WO2022138082A1 - Active-energy-curable hard coat agent, hard coat layer, and laminate - Google Patents

Active-energy-curable hard coat agent, hard coat layer, and laminate Download PDF

Info

Publication number
WO2022138082A1
WO2022138082A1 PCT/JP2021/044546 JP2021044546W WO2022138082A1 WO 2022138082 A1 WO2022138082 A1 WO 2022138082A1 JP 2021044546 W JP2021044546 W JP 2021044546W WO 2022138082 A1 WO2022138082 A1 WO 2022138082A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coat
compound
agent
meth
active energy
Prior art date
Application number
PCT/JP2021/044546
Other languages
French (fr)
Japanese (ja)
Inventor
数馬 清野
洋明 鶴田
Original Assignee
東洋インキScホールディングス株式会社
トーヨーケム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社, トーヨーケム株式会社 filed Critical 東洋インキScホールディングス株式会社
Priority to CN202180074368.0A priority Critical patent/CN116406391A/en
Priority to KR1020237011420A priority patent/KR20230060537A/en
Publication of WO2022138082A1 publication Critical patent/WO2022138082A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F122/00Homopolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F122/10Esters
    • C08F122/1006Esters of polyhydric alcohols or polyhydric phenols, e.g. ethylene glycol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/105Esters of polyhydric alcohols or polyhydric phenols of pentaalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5465Silicon-containing compounds containing nitrogen containing at least one C=N bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic

Definitions

  • An embodiment of the present invention relates to an active energy ray-curable hardcoat agent, a hardcoat layer, and a laminate for forming a hardcoat layer having a metal thin film on the hardcoat layer.
  • a transparent conductive film in which a transparent conductive material is laminated on a transparent plastic film base material is a flat panel display such as a liquid crystal display or an electroluminescence (hereinafter abbreviated as EL) display, a touch panel, lighting, and the sun. It is widely used in fields such as batteries and electrical and electronic equipment.
  • a flat panel display such as a liquid crystal display or an electroluminescence (hereinafter abbreviated as EL) display, a touch panel, lighting, and the sun. It is widely used in fields such as batteries and electrical and electronic equipment.
  • ITO indium-tin oxide
  • ITO Indium Tin Oxide
  • the lower limit of the surface resistance value of ITO is 50 ⁇ / ⁇ , which is unsuitable for use as an electrode of a large display due to insufficient responsiveness. Since the ITO film is brittle and inferior in bending resistance and has a high surface resistance value at the time of bending, it is difficult to make the display flexible.
  • a thin film of a metal material such as silver, copper, or an aluminum alloy is subjected to a method such as a vacuum vapor deposition method, a physical vapor deposition method such as a sputtering method (PDV / Physical Vapor Deposition), or a chemical vapor deposition method (CVD / Chemical Vapor Deposition).
  • a vacuum vapor deposition method a physical vapor deposition method such as a sputtering method (PDV / Physical Vapor Deposition), or a chemical vapor deposition method (CVD / Chemical Vapor Deposition).
  • CVD chemical vapor deposition
  • Patent Document 1 describes a photosensitive resin composition containing a polyamic acid resin, a photosensitive material, an isocyanurate compound, a carbonate compound, a dendrimer having a molecular weight of 100 to 10,000 or a hyperbranched polymer, and a solvent. Resins, circuit boards, and suspension boards with circuits are disclosed.
  • Patent Document 2 describes a urethane (meth) acrylate-based resin obtained by reacting a trimer of diisocyanate with a hydroxyl group-containing (meth) acrylate, a Michael adduct of (meth) acrylic acid, and 2- (meth) acryloyl.
  • An active energy ray-curable resin composition containing at least one selected from the group consisting of oxyalkylcarboxylic acid monoesters is disclosed.
