を得ることができる。
 以下、上記実施形態を実施例により具体的に説明するが、上記実施形態はこれらの実施例に限定されない。実施例中の化学式において、**は炭素原子との結合部分を表す。
 合成例1-1~合成例6-1で得られた化合物が実施例であり、合成例7で得られた化合物が比較例である。
 [評価方法]
(NMR分析)
 H-NMR及び19F-NMRで化合物の構造を確認した。NMR分析は下記条件で行った。
 H-NMR(300.4MHz)の基準物質には、7.5ppmのニトロベンゼンを使用した。
19F-NMR(282.7MHz)の基準物質には、-162.5ppmのペルフルオロベンゼンを使用した。
 NMRの溶媒は、CFE-419(ClCFCFClCFOCFCFCl)を使用した。
(GPC分析)
 数平均分子量(Mn)及び質量平均分子量(Mw)は、GPCによって、測定した。
 GPCによる測定は、上述の方法で行った。
[合成例1]
 5000mLのフラスコに、下記式Aで表される化合物を1000g、NaFを755g、下記式Bで表される化合物を5971g混合し、50℃で20時間攪拌した。攪拌終了後、25℃に戻し、PTFEメンブレンフィルターにてろ過してNaF、フッ化水素ナトリウム(NaFHF)等を濾別した。得られた濾液を60℃真空下にて濃縮して、下記式Cで表される化合物を2059g得た。
Figure JPOXMLDOC01-appb-C000007

 
 3000mLのニッケル製オートクレーブに、CFE-419を2800g加えて攪拌し、温度を20℃に保った。オートクレーブのガス出口には-20℃に保持したコンデンサーを設置した。窒素ガスを1.0時間吹き込んだ後、窒素ガスで希釈したフッ素ガス量が20体積%の希釈フッ素ガスを吹き込み速度190L/時間で1時間吹き込んだ。次に、20体積%の希釈フッ素ガスを同じ流速で吹き込みながら、式Cで表される化合物500gを2時間かけて注入した。さらに、20体積%フッ素ガスを同じ速度で1時間吹き込み、さらに窒素ガスを1時間吹き込んだ。
 オートクレーブから反応液を回収し、濃縮し、504gの式Dで表される化合物を得た。
Figure JPOXMLDOC01-appb-C000008

 
 1000mLのフラスコに式Dで表される化合物500gを仕込み、KF粉末2.3gを仕込み、100℃で5時間激しく攪拌した。フラスコ上部には蒸留装置を設置し、蒸留を実施し、193gの留分を得た。得られた留分をH-NMR及び19F-NMRで分析したところ、目的化合物である式Eで表される化合物が主生成物であることを確認した。
Figure JPOXMLDOC01-appb-C000009

 
 2000mLのオートクレーブに式Eで表される化合物を190g、CsFを4.9g、テトラグライムを38.0g仕込み、-10℃に保ちながら、ヘキサフルオロプロピレンオキサイド(HFPO)を118g添加し、-10℃で16時間反応させた。反応終了後、有機層を回収し、精製し、目的化合物である式Fで表される化合物を178g得た。
Figure JPOXMLDOC01-appb-C000010

 
 インコネル製1インチ反応管に、ガラスビーズを充填し330℃に加熱した。式Fで表される化合物を窒素ガスで10体積%になるように希釈して、反応管に導入した。反応管の出口で精製したガスを冷却して捕集し、精製蒸留を行い、目的化合物である式Gで表される化合物を87g得た。
Figure JPOXMLDOC01-appb-C000011

 
[合成例1-1]
 攪拌翼、温度計及び還流コンデンサーを備えた3つ口フラスコにNaOH40.0gとアセトニトリル1009gと1,4-シクロヘキサンジメタノール144.2gとを加えた。40℃で攪拌混合し、式Gで表される化合物551.7gを滴下した。その後、90℃に加熱し、反応の進行をNMRで確認しながら追跡した。反応系内におけるジオール化合物及びジビニルエーテル化合物の残存量が減少していることを確認し、反応を停止し、濃縮してアセトニトリルを除去し、塩酸を加えて攪拌混合後二層分離して有機層を回収した。これを、生成物1-1-1とした。回収した液状の生成物1-1-1は867gであった。
 生成物1-1-1についての分子量分布(Mw/Mn)は、1.70であった。生成物1-1-1には、下記式1-1-1A、1-1-1B及び1-1-1Cで表される化合物が含まれていた。平均n数は2であった。生成物1-1-1全体における末端官能基は、アルコールが76mol%であり、ビニルエーテルが24mol%であった。
Figure JPOXMLDOC01-appb-C000012
 5000mLのフラスコに、生成物1-1-1を640g、NaFを133.8g、式Bで表される化合物を1058g混合し、50℃で20時間攪拌した。攪拌終了後、25℃に戻し、PTFEメンブレンフィルターにてろ過してNaF、フッ化水素ナトリウム等を濾別した。得られた濾液を60℃真空下にて濃縮して、生成物1-1-2を780g得た。
 生成物1-1-2についての分子量分布(Mw/Mn)は、1.68であった。生成物1-1-2には、下記式1-1-2A、1-1-2B及び1-1-2Cで表される化合物が含まれていた。なお、生成物1-1-2を合成する反応では、式1-1-1Cで表される化合物は影響を受けることがなく、式1-1-2Cで表される化合物は式1-1-1Cで表される化合物と同一である。平均n数は2であった。生成物1-1-2全体における末端官能基はエステルが76mol%、ビニルエーテル24mol%であった。
Figure JPOXMLDOC01-appb-C000013
 3000mLのニッケル製オートクレーブに、CFE-419を2800g加えて攪拌し、温度を20℃に保った。オートクレーブのガス出口には-20℃に保持したコンデンサーを設置した。窒素ガスを1.0時間吹き込んだ後、窒素ガスで希釈したフッ素ガス量が20体積%の希釈フッ素ガスを吹き込み速度147L/時間で1時間吹き込んだ。次に、20体積%の希釈フッ素ガスを同じ流速で吹き込みながら、生成物1-1-2の750gを20時間かけて注入した。さらに、20体積%の希釈フッ素ガスを同じ速度で1時間吹き込み、さらに窒素ガスを1時間吹き込んだ。オートクレーブから反応液を回収し、濃縮したところ、937gの生成物1-1-3を得た。
 生成物1-1-3についての分子量分布(Mw/Mn)は、1.66であった。生成物1-1-3には、下記式1-1-3A、1-1-3B及び1-1-3Cで表される化合物が含まれていた。平均n数は2であった。生成物1-1-3全体における末端官能基は、エステルが72mol%、CF末端が28mol%であった。
Figure JPOXMLDOC01-appb-C000014
 2000mLのフラスコに、生成物1-1-3を930g、NaFを112.9g、メタノールを86.1g混合し、0℃で2時間攪拌した。攪拌終了後、25℃に戻し、PTFEメンブレンフィルターにてろ過してNaF、フッ化水素ナトリウム等を濾別した。得られた濾液を60℃真空下にて濃縮して、生成物1-1-4を720g得た。
 生成物1-1-4についての分子量分布(Mw/Mn)は、1.70であった。生成物1-1-4には、下記式1-1-4A、1-1-4B及び1-1-4Cで表される化合物が含まれていた。なお、生成物1-1-4を合成する反応では、式1-1-3Cで表される化合物は影響を受けることがなく、式1-1-4Cで表される化合物は式1-1-3Cで表される化合物と同一である。平均n数は2であった。生成物1-1-4全体における末端官能基は、エステルが72mol%、CF末端が28mol%であった。
Figure JPOXMLDOC01-appb-C000015
 500mLの三口フラスコに、NaBH粉末の4.0gを取り入れ、フッ素系有機溶媒(AGC株式会社製、アサヒクリン(登録商標)AC-2000、1H-トリデカフルオロヘキサン、以下、AC-2000と記載)の150gを加えた。10℃を超えないように生成物1-1-4の150g、メタノールの6.8g、AC-2000の150gを混合した液体を滴下した。全量滴下後、さらにメタノールの6.8gとAC-2000の6.8gを混合した溶液を滴下した。その後、20℃とし攪拌を継続した。12時間後、塩酸を水溶液が酸性になるまで滴下し、二層分離して有機層を回収した。その後、有機層を水で一回、飽和食塩水で一回洗浄したのち、濃縮して生成物1-1-5を110g得た。
 生成物1-1-5についての分子量分布(Mw/Mn)は、1.72であった。生成物1-1-5には、下記式1-1-5A、1-1-5B及び1-1-5Cで表される化合物が含まれていた。なお、生成物1-1-5を合成する反応では、式1-1-4Cで表される化合物は影響を受けることがなく、式1-1-5Cで表される化合物は式1-1-4Cで表される化合物と同一である。平均n数は2であった。生成物1-1-5全体における末端官能基は、アルコールが72mol%、CF末端が28mol%であった。
 得られた生成物1-1-5をカラムクロマトグラフィーにて精製したところ、両末端CFの化合物(式1-1-5Cで表される化合物)が10%、CFとOHを持つ化合物(式1-1-5Bで表される化合物)が36%、両末端OHの化合物(式1-1-5Aで表される化合物)が54%の比率でそれぞれ含まれることがわかった。
Figure JPOXMLDOC01-appb-C000016
[合成例1-2]
 攪拌翼、温度計及び還流コンデンサーを備えた3つ口フラスコにNaOH40.0gとアセトニトリル966.0gと1,4-ベンゼンジメタノール138.0gを加えた。40℃で攪拌混合し、式Gで表される化合物709.3gを滴下した。その後、90℃に加熱し、反応の進行をNMRで確認しながら追跡した。反応系内におけるジオール化合物及びジビニルエーテル化合物の残存量が減少していることを確認し、反応を停止し、濃縮してアセトニトリルを除去し、塩酸を加えて攪拌混合後二層分離して有機層を回収した。これを、生成物1-2-1とした。回収した液状の生成物1-2-1は805gであった。
 生成物1-2-1について、カラムクロマトグラフィーにて精製し、両末端アルコール体(式1-2-1Aで表される化合物)を464g回収した。式1-2-1Aで表される化合物についての分子量分布(Mw/Mn)は、1.55であった。平均n数は3であった。片末端アルコール、片末端ビニルの化合物(式1-2-1Bで表される化合物)を174g、両末端ビニルの化合物(式1-2-1Cで表される化合物)を86.9gそれぞれ回収した。
Figure JPOXMLDOC01-appb-C000017
 1000mLのフラスコに、式1-2-1Aで表される化合物を200g、NaFを28.8g、式Bで表される化合物を227.7g混合し、50℃で20時間攪拌した。攪拌終了後、25℃に戻し、PTFEメンブレンフィルターにてろ過してNaF、フッ化水素ナトリウム等を濾別した。得られた濾液を60℃真空下にて濃縮して、式1-2-2Aで表される化合物を225.8g得た。
 式1-2-2Aで表される化合物についての分子量分布(Mw/Mn)は、1.52であった。平均n数は3であった。
Figure JPOXMLDOC01-appb-C000018

