WO2022138094A1 - 造粒物の製造方法および光学フィルムの製造方法 - Google Patents

造粒物の製造方法および光学フィルムの製造方法 Download PDF

Info

Publication number
WO2022138094A1
WO2022138094A1 PCT/JP2021/044612 JP2021044612W WO2022138094A1 WO 2022138094 A1 WO2022138094 A1 WO 2022138094A1 JP 2021044612 W JP2021044612 W JP 2021044612W WO 2022138094 A1 WO2022138094 A1 WO 2022138094A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
granulated product
resin
granulated
bulk density
Prior art date
Application number
PCT/JP2021/044612
Other languages
English (en)
French (fr)
Inventor
真治 稲垣
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN202180086496.7A priority Critical patent/CN116669927A/zh
Priority to JP2022572070A priority patent/JPWO2022138094A1/ja
Priority to KR1020237020624A priority patent/KR20230108325A/ko
Publication of WO2022138094A1 publication Critical patent/WO2022138094A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/04Conditioning or physical treatment of the material to be shaped by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B17/0412Disintegrating plastics, e.g. by milling to large particles, e.g. beads, granules, flakes, slices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0468Crushing, i.e. disintegrating into small particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for producing a granulated product and a method for producing an optical film.
  • a polarizing plate is usually used for displays such as liquid crystal displays (LCDs), organic EL displays (OLEDs), and ⁇ LEDs.
  • the polarizing plate includes a polarizing element and an optical film having a function of protecting the polarizing element and an optical compensation function.
  • ears with slit ends and non-standard products may occur. From the viewpoint of effectively utilizing these materials, reducing waste and improving the production efficiency of optical films, reuse the ears slit during film production and non-standard films (return materials). Is being considered.
  • crushed materials such as films have a small bulk density (apparent specific gravity), so they are difficult to handle. Therefore, the crushed material may be pelletized (granulated) and used.
  • Patent Document 1 proposes a method of granulating (or melting) a crushed material of a return material such as a film by frictional heat to obtain a granulated product having a bulk density as low as that of a new pellet (. See Patent Document 1).
  • the optical film is required to have high optical stability (humidity dependence of retardation) and dimensional stability (humidity dependence of dimensions).
  • Films containing cycloolefin resins and (meth) acrylic resins are being used because they have better humidity dependence of retardation and dimensional humidity dependence than conventional films containing cellulose ester resins. ..
  • the crushed product of the film containing these resins is bulkier than the crushed product of the conventional film containing the cellulose ester resin, and has a problem that it is difficult to handle (difficult to transfer and store). Further, when the crushed material of these films is granulated under the conditions shown in Patent Document 1 (granulation by generating frictional heat at a high temperature of about 200 ° C.), the resin of the granulated product is liable to be thermally deteriorated. was there.
  • the granulated product will be produced during air transportation. It easily adheres to the inner wall surface of piping.
  • a film is produced using such a pipe and using different kinds of materials, there is also a problem that granulated matter adhering to the inner wall surface of the pipe and its components are easily mixed as foreign matter.
  • the present invention has been made in view of the above circumstances, and provides a method for producing a granulated product having excellent handleability while suppressing deterioration of the material and contamination of foreign substances due to heat, and a method for producing an optical film using the same.
  • the purpose is to do.
  • the present invention relates to the following method for producing a granulated product and a method for producing an optical film using the same.
  • the method for producing a granulated product of the present invention contains one or more resins selected from the group consisting of (meth) acrylic resins and cycloolefin resins, and has a bulk density of 0.01 to 0.25 g / cm 3 .
  • the step of preparing the crushed material and the crushed material are melted by frictional heat at a temperature of (50 to Tg) ° C. (Tg is the glass transition temperature of the resin), and the bulk density is 0.26 to 0. Includes a step of obtaining a granule at .45 g / cm 3 .
  • the method for producing an optical film of the present invention is a step of obtaining a granulated product by the method for producing a granulated product of the present invention, and the granulated product is melted or dissolved in a solvent to obtain a film-like product. Including the process.
  • the present invention it is possible to provide a method for producing a granulated product having excellent handleability and a method for producing an optical film using the same, while suppressing deterioration of the material and contamination of foreign substances due to heat.
  • FIG. 1 is a cross-sectional view showing the configuration of a crushing / granulating device.
  • FIG. 2 is an enlarged view of a main part of FIG.
  • a film containing a cycloolefin resin or a (meth) acrylic resin is harder to cut (harder to crush) than a film containing a cellulose ester resin, and the crushed material tends to be bulky.
  • cycloolefin-based resins and (meth) acrylic-based resins have higher toughness than cellulose ester-based resins and are prone to generate static electricity because of their low polarity.
  • the crushed material of the film is melted by frictional heat to granulate, and the temperature at that time is kept below a certain level, and 2) the bulk density of the obtained granulated material is not too low. It was found that by further adjusting the melting and granulation conditions, it is possible to suppress the thermal deterioration of the resin of the granulated product and the contamination of foreign matter when switching varieties.
  • the melting temperature due to frictional heat can be adjusted by any method.
  • the melting temperature is, for example, the width and length of the flow path (gap between the screw and the inner wall surface of the cylinder) of the melting zone (compression portion B or transfer portion C) due to the frictional heat of the crushing / granulating device 10 of FIG. 1, which will be described later. , It can be adjusted by the cooling process (at the time of melting), the supply rate (processing rate) of the crushed material, and the like.
  • the bulk density of the granulated product can be adjusted, for example, by the melting temperature due to frictional heat, the aspect ratio of the granulated product, or the like.
  • the present invention relates to a method for producing a granulated product using such a resin film return material. Therefore, first, a resin film (return material), which is a raw material for granulated products, will be described.
  • the return material is scraps or non-standard products cut off in the manufacturing process of resin films such as optical films. In the manufacturing process of an optical film, defective products may occur due to cut-off edges or turbulence. Although these are not products, they can be reused because there is no problem with the material.
  • the optical film contains a cycloolefin resin or a (meth) acrylic resin.
  • the cycloolefin-based resin is a polymer containing a structural unit derived from a norbornene-based monomer.
  • the norbornene-based monomer is represented by the following formula (1).
  • R 1 to R 4 of the formula (1) represent a hydrogen atom, a halogen atom, a hydrocarbon group, or a polar group, respectively.
  • halogen atoms include fluorine atoms and chlorine atoms.
  • the hydrocarbon group is a hydrocarbon group having 1 to 10, preferably 1 to 4, more preferably 1 or 2 carbon atoms.
  • Examples of the hydrocarbon group include an alkyl group such as a methyl group, an ethyl group, a propyl group and a butyl group.
  • the hydrocarbon group further has a divalent linking group of a linking group containing an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom (eg, a carbonyl group, an imino group, an ether bond, a silyl ether bond, a thioether bond, etc.). You may.
  • polar groups include linking groups such as carboxy group, hydroxy group, alkoxy group, alkoxycarbonyl group, allyloxycarbonyl group, amino group, amide group, and methylene group (-(CH 2 ) n- , n is 1 A group to which these groups are bonded via the above integer) is included.
  • linking groups such as carboxy group, hydroxy group, alkoxy group, alkoxycarbonyl group, allyloxycarbonyl group, amino group, amide group, and methylene group (-(CH 2 ) n- , n is 1
  • alkoxycarbonyl group and an aryloxycarbonyl group are preferable, and an alkoxycarbonyl group is more preferable.
  • R 1 to R 4 is a polar group.
  • a cycloolefin resin containing a structural unit derived from a norbornene-based monomer having a polar group is easily dissolved in a solvent, for example, when forming a film by a solution casting method, and easily raises the glass transition temperature of the obtained film. ..
  • a cycloolefin resin containing no structural unit derived from a norbornene-based monomer having a polar group may be used.
  • both R 1 and R 2 may be hydrogen atoms.
  • P in the equation (1) indicates an integer of 0 to 2. From the viewpoint of increasing the heat resistance of the optical film, p is preferably 1 to 2.
  • examples of the norbornene-based monomers represented by the formula (1) include the following.
  • Examples of norbornene-based monomers having no polar group include:
  • the content of the structural unit derived from the norbornene-based monomer can be 50 to 100 mol% with respect to all the structural units constituting the cycloolefin-based resin.
  • the cycloolefin-based resin may further contain a structural unit derived from a norbornene-based monomer and a structural unit derived from another copolymerizable monomer.
  • examples of other copolymerizable monomers include norbornene-based monomers that do not have polar groups (if the norbornene-based monomers have polar groups), cyclobutene, cyclopentene, cycloheptene, and dicyclopentadiene. Cycloolefin-based monomers having no norbornene skeleton such as are included.
  • the weight average molecular weight Mw of the cycloolefin resin is not particularly limited, but is preferably 20,000 to 300,000, more preferably 30,000 to 250,000, and even more preferably 40,000 to 200,000. ..
  • Mw of the cycloolefin resin is in the above range, the mechanical properties of the film can be enhanced without impairing the moldability.
  • the Mw of the cycloolefin resin can be measured by gel permeation chromatography (GPC). Specifically, it can be measured under the following conditions using HLC8220GPC manufactured by Tosoh Corporation. (Measurement condition) Eluent: THF Column: Tosoh TSKgel GMHXL x 2 Flow velocity: 1.0 mL / min Sample concentration: 0.1% by mass Injection volume: 100 ⁇ L Detector: RI Calibration curve: Standard polystyrene Column temperature: 40 ° C
  • the glass transition temperature Tg of the cycloolefin resin is usually preferably 110 ° C. or higher, more preferably 110 to 350 ° C., and even more preferably 120 to 250 ° C.
  • the Tg of the cycloolefin-based resin is 110 ° C. or higher, sufficient heat resistance is likely to be obtained, and when the Tg is 350 ° C. or lower, thermal deterioration of the cycloolefin-based resin during molding can be suppressed.
  • Tg can be measured by a method compliant with JIS K7121-2012 or ASTM D3418-82 using DSC (Differential Scanning Colorimetry).
  • the (meth) acrylic resin is preferably a polymer containing a structural unit derived from methyl methacrylate.
  • the polymer may further contain structural units derived from a monomer copolymerizable with methyl methacrylate.
  • Examples of other monomers copolymerizable with methyl methacrylate include alkyl (meth) acrylates with 1-18 carbon atoms other than methyl methacrylate, such as 2-ethylhexyl (meth) acrylate; ⁇ , such as (meth) acrylic acid.
  • ⁇ -Unsaturated acid Unsaturated dicarboxylic acid such as maleic acid, fumaric acid, itaconic acid
  • Styrene such as styrene and ⁇ -methylstyrene
  • Maleimide anhydride Maleimide such as maleimide and N-phenylmaleimide
  • Glutarate anhydride Things etc. are included.
  • the content of the structural unit derived from methyl methacrylate is preferably 50% by mass or more, more preferably 70% by mass or more, based on all the structural units constituting the polymer.
  • the Tg of the (meth) acrylic resin is preferably 90 ° C. or higher, more preferably 100 to 150 ° C. When the Tg of the (meth) acrylic resin is within the above range, the heat resistance of the optical film can be easily increased.
  • the Tg of the (meth) acrylic resin can be measured by the same method as described above.
  • the Mw of the (meth) acrylic resin is preferably 400,000 to 3 million, more preferably 500,000 to 2 million. When the Mw of the (meth) acrylic resin is in the above range, sufficient mechanical strength can be imparted to the film.
  • the Mw of the (meth) acrylic resin can be measured by the same method as described above.
  • the content of the cycloolefin resin or the (meth) acrylic resin is preferably 50% by mass or more, more preferably 70 to 99% by mass with respect to the optical film.
  • the optical film may further contain other components as needed.
  • other components include rubber particles, matting agents, antioxidants, UV absorbers and the like.
  • Rubber particles can impart flexibility to the film.
  • the rubber particles are a graft copolymer containing a rubber-like polymer (crosslinked polymer).