  • Patent Document 3 describes an ultraviolet curable resin composition containing a (meth) acrylate monomer and / or an acrylate oligomer having a (meth) acryloyl group, a thiourea type silane coupling agent, and nanosilica fine particles having an average particle size of 100 to 500 nm. Films as well as conductive films are disclosed.
  • Patent Document 4 describes a coat layer made of a metal oxide, a tri (meth) acrylate compound having an isocyanul ring, a di (meth) acrylate having an aromatic ring, and a tetrahydrophthalimide-type silane coupling agent and colloidal silica.
  • a resin material having a primer layer containing a reactant and a method for producing the same are disclosed.
  • Patent Document 5 describes a urethane (meth) acrylate-based compound obtained by reacting a polyvalent isocyanate-based compound with a hydroxyl group-containing (meth) acrylate-based compound containing a structural moiety derived from ⁇ -caprolactone, and a urethane (meth) acrylate-based compound other than urethane (meth) acrylate.
  • An active energy ray-curable resin composition containing a nitrogen-containing (meth) acrylate compound, a coating agent, and a coating agent for pre-coated metal are disclosed.
  • UV curable anchor coating agents containing organic materials and / or inorganic materials having excellent compatibility with metal materials have been studied as described below, but these cured films have a surface hardness. If the crosslink density is increased in order to increase the crosslink density, the performance as an anchor coat is deteriorated and the adhesion to the metal material tends to be deteriorated.
  • Patent Document 6 contains an acrylic copolymer (A) having a hydroxyl group, an alkyl ester group and a nitrile group, and optionally a primary amide group, a polyisocyanate (B) having at least three isocyanate groups, and a carbon-carbon double bond.
  • Undercoating agents for materials are disclosed.
  • Patent Document 7 includes a polyester polyol (A) containing dicarboxylic acids and diols as reaction components and having a glass transition temperature of 80 ° C. or lower, a polyisocyanate (B) having at least three isocyanate groups, and (isocyanate groups).
  • Undercoating agents for materials have been proposed.
  • the combined use of the heat-crosslinkable inert resin and the active energy ray-polymerized compound has not yet solved the problem of scratch resistance in the manufacturing process and processing process of the conductive film using the reactive alkoxyl compound.
  • the hard coat layer has high transparency and hardness when the hard coat layer is formed, and has excellent scratch resistance, alkali resistance, and adhesion to a metal thin film.
  • a problem to be solved by another embodiment of the present invention is to provide a hard coat layer formed by using the active energy ray-curable hard coat agent and a laminate containing the hard coat layer. Is.
  • the first embodiment is an active energy ray-curable hardcoat agent for forming a hardcoat layer having a metal thin film on the hardcoat layer, and is a compound having three or more (meth) acryloyl groups (meth).
  • the compound (A) is contained in 100 parts by mass of a non-volatile content of an active energy ray-curable hardcoat agent containing A), a silane coupling agent (B) having an isocyanato group, and a photopolymerization initiator (C).
  • the present invention relates to an active energy ray-curable hardcoat agent containing 70 parts by mass or more.
  • the second embodiment relates to the active energy ray-curable hardcoat agent containing the compound (a1) in which the compound (A) has three or more (meth) acryloyl groups and has a nitrogen atom.
  • the third embodiment relates to the active energy ray-curable hardcoat agent containing the compound (a2) in which the compound (a1) has three or more (meth) acryloyl groups and has a nurate ring skeleton. ..
  • the active energy ray-curable hard containing 5 to 30 parts by mass of the silane coupling agent (B) in 100 parts by mass of the non-volatile content of the active energy ray-curable hardcoat agent.
  • coating agents 5 to 30 parts by mass of the silane coupling agent (B) in 100 parts by mass of the non-volatile content of the active energy ray-curable hardcoat agent.
  • the fifth embodiment relates to a hard coat layer formed from the active energy ray-curable hard coat agent.
  • the sixth embodiment relates to the hard coat layer having a relative permittivity of 3.2 or less and a dielectric loss tangent of 0.02 or less at a frequency of 1 GHz and 23 ° C.