 
 3000mLのニッケル製オートクレーブに、CFE-419を2800g加えて攪拌し、温度を20℃に保った。オートクレーブのガス出口には-20℃に保持したコンデンサーを設置した。窒素ガスを1.0時間吹き込んだ後、窒素ガスで希釈したフッ素ガス量が20体積%の希釈フッ素ガスを吹き込み速度116L/時間で1時間吹き込んだ。次に、20体積%の希釈フッ素ガスを同じ流速で吹き込みながら、式1-2-2Aで表される化合物200gを10時間かけて注入した。さらに、20体積%の希釈フッ素ガスを同じ速度で1時間吹き込み、さらに窒素ガスを1時間吹き込んだ。オートクレーブから反応液を回収し、濃縮したところ、234gの式1-2-3Aで表される化合物を得た。
 式1-2-3Aで表される化合物についての分子量分布(Mw/Mn)は、1.66であった平均n数は3であった。
Figure JPOXMLDOC01-appb-C000019
 500mLのフラスコに、式1-2-3Aで表される化合物を230g、NaFを22.1g、メタノールを16.9g混合し、0℃で2時間攪拌した。攪拌終了後、25℃に戻し、PTFEメンブレンフィルターにてろ過してNaF、フッ化水素ナトリウム等を濾別した。得られた濾液を60℃真空下にて濃縮して、式1-2-4Aで表される化合物を186g得た。
 式1-2-4Aで表される化合物についての分子量分布(Mw/Mn)は、1.62であった。平均n数は3であった。
Figure JPOXMLDOC01-appb-C000020

 
 500mLの三口フラスコに、NaBH粉末の3.0gを取り入れ、AC-2000の150gを加えた。10℃を超えないように式1-2-4Aで表される化合物の150g、メタノールの5.2g、AC-2000の150gを混合した液体を滴下した。全量滴下後、さらにメタノールの5.2gとAC-2000の5.2gを混合した溶液を滴下した。その後、20℃とし攪拌を継続した。12時間後、塩酸を水溶液が酸性になるまで滴下し、二層分離して有機層を回収した。その後、有機層を水で一回、飽和食塩水で一回洗浄したのち、濃縮して式1-2-5Aで表される化合物を118g得た。
 式1-2-5Aで表される化合物についての分子量分布(Mw/Mn)は、1.61であった。平均n数は3であった。
Figure JPOXMLDOC01-appb-C000021

 
[合成例1-3]
 攪拌翼、温度計及び還流コンデンサーを備えた3つ口フラスコにNaOH10.0gとアセトニトリル588.7gと2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン84.1gを加えた。40℃で攪拌混合し、式Gで表される化合物118.3gを滴下した。その後、90℃に加熱し、反応の進行をNMRで確認しながら追跡した。反応系内におけるジオール化合物及びジビニルエーテル化合物の残存量が減少していることを確認し、反応を停止し、濃縮してアセトニトリルを除去し、塩酸を加えて攪拌混合後二層分離して有機層を回収した。これを、生成物1-3-1とした。回収した液状の生成物1-3-1は192gであった。
 生成物1-3-1について、カラムクロマトグラフィーにて精製し、両末端アルコール体両末端フェノール性水酸基体(式1-3-1Aで表される化合物)を124g回収した。式1-3-1Aで表される化合物についての分子量分布(Mw/Mn)は、1.72であった。平均n数は2であった。片末端フェノール性水酸基、片末端ビニルの化合物(式1-3-1Bで表される化合物)を44.9g、両末端ビニルの化合物(式1-3-1Cで表される化合物)を3.46gそれぞれ回収した。
Figure JPOXMLDOC01-appb-C000022
 1000mLのフラスコに、式1-3-1Aで表される化合物を120g、NaFを19.5g、式Bで表される化合物を154.2g混合し、50℃で20時間攪拌した。攪拌終了後、25℃に戻し、PTFEメンブレンフィルターにてろ過してNaF、フッ化水素ナトリウム等を濾別した。得られた濾液を60℃真空下にて濃縮して、式1-3-2Aで表される化合物を138g得た。
 式1-3-2Aで表される化合物についての分子量分布(Mw/Mn)は、1.70であった。平均n数は2であった。
Figure JPOXMLDOC01-appb-C000023