  • rubber-like polymers include butadiene-based crosslinked polymers, (meth) acrylic-based crosslinked polymers, and organosiloxane-based crosslinked polymers.
  • the (meth) acrylic crosslinked polymer is preferable, and the acrylic crosslinked polymer (acrylic rubber-like polymer) is preferable from the viewpoint that the difference in refractive index from the methacrylic resin is small and the transparency of the optical film is not easily impaired. More preferred.
  • the matting agent can form irregularities on the surface of the optical film and impart slipperiness.
  • the matting agent may be inorganic particles, resin particles, or the like.
  • the inorganic particles include fine particles such as silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, and calcium carbonate, and are preferably silicon dioxide particles.
  • the antioxidant is not particularly limited, but for example, a hindered phenolic antioxidant or the like can be used.
  • the thickness of the optical film is not particularly limited, but is, for example, about 5 to 100 ⁇ m, preferably about 5 to 40 ⁇ m.
  • the method for producing a granulated product of the present invention is as follows: 1) a step of preparing a crushed product containing the above resin, and 2) melting the obtained crushed product by frictional heat to produce a granulated product. Including the process of obtaining.
  • step 1) a crushed product containing the above resin is prepared.
  • the crushed material containing the resin is preferably a crushed material of the return material of the resin film such as an optical film.
  • the thickness of the return material is the same as the thickness of the optical film.
  • the resin film is crushed under the condition that the heat generated at the time of crushing and received by the crushed material is reduced, that is, the bulk density of the obtained film piece is appropriately lowered.
  • the bulk density of the obtained crushed product is preferably 0.01 to 0.25 g / cm 3 .
  • the bulk density of the obtained crushed material is 0.25 g / cm 3 or less (that is, when the crushed material is large)
  • the load at the time of crushing and the heat generated by the crushed material are reduced, and the crushed material due to the heat at the time of crushing is reduced. It is easy to suppress deterioration and coloring due to it.
  • the bulk density of the crushed material is 0.01 g / cm 3 or more, the crushed material is not too large, so that granulation can be easily performed.
  • the bulk density of the obtained crushed product is more preferably about 0.07 to 0.18 g / cm 3 .
  • the bulk density of the crushed material can be measured by the following method.
  • a container having a capacity of 100 mL is filled with the crushed material to the fullest, and the mass of the filled crushed material (or granulated material) is measured. This measurement is performed 10 times, and the average bulk density is calculated from the relationship with the capacity. When filling the container, tapping shall not be performed.
  • the size of the crushed material is not particularly limited as long as the bulk density satisfies the above range, but it may be a substantially square (or a rectangular shape having the same area as that) having a side length of about 2 to 8 mm. preferable.
  • the size of the crushed material is more preferably a substantially square (or a rectangular shape having the same area as that) having a side length of about 3 to 7 mm.
  • the ratio (%) (separation rate) when the crushed material is sifted with a mesh having an average opening of 1 mm for 2 minutes is not particularly limited, but is, for example, the total amount of the crushed material before sieving. It can be 10% by mass or less.
  • the crushed material having a preparative rate of 10% by mass or less is crushed under mild conditions, and the load at the time of crushing is moderately small, so that it is easier to suppress thermal deterioration of the resin due to heat generation at the time of crushing. From the above viewpoint, the fractionation rate (%) of the crushed material is more preferably 5% by mass or less with respect to the total amount of the crushed material before sieving.
  • the bulk density, size and preparative rate of the crushed material can be adjusted according to the crushing conditions.
  • the heat generation during crushing should be reduced (the heat received by the returned material during crushing should be reduced), specifically, crushing. It is preferable to reduce the heat generation during crushing by reducing the load at the time or removing heat.
  • the resin film can be crushed by any method.
  • the resin film can be crushed by sandwiching a return material between the fixed blade and the rotary blade and crushing the resin film.
  • step 2 Next, frictional heat is generated in the obtained crushed material, and the crushed material is melted or fused by the heat.
  • Melting by frictional heat is preferably performed at (50 to Tg) ° C.
  • Tg is the glass transition temperature of the resin.
  • the melting temperature due to frictional heat is 50 ° C. or higher, the crushed material can be in a semi-melted state, so that a granulated product having a reduced bulk density can be easily obtained.
  • the melting temperature is Tg ° C. or lower, the crushed material does not become too high and the thermal deterioration of the resin can be suppressed, so that the decrease in the molecular weight of the resin and the coloring of the granulated product can be suppressed.
  • the melting temperature is more preferably 50 to 100 ° C, further preferably 60 to 100 ° C.
  • the melting temperature can be measured as the atmospheric temperature at the time of melting due to frictional heat.
  • it can be measured as the atmospheric temperature on the downstream side of the melting process due to frictional heat (for granulation) (see FIG. 2 described later).
  • the melting temperature can be determined by, for example, the magnitude of the friction applied to the crushed material, the time for applying the friction (residence time), the cooling treatment, and the like.
  • the melting temperature is determined by the supply speed of the crushed material, the width and length of the flow path in the compression unit B and the transfer unit C, and cooling or slow heating by the temperature adjusting unit (cooling means). It can be adjusted by the degree of (cooling temperature) and the like.
  • lowering the melting temperature for example, it is preferable that the width of the flow path of the compression section B and the transfer section C of the crushing / granulating apparatus 10 is appropriately increased and the length is appropriately shortened.
  • the temperature adjusting unit cooling means
  • crushed material melted by frictional heat may be further cut to a predetermined size (or length).
  • the bulk density of the granulated product is preferably higher than the bulk density of the crushed product. Specifically, the bulk density of the granulated product is higher than the bulk density of the crushed product and lower than the bulk density of the new pellet (not the recycled product) (for example, 80% of the bulk density of the new pellet). The following) is preferable. Specifically, the bulk density of the granulated product is preferably 0.26 to 0.45 g / cm 3 . When the bulk density of the granulated product is 0.26 g / cm 3 or more, it is easy to carry it by air or store it, and the handleability can be improved.
  • the bulk density of the granulated product is 0.45 g / cm 3 or less, excessive heat is not applied during granulation, so that thermal deterioration of the resin of the granulated product can be suppressed, and the resin constituting the granulated product can be suppressed. It is possible to suppress a decrease in molecular weight and coloring.
  • the recycled film obtained by using such a granulated product can also maintain good mechanical properties and optical properties.
  • the bulk density of the granulated product is more preferably 0.35 to 0.45 g / cm 3 .
  • the bulk density of the granulated product can be measured by the same method as the bulk density of the crushed product.
  • the bulk density of the granulated product can be about 150 to 1500% of the bulk density of the crushed product.
  • the bulk density of the granulated product can be adjusted by the melting temperature and the aspect ratio of the granulated product.
  • the melting temperature is preferably moderately low, and the aspect ratio of the granulated product is preferably moderately large.
  • the aspect ratio of the granulated product can be appropriately set according to the bulk density of the granulated product satisfying the above range and the required handleability.
  • the aspect ratio of the granulated product is preferably, for example, 4 to 50. If the aspect ratio is 4 or more, for example, it is difficult to adhere to the inner wall surface of the pipe during air feeding, so it is easy to suppress foreign matter contamination when switching types. If it is 50 or less, the bulk density of the granulated product becomes too high. Since there is no such thing, the handleability of transportation and storage is not easily impaired. From the above viewpoint, the aspect ratio of the granulated product is more preferably 4 to 20.
  • the aspect ratio of the granulated product is the average value (mean aspect ratio) of the ratio of the length of the long axis to the length of the minor axis of the granulated product.
  • the aspect ratio of the granulated product can be measured by the following method. First, for each of the 100 arbitrary granulations, the lengths of the major axis and the minor axis of the granulated matter are measured from the images taken by the camera, and the aspect ratio (length of the major axis / length of the minor axis) is measured. ) Is calculated.
  • the long axis is the line segment connecting the two most distant points in the contour of the granulated object in the captured image
  • the short axis is the line segment connecting the intersection of the straight line perpendicular to the long axis and the contour. Make it a long line segment. Then, the average value of the obtained aspect ratios is defined as the "aspect ratio".
  • the aspect ratio of the granulated product can be adjusted by the cutting length and diameter (or the inner diameter of the extrusion port 22 of the crushing / granulating device 10) of the string-shaped resin extruded from the crushing / granulating device 10.
  • the YI of the granulated product is preferably small from the viewpoint of reducing the coloring of the obtained film. Specifically, the YI of the granulated product is preferably 1.0 or less, and more preferably 0.6 or less.
  • the YI of the granulated product is measured using a spectrocolorimeter (for example, a spectrocolorimeter CM-3700d manufactured by Konica Minolta), a D65 (color temperature 6504K) as a light source, and a viewing angle of 10 °. be able to.
  • a spectrocolorimeter for example, a spectrocolorimeter CM-3700d manufactured by Konica Minolta
  • a D65 color temperature 6504K
  • Granulation by frictional heat can be performed by any method.
  • granulation by frictional heat can be performed by, for example, an extrusion device having a screw.
  • the steps 1) and 2) above may be performed by different devices, or may be performed by one continuous device.
  • one continuous device for example, the same device as that described in JP-A-54-45365 can also be used.
  • the above steps 1) and 2) are performed by one continuous device is shown.
  • FIG. 1 is a cross-sectional view showing the configuration of the crushing / granulating apparatus 10 according to the present embodiment.
  • FIG. 2 is an enlarged view of a main part of FIG.
  • the crushing / granulating device 10 includes a cylinder 20, a screw 30 rotatably arranged inside the cylinder 20, a cutting portion 40, a separating portion 50, and a temperature adjusting portion 60. ..
  • the cylinder 20 has a supply port 21 to which a return material 70 such as a resin film is supplied, and an extrusion port 22 to which the return material 70 compressed by the cylinder 20 is extruded.
  • the screw 30 has a rotating shaft 31, a cutter screw 32A, a mixing screw 32B, and a conveyor screw 32C arranged around the rotating shaft 31. That is, the crushing / granulating apparatus 10 compresses and rubs the crushed material A (region corresponding to the cutter screw 32A) that crushes the return material 70 in order from the supply port 21 side along the screw 30. It has a compression unit B (region corresponding to the mixing screw 32B) that generates heat, and a transfer unit C (region corresponding to the conveyor screw 32C) that melts and transfers the return material by frictional heat.
  • the cutter screw 32A in the crushing portion A may be, for example, a rotary blade formed in the shape of a strip screw.
  • a plurality of fixed blades 23 are arranged on the inner wall surface of the cylinder 20 corresponding to the cutter screw 32A so that the cutting edge is close to the cutter screw 32A. Then, the return material 70 supplied into the cylinder 20 is cut by the fixed blade 23 and the cutter screw 32A.
  • the cylinder 20 corresponding to the mixing screw 32B in the compression portion B is formed in a tapered shape so that its inner diameter becomes smaller in the feed direction.
  • the mixing screw 32B is formed in a tapered shape in accordance with the cylinder 20, and may have, for example, multiple threads. Then, the return material 70 is compressed in the process of passing through the flow path between the cylinder 20 and the mixing screw 32B, and frictional heat is generated.
  • the conveyor screw 32C in the transfer portion C is formed in a multi-row screw shape having a shape that reduces heat generation, for example. Then, a constant propulsive force is applied to the return material 70 sent from the mixing screw 32B in a semi-molten state, and the material is extruded in a string shape from the extrusion port 22.