  • the seventh embodiment relates to a laminated body in which the hard coat layer is laminated on a base material.
  • the eighth embodiment relates to the laminated body in which a metal thin film is laminated on the hard coat layer.
  • a hardcoat layer when a hardcoat layer is formed, it has high transparency and hardness, and is active for forming a hardcoat layer having excellent scratch resistance, alkali resistance, and adhesion to a metal thin film. It has become possible to provide an energy ray-curable hard coat agent. Further, according to another embodiment of the present invention, it has become possible to provide a hard coat layer formed by using the active energy ray-curable hard coat agent and a laminate containing the hard coat layer. ..
  • the "active energy ray-curable hard coat agent of the embodiment of the present invention” is a "hard coat agent", and the “compound (A) having three or more (meth) acryloyl groups” is “compound (A)", " The “silane coupling agent (B) having an isocyanato group” is “silane coupling agent (B)”, and the “compound (a1) having three or more (meth) acryloyl groups and having a nitrogen atom” is “compound (a1).
  • the hard coat agent according to the embodiment of the present invention contains the compound (A), the silane coupling agent (B), and the photopolymerization initiator (C), and has a non-volatile content of 100 of the active energy ray-curable hard coat agent. It is characterized by containing 70 parts by mass or more of the compound (A) in a mass portion.
  • Compound (A) having 3 or more (meth) acryloyl groups examples include, for example. Trimethylolpropane Tri (meth) acrylate, glycerintri (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol tetra (meth) acrylate Polypoly (meth) acrylate compounds such as; Tris (2-acryloxyethyl) isocyanurate, EO-modified tris (2-acryloxyethyl) isocyanurate, PO-modified tris (2-acryloxyethyl) isocyanurate, and ⁇ -caprolactone-modified tris (2-acryloxyethyl) Trimer of (meth) acrylate having an isocyana
  • the compound (A) preferably contains the compound (a1) having three or more (meth) acryloyl groups and having a nitrogen atom from the viewpoint of adhesion to the metal thin film, and further, (meth) acryloyl. It is more preferable to contain the compound (a2) having three or more groups and having a nurate ring structure.
  • the nurate ring structure is a trimer of an isocyanate compound having a nitrogen atom and is a six-membered ring.
  • Examples of the compound (a1) include urethane acrylate having three or more (meth) acryloyl groups, tris (2-acryloxyethyl) isocyanurate (FANCRYL FA-731A manufactured by Hitachi Chemical Co., Ltd., NEW FRONTIER manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.).
  • TEICA TEICA (GX-8430), etc.
  • EO-modified tris (2-acryloxyethyl) isocyanurate (Aronix M-313, M-315 manufactured by Toa Synthetic Co., Ltd., NK ester A-9300 manufactured by Shin-Nakamura Chemical Industry Co., Ltd., manufactured by ARKEMA) SARTOMER SR-368 etc.)
  • PO-modified tris (2-acryloxyethyl) isocyanurate ⁇ -caprolactone-modified tris (2-acryloxyethyl) isocyanurate
  • NK ester A-9300-1CL manufactured by Shin-Nakamura Chemical Industry Co., Ltd.
  • Examples thereof include, but are not limited to, commercial products such as.
  • the compound (A) if 70 parts or more of the compound (A) is contained in 100 parts of the non-volatile content of the active energy ray-curable hardcoat agent, a metal thin film having excellent hardness and scratch resistance is formed. A hardcourt layer that can be obtained.
  • the upper limit of the content of the compound (A) in 100 parts of the non-volatile content of the active energy ray-curable hard coat agent is less than 100 parts.
  • the content of compound (A) is, for example, 80 parts or more, or 90 parts or more.
  • the silane coupling agent (B) has a general formula (1): X1-Si (R1) a (OR2) 3-a (in the formula (1), X1 is an isocyanato group and R1 has 1 to 8 carbon atoms.