 
 3000mLのニッケル製オートクレーブに、CFE-419を2800g加えて攪拌し、温度を20℃に保った。オートクレーブのガス出口には-20℃に保持したコンデンサーを設置した。窒素ガスを1.0時間吹き込んだ後、窒素ガスで希釈したフッ素ガス量が20体積%の希釈フッ素ガスを吹き込み速度83L/時間で1時間吹き込んだ。次に、20体積%の希釈フッ素ガスを同じ流速で吹き込みながら、式1-3-2Aで表される化合物130gを10時間かけて注入した。さらに、20体積%の希釈フッ素ガスを同じ速度で1時間吹き込み、さらに窒素ガスを1時間吹き込んだ。オートクレーブから反応液を回収し、濃縮したところ、155gの式1-3-3Aで表される化合物を得た。
 式1-3-3Aで表される化合物についての分子量分布(Mw/Mn)は、1.74であった。平均n数は2であった。
Figure JPOXMLDOC01-appb-C000024

 
 500mLのフラスコに、式1-3-3Aで表される化合物を150g、NaFを15.6g、メタノールを11.9g混合し、0℃で2時間攪拌した。攪拌終了後、25℃に戻し、PTFEメンブレンフィルターにてろ過してNaF、フッ化水素ナトリウム等を濾別した。得られた濾液を60℃真空下にて濃縮して、式1-3-4Aで表される化合物を119g得た。
 式1-3-4Aで表される化合物についての分子量分布(Mw/Mn)は、1.76であった。平均n数は2であった。
Figure JPOXMLDOC01-appb-C000025

 
[合成例1-4]
 攪拌翼、温度計及び還流コンデンサーを備えた3つ口フラスコにNaOH8.2gとアセトニトリル280gと1,3-アダマンタンジメタノール40.0gを加えた。40℃で攪拌混合し、式Gで表される化合物788.1gを滴下した。その後、90℃に加熱し、反応の進行をNMRで確認しながら追跡した。反応系内におけるジオール化合物及びジビニルエーテル化合物の残存量が減少していることを確認し、反応を停止し、濃縮してアセトニトリルを除去し、塩酸を加えて攪拌混合後二層分離して有機層を回収した。これを、生成物1-4-1とした。回収した液状の生成物1-4-1は115gであった。
 生成物1-4-1について、カラムクロマトグラフィーにて精製し、両末端アルコール体(式1-4-1Aで表される化合物)を82g回収した。式1-4-1Aで表される化合物についての分子量分布(Mw/Mn)は、1.81であった。平均n数は2であった。片末端アルコール、片末端ビニルの化合物(式1-4-1Bで表される化合物)を14g、両末端ビニルの化合物(式1-4-1Cで表される化合物)を6.2gそれぞれ回収した。
Figure JPOXMLDOC01-appb-C000026
 500mLのフラスコに、式1-4-1Aで表される化合物を80.0g、NaFを15.5g、式Bで表される化合物を122.7g混合し、50℃で20時間攪拌した。攪拌終了後、25℃に戻し、PTFEメンブレンフィルターにてろ過してNaF、フッ化水素ナトリウム等を濾別した。得られた濾液を60℃真空下にて濃縮して、式1-4-2Aで表される化合物を95.9g得た。
 式1-4-2Aで表される化合物についての分子量分布(Mw/Mn)は、1.80であった。平均n数は2であった。
Figure JPOXMLDOC01-appb-C000027

 
 3000mLのニッケル製オートクレーブに、CFE-419を2800g加えて攪拌し、温度を20℃に保った。オートクレーブのガス出口には-20℃に保持したコンデンサーを設置した。窒素ガスを1.0時間吹き込んだ後、窒素ガスで希釈したフッ素ガス量が20体積%の希釈フッ素ガスを吹き込み速度98L/時間で1時間吹き込んだ。次に、20体積%の希釈フッ素ガスを同じ流速で吹き込みながら、式1-4-2Aで表される化合物80gを3時間かけて注入した。さらに、20体積%の希釈フッ素ガスを同じ速度で1時間吹き込み、さらに窒素ガスを1時間吹き込んだ。オートクレーブから反応液を回収し、濃縮したところ、93gの式1-4-3Aで表される化合物を得た。
 式1-4-3Aで表される化合物についての分子量分布(Mw/Mn)は、1.82であった。平均n数は2であった。
Figure JPOXMLDOC01-appb-C000028
 500mLのフラスコに、式1-4-3Aで表される化合物を80.0g、NaFを9.3g、メタノールを7.1g混合し、0℃で2時間攪拌した。攪拌終了後、25℃に戻し、PTFEメンブレンフィルターにてろ過してNaF、フッ化水素ナトリウム等を濾別した。得られた濾液を60℃真空下にて濃縮して、式1-4-4Aで表される化合物を62g得た。
 式1-4-4Aで表される化合物についての分子量分布(Mw/Mn)は、1.81であった。平均n数は2であった。
Figure JPOXMLDOC01-appb-C000029
 500mLの三口フラスコに、NaBH粉末の1.5gを取り入れ、AC-2000の60gを加えた。10℃を超えないように式1-4-4Aで表される化合物の60g、メタノールの2.6g、AC-2000の60gを混合した液体を滴下した。全量滴下後、さらにメタノールの2.6gとAC-2000の2.6gを混合した溶液を滴下した。その後、20℃とし攪拌を継続した。12時間後、塩酸を水溶液が酸性になるまで滴下し、二層分離して有機層を回収した。その後、有機層を水で一回、飽和食塩水で一回洗浄したのち、濃縮して式1-4-5Aで表される化合物を44g得た。
 式1-4-5Aで表される化合物についての分子量分布(Mw/Mn)は、1.81であった。平均n数は2であった。
Figure JPOXMLDOC01-appb-C000030
[合成例2-1]
 攪拌翼、温度計及び還流コンデンサーを備えた3つ口フラスコにNaOH6.2gとアセトニトリル350gと下記式Hで表される化合物50.0gを加えた。
Figure JPOXMLDOC01-appb-C000031
 40℃で攪拌混合し、式Gで表される化合物85.1gを滴下した。その後、90℃に加熱し、反応の進行をNMRで確認しながら追跡した。反応系内におけるジオール化合物及びジビニルエーテル化合物の残存量が減少していることを確認し、反応を停止し、濃縮してアセトニトリルを除去し、塩酸を加えて攪拌混合後二層分離して有機層を回収した。これを、生成物2-1-1とした。回収した液状の生成物2-1-1は121gであった。
 生成物2-1-1について、カラムクロマトグラフィーにて精製し、両末端アルコール体(式2-1-1Aで表される化合物)を87g回収した。式2-1-1Aで表される化合物についての分子量分布(Mw/Mn)は、1.46であった。平均n数は3であった。片末端アルコール、片末端ビニルの化合物(式2-1-1Bで表される化合物)を15g、両末端ビニルの化合物(式2-1-1Cで表される化合物)を6.6gそれぞれ回収した。
Figure JPOXMLDOC01-appb-C000032
 500mLのフラスコに、式2-1-1Aで表される化合物を80.0g、NaFを9.2g、式Bで表される化合物を72.6g混合し、50℃で20時間攪拌した。攪拌終了後、25℃に戻し、PTFEメンブレンフィルターにてろ過してNaF、フッ化水素ナトリウム等を濾別した。得られた濾液を60℃真空下にて濃縮して、式2-1-2Aで表される化合物を87.1g得た。
 式2-1-2Aで表される化合物についての分子量分布(Mw/Mn)は、1.44であった。平均n数は3であった。
Figure JPOXMLDOC01-appb-C000033