  • the step 1) above can be performed in the crushing section A, and the melting by the frictional heat in the step 2) above can be performed in the compression section B and the transfer section C.
  • the melting temperature at the time of melting by frictional heat in the step 2) is adjusted to the above range, that is, 50 to Tg (° C.).
  • the melting temperature can be measured by a thermocouple 24 arranged in the vicinity of the extrusion port 22 (see FIG. 2).
  • the melting temperature is, for example, the supply speed of the crushed material (rotational speed of the screw, etc.), the taper angle of the compression section B, and the mixing screw 32B (or convention screw 32C) in the compression section B (or transfer section C). It can be adjusted by adjusting the width W1 (or W2) of the flow path between the inner wall surface of the cylinder 20 and the length L1 (or L2) in the feeding direction, cooling inside and outside the device, and the like.
  • the melting temperature is lowered, for example, the supply rate of the crushed material is preferably reduced, the taper angle of the cylinder 20 is preferably reduced, and the space between the screw 32B (or 32C) and the inner wall surface of the cylinder 20 is reduced.
  • the width C1 (or C2) of the gap is preferably large, and the length L1 (or L2) in the feed direction of the gap is preferably short. It is also preferable to adjust (cool) the temperatures of the cylinder 20 and the screw 30 by the temperature adjusting unit 60 described later.
  • the cutting portion 40 is arranged in the vicinity of the extrusion port 22 of the cylinder 20, and cuts the extruded string-shaped return material 72 to a predetermined length.
  • the cutting portion 40 is not particularly limited, but has, for example, a cutting blade 41.
  • the separation unit 50 separates the re-fused granules obtained by cutting at the cutting unit 40.
  • the separation unit 50 includes, but is not particularly limited, a cooling or blowing means 51 such as a cooling blower, and a rotating disk 52 having fins.
  • the temperature adjusting unit 60 may be a cooling device for adjusting the cylinder 20 and the screw 30 to an appropriate temperature.
  • the temperature adjusting unit 60 includes, for example, a cooling jacket 61 operated from the outside of the cylinder 20 and a water passage means 62 operated from the inside of the screw 30.
  • the return material 70 such as a resin film is charged into the cylinder 20 from the return material supply unit 1.
  • the charged return material 70 is cut by the cutter screw 32A (rotary blade) and the fixed blade 23 of the cylinder 20 in the crushing portion A to become a crushed material, and is sent out to the compression portion B.
  • the return material 70 (crushed material) sent to the compression unit B is mixed in a compressed state by passing through the gap between the cylinder 20 having a tapered diameter and the mixing screw 32B, and an appropriate frictional heat is generated. .. Due to the frictional heat, the return material 70 (crushed material) is in a semi-molten state and is sent to the transfer unit C.
  • the return material 70 which is sent out to the transfer portion C in a semi-molten state, is appropriately fused while moving through the gap between the cylinder 20 and the conveyor screw 32C, and in the semi-fused state, the extrusion port at the tip of the cylinder 20. Extruded from 22.
  • the granulation conditions (between the screw and the inner wall surface of the cylinder 20) in the compression section B and the transfer section C are set so that the melting temperature measured by the thermocouple 24 is within the above range.
  • the size and length of the gap), the supply speed of the return material 70, cooling by the temperature adjusting unit 60, and the like are performed.
  • the return material 70 extruded into a string shape is cut into granules of a predetermined length (aspect ratio) by the cutting portion 40 to become granules (granular matter).
  • the obtained granulated product may be re-fused by heat, but it is separated by being blown by cooling air at the separation unit 50. Thereby, the granulated material having an appropriate bulk density can be continuously collected from the discharge port 53.
  • the method for producing an optical film of the present invention is 2-1) a step of obtaining a granulated product by the above-mentioned manufacturing method, and 2-2) a step of obtaining a film-like product using the obtained granulated product. And include.
  • a granulated product is obtained by the above manufacturing method.
  • a film-like product is obtained by using the obtained granulated product in the step 2-2).
  • the film-like substance can be obtained by any method, and may be obtained by a melt casting method or a solution casting method.
  • melt casting method In the melt casting method, the thermal melt of the granulated product is cast and then cooled and solidified to obtain a cast film. Specifically, it can be obtained through A1) a step of casting the thermal melt of the granulated product and then cooling and solidifying it, and A2) a step of stretching the obtained film-like material, if necessary.
  • the prepared granulated products are melt-kneaded with a twin-screw extruder or the like, and then cast from a casting die.
  • the thermal melting temperature in the melt casting can be (Tg + 30) to (Tg + 70) ° C., where Tg is the glass transition temperature of the resin.
  • the stretching may be performed according to the required optical characteristics, and it is preferable to stretch in one or more of the width direction (TD direction), the transport direction (MD direction), and the diagonal direction.
  • the draw ratio is set according to the required optical performance, and can be 1.01 to 1.3 times, for example, from the viewpoint of functioning as a low phase difference film.
  • the stretch ratio is defined as (the size of the film after stretching in the stretching direction) / (the size of the film before stretching in the stretching direction).
  • the stretching temperature drying temperature at the time of stretching is preferably (Tg-20) to (Tg + 30) ° C.
  • a solution (dope) in which a granulated product is dissolved in a solvent is cast and then dried to obtain a cast film.
  • B1 a step of preparing a dope containing a granulated product
  • B2) a step of casting the obtained dope on a support, drying and peeling to obtain a film-like substance, and if necessary.
  • B3) It can be produced through a step of stretching the obtained film-like material.
  • the granulated product is dissolved in a solvent to prepare a dope.
  • the solvent used includes at least an organic solvent (good solvent) capable of dissolving a cycloolefin resin.
  • good solvents include chlorine-based organic solvents such as methylene chloride; non-chlorine-based organic solvents such as methyl acetate, ethyl acetate, acetone and tetrahydrofuran, preferably methylene chloride.
  • the solvent used may further contain a poor solvent such as an aliphatic alcohol having 1 to 4 carbon atoms such as methanol and ethanol from the viewpoint of enhancing the peelability of the casting film from the support.
  • the obtained dope is discharged from, for example, a casting die and spread onto the support.
  • the solvent is then evaporated from the dope cast on the support and then stripped to give a film.
  • the obtained film-like material is stretched.
  • the stretching ratio and stretching temperature can be the same as in the step A2) above.
  • the optical film thus obtained can be preferably used as a protective film (including a retardation film) for a polarizing plate.
  • the total light transmittance of the optical film is not particularly limited as long as it has sufficient light transmittance, but is preferably 80% or more, more preferably 85% or more, and more preferably 88% or more. Is even more preferable.
  • the total light transmittance of the optical film can be measured according to JIS K7361-1: 1997.
  • the difference in YI before and after reproduction of the optical film is preferably less than 0.1, more preferably less than 0.05, and even more preferably less than 0.03.
  • the difference in YI before and after reproduction of the optical film is the difference between YI 0 of the optical film (return material) before reproduction and YI 1 of the optical film after reproduction (manufactured using granulated material) (YI 1 - YI). It can be obtained as 0 ).
  • YI can be measured by the same method as described above.
  • the Tg and Mw of the resin were measured by the following method.
  • Tg The Tg of the resin was measured according to JIS K 7121-2012 using DSC (Differential Scanning Colorimetry).
  • Mw The Mw of the resin was measured by gel permeation chromatography (HLC8220GPC manufactured by Tosoh Corporation) under the following conditions. (Measurement condition) Eluent: THF Column: Tosoh TSKgel GMHXL x 2 Flow velocity: 1.0 mL / min Sample concentration: 0.1% by mass Injection volume: 100 ⁇ L Detector: RI Calibration curve: Standard polystyrene
  • Rubber particles Rubber particles (Kaneka M210 manufactured by Kaneka Corporation, average primary particle diameter R: 200 nm)
  • a dope having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure melting kettle. Next, the pellets of the cycloolefin resin (COP-1) were added to the pressurized dissolution tank with stirring, and then the additive solution prepared above was added, and the mixture was completely dissolved or dispersed while stirring. The obtained solution was filtered using SHP150 manufactured by Roki Techno Co., Ltd. to obtain a dope having the following composition. Cycloolefin resin (COP): 100 parts by mass Methylene chloride: 220 parts by mass Ethanol: 35 parts by mass Additive solution: 200 parts by mass
  • the film A-1 (cycloolefin resin film) having a thickness of 40 ⁇ m was obtained after further drying at (Tg-20) ° C. while transporting with a roll.
  • the obtained film A-1 was slit with a laser cutter and used as a return material.
  • a film A-2 (cycloolefin resin film) having a thickness of 15 ⁇ m was obtained in the same manner as the film A-1 except that the casting amount was changed.
  • the resin extruded in a string shape from the crushing / granulating apparatus 10 was cut to a predetermined length so that the bulk density of the granulated product had the value shown in Table 1 to obtain a granulated product. ..
  • Granulation was carried out in the same manner as in Test 1 except that the granulation conditions (melting temperature due to frictional heat) were changed as shown in Table 1 by changing the cooling temperature (water temperature) by the temperature adjusting unit 60.
  • ⁇ Test 13> Granulation was carried out in the same manner as in Test 4 except that the type of return material (thickness of the film piece) was changed to that shown in Table 1.
  • ⁇ Test 14> Granulation was carried out in the same manner as in Test 4 except that the type of return material (type of resin) and the granulation conditions (melting temperature) were changed to the values shown in Table 1. The melting temperature was adjusted by changing the cooling temperature by the temperature adjusting unit 60.
  • ⁇ Test 15> Granulation was carried out in the same manner as in Test 14 except that the granulation conditions (melting temperature) and the aspect ratio of the granulated product were changed as shown in Table 1. The melting temperature was adjusted by changing the cooling temperature by the temperature adjusting unit 60.
  • the aspect ratio of the granulated product was measured by the following procedure. First, for each of the 100 arbitrary granulations, the lengths of the major axis and the minor axis of the granulated matter are measured from the images taken by the camera, and the aspect ratio (length of the major axis / length of the minor axis) is measured. Was calculated. The long axis is the line segment connecting the two most distant points in the contour of the granulated object in the captured image, and the short axis is the line segment connecting the intersection of the straight line perpendicular to the long axis and the contour. It was a long line segment. Then, the average value of the obtained aspect ratios was defined as the "aspect ratio".
  • a recycled film having a thickness of 40 ⁇ m was obtained in the same manner as in the production methods of the films A-1 to A-3 except that the obtained granulated product was used as the resin.
  • Increase in YI (YI 1 -YI 0 ) is less than 0.03 ⁇ : Increase in YI (YI 1 -YI 0 ) is 0.03 or more and less than 0.05 ⁇ : Increase in YI (YI 1- YI 0 ) is 0.05 or more and less than 0.1 ⁇ : If the amount of increase in YI (YI 1 ⁇ YI 0 ) is 0.1 or more and ⁇ or more, it is considered as an allowable range.
  • Increase in YI (YI 2 -YI 1 ) is less than 0.03 ⁇ : Increase in YI (YI 2 -YI 1 ) is 0.03 or more and less than 0.05 ⁇ : Increase in YI (YI 2 -YI 1) YI 1 ) is 0.05 or more and less than 0.1 ⁇ : If the amount of increase in YI (YI 2 -YI 1 ) is 0.1 or more and ⁇ or more, it is within the permissible range.
  • Table 1 shows the evaluation results of the granulated products obtained in Tests 1 to 15.
  • Tests 1 and 11 (tests) in which melting by frictional heat was performed at a high temperature exceeding Tg and the bulk density of the granulated product was adjusted to more than 0.6 g / cm 3 (90% with respect to new pellets).
  • 11 corresponds to the condition of Patent Document 1) and the granulated product of 15 not only causes a decrease in molecular weight and coloring of the resin due to thermal deterioration, but also causes foreign matter to be mixed when switching varieties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本発明の造粒物の製造方法は、(メタ)アクリル系樹脂およびシクロオレフィン系樹脂からなる群より選ばれる一以上の樹脂を含み、嵩密度が0.01~0.25g/cm3である破砕物を準備する工程と、前記破砕物を、(50~Tg)℃(Tgは、前記樹脂のガラス転移温度)で摩擦熱により溶融させて、嵩密度が0.26~0.45g/cm3である造粒物を得る工程とを含む。