 
 3000mLのニッケル製オートクレーブに、CFE-419を2800g加えて攪拌し、温度を20℃に保った。オートクレーブのガス出口には-20℃に保持したコンデンサーを設置した。窒素ガスを1.0時間吹き込んだ後、窒素ガスで希釈したフッ素ガス量が20体積%の希釈フッ素ガスを吹き込み速度102L/時間で1時間吹き込んだ。次に、20体積%の希釈フッ素ガスを同じ流速で吹き込みながら、式2-1-2Aで表される化合物85gを2時間かけて注入した。さらに、20体積%の希釈フッ素ガスを同じ速度で1時間吹き込み、さらに窒素ガスを1時間吹き込んだ。オートクレーブから反応液を回収し、濃縮したところ、91gの式2-1-3Aで表される化合物を得た。
 式2-1-3Aで表される化合物についての分子量分布(Mw/Mn)は、1.47であった。平均n数は3であった。
Figure JPOXMLDOC01-appb-C000034

 
 500mLのフラスコに、式2-1-3Aで表される化合物を90.0g、NaFを7.4g、メタノールを5.6g混合し、0℃で2時間攪拌した。攪拌終了後、25℃に戻し、PTFEメンブレンフィルターにてろ過してNaF、フッ化水素ナトリウム等を濾別した。得られた濾液を60℃真空下にて濃縮して、式2-1-4Aで表される化合物を74g得た。
 式2-1-4Aで表される化合物についての分子量分布(Mw/Mn)は、1.42であった。平均n数は3であった。
Figure JPOXMLDOC01-appb-C000035

 
 500mLの三口フラスコに、NaBH粉末の1.2gを取り入れ、AC-2000の70gを加えた。10℃を超えないように式2-1-4Aで表される化合物の70g、メタノールの2.0g、AC-2000の70gを混合した液体を滴下した。全量滴下後、さらにメタノールの2.0gとAC-2000の2.0gを混合した溶液を滴下した。その後、20℃とし攪拌を継続した。12時間後、塩酸を水溶液が酸性になるまで滴下し、二層分離して有機層を回収した。その後、有機層を水で一回、飽和食塩水で一回洗浄したのち、濃縮して式2-1-5Aで表される化合物を57g得た。
 式2-1-5Aで表される化合物についての分子量分布(Mw/Mn)は、1.44であった。平均n数は3であった。
Figure JPOXMLDOC01-appb-C000036

 
[合成例3-1]
 攪拌翼、温度計及び還流コンデンサーを備えた3つ口フラスコにNaOH2.6gとアセトニトリル350gと式Aで表される化合物50.0gを加えた。40℃で攪拌混合し、下記式Iで表される化合物19.1gを滴下した。
Figure JPOXMLDOC01-appb-C000037
 その後、90℃に加熱し、反応の進行をNMRで確認しながら追跡した。反応系内におけるジオール化合物及びジビニルエーテル化合物の残存量が減少していることを確認し、反応を停止し、濃縮してアセトニトリルを除去し、塩酸を加えて攪拌混合後二層分離して有機層を回収した。これを、生成物3-1-1とした。回収した液状の生成物3-1-1は62gであった。
 生成物3-1-1について、カラムクロマトグラフィーにて精製し、両末端アルコール体(式3-1-1Aで表される化合物)を25.8g回収した。式3-1-1Aで表される化合物についての分子量分布(Mw/Mn)は、1.60であった。平均n数は2であった。片末端アルコール、片末端ビニルの化合物(式3-1-1Bで表される化合物)を26.9g、両末端ビニルの化合物(式3-1-1Cで表される化合物)を3.4gそれぞれ回収した。
Figure JPOXMLDOC01-appb-C000038
 500mLのフラスコに、式3-1-1Aで表される化合物を20.0g、NaFを3.7g、式Bで表される化合物を29.2g混合し、50℃で20時間攪拌した。攪拌終了後、25℃に戻し、PTFEメンブレンフィルターにてろ過してNaF、フッ化水素ナトリウム等を濾別した。得られた濾液を60℃真空下にて濃縮して、式3-1-2Aで表される化合物を23.7g得た。
 式3-1-2Aで表される化合物についての分子量分布(Mw/Mn)は、1.60であった。平均n数は2であった。
Figure JPOXMLDOC01-appb-C000039
 3000mLのニッケル製オートクレーブに、CFE-419を2800g加えて攪拌し、温度を20℃に保った。オートクレーブのガス出口には-20℃に保持したコンデンサーを設置した。窒素ガスを1.0時間吹き込んだ後、窒素ガスで希釈したフッ素ガス量が20体積%の希釈フッ素ガスを吹き込み速度71L/時間で1時間吹き込んだ。次に、20体積%の希釈フッ素ガスを同じ流速で吹き込みながら、式3-1-2Aで表される化合物20gを1時間かけて注入した。さらに、20体積%の希釈フッ素ガスを同じ速度で1時間吹き込み、さらに窒素ガスを1時間吹き込んだ。オートクレーブから反応液を回収し、濃縮したところ、23gの式3-1-3Aで表される化合物を得た。
 式3-1-3Aで表される化合物についての分子量分布(Mw/Mn)は、1.62であった。平均n数は2であった。
Figure JPOXMLDOC01-appb-C000040
 100mLのフラスコに、式3-1-3Aで表される化合物を20.0g、NaFを2.3g、メタノールを1.7g混合し、0℃で2時間攪拌した。攪拌終了後、25℃に戻し、PTFEメンブレンフィルターにてろ過してNaF、フッ化水素ナトリウム等を濾別した。得られた濾液を60℃真空下にて濃縮して、式3-1-4Aで表される化合物を15.7g得た。
 式3-1-4Aで表される化合物についての分子量分布(Mw/Mn)は、1.63であった。平均n数は2であった。
Figure JPOXMLDOC01-appb-C000041
 500mLの三口フラスコに、NaBH粉末の0.4gを取り入れ、AC-2000の15gを加えた。10℃を超えないように式3-1-4Aで表される化合物の15g、メタノールの0.6g、AC-2000の15gを混合した液体を滴下した。全量滴下後、さらにメタノールの0.6gとAC-2000の15gを混合した溶液を滴下した。その後、20℃とし攪拌を継続した。12時間後、塩酸を水溶液が酸性になるまで滴下し、二層分離して有機層を回収した。その後、有機層を水で一回、飽和食塩水で一回洗浄したのち、濃縮して式3-1-5Aで表される化合物を11g得た。
 式3-1-5Aで表される化合物についての分子量分布(Mw/Mn)は、1.64であった。平均n数は2であった。
Figure JPOXMLDOC01-appb-C000042
[合成例3-2]
 攪拌翼、温度計及び還流コンデンサーを備えた3つ口フラスコにNaOH6.2gとアセトニトリル350gと上記式Hで表される化合物50.0gを加えた。40℃で攪拌混合し、下記式Jで表される化合物28.3gを滴下した。
Figure JPOXMLDOC01-appb-C000043
 その後、90℃に加熱し、反応の進行をNMRで確認しながら追跡した。反応系内におけるジオール化合物及びジビニルエーテル化合物の残存量が減少していることを確認し、反応を停止し、濃縮してアセトニトリルを除去し、塩酸を加えて攪拌混合後二層分離して有機層を回収した。これを、生成物3-2-1とした。回収した液状の生成物3-2-1は70gであった。
 生成物3-2-1について、カラムクロマトグラフィーにて精製し、両末端アルコール体(式3-2-1Aで表される化合物)を29.2g回収した。式3-2-1Aで表される化合物についての分子量分布(Mw/Mn)は、1.52であった。平均n数は2であった。片末端アルコール、片末端ビニルの化合物(式3-2-1Bで表される化合物)を30.4g、両末端ビニルの化合物(式3-2-1Cで表される化合物)を3.8gそれぞれ回収した。
Figure JPOXMLDOC01-appb-C000044