Description

造粒物の製造方法および光学フィルムの製造方法
 本発明は、造粒物の製造方法および光学フィルムの製造方法に関する。
 液晶ディスプレイ(LCD)や有機ELディスプレイ(OLED)、μLEDなどのディスプレイには、通常、偏光板が用いられている。偏光板は、偏光子と、それを保護する機能や光学補償機能を有する光学フィルムとを含む。
 そのような光学フィルムの製造工程では、端部がスリットされた耳部や規格外品などが発生することがある。これらの材料を有効活用するとともに、廃棄物を削減して光学フィルムの製造効率を高める観点から、フィルム製造時にスリットされた耳部や規格外品となったフィルム(返材)を再利用することが検討されている。
 ところで、フィルムなどの破砕物は嵩密度(見かけ比重)が小さいため、ハンドリングしにくい。そのため、破砕物は、ペレット化(造粒)して使用されることがある。
 ペレット化の方法としては、新品のペレットの製造方法と同様に、250℃程度の高温で破砕物を溶融する方法や、破砕物を摩擦熱により造粒する方法などが知られている。特許文献1では、フィルムなどの返材の破砕物を摩擦熱により造粒(または溶融)して、新品のペレットと同程度まで嵩密度を低くした造粒物を得る方法が提案されている(特許文献1参照)。
特開昭54-45365号公報
 ところで、光学フィルムは、高い光学的安定性(リタデーションの湿度依存性)や寸法安定性(寸法の湿度依存性)を有することが求められている。シクロオレフィン系樹脂や(メタ)アクリル系樹脂を含むフィルムは、従来のセルロースエステル系樹脂を含むフィルムと比べてリタデーションの湿度依存性や寸法の湿度依存性が良好であることから、使用されつつある。
 しかしながら、これらの樹脂を含むフィルムの破砕物は、従来のセルロースエステル系樹脂を含むフィルムの破砕物と比べて嵩高く、ハンドリングしにくい(移送や保管がしにくい)という問題があった。また、これらのフィルムの破砕物を、特許文献1で示される条件で造粒(200℃程度の高温の摩擦熱を生じさせて造粒)すると、造粒物の樹脂が熱劣化しやすいという問題があった。
 また、得られる造粒物のアスペクト比が小さいことなどに起因して、造粒物の嵩密度が高くなったり、溶融不足により十分な造粒が行えなかったりすると、空送時に造粒物が配管の内壁面などに付着しやすい。そのような配管を用いて、品種の異なる材料を用いてフィルムを作製すると、配管の内壁面に付着した造粒物やその成分が異物として混入しやすいという問題もあった。
 本発明は上記事情に鑑みてなされたものであり、熱による材料の劣化や異物混入を抑制しつつ、ハンドリング性に優れた造粒物の製造方法およびそれを用いた光学フィルムの製造方法を提供することを目的とする。
 本発明は、以下の造粒物の製造方法およびそれを用いた光学フィルムの製造方法に関する。
 本発明の造粒物の製造方法は、(メタ)アクリル系樹脂およびシクロオレフィン系樹脂からなる群より選ばれる一以上の樹脂を含み、嵩密度が0.01~0.25g/cmである破砕物を準備する工程と、前記破砕物を、(50~Tg)℃(Tgは、前記樹脂のガラス転移温度)の温度下で、摩擦熱により溶融させて、嵩密度が0.26~0.45g/cmである造粒物を得る工程とを含む。
 本発明の光学フィルムの製造方法は、本発明の造粒物の製造方法で造粒物を得る工程と、前記造粒物を溶融させるか、または、溶剤に溶解させて、膜状物を得る工程とを含む。
 本発明によれば、熱による材料の劣化や異物混入を抑制しつつ、ハンドリング性に優れた造粒物の製造方法およびそれを用いた光学フィルムの製造方法を提供することができる。
図1は、破砕・造粒装置の構成を示す断面図である。 図2は、図1の要部の拡大図である。
 上記の通り、シクロオレフィン系樹脂や(メタ)アクリル系樹脂を含むフィルムは、セルロースエステル系樹脂を含むフィルムと比べて切断しにくく(破砕しにくく)、破砕物も嵩高くなりやすい。この原因は明らかではないが、シクロオレフィン系樹脂や(メタ)アクリル系樹脂は、セルロースエステル系樹脂と比べて靭性が高いことや、低極性であるため静電気を生じやすいことによると考えられる。
 これに対し、1)フィルムの破砕物を摩擦熱により溶融して造粒するとともに、そのときの温度を一定以下にすること、2)得られる造粒物の嵩密度が低くなりすぎないように、溶融・造粒条件をさらに調整することにより、造粒物の樹脂の熱劣化や品種切り替え時の異物混入を抑制できることを見出した。
 この理由は明らかではないものの、以下のように考えられる。
 摩擦熱による造粒は、一般的な溶融による造粒とは異なり、破砕物同士の接触部分に局所的に熱がかかるため、破砕物全体は高温になりにくい。さらに、摩擦熱による溶融温度を適度に低くする(樹脂のTg以下にする)ことで、破砕物に加わる熱を、造粒に必要な最低限に止めることができる。それにより、熱劣化に起因する樹脂の分子量の低下や着色を抑制できる。また、造粒物の嵩密度を従来よりも高めにすることで、空送時などにおいて配管の内壁面に付着しにくいため、品種切り替え時に配管の内壁面に付着した造粒物が混入することによる異物混入も抑制できる。なお、摩擦熱による溶融とは、好ましくは融点よりも低い温度で半溶融状態にすることをいう。
 摩擦熱による溶融温度は、任意の方法で調整することができる。溶融温度は、例えば、後述する図1の破砕・造粒装置10の摩擦熱による溶融ゾーン(圧縮部Bや移送部C)の流路(スクリューとシリンダ内壁面との隙間)の幅や長さ、(溶融時の)冷却処理、破砕物の供給速度(処理速度)などによって調整することができる。造粒物の嵩密度は、例えば、摩擦熱による溶融温度や造粒物のアスペクト比などにより調整することができる。
 本発明は、このような樹脂フィルムの返材を用いて、造粒物を製造する方法に関する。そこで、まず、造粒物の原料となる樹脂フィルム(返材)について説明する。
 1.返材について
 返材は、光学フィルムなどの樹脂フィルムの製造工程で切り落とされた端材や規格外品などである。光学フィルムの製造工程では、切り落とされた端部分や、巻き乱れなどによる不良品が発生することがある。これらは、製品とはならないものの、材質には問題はないため、再利用することができる。
 光学フィルムは、シクロオレフィン系樹脂または(メタ)アクリル系樹脂を含む。
 (シクロオレフィン系樹脂)
 シクロオレフィン系樹脂は、ノルボルネン系単量体に由来する構造単位を含む重合体である。ノルボルネン系単量体は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000001
 式(1)のR~Rは、それぞれ水素原子、ハロゲン原子、炭化水素基、または極性基を表す。
 ハロゲン原子の例には、フッ素原子、塩素原子などが含まれる。
 炭化水素基は、炭素原子数が1~10、好ましくは1~4、より好ましくは1または2の炭化水素基である。炭化水素基の例には、メチル基、エチル基、プロピル基、ブチル基などのアルキル基が含まれる。炭化水素基は、酸素原子、窒素原子、硫黄原子またはケイ素原子を含む連結基(例えばカルボニル基、イミノ基、エーテル結合、シリルエーテル結合、チオエーテル結合など)の2価の連結基をさらに有していてもよい。
 極性基の例には、カルボキシ基、ヒドロキシ基、アルコキシ基、アルコキシカルボニル基、アリロキシカルボニル基、アミノ基、アミド基、およびメチレン基などの連結基(-(CH-、nは1以上の整数)を介してこれらの基が結合した基が含まれる。中でも、アルコキシカルボニル基およびアリールオキシカルボニル基が好ましく、アルコキシカルボニル基がより好ましい。
 中でも、R~Rのうち少なくとも1つは、極性基であることが好ましい。極性基を有するノルボルネン系単量体に由来する構造単位を含むシクロオレフィン系樹脂は、例えば溶液流延法で製膜する際に、溶剤に溶解させやすく、得られるフィルムのガラス転移温度を高めやすい。一方、溶融製膜法では、極性基を有するノルボルネン系単量体に由来する構造単位を含まないシクロオレフィン系樹脂であってよい。
 また、R~Rのうち、RおよびRの両方(またはRおよびRの両方)は、水素原子であってもよい。
 式(1)のpは、0~2の整数を示す。光学フィルムの耐熱性を高める観点では、pは、1~2であることが好ましい。
 式(1)で表されるノルボルネン系単量体のうち、極性基を有するノルボルネン系単量体の例には、以下のものが含まれる。
Figure JPOXMLDOC01-appb-C000002
 極性基を有しないノルボルネン系単量体の例には、以下のものが含まれる。
Figure JPOXMLDOC01-appb-C000003
 ノルボルネン系単量体に由来する構造単位の含有量は、シクロオレフィン系樹脂を構成する全構造単位に対して50~100モル%でありうる。
 シクロオレフィン系樹脂は、ノルボルネン系単量体に由来する構造単位と共重合可能な他の単量体に由来する構造単位をさらに含んでいてもよい。共重合可能な他の単量体の例には、(上記ノルボルネン系単量体が極性基を有する場合は)極性基を有しないノルボルネン系単量体や、シクロブテン、シクロペンテン、シクロヘプテン、ジシクロペンタジエンなどのノルボルネン骨格を有しないシクロオレフィン系単量体が含まれる。
 シクロオレフィン系樹脂の重量平均分子量Mwは、特に制限されないが、2万~30万であることが好ましく、3万~25万であることがより好ましく、4万~20万であることがさらに好ましい。シクロオレフィン系樹脂のMwが上記範囲にあると、成形加工性を損なうことなく、フィルムの機械的特性を高めうる。
 シクロオレフィン系樹脂のMwは、ゲルパーミエーションクロマトグラフィー(GPC)により測定することができる。具体的には、東ソー社製HLC8220GPCを用いて、以下の条件で測定することができる。
 (測定条件)
 溶離液:THF
 カラム:東ソー社製 TSKgel GMHXL×2本
 流速:1.0mL/min
 試料濃度:0.1質量%
 注入量:100μL
 検出器:RI
 検量線:標準ポリスチレン
 カラム温度:40℃
 シクロオレフィン系樹脂のガラス転移温度Tgは、通常、110℃以上であることが好ましく、110~350℃であることがより好ましく、120~250℃であることがより好ましい。シクロオレフィン系樹脂のTgが110℃以上であると、十分な耐熱性が得られやすく、350℃以下であると、成形加工時のシクロオレフィン系樹脂の熱劣化を抑制しうる。
 Tgは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012またはASTM D 3418-82に準拠した方法で測定することができる。
 ((メタ)アクリル系樹脂)
 (メタ)アクリル系樹脂は、メチルメタクリレートに由来する構造単位を含む重合体であることが好ましい。当該重合体は、メチルメタクリレートと共重合可能なモノマーに由来する構造単位をさらに含んでもよい。
 メチルメタクリレートと共重合可能な他のモノマーの例には、2-エチルヘキシル(メタ)アクリレートなどのメチルメタクリレート以外の炭素原子数1~18のアルキル(メタ)アクリレート;(メタ)アクリル酸などのα,β-不飽和酸;マレイン酸、フマル酸、イタコン酸などの不飽和ジカルボン酸;スチレン、α-メチルスチレンなどのスチレン類;無水マレイン酸;マレイミド、N-フェニルマレイミドなどのマレイミド類;グルタル酸無水物などが含まれる。
 メタクリル酸メチル由来の構造単位の含有量は、上記重合体を構成する全構造単位に対して50質量%以上であることが好ましく、70質量%以上であることがより好ましい。
 (メタ)アクリル系樹脂のTgは、90℃以上であることが好ましく、100~150℃であることがより好ましい。(メタ)アクリル系樹脂のTgが上記範囲内であると、光学フィルムの耐熱性を高めやすい。(メタ)アクリル系樹脂のTgは、前述と同様の方法で測定されうる。
 (メタ)アクリル系樹脂のMwは、40万~300万であることが好ましく、50万~200万であることがより好ましい。(メタ)アクリル系樹脂のMwが上記範囲であると、フィルムに十分な機械的強度を付与しうる。(メタ)アクリル系樹脂のMwは、前述と同様の方法で測定されうる。
 シクロオレフィン系樹脂または(メタ)アクリル系樹脂の含有量は、光学フィルムに対して50質量%以上であることが好ましく、70~99質量%であることがより好ましい。
 (他の成分)
 光学フィルムは、必要に応じて他の成分をさらに含んでもよい。他の成分の例には、ゴム粒子、マット剤、酸化防止剤、紫外線吸収剤などが含まれる。
 ゴム粒子は、フィルムに可撓性を付与しうる。ゴム粒子は、ゴム状重合体(架橋重合体)を含むグラフト共重合体である。ゴム状重合体の例には、ブタジエン系架橋重合体、(メタ)アクリル系架橋重合体、およびオルガノシロキサン系架橋重合体が含まれる。中でも、メタクリル系樹脂との屈折率差が小さく、光学フィルムの透明性が損なわれにくい観点では、(メタ)アクリル系架橋重合体が好ましく、アクリル系架橋重合体(アクリル系ゴム状重合体)がより好ましい。
 マット剤は、光学フィルムの表面に凹凸を形成し、滑り性を付与しうる。マット剤としては、無機粒子や樹脂粒子などでありうる。無機粒子の例には、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウムなどの微粒子が含まれ、好ましくは二酸化ケイ素粒子である。
 酸化防止剤は、特に制限されないが、例えばヒンダードフェノール系酸化防止剤などを用いることができる。
 (厚み)
 光学フィルムの厚みは、特に制限されないが、例えば5~100μm、好ましくは5~40μm程度である。
 次に、上記返材を用いて造粒物を製造する方法について説明する。
 2.造粒物の製造方法
 本発明の造粒物の製造方法は、1)上記樹脂を含む破砕物を準備する工程と、2)得られた破砕物を摩擦熱により溶融させて、造粒物を得る工程とを含む。
 1)の工程について
 本工程では、上記樹脂を含む破砕物を準備する。
 樹脂を含む破砕物は、上記の通り、光学フィルムなどの樹脂フィルムの返材の破砕物であることが好ましい。返材の厚みは、光学フィルムの厚みと同じである。
 樹脂フィルムの破砕は、破砕時に発生して破砕物が受ける熱が少なくなるような条件、すなわち、得られるフィルム片の嵩密度が適度に低くなるような条件で行うことが好ましい。
 具体的には、得られる破砕物の嵩密度は、0.01~0.25g/cmであることが好ましい。得られる破砕物の嵩密度が0.25g/cm以下であると(すなわち、破砕物が大きめであると)、破砕時の負荷やそれによる発熱を少なくし、破砕時の熱による破砕物の劣化やそれによる着色を抑制しやすい。破砕物の嵩密度が0.01g/cm以上であると、破砕物が大きすぎないため、造粒を行いやすい。得られる破砕物の嵩密度は、上記観点から、0.07~0.18g/cm程度であることがより好ましい。
 破砕物の嵩密度は、以下の方法で測定することができる。
 容量が100mLの容器に、破砕物をすりきり一杯に充填し、充填した破砕物(または造粒物)の質量を測定する。この測定を10回行い、容量との関係から平均の嵩密度を算出する。なお、容器に充填する際に、タッピングは行わないものとする。
 破砕物の大きさは、嵩密度が上記範囲を満たす程度であればよく、特に制限されないが、一辺の長さが2~8mm程度の略正方形(またはそれと同面積の矩形状)であることが好ましい。破砕物の一辺の長さが2mm以上であると、破砕物の嵩密度を低くしやすいため、嵩密度を上記範囲に調整しやすい。破砕物の一辺の長さが8mm以下であると、破砕物が大きすぎないため、この後の摩擦熱による溶融を行いやすい。破砕物の大きさは、上記観点から、一辺の長さが3~7mm程度の略正方形(またはそれと同面積の矩形状)であることがより好ましい。
 破砕物を平均目開き1mmのメッシュにて2分間ふるいにかけたときに分取される比率(%)(分取率)は、特に制限されないが、例えばふるいにかける前の破砕物の総量に対して10質量%以下でありうる。分取率が10質量%以下である破砕物は、緩やかな条件で破砕されており、破砕時の負荷が適度に小さいため、破砕時の発熱による樹脂の熱劣化などをより抑制しやすい。破砕物の分取率(%)は、上記観点から、ふるいにかける前の破砕物の総量に対して5質量%以下であることがより好ましい。
 破砕物の嵩密度、大きさおよび分取率は、破砕条件により調整することができる。破砕物の嵩密度、大きさ、分取率を上記範囲内とするためには、破砕時の発熱を少なくすること(破砕時に返材が受ける熱を少なくすること)、具体的には、破砕時の負荷を小さくしたり、除熱したりして、破砕時の発熱を少なくすることが好ましい。
 樹脂フィルムの破砕は、任意の方法で行うことができる。例えば、樹脂フィルムの破砕は、固定刃と回転刃との間に返材を挟み込んで破砕することにより行うことができる。
 2)の工程について
 次いで、得られた破砕物に摩擦熱を生じさせて、その熱により破砕物を溶融または融着させる。
 摩擦熱による溶融は、(50~Tg)℃(Tgは、樹脂のガラス転移温度)で行うことが好ましい。摩擦熱による溶融温度が50℃以上であると、破砕物を半溶融状態としうるため、嵩密度が低減された造粒物が得られやすい。溶融温度がTg℃以下であると、破砕物が高温になりすぎず、樹脂の熱劣化を抑制しうるため、樹脂の分子量の低下や造粒物の着色を抑制することができる。また、造粒物を用いて得られる再生フィルムの黄変などをさらに抑制する観点では、溶融温度は、50~100℃であることがより好ましく、60~100℃であることがさらに好ましい。
 溶融温度は、摩擦熱による溶融時の雰囲気温度として測定されうる。例えば、後述の図1の破砕・造粒装置10では、(造粒のための)摩擦熱による溶融工程の下流側の雰囲気温度として測定することができる(後述の図2参照)。
 溶融温度は、例えば破砕物に加える摩擦の大きさや摩擦を加える時間(滞留時間)、冷却処理などにより行うことができる。後述の破砕・造粒装置10を用いる場合、溶融温度は、破砕物の供給速度や圧縮部Bや移送部Cにおける流路の幅や長さ、温度調整部(冷却手段)による冷却または徐熱の度合い(冷却温度)などにより調整することができる。溶融温度を低くする場合は、例えば破砕・造粒装置10の圧縮部Bや移送部Cの流路の幅は適度に大きくし、長さは適度に短くすることが好ましい。また、装置内外の温度調整部(冷却手段)による冷却温度を低くしたり、破砕物の供給速度を小さくしたりすることが好ましい。特に、破砕物の溶融温度が上記範囲内となるように、温度調整部(冷却手段)により冷却することが好ましい。
 また、摩擦熱により溶融させた破砕物を、所定の大きさ(または長さ)にさらに切断してもよい。
 (造粒物の物性)
 造粒物の嵩密度は、破砕物の嵩密度よりも高いことが好ましい。具体的には、造粒物の嵩密度は、破砕物の嵩密度よりも高く、かつ(再生品ではなく)新品のペレットの嵩密度よりも低いこと(例えば新品のペレットの嵩密度の80%以下)が好ましい。具体的には、造粒物の嵩密度は、0.26~0.45g/cmであることが好ましい。造粒物の嵩密度が0.26g/cm以上であると、空送や保管がしやすく、ハンドリング性を高めることができる。造粒物の嵩密度が0.45g/cm以下であると、造粒時に過度な熱が加わっていないため、造粒物の樹脂の熱劣化を抑制でき、造粒物を構成する樹脂の分子量の低下や着色を抑制することができる。また、そのような造粒物を用いて得られる再生フィルムも、良好な機械的特性や光学特性を維持しうる。造粒物の嵩密度は、上記観点から、0.35~0.45g/cmであることがより好ましい。造粒物の嵩密度は、破砕物の嵩密度と同様の方法で測定することができる。
 造粒物の嵩密度は、破砕物の嵩密度の150~1500%程度でありうる。
 造粒物の嵩密度は、溶融温度や造粒物のアスペクト比によって調整することができる。造粒物の嵩密度を適度に低くするためには、溶融温度は適度に低くすることが好ましく、造粒物のアスペクト比は適度に大きくすることが好ましい。
 造粒物のアスペクト比は、造粒物の嵩密度が上記範囲を満たし、かつ求められるハンドリング性に応じて適宜設定されうる。造粒物のアスペクト比は、例えば4~50であることが好ましい。アスペクト比が4以上であると、例えば空送時に配管の内壁面に付着しにくいため、品種切り替え時の異物混入を抑制しやすく、50以下であると、造粒物の嵩密度が高くなりすぎないため、移送や保管のハンドリング性が損なわれにくい。造粒物のアスペクト比は、上記観点から、4~20であることがより好ましい。造粒物のアスペクト比は、造粒物の短軸の長さに対する長軸の長さの比の平均値(平均アスペクト比)をいう。
 造粒物のアスペクト比は、以下の方法で測定することができる。
 まず、任意の100個の造粒物のそれぞれについて、カメラで撮影した画像から、造粒物の長軸と短軸の長さを測定し、アスペクト比(長軸の長さ/短軸の長さ)を算出する。長軸は、撮影画像における造粒物像の輪郭の中で最も離れた2点を結んだ線分とし、短軸は、長軸に垂直な直線と輪郭の交点を結んだ線分のうち最も長い線分とする。そして、得られたアスペクト比の平均値を「アスペクト比」とする。
 造粒物のアスペクト比は、破砕・造粒装置10から押し出される紐状の樹脂の切断長さや径(または破砕・造粒装置10の押出口22の内径)により調整することができる。
 造粒物のYIは、得られるフィルムの着色を少なくする観点では、小さいことが好ましい。具体的には、造粒物のYIは、1.0以下であることが好ましく、0.6以下であることがより好ましい。