 
 500mLのフラスコに、式3-2-1Aで表される化合物を25.0g、NaFを7.0g、式Bで表される化合物を55.5g混合し、50℃で20時間攪拌した。攪拌終了後、25℃に戻し、PTFEメンブレンフィルターにてろ過してNaF、フッ化水素ナトリウム等を濾別した。得られた濾液を60℃真空下にて濃縮して、式3-2-2Aで表される化合物を32.9g得た。
 式3-2-2Aで表される化合物についての分子量分布(Mw/Mn)は、1.50であった。平均n数は2であった。
Figure JPOXMLDOC01-appb-C000045

 
 3000mLのニッケル製オートクレーブに、CFE-419を2800g加えて攪拌し、温度を20℃に保った。オートクレーブのガス出口には-20℃に保持したコンデンサーを設置した。窒素ガスを1.0時間吹き込んだ後、窒素ガスで希釈したフッ素ガス量が20体積%の希釈フッ素ガスを吹き込み速度97L/時間で1時間吹き込んだ。次に、20体積%の希釈フッ素ガスを同じ流速で吹き込みながら、式3-2-2Aで表される化合物20gを1時間かけて注入した。さらに、20体積%の希釈フッ素ガスを同じ速度で1時間吹き込み、さらに窒素ガスを1時間吹き込んだ。オートクレーブから反応液を回収し、濃縮したところ、25gの式3-2-3Aで表される化合物を得た。
 式3-2-3Aで表される化合物についての分子量分布(Mw/Mn)は、1.52であった。平均n数は2であった。
Figure JPOXMLDOC01-appb-C000046

 
 100mLのフラスコに、式3-2-3Aで表される化合物を20.0g、NaFを2.3g、メタノールを1.7g混合し、0℃で2時間攪拌した。攪拌終了後、25℃に戻し、PTFEメンブレンフィルターにてろ過してNaF、フッ化水素ナトリウム等を濾別した。得られた濾液を60℃真空下にて濃縮して、式3-2-4Aで表される化合物を14g得た。
 式3-2-4Aで表される化合物についての分子量分布(Mw/Mn)は、1.53であった。平均n数は2であった。
Figure JPOXMLDOC01-appb-C000047

 
 500mLの三口フラスコに、NaBH粉末の0.3gを取り入れ、AC-2000の10gを加えた。10℃を超えないように式3-2-4Aで表される化合物の10g、メタノールの0.6g、AC-2000の10gを混合した液体を滴下した。全量滴下後、さらにメタノールの0.6gとAC-2000の10gを混合した溶液を滴下した。その後、20℃とし攪拌を継続した。12時間後、塩酸を水溶液が酸性になるまで滴下し、二層分離して有機層を回収した。その後、有機層を水で一回、飽和食塩水で一回洗浄したのち、濃縮して式3-2-5Aで表される化合物を6g得た。
 式3-2-5Aで表される化合物についての分子量分布(Mw/Mn)は、1.52であった。平均n数は2であった。
Figure JPOXMLDOC01-appb-C000048

 
[合成例4-1]
 500mLハステロイ製のオートクレーブにCsF粉末を6.4g加えた。次に、対応するジオールとCOFとから事前に準備した下記式Kで表される化合物20.1g及び無水のテトラグライム120gを仕込み、N雰囲気として-196℃に冷却して真空脱気を実施した。その後、上記式Eで表される化合物を50g添加し、120℃/42時間、1.2MPaGの加圧下で反応を実施した。
Figure JPOXMLDOC01-appb-C000049
 その後、170℃で45時間反応を継続した。反応後低沸ガスをパージして、生成したポリマー56gを回収した。
 回収したポリマーを、生成物4-1-1とした。生成物4-1-1には、下記式4-1-1A、4-1-1B及び4-1-1Cで表される化合物が含まれていた。生成物4-1-1は、下記式4-1-1A’、4-1-1B’及び4-1-1C’で表される化合物の混合物を経て生じたものと考えられる。なお、式4-1-1Cで表される化合物は式4-1-1C’で表される化合物と同一である。
 生成物4-1-1の重量平均分子量は1500であり、生成物4-1-1全体における末端基はCHFが45mol%であり、CFCOFが55mol%であった。
Figure JPOXMLDOC01-appb-C000050

 
Figure JPOXMLDOC01-appb-C000051

 
 500mLのPFA(テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合樹脂)フラスコに28gのエタノールを予め加えておき、生成物4-1-1の56gを滴下した。滴下する際に温度は10℃を超えないように滴下速度を調節した。その後、40℃で5時間反応させたのち、水で水洗し、二層分離後に有機層を濃縮して、有機層を62g回収した。これを生成物4-1-2とした。
 生成物4-1-2には、下記式4-1-2A、4-1-2B及び4-1-2Cで表される化合物が含まれていた。なお、生成物4-1-2を合成する反応では、式4-1-1Aで表される化合物は影響を受けることがなく、式4-1-2Aで表される化合物は式4-1-1Aで表される化合物と同一である。
 生成物4-1-2全体における末端基は、CHFが45mol%であり、CFCOOCHCHが55mol%であった。CHFの比率は、生成物4-1-1についてのCHFの比率と同じであった。
Figure JPOXMLDOC01-appb-C000052

 
 500mLのニッケル製オートクレーブにCFE-419を300g加えて攪拌し、温度を20℃に保った。オートクレーブのガス出口には-20℃に保持したコンデンサーを設置した。窒素ガスを1.0時間吹き込んだ後、窒素ガスで希釈したフッ素ガス量が20体積%の希釈フッ素ガスを吹き込み速度138L/時間で1時間吹き込んだ。次に、20体積%の希釈フッ素ガスを同じ流速で吹き込みながら、生成物4-1-2の56gを1時間かけて注入した。さらに、20体積%の希釈フッ素ガスを同じ速度で1時間吹き込み、さらに窒素ガスを1時間吹き込んだ。オートクレーブから反応液を回収し、濃縮したところ、69gの生成物4-1-3を得た。
 生成物4-1-3には、下記式4-1-3A、4-1-3B及び4-1-3Cで表される化合物が含まれていた。生成物4-1-3全体における末端基は、CFが45mol%であり、CFCOOCFCFが55mol%であった。
Figure JPOXMLDOC01-appb-C000053
 500mLのPFAフラスコに16gのエタノールを予め加えておき、生成物4-1-3の69gを滴下した。滴下する際に温度は10℃を超えないように滴下速度を調節した。その後、40℃で5時間反応させたのち、水で水洗し、二層分離後に有機層を濃縮して、有機層を65g回収した。これを生成物4-1-4とした。
 生成物4-1-4には、下記式4-1-4A、4-1-4B及び4-1-4Cで表される化合物が含まれていた。なお、生成物4-1-4を合成する反応では、式4-1-3Aで表される化合物は影響を受けることがなく、式4-1-4Aで表される化合物は式4-1-3Aで表される化合物と同一である。生成物4-1-4全体における末端基は、CFが45mol%であり、CFCOOCHCHが55mol%であった。
Figure JPOXMLDOC01-appb-C000054