 造粒物のYIは、分光測色計(例えばコニカミノルタ社製の分光測色計CM-3700d)を用いて、光源としてD65(色温度6504K)を用い、視野角10°の条件で測定することができる。
 摩擦熱による造粒は、任意の方法で行うことができる。例えば、摩擦熱による造粒は、例えばスクリューを有する押し出し装置などで行うことができる。
 上記1)および2)の工程は、別の装置でそれぞれ行ってもよいし、連続した1つの装置で行ってもよい。連続した1つの装置としては、例えば特開昭54-45365号公報に記載されている装置と同様のものを使用することもできる。以下の実施の形態では、上記1)および2)の工程を、連続した1つの装置で行う例を示す。
 図1は、本実施の形態における破砕・造粒装置10の構成を示す断面図である。図2は、図1の要部の拡大図である。
 図1に示されるように、破砕・造粒装置10は、シリンダ20と、その内部に回転可能に配置されたスクリュー30と、切断部40と、分離部50と、温度調整部60とを含む。
 シリンダ20は、樹脂フィルムなどの返材70が供給される供給口21と、シリンダ20で圧縮された返材70が押し出される押出口22とを有する。
 スクリュー30は、回転軸31と、その周囲に配置されたカッタースクリュー32A、ミキシングスクリュー32B、およびコンベアスクリュー32Cとを有する。すなわち、破砕・造粒装置10は、スクリュー30に沿って、供給口21側から順に、返材70を破砕する破砕部A(カッタースクリュー32Aに対応する領域)と、破砕物を圧縮して摩擦熱を生じさせる圧縮部B(ミキシングスクリュー32Bに対応する領域)と、摩擦熱により返材を溶融および移送する移送部C(コンベアスクリュー32Cに対応する領域)とを有する。
 破砕部Aにおける、カッタースクリュー32Aは、例えば条スクリュー状に形成された回転刃でありうる。カッタースクリュー32Aに対応するシリンダ20の内壁面には、刃先がカッタースクリュー32Aと近接するように複数の固定刃23が配置されている。そして、シリンダ20内に供給された返材70が、固定刃23とカッタースクリュー32Aにより切断される。
 圧縮部Bにおける、ミキシングスクリュー32Bに対応するシリンダ20は、その内径が送り方向に小さくなるようなテーパー状に形成されている。ミキシングスクリュー32Bは、シリンダ20に合わせてテーパー状に形成されており、例えば多条のスクリューを有しうる。そして、返材70が、シリンダ20とミキシングスクリュー32Bの間の流路を通る過程で圧縮され、摩擦熱が発生する。
 移送部Cにおける、コンベアスクリュー32Cは、例えば発熱が少なくなるような形状の多条スクリュー状に形成されている。そして、半溶融状態でミキシングスクリュー32Bから送られた返材70に、一定の推進力を与え、押出口22から紐状に押し出される。
 すなわち、上記1)の工程は破砕部Aで行い、上記2)の工程の摩擦熱による溶融は、圧縮部Bおよび移送部Cで行うことができる。そして、本発明では、上記2)の工程における摩擦熱による溶融時の溶融温度を、上記の範囲、すなわち、50~Tg(℃)に調整する。図1で示される破砕・造粒装置10では、溶融温度は、押出口22の近傍に配置された熱電対24により測定することができる(図2参照)。
 溶融温度は、上記の通り、例えば破砕物の供給速度(スクリューの回転数など)や圧縮部Bのテーパーの角度、圧縮部B(または移送部C)におけるミキシングスクリュー32B(またはコンベンションスクリュー32C)とシリンダ20の内壁面との間の流路の幅W1(またはW2)や送り方向の長さL1(またはL2)、装置内外の冷却などによって調整することができる。溶融温度を低くする場合は、例えば破砕物の供給速度は小さくすることが好ましく、シリンダ20のテーパーの角度は小さくすることが好ましく、スクリュー32B(または32C)とシリンダ20の内壁面との間の隙間の幅C1(またはC2)は大きくすることが好ましく、隙間の送り方向の長さL1(またはL2)は短くすることが好ましい。また、後述する温度調整部60により、シリンダ20およびスクリュー30の温度を調整する(冷却する)ことも好ましい。
 切断部40は、シリンダ20の押出口22近傍に配置され、押し出された紐状の返材72を所定の長さに切断する。切断部40は、特に制限されないが、例えば切断刃41を有する。
 分離部50は、切断部40で切断して得られた造粒物が再融着したものを分離させる。分離部50は、特に制限されないが、冷却ブロワーなどの冷却または送風手段51と、フィンを有する回転円板52とを有する。
 温度調整部60は、シリンダ20およびスクリュー30を適切な温度に調整するための冷却装置でありうる。温度調整部60は、例えばシリンダ20の外部から作用させる冷却ジャケット61と、スクリュー30の内部から作用させる通水手段62とを含む。
 このように構成された破砕・造粒装置10では、樹脂フィルムなどの返材70が、返材供給部1から、シリンダ20内に投入される。投入された返材70は、破砕部Aにおいて、カッタースクリュー32A(回転刃)とシリンダ20の固定刃23によって切断されて破砕物となり、圧縮部Bへ送り出される。
 圧縮部Bへ送られた返材70(破砕物)は、テーパー状に縮径したシリンダ20とミキシングスクリュー32Bとの隙間を通ることにより圧縮された状態でミキクングされ、適度な摩擦熱が発生する。その摩擦熱により、返材70(破砕物)は、半溶融状態となり、移送部Cへ送り出される。
 移送部Cへ半溶融状態で送り出された返材70は、シリンダ20とコンベアスクリュー32Cとの間の隙間を移動しながら適度に融着し、半融着状態でシリンダ20の先端部の押出口22から押し出される。
 なお、圧縮部Bおよび移送部Cでは、熱電対24で測定される溶融温度が上記範囲となるように、圧縮部Bや移送部Cにおける造粒条件(スクリューとシリンダ20の内壁面との間の隙間の大きさや長さ)、返材70の供給速度、温度調整部60による冷却などが行われる。
 紐状に押し出された返材70は、切断部40により所定の長さ(アスペクト比)の粒状に切断されて、造粒物(粒状物)となる。得られた造粒物は、熱により再融着することがあるが、分離部50で冷却風が当てられることにより分離する。それにより、適度な嵩密度を有する造粒物を、排出口53から連続的に回収することができる。
 次に、得られた造粒物を用いて、光学フィルム(再生品)を製造する方法について説明する。
 3.光学フィルムの製造方法
 本発明の光学フィルムの製造方法は、2-1)上記製造方法で造粒物を得る工程と、2-2)得られた造粒物を用いて膜状物を得る工程とを含む。
 2-1)の工程について
 上記製造方法で造粒物を得る。
 2-2)の工程について
 得られた造粒物を用いて、膜状物を得る。膜状物は、任意の方法で得ることができ、溶融流延法で得てもよいし、溶液流延法で得てもよい。
 (溶融流延法)
 溶融流延法では、造粒物の熱溶融物を流延した後、冷却固化させて、流延膜を得る。具体的には、A1)造粒物の熱溶融物を流延した後、冷却固化する工程、および、必要に応じてA2)得られた膜状物を延伸する工程を経て得ることができる。
 A1)の工程では、準備した造粒物を、それぞれ二軸押出機などで溶融混練した後、流延ダイから流延させる。溶融流延における熱溶融温度は、樹脂のガラス転移温度をTgとしたとき、(Tg+30)~(Tg+70)℃としうる。
 A2)の工程では、延伸は、求められる光学特性に応じて行えばよく、幅方向(TD方向)、搬送方向(MD方向)、斜め方向のうち一以上の方向に延伸することが好ましい。
 延伸倍率は、求められる光学性能に応じて設定され、例えば低位相差のフィルムとして機能させる観点では、1.01~1.3倍とすることができる。延伸倍率は、(延伸後のフィルムの延伸方向大きさ)/(延伸前のフィルムの延伸方向大きさ)として定義される。延伸温度(延伸時の乾燥温度)は、(Tg-20)~(Tg+30)℃であることが好ましい。
 (溶液流延法)
 溶液流延法では、造粒物を溶剤に溶解させた溶液(ドープ)を流延した後、乾燥させて、流延膜を得る。具体的には、B1)造粒物を含むドープを準備する工程、B2)得られたドープを支持体上に流延した後、乾燥および剥離して膜状物を得る工程、および必要に応じてB3)得られた膜状物を延伸する工程を経て製造されうる。
 B1)の工程では、造粒物を溶剤に溶解させて、ドープを調製する。用いられる溶剤は、少なくともシクロオレフィン系樹脂を溶解させうる有機溶媒(良溶媒)を含む。良溶媒の例には、メチレンクロライドなどの塩素系有機溶媒や;酢酸メチル、酢酸エチル、アセトン、テトラヒドロフランなどの非塩素系有機溶媒が含まれ、好ましくはメチレンクロライドである。用いられる溶媒は、流延膜の支持体からの剥離性を高める観点などから、メタノール、エタノールなどの炭素原子数1~4の脂肪族アルコールなどの貧溶媒をさらに含んでいてもよい。
 B2)の工程では、得られたドープを、例えば流延ダイから吐出させて、支持体上に流延する。次いで、支持体上に流延されたドープから溶媒を蒸発させた後、剥離して膜状物を得る。
 B3)の工程では、得られた膜状物を延伸する。延伸倍率や延伸温度は、上記A2)の工程と同様としうる。
 このようにして得られる光学フィルムは、偏光板の保護フィルム(位相差フィルムなどを含む)として好ましく用いることができる。
 (光学フィルムの物性)
 光学フィルムの全光線透過率は、十分な光透過性を有していれば特に制限されないが、80%以上であることが好ましく、85%以上であることがより好ましく、88%以上であることがさらに好ましい。光学フィルムの全光線透過率は、JIS K7361-1:1997に準拠して測定することができる。
 光学フィルムの再生前後のYIの差は、0.1未満であることが好ましく、0.05未満であることがより好ましく、0.03未満であることがさらに好ましい。光学フィルムの再生前後のYIの差は、再生前の光学フィルム(返材)のYIと、(造粒物を用いて製造した)再生後の光学フィルムのYIの差(YI-YI)として求めることができる。YIは、上記と同様の方法で測定することができる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 1.光学フィルム(返材)の材料
 (1)樹脂
 シクロオレフィン系樹脂(COP):
 下記構造単位を含むシクロオレフィン系樹脂(Tg:165℃、Mw:15万)
Figure JPOXMLDOC01-appb-C000004
 (メタ)アクリル系樹脂(Acr):
 MMA/N-フェニルマレイミド/2-エチルヘキシルアクリレート共重合体(Tg:120℃、Mw:200万)
 樹脂のTgおよびMwは、以下の方法で測定した。
 (Tg)
 樹脂のTgは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012に準拠して測定した。
 (Mw)
 樹脂のMwは、ゲル浸透クロマトグラフィー(東ソー社製HLC8220GPC)を用いて、以下の条件で測定した。
 (測定条件)
 溶離液:THF
 カラム:東ソー社製 TSKgel GMHXL×2本 
 流速:1.0mL/min
 試料濃度:0.1質量%
 注入量:100μL
 検出器:RI
 検量線:標準ポリスチレン
 (2)ゴム粒子
 ゴム粒子(カネカ社製カネエースM210、平均一次粒子径R:200nm)
 (3)添加剤
 Irganox 1076(BASFジャパン社製)(酸化防止剤)
 2.光学フィルム(返材)の作製
 <フィルムA-1の作製>
 (添加剤溶液の調製)
 メチレンクロライド95質量部を密閉容器に投入し、撹拌しながらIrganox 1076(BASFジャパン社製)(酸化防止剤)を0.00145質量部加えた。その後、ディゾルバーで50分間撹拌混合した。得られた混合液を、高圧分散装置(商品名:超高圧ホモジナイザーM110-E/H、Microfluidics Corporation 製)に通し、175MPaで1回処理した後、日本精線(株)製のファインメットNFで濾過し、添加剤溶液(酸化防止剤が0.0015質量%)を得た。
 (ドープの調製)
 次いで、下記組成のドープを調製した。まず、加圧溶解釜にメチレンクロライドおよびエタノールを添加した。次いで、加圧溶解タンクに、シクロオレフィン系樹脂(COP-1)のペレットを撹拌しながら投入した後、上記調製した添加剤溶液を投入し、撹拌しながら、完全に溶解または分散させた。得られた溶液を、(株)ロキテクノ製のSHP150を使用して濾過し、下記組成のドープを得た。
  シクロオレフィン系樹脂(COP):100質量部
  メチレンクロライド:220質量部
  エタノール:35質量部
  添加剤溶液:200質量部
 (製膜)
 ステンレスベルト支持体上で、流延(キャスト)したドープ中の残留溶媒量が30質量%になるまで溶媒を蒸発させた。次いで、剥離張力128N/mで、ステンレスベルト支持体から剥離し、膜状物を得た(剥離時の膜状物の残留溶媒量は30質量%)。剥離したフィルムを多数のローラーで搬送させながら、得られた膜状物を、テンターにて、(Tg+15)℃(本例では140℃)の条件で幅方向に30%延伸した。延伸開始時の膜状物の残留溶媒量は10質量%であった。その後、ロールで搬送しながら、(Tg-20)℃で更に乾燥させた後、厚み40μmのフィルムA-1(シクロオレフィン系樹脂フィルム)を得た。得られたフィルムA-1を、レーザーカッターでスリットして、返材とした。
 <フィルムA-2の作製>
 流延量を変更した以外はフィルムA-1と同様にして、厚み15μmのフィルムA-2(シクロオレフィン系樹脂フィルム)を得た。
 <フィルムA-3の作製>
 (ゴム粒子分散液の調製)
 11.3質量部のゴム粒子R1と、200質量部のメチレンクロライドとを、ディゾルバーで50分間撹拌混合した後、マイルダー分散機マイルダー分散機(大平洋機工株式会社製)を用いて1500rpm条件下で分散し、ゴム粒子分散液を得た。
 (ドープの調製)
 次いで、下記組成のドープを調製し、それを用いた以外はフィルムA-1と同様の方法で厚み40μmのフィルムA-3((メタ)アクリル系樹脂フィルム)およびその返材を得た。
  (メタ)アクリル系樹脂:100質量部
  メチレンクロライド:220質量部
  エタノール:35質量部
  ゴム粒子分散液:200質量部
 3.造粒物の製造および評価
 <試験1>
 (返材の破砕)
 得られた返材を、図1の破砕・造粒装置10の破砕部Aにて破砕し、サイズが2mm角(2mm×2mm)で、嵩密度が0.10g/cmのフィルム片(破砕物)を得た。
 (摩擦熱による溶融および造粒)
 図1の破砕・造粒装置10の圧縮部Bおよび移送部Cにて、破砕物を摩擦熱により溶融(造粒)させた。造粒(溶融)は、温度調整部60による冷却(通水による冷却)を行いながら実施した。摩擦熱による溶融温度は、図1の破砕・造粒装置10の押出口22付近に配置したK型熱電対(熱電対24)により測定した。
 次いで、破砕・造粒装置10から紐状に押し出された樹脂を、造粒物の嵩密度が表1に示される値となるように所定の長さに切断して、造粒物を得た。
 <試験2~6>
 温度調整部60による冷却温度(水の温度)を変えることにより、造粒条件(摩擦熱による溶融温度)を表1に示されるように変更した以外は試験1と同様にして、造粒した。
 <試験7および8>
 造粒条件(処理速度)を表1に示されるように変更した以外は試験1と同様にして、造粒した。
 <試験9、10および12>
 造粒物のアスペクト比が表1に示される値となるように切断長さを変更した以外は試験4と同様にして、造粒した。
 <試験11>
 造粒物のアスペクト比が表1に示される値となるように切断長さを変更した以外は試験1と同様にして、造粒した。
 <試験13>
 返材の種類(フィルム片の厚み)を表1に示されるものに変更した以外は試験4と同様にして、造粒した。
 <試験14>
 返材の種類(樹脂の種類)と造粒条件(溶融温度)を表1に示される値となるように変更した以外は試験4と同様にして、造粒した。溶融温度は、温度調整部60による冷却温度を変えることにより調整した。
 <試験15>
 造粒条件(溶融温度)と造粒物のアスペクト比を表1に示されるように変更した以外は試験14と同様にして、造粒した。溶融温度は、温度調整部60による冷却温度を変えることにより調整した。
 <評価>
 試験1~15で用いた造粒前後の嵩密度、造粒物のアスペクト比および樹脂の分子量、ならびに造粒物を用いて作製したフィルムの特性(着色、異物混入の有無)を、以下の方法で評価した。
 (1)嵩密度
 容量が100mLの容器に、破砕物(または造粒物)をすりきり一杯に充填し、充填した破砕物(または造粒物)の質量を測定した。この測定を10回行い、容量との関係から平均の嵩密度を算出した。なお、容器に充填する際に、タッピングは行わなかった。
 (2)造粒物のアスペクト比
 造粒物のアスペクト比は、以下の手順で測定した。
 まず、任意の100個の造粒物のそれぞれについて、カメラで撮影した画像から、造粒物の長軸と短軸の長さを測定し、アスペクト比(長軸の長さ/短軸の長さ)を算出した。長軸は、撮影画像における造粒物像の輪郭の中で最も離れた2点を結んだ線分とし、短軸は、長軸に垂直な直線と輪郭の交点を結んだ線分のうち最も長い線分とした。そして、得られたアスペクト比の平均値を「アスペクト比」とした。
 (3)造粒物の樹脂の分子量
 造粒前の樹脂のMwの測定方法と同様にして、造粒後の樹脂のMwを測定した。
 そして、以下の基準に基づいて評価した。
 〇:Mwの低下量が(造粒前のMwに対して)20%未満
 ×:Mwの低下量が(造粒前のMwに対して)20%以上
 (4)フィルムの特性
 (再生フィルムの作製)
 樹脂として、得られた造粒物を用いた以外はフィルムA-1~A-3の製造方法と同様にして、厚み40μmの再生フィルムを得た。
 (評価)
 (4-1)YI
 再生前のフィルム(新品フィルム)のYIと再生後のフィルム(再生フィルム)のYIとを、それぞれコニカミノルタ社製の分光測色計CM-3700dを用いて、光源としてD65(色温度6504K)を用い、視野角10°の条件で測定した。
 そして、以下の基準に基づいて評価した。
 ◎:YIの増加量(YI-YI)が0.03未満
 〇:YIの増加量(YI-YI)が0.03以上0.05未満
 △:YIの増加量(YI-YI)が0.05以上0.1未満
 ×:YIの増加量(YI-YI)が0.1以上
 △以上であれば許容範囲とした。
 (4-2)異物混入
 (フィルムBの作製)
 酸化防止剤を配合しなかった以外はフィルムA-1~3と同様にして、厚み40μmのフィルムBおよびその返材を得た。
 (返材の破砕および造粒)
 得られた返材を試験1と同様の方法および条件で破砕し、破砕物を摩擦熱により溶融させて造粒した以外は試験1と同様の方法および条件で造粒物を得た。
 (再生フィルムBの作製)
 (1)配管洗浄あり
 フィルムA-1の造粒物を空送した後の配管内を洗浄した後、当該配管内にフィルムBの造粒物を空送させた以外は、再生フィルムA-1と同様にして再生フィルムB-1を作製した。
 (2)配管洗浄なし
 フィルムA-1の造粒物を空送した後の配管内を洗浄せずに、当該配管内にフィルムBの造粒物を空送させた以外は、再生フィルムA-1と同様にして再生フィルムB-2を作製した。
 (評価)
 再生後のフィルムB-1(配管洗浄あり)のYIと、再生後のフィルムB-2(配管洗浄なし)のYIとをそれぞれ上記と同様の方法で測定した。そして、以下の基準に基づいて、異物混入による影響を評価した。
 ◎:YIの増加量(YI-YI)が0.03未満
 〇:YIの増加量(YI-YI)が0.03以上0.05未満
 △:YIの増加量(YI-YI)が0.05以上0.1未満
 ×:YIの増加量(YI-YI)が0.1以上
 △以上であれば許容範囲とした。
 試験1~15で得られた造粒物の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 表1に示されるように、Tg以下の低温で摩擦熱による溶融を行い、かつ造粒物の嵩密度が0.6g/cm以下(新品のペレットに対して80%以下)に調整した試験2~5、8~10および13~14の造粒物は、熱劣化に起因する樹脂の分子量低下や着色を低減でき、品種切り替え時の異物混入も抑制できることがわかる。
 これに対し、Tgを超える高温で摩擦熱による溶融を行い、かつ造粒物の嵩密度を0.6g/cm超(新品のペレットに対して90%)に調整した試験1、11(試験11は、特許文献1の条件に相当)および15の造粒物は、熱劣化に起因する樹脂の分子量低下や着色が生じるだけでなく、品種切り替え時の異物混入も生じることがわかる。
 なお、試験6において異物混入が生じた理由は明らかではないが、造粒温度が低すぎて、破砕物の一部が造粒前の破砕物の状態のまま残り、配管等の内壁面に付着したものが混入したためと考えられる。
 本出願は、2020年12月25日出願の特願2020-216666に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 10 破砕・造粒装置
 20 シリンダ
 21 供給口
 22 押出口
 23 固定刃
 24 熱電対
 30 スクリュー
 31 回転軸
 32A カッタースクリュー
 32B ミキシングスクリュー
 32C コンベアスクリュー
 40 切断部
 41 切断刃
 50 分離部
 51 冷却ブロワー
 52 回転円板
 60 温度調整部
 61 冷却ジャケット
 62 通水手段
 70 返材
 A 破砕部
 B 圧縮部
 C 移送部
 W1、W2 (流路の)幅
 L1、L2 (流路の)長さ