 
 500mLの三口フラスコに、NaBH粉末の2.5gを取り入れ、AC-2000の65gを加えた。10℃を超えないように生成物4-1-4の65g、メタノールの4.2g、AC-2000の65gを混合した溶液を滴下した。全量滴下後、さらにメタノールの4.2gとAC-2000の4.2gを混合した溶液を滴下した。その後、20℃とし攪拌を継続した。12時間後、塩酸を水溶液が酸性になるまで滴下し、二層分離して有機層を回収した。その後、有機層を水で一回、飽和食塩水で一回洗浄したのち、濃縮して生成物4-1-5を60g得た。
 生成物4-1-5には、下記式4-1-5A、4-1-5B及び4-1-5Cで表される化合物が含まれていた。なお、生成物4-1-5を合成する反応では、式4-1-4Aで表される化合物は影響を受けることがなく、式4-1-4Aで表される化合物は式4-1-5Aで表される化合物と同一である。生成物4-1-5全体における末端基は、CFが45mol%であり、CFCHOHが55mol%であった。
 カラムクロマトグラフィーにて分離精製を行ったところ、両末端がCFの化合物(式4-1-5Aで表される化合物)が18g、両末端がCFCHOHの化合物(式4-1-5Cで表される化合物)が9g、CFとCFCHOHを持つ化合物(式4-1-5Bで表される化合物)が32g、それぞれ得られた。
Figure JPOXMLDOC01-appb-C000055

 
[合成例5-1]
 500mLハステロイ製のオートクレーブにCsF粉末を6.4g加えた。次に、対応するジオールとCOFとから事前に準備した下記式Lで表される化合物35.4g及び無水のテトラグライム120gを仕込み、N雰囲気として-196℃に冷却して真空脱気を実施した。その後、式Eで表される化合物を50g添加し、120℃/42時間、1.3MPaGの加圧下で反応を実施した。
Figure JPOXMLDOC01-appb-C000056

 
 
 その後、170℃で60時間反応を継続した。反応後低沸ガスをパージして、生成したポリマー68g回収した。
 回収したポリマーを、生成物5-1-1とした。生成物5-1-1には、下記式5-1-1A、5-1-1B及び5-1-1Cで表される化合物が含まれていた。生成物5-1-1は、下記式5-1-1A’、5-1-1B’及び5-1-1C’で表される化合物の混合物を経て生じたものと考えられる。なお、式5-1-1Cで表される化合物は式5-1-1C’で表される化合物と同一である。
 生成物5-1-1の重量平均分子量は2000であり、生成物5-1-1全体における末端基は、CHFが45mol%であり、CFCOFが55mol%であった。
Figure JPOXMLDOC01-appb-C000057

 
Figure JPOXMLDOC01-appb-C000058

 
 500mLのPFAフラスコに34gのエタノールを予め加えておき、生成物5-1-1の68gを滴下した。滴下する際に温度は10℃を超えないように滴下速度を調節した。その後、40℃で5時間反応させたのち、水で水洗し、二層分離後に有機層を濃縮して、有機層を62g回収した。これを生成物5-1-2とした。
 生成物5-1-2には、下記式5-1-2A、5-1-2B及び5-1-2Cで表される化合物が含まれていた。なお、生成物5-1-2を合成する反応では、式5-1-1Aで表される化合物は影響を受けることがなく、式5-1-2Aで表される化合物は式5-1-1Aで表される化合物と同一である。
 生成物5-1-2全体における末端基は、CHFが45mol%であり、CFCOOCHCHが55mol%であった。CHFの比率は、生成物5-1-1についてのCHFの比率と同じであった。
Figure JPOXMLDOC01-appb-C000059

 
 500mLのニッケル製オートクレーブにCFE-419を300g加えて攪拌し、温度を20℃に保った。オートクレーブのガス出口には-20℃に保持したコンデンサーを設置した。窒素ガスを1.0時間吹き込んだ後、窒素ガスで希釈したフッ素ガス量が20体積%の希釈フッ素ガスを吹き込み速度45L/時間で1時間吹き込んだ。次に、20体積%の希釈フッ素ガスを同じ流速で吹き込みながら、生成物5-1-2の62gを1時間かけて注入した。さらに、20%体積の希釈フッ素ガスを同じ速度で1時間吹き込み、さらに窒素ガスを1時間吹き込んだ。オートクレーブから反応液を回収し、濃縮したところ、65gの生成物5-1-3を得た。
 生成物5-1-3には、下記式5-1-3A、5-1-3B及び5-1-3Cで表される化合物が含まれていた。生成物5-1-3全体における末端基は、CFが45mol%であり、CFCOOCFCFが55mol%であった。
Figure JPOXMLDOC01-appb-C000060
 500mLのPFAフラスコに14gのエタノールを予め加えておき、生成物5-1-3の65gを滴下した。滴下する際に温度は10℃を超えないように滴下速度を調節した。その後、40℃で5時間反応させたのち、水で水洗し、二層分離後に有機層を濃縮して、有機層を60g回収した。これを生成物5-1-4とした。
 生成物5-1-4には、下記式5-1-4A、5-1-4B及び5-1-4Cで表される化合物が含まれていた。なお、生成物5-1-4を合成する反応では、式5-1-3Aで表される化合物は影響を受けることがなく、式5-1-4Aで表される化合物は式5-1-3Aで表される化合物と同一である。生成物5-1-4全体における末端基は、CFが45mol%であり、CFCOOCHCHが55mol%であった。
Figure JPOXMLDOC01-appb-C000061

 
 500mLの三口フラスコに、NaBH粉末の2.2gを取り入れ、AC-2000の60gを加えた。10℃を超えないように生成物5-1-4の60g、メタノールの3.6g、AC-2000の60gを混合した溶液を滴下した。全量滴下後、さらにメタノール3.6gとAC-2000の3.6gを混合した溶液を滴下した。その後、20℃とし攪拌を継続した。12時間後、塩酸を水溶液が酸性になるまで滴下し、二層分離して有機層を回収した。その後、有機層を水で一回、飽和食塩水で一回洗浄したのち、濃縮して生成物5-1-5を52g得た。
 生成物5-1-5には、下記式5-1-5A、5-1-5B及び5-1-5Cで表される化合物が含まれていた。なお、生成物5-1-5を合成する反応では、式5-1-4Aで表される化合物は影響を受けることがなく、式5-1-4Aで表される化合物は式5-1-5Aで表される化合物と同一である。生成物5-1-5全体における末端基は、CFが45mol%であり、CFCHOHが55mol%であった。
 カラムクロマトグラフィーにて分離精製を行ったところ、両末端がCFの化合物(式5-1-5Aで表される化合物)が13g、両末端がCFCHOHの化合物(式5-1-5Cで表される化合物)が31g、CFとCFCHOHを持つ化合物(式5-1-5Bで表される化合物)が8g、それぞれ得られた。
Figure JPOXMLDOC01-appb-C000062

 
[合成例6-1]
 1000mLハステロイ製のオートクレーブにCsF粉末を21.6g加えた。次に、対応するジオールとCOFとから事前に準備した下記式Mで表される化合物184.0g及び無水のテトラグライム300gを仕込み、N雰囲気として-196℃に冷却して真空脱気を実施した。その後、下記式Nで表される化合物を50g添加し、120℃/42時間、0.95MPaGの加圧下で反応を実施した。
Figure JPOXMLDOC01-appb-C000063
 その後、170℃で45時間反応を継続した。反応後低沸ガスをパージして、生成したポリマー187g回収した。
 回収したポリマーを、生成物6-1-1とした。生成物6-1-1には、下記式6-1-1A、6-1-1B及び6-1-1Cで表される化合物が含まれていた。生成物6-1-1は、下記式6-1-1A’、6-1-1B’及び6-1-1C’で表される化合物の混合物を経て生じたものと考えられる。なお、式6-1-1Cで表される化合物は式6-1-1C’で表される化合物と同一である。
 生成物6-1-1の重量平均分子量は1500であり、生成物6-1-1全体における末端基は、CHFが43mol%であり、>CHCOFが57mol%であった。
Figure JPOXMLDOC01-appb-C000064

 
Figure JPOXMLDOC01-appb-C000065

 
 500mLのPFAフラスコに94gのエタノールを予め加えておき、生成物6-1-1の187gを滴下した。滴下する際に温度は10℃を超えないように滴下速度を調節した。その後、40℃で5時間反応させたのち、水で水洗し、二層分離後に有機層を濃縮して、有機層を180g回収した。これを生成物6-1-2とした。
 生成物6-1-2には、下記式6-1-2A、6-1-2B及び6-1-2Cで表される化合物が含まれていた。なお、生成物6-1-2を合成する反応では、式6-1-1Aで表される化合物は影響を受けることがなく、式6-1-2Aで表される化合物は式6-1-1Aで表される化合物と同一である。
 生成物6-1-2全体における末端基は、CHFが43mol%であり、>CHCOOCHCHが57mol%であった。CHFの比率は、生成物6-1-1についてのCHFの比率と同じであった。
Figure JPOXMLDOC01-appb-C000066

 
 500mLのニッケル製オートクレーブにCFE-419を300g加えて攪拌し、温度を20℃に保った。オートクレーブのガス出口には-20℃に保持したコンデンサーを設置した。窒素ガスを1.0時間吹き込んだ後、窒素ガスで希釈したフッ素ガス量が20体積%の希釈フッ素ガスを吹き込み速度92L/時間で1時間吹き込んだ。次に、20体積%の希釈フッ素ガスを同じ流速で吹き込みながら、生成物6-1-2の187gを5時間かけて注入した。さらに、20体積%の希釈フッ素ガスを同じ速度で1時間吹き込み、さらに窒素ガスを1時間吹き込んだ。オートクレーブから反応液を回収し、濃縮したところ、229gの生成物6-1-3を得た。
 生成物6-1-3には、下記式6-1-3A、6-1-3B及び6-1-3Cで表される化合物が含まれていた。生成物6-1-3全体における末端基は、CFが43mol%であり、>CFCOOCFCFが57mol%であった。
Figure JPOXMLDOC01-appb-C000067

 
 500mLのPFAフラスコに53gのエタノールを予め加えておき、生成物6-1-3の229gを滴下した。滴下する際に温度は10℃を超えないように滴下速度を調節した。その後、40℃で5時間反応させたのち、水で水洗し、二層分離後に有機層を濃縮して、有機層を210g回収した。これを生成物6-1-4とした。
 生成物6-1-4には、下記式6-1-4A、6-1-4B及び6-1-4Cで表される化合物が含まれていた。なお、生成物6-1-4を合成する反応では、式6-1-3Aで表される化合物は影響を受けることがなく、式6-1-4Aで表される化合物は式6-1-3Aで表される化合物と同一である。生成物6-1-4全体における末端基は、CFが43mol%であり、>CFCOOCHCHが57mol%であった。
Figure JPOXMLDOC01-appb-C000068

 
 500mLの三口フラスコに、NaBH粉末の7.9gを取り入れ、AC-2000の210gを加えた。10℃を超えないように生成物6-1-4の210g、メタノールの13.5g、AC-2000の210gを混合した溶液を滴下した。全量滴下後、さらにメタノールの13.5gとAC-2000の210gを混合した溶液を滴下した。その後、20℃とし攪拌を継続した。12時間後、塩酸を水溶液が酸性になるまで滴下し、二層分離して有機層を回収した。その後、有機層を水で一回、飽和食塩水で一回洗浄したのち、濃縮して生成物6-1-5を198g得た。
 生成物6-1-5には、下記式6-1-5A、6-1-5B及び6-1-5Cで表される化合物が含まれていた。なお、生成物6-1-5を合成する反応では、式6-1-4Aで表される化合物は影響を受けることがなく、式6-1-4Aで表される化合物は式6-1-5Aで表される化合物と同一である。生成物6-1-5全体における末端基は、CFが43mol%であり、>CFCHOHが57mol%であった。
 カラムクロマトグラフィーにて分離精製を行ったところ、両末端がCFの化合物(式6-1-5Aで表される化合物)が37g、両末端が>CFCHOHの化合物(式6-1-5Cで表される化合物)が127g、CFと>CFCHOHを持つ化合物(式6-1-5Bで表される化合物)が33g、それぞれ得られた。
Figure JPOXMLDOC01-appb-C000069

 
[合成例7]
 WO2019/243404の[0129]~[0133]に記載の方法に従い、以下の生成物7-1を合成した。重量平均分子量Mwは1400であった。
Figure JPOXMLDOC01-appb-C000070

 
 500mLの三口フラスコに、NaBH粉末の3.2gを取り入れ、AC-2000の60gを加えた。10℃を超えないように生成物7-1の60g、メタノールの5.5g、AC-2000の60gを混合した溶液を滴下した。全量滴下後、さらにメタノールの5.5gとAC-2000の60gを混合した溶液を滴下した。その後、20℃とし攪拌を継続した。12時間後、塩酸を水溶液が酸性になるまで滴下し、二層分離して有機層を回収した。その後、有機層を水で一回、飽和食塩水で一回洗浄したのち、濃縮して生成物7-2を52g得た。
 生成物7-2全体における末端基は、CFが44mol%であり、CHOHが56mol%であった。
 カラムクロマトグラフィーにて分離精製を行ったところ、両末端がCFの化合物(化合物7-2A)が12g、両末端がCHOHの化合物(化合物7-2B)が24g、CFとCHOHを持つ化合物が16g、それぞれ得られた。各化合物の重量平均分子量Mwは1400であった。
Figure JPOXMLDOC01-appb-C000071

 
[評価]
 各合成例で得られた化合物2gをガラス製のフラスコに投入し、さらに塩化アルミニウムを2g投入して200℃で100時間加熱した。100時間加熱後の化合物の残存量を測定し、残存率を算出した。得られた結果を表1に示す。
 合成例1-1~合成例6-1で得られた化合物は、合成例7で得られた化合物よりも耐薬品性が向上していることがわかる。
Figure JPOXMLDOC01-appb-T000072
 2020年12月25日に出願された日本国特許出願2020-217940号の開示は、その全体が参照により本明細書に取り込まれる。
 また、本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (7)