Claims (7)

  1.  (メタ)アクリル系樹脂およびシクロオレフィン系樹脂からなる群より選ばれる一以上の樹脂を含み、嵩密度が0.01~0.25g/cmである破砕物を準備する工程と、
     前記破砕物を、(50~Tg)℃(Tgは、前記樹脂のガラス転移温度)の温度下で、摩擦熱により溶融させて、嵩密度が0.26~0.45g/cmである造粒物を得る工程とを含む、
     造粒物の製造方法。
  2.  前記破砕物は、前記樹脂を含むフィルムの返材を破砕して得られる、
     請求項1に記載の造粒物の製造方法。
  3.  前記温度が(50~Tg)℃となるように、前記破砕物を冷却する、
     請求項1または2に記載の造粒物の製造方法。
  4.  前記摩擦熱による溶融は、50~100℃で行う、
     請求項1~3のいずれか一項に記載の造粒物の製造方法。
  5.  前記造粒物のアスペクト比は、4~50である、
     請求項1~4のいずれか一項に記載の造粒物の製造方法。
  6.  請求項1~5のいずれか一項に記載の造粒物の製造方法で造粒物を得る工程と、
     前記造粒物を溶融させるか、または、溶剤に溶解させて、膜状物を得る工程とを含む、
     光学フィルムの製造方法。
  7.  前記膜状物を得る工程は、
     前記造粒物を溶剤に溶解させて、ドープを得る工程と、
     前記ドープを支持体上に流延した後、乾燥および剥離して膜状物を得る工程とを含む、
     請求項6に記載の光学フィルムの製造方法。
PCT/JP2021/044612 2020-12-25 2021-12-06 造粒物の製造方法および光学フィルムの製造方法 WO2022138094A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180086496.7A CN116669927A (zh) 2020-12-25 2021-12-06 造粒物的制造方法和光学膜的制造方法
JP2022572070A JPWO2022138094A1 (ja) 2020-12-25 2021-12-06
KR1020237020624A KR20230108325A (ko) 2020-12-25 2021-12-06 조립물의 제조 방법 및 광학 필름의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-216666 2020-12-25
JP2020216666 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138094A1 true WO2022138094A1 (ja) 2022-06-30

Family

ID=82159515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044612 WO2022138094A1 (ja) 2020-12-25 2021-12-06 造粒物の製造方法および光学フィルムの製造方法

Country Status (5)

Country Link
JP (1) JPWO2022138094A1 (ja)
KR (1) KR20230108325A (ja)
CN (1) CN116669927A (ja)
TW (1) TWI821825B (ja)
WO (1) WO2022138094A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445365A (en) * 1977-09-16 1979-04-10 Toyo Watch Case Mfg Method and apparatus for granulating resin
JP2020166194A (ja) * 2019-03-29 2020-10-08 コニカミノルタ株式会社 光学フィルムの製造方法
JP2021016964A (ja) * 2019-07-18 2021-02-15 コニカミノルタ株式会社 光学フィルム製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445365A (en) * 1977-09-16 1979-04-10 Toyo Watch Case Mfg Method and apparatus for granulating resin
JP2020166194A (ja) * 2019-03-29 2020-10-08 コニカミノルタ株式会社 光学フィルムの製造方法
JP2021016964A (ja) * 2019-07-18 2021-02-15 コニカミノルタ株式会社 光学フィルム製造方法

Also Published As

Publication number Publication date
TW202235243A (zh) 2022-09-16
JPWO2022138094A1 (ja) 2022-06-30
KR20230108325A (ko) 2023-07-18
CN116669927A (zh) 2023-08-29
TWI821825B (zh) 2023-11-11

Similar Documents

Publication Publication Date Title
JP6587165B2 (ja) 光学材料用樹脂組成物およびこれを含む光学フィルム
WO2005108438A1 (ja) イミド樹脂とその製造方法、およびそれを用いた成形体
KR102156011B1 (ko) 펠릿 혼합물 및 사출 성형체
WO2022138094A1 (ja) 造粒物の製造方法および光学フィルムの製造方法
JP2008176021A (ja) 光学フィルム用樹脂組成物およびこれからなる光学フィルム
CN108297378B (zh) 改善稳定化的聚碳酸酯组合物的光学性能的方法
JP2018009144A (ja) メタクリル系樹脂組成物、該メタクリル系樹脂組成物の製造方法、ペレット、及び成形体
JP5301891B2 (ja) 結晶性乳酸系ポリエステルフィルムからペレットの製造方法およびその製造方法により得られるペレット
KR102313336B1 (ko) 광학 필름 제조 방법
CN111440382B (zh) 一种冷裱膜用柔性pp颗粒及其制备方法
JP2010100746A (ja) 光学用フィルムおよびその製造方法
JPH08192425A (ja) 紐状溶融熱可塑性樹脂または紐状溶融熱可塑性樹脂組成物の冷却方法
JP3538882B2 (ja) 空洞含有ポリオレフィン系樹脂フィルム
JP7016425B2 (ja) ポリマーフィルム、及び表示装置
JP4141264B2 (ja) ポリエチレン−2,6−ナフタレートフィルムの製造方法
JP2008238449A (ja) 白色ポリエステル樹脂組成物の製造方法
JP2009145735A (ja) 光学フィルム用樹脂組成物およびこれからなる光学フィルム
JP2014132042A (ja) 樹脂組成物の製造方法、光学フィルム、偏光板、及び液晶表示装置
JP4137570B2 (ja) ポリエチレンテレフタレート樹脂組成物の製造方法
JP4141273B2 (ja) 共重合ポリエチレンテレフタレートフィルムの製造方法
TW449540B (en) Process for producing heat-resistant thermoplastic resin pellets and heat-resistant pellets obtained therefrom
JP2000034356A (ja) 離型用二軸配向ポリフェニレンスルフィドフィルムおよびその製造方法
JP2014117919A (ja) 樹脂組成物及びその利用
Zeng et al. Effect of mechanical recycling on crystallization, mechanical, and rheological properties of recycled high‐density polyethylene and reinforcement based on virgin high‐density polyethylene
WO2006126666A1 (ja) セルロース混合エステルフィルムおよびその製造方法、偏光板、光学補償フィルム、反射防止フィルム、並びに液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910244

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572070

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237020624

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180086496.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910244

Country of ref document: EP

Kind code of ref document: A1