  1.  下記一般式(1)で表される構造単位又は下記一般式(2)で表される構造単位を含む含フッ素ポリエーテル化合物。
     [-CF-CHR-O-R-O-CHR-CF-O-R-O-]・・・(1)
     [-R-O-R-O-R-O-R-O-]・・・(2)
    (一般式(1)中、Rは、それぞれ独立して、フッ素原子、水素原子、又は水素原子がフッ素原子により置換されていてもよい炭素数1~3の1価の炭化水素基を表し、R及びRは、それぞれ独立して、環構造を含み、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換されていてもよい炭素数3~20の2価の炭化水素基を表す。ただし、R及びRの少なくとも一方は、環構造を含み、エーテル結合を含んでいてもよく、水素原子がフッ素原子により置換された炭素数3~20の2価の炭化水素基を表す。
     一般式(2)中、R及びRは、それぞれ独立して、環構造を含み、水素原子がフッ素原子により置換されていてもよい炭素数3~20の2価の炭化水素基を表し、Rは、それぞれ独立して、水素原子がフッ素原子により置換されていてもよい炭素数1~16のアルキレン基を表す。ただし、R及びRの少なくとも一方は、環構造を含み、水素原子がフッ素原子により置換された炭素数3~20の2価の炭化水素基を表す。また、R及びRは、互いに異なる構造を有する。)
  2.  一般式(1)におけるR及びRの一方が脂肪族環を含み、他の一方が芳香族環を含む請求項1に記載の含フッ素ポリエーテル化合物。
  3.  一般式(1)におけるR及びRが共に1つの環構造を含み、
     Rに含まれる環構造の環員数とRに含まれる環構造の環員数とが、異なる請求項1又は請求項2に記載の含フッ素ポリエーテル化合物。
  4.  一般式(1)におけるR及びRの一方に含まれる前記環構造の数と他方に含まれる前記環構造の数とが、異なる請求項1~請求項3のいずれか1項に記載の含フッ素ポリエーテル化合物。
  5.  一般式(1)におけるRが、-CH3ACH-で表される基であり、R3Aは一般式(1)におけるRで表される2価の炭化水素基から酸素原子と結合する部分を構成する2つのメチレン基を除いた基を表す請求項1~請求項4のいずれか1項に記載の含フッ素ポリエーテル化合物。
  6.  一般式(2)におけるR及びRが共に1つの環構造を含み、
     Rに含まれる環構造の環員数とRに含まれる環構造の環員数とが、異なる請求項1~請求項5のいずれか1項に記載の含フッ素ポリエーテル化合物。
  7.  下記一般式(1’)で表される構造単位又は下記一般式(2’)で表される構造単位を含む含フッ素ポリエーテル化合物。
     [-CF-CFRF1-O-RF2-O-CFRF1-CF-O-RF3-O-]・・・(1’)
     [-RF5-O-RF4-O-RF5-O-RF6-O-]・・・(2’)
    (一般式(1’)中、RF1は、それぞれ独立して、フッ素原子、又は炭素数1~3の1価のペルフルオロ炭化水素基を表し、RF2及びRF3は、それぞれ独立して、環構造を含み、エーテル結合を含んでいてもよい炭素数3~20の2価のペルフルオロ炭化水素基を表す。
     一般式(2’)中、RF4及びRF6は、それぞれ独立して、環構造を含む炭素数3~20の2価のペルフルオロ炭化水素基を表し、RF5は、それぞれ独立して、炭素数1~16のペルフルオロアルキレン基を表す。ただし、RF4及びRF6は、互いに異なる構造を有する。)
PCT/JP2021/046847 2020-12-25 2021-12-17 含フッ素ポリエーテル化合物 WO2022138508A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21910653.1A EP4269381A1 (en) 2020-12-25 2021-12-17 Fluorine-containing polyether compound
CN202180086554.6A CN116635360A (zh) 2020-12-25 2021-12-17 含氟聚醚化合物
JP2022571413A JPWO2022138508A1 (ja) 2020-12-25 2021-12-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020217940 2020-12-25
JP2020-217940 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138508A1 true WO2022138508A1 (ja) 2022-06-30

Family

ID=82157817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046847 WO2022138508A1 (ja) 2020-12-25 2021-12-17 含フッ素ポリエーテル化合物

Country Status (4)

Country Link
EP (1) EP4269381A1 (ja)
JP (1) JPWO2022138508A1 (ja)
CN (1) CN116635360A (ja)
WO (1) WO2022138508A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208736A (ja) 2000-01-28 2001-08-03 Asahi Glass Co Ltd フッ素系有機化合物の分子量測定方法
WO2002004397A1 (fr) * 2000-07-11 2002-01-17 Asahi Glass Company, Limited Procede de preparation d'un compose renfermant du fluor
JP2008260814A (ja) * 2007-04-10 2008-10-30 Fujifilm Corp 新規な架橋性のエーテル系含フッ素化合物
WO2019243403A1 (en) 2018-06-20 2019-12-26 Solvay Specialty Polymers Italy S.P.A. (per)fluoropolyether polymers
WO2019243404A1 (en) 2018-06-20 2019-12-26 Solvay Specialty Polymers Italy S.P.A. Method of making mixture of polymers
WO2020162371A1 (ja) * 2019-02-08 2020-08-13 Agc株式会社 含フッ素エーテル化合物、含フッ素エーテル組成物、コーティング液、物品、物品の製造方法、及び含フッ素化合物の製造方法
WO2022004436A1 (ja) * 2020-06-30 2022-01-06 Agc株式会社 含フッ素エーテル化合物、硬化性組成物、硬化膜、素子、及び表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208736A (ja) 2000-01-28 2001-08-03 Asahi Glass Co Ltd フッ素系有機化合物の分子量測定方法
WO2002004397A1 (fr) * 2000-07-11 2002-01-17 Asahi Glass Company, Limited Procede de preparation d'un compose renfermant du fluor
JP2008260814A (ja) * 2007-04-10 2008-10-30 Fujifilm Corp 新規な架橋性のエーテル系含フッ素化合物
WO2019243403A1 (en) 2018-06-20 2019-12-26 Solvay Specialty Polymers Italy S.P.A. (per)fluoropolyether polymers
WO2019243404A1 (en) 2018-06-20 2019-12-26 Solvay Specialty Polymers Italy S.P.A. Method of making mixture of polymers
WO2020162371A1 (ja) * 2019-02-08 2020-08-13 Agc株式会社 含フッ素エーテル化合物、含フッ素エーテル組成物、コーティング液、物品、物品の製造方法、及び含フッ素化合物の製造方法
WO2022004436A1 (ja) * 2020-06-30 2022-01-06 Agc株式会社 含フッ素エーテル化合物、硬化性組成物、硬化膜、素子、及び表示装置

Also Published As

Publication number Publication date
EP4269381A1 (en) 2023-11-01
CN116635360A (zh) 2023-08-22
JPWO2022138508A1 (ja) 2022-06-30

Similar Documents

Publication Publication Date Title
JP7071365B2 (ja) (ペル)フルオロポリエーテルポリマー
USRE41806E1 (en) Process for producing a fluorine atom-containing sulfonyl fluoride compound
JP2945693B2 (ja) 液相フツ素置換
EP2004722B1 (en) A process for preparing high purity monocarboxylic perfluoropolyethers
EP3555173B1 (en) (per)fluoropolyether polymers
JP4575710B2 (ja) 少なくとも1つの−ch2ohまたは−ch(cf3)oh末端基を有するパーフルオロポリエーテルの製造
US9783483B2 (en) Process for producing fluorinated compound
WO2019243404A1 (en) Method of making mixture of polymers
WO2022138508A1 (ja) 含フッ素ポリエーテル化合物
EP0436628A1 (en) Fluorination of epoxides
EP3781611B1 (en) Method of making mixture of polymers
US11898006B2 (en) Process for the manufacture of polyether polymers
WO2022138510A1 (ja) 含フッ素ポリエーテル化合物の製造方法、含フッ素ジビニルポリエーテル化合物の製造方法及び含フッ素ジビニルポリエーテル化合物
TW201111413A (en) Process for the purification of polyol PFPE derivatives
WO2022138511A1 (ja) 含フッ素ポリエーテル化合物の製造方法
WO2022138509A1 (ja) ポリエーテル組成物の製造方法、含フッ素ポリエーテル組成物の製造方法及びポリエーテル組成物
KR20210127141A (ko) (퍼)플루오로폴리에테르(pfpe) 중합체
JPWO2003002501A1 (ja) 含フッ素カルボニル化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910653

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571413

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180086554.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021910653

Country of ref document: EP

Effective date: 20230725