  • a hydrocarbon group is preferably used, R2 is a hydrocarbon group having 1 to 8 carbon atoms, and a is a reactive alkoxysilyl compound represented by 0, 1 or 2).
  • the silane coupling agent (B) may contain an isocyanato group, and X1 may be an isocyanatoalkyl group.
  • silane coupling agent (B) examples include 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-isocyanatopropylmethyldimethoxysilane, 3-isocyanatopropylmethyldiethoxysilane, and compounds thereof. Examples thereof include a trimer (isocyanurate).
  • silane coupling agent (B) Commercially available products of the silane coupling agent (B) include KBE-9007N (3-isocyanatopropyltriethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.), X-12-1159 (chemical structural formula unknown, manufactured by Shin-Etsu Chemical Co., Ltd.), KBM. -9659 (Tris (trimethoxysilylpropyl) isocyanurate, manufactured by Shin-Etsu Chemical Co., Ltd.), SILQUEST Silane A-1310 (3-isosianatopropyltriethoxysilane, manufactured by MOMENTIVE), and SILQUEST Silane Y-5187 (3-isosia). Natopropyltrimethoxysilane, manufactured by MOMENTIVE) and the like.
  • the silane coupling agent (B) contains 5 to 30 parts of the non-volatile content of the active energy ray-curable hardcoat agent from the viewpoints of both hardness and scratch resistance and adhesion to a metal thin film. It is more preferable to contain 7 to 25 parts, and even more preferably 8 to 15 parts.
  • the hard coat agent contains, in addition to the above, compound (a0), a silane coupling agent or silane compound having no isocyanato group, a condensate thereof, and other additives described later. May be good.
  • Examples of the compound (a0) include, for example. 1,3-Butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, diethylene glycol di (meth) acrylate, neopentyl glycol di (meth) Di (meth) acrylates such as ethylene oxide-modified di (meth) acrylates of acrylates and bisphenol A; Di (meth) acrylate oligomers such as polyurethane poly (meth) acrylates and polyester poly (meth) acrylates; and 2-ethylhexyl (meth) acrylates, isodecyl (meth) acrylates, isooctyl (meth) acrylates, benzyl (meth) acrylates, cyclos.
  • 1,3-Butanediol di (meth) acrylate 1,4
  • Examples include, but are not limited to, mono (meth) acrylates such as pentanyl (meth) acrylates, cyclohexyl (meth) acrylates, dicyclopentenyl (meth) acrylates, and isobonyl (meth) acrylates.
  • mono (meth) acrylates such as pentanyl (meth) acrylates, cyclohexyl (meth) acrylates, dicyclopentenyl (meth) acrylates, and isobonyl (meth) acrylates.
  • Photopolymerization initiator (C) examples include a monocarbonyl-based photopolymerization initiator, a dicarbonyl-based photopolymerization initiator, an acetophenone-based photopolymerization initiator, a benzoin ether-based photopolymerization initiator, and an acylphosphine oxide-based photopolymerization initiator. Agents and aminocarbonyl-based photopolymerization initiators can be used.
  • the photopolymerization initiator (C) for example, Benzophenone, 4-methylbenzophenone, 2,4,6-trimethylbenzophenone, methyl-o-benzoylbenzoate, 4-phenylbenzophenone, 3,3', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 2- Monocarbonyl-based photopolymerization initiators such as / 4-iso-propylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, and 1-chloro-4-propoxythioxanthone; Dicarbonyl-based photopolymerization initiators such as 2-ethylanthraquinone, 9,10-phenanthrenequinone, and methyl- ⁇ -oxobenzeneacetate; 2-Hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2
  • IGM-Resins B.I. V. examples thereof include Omnirad 184, 651, 500, 907, 127, 369, 784, 2959, Esacure One, and Lucillin TPO manufactured by BASF Corporation.
  • Omnirad 184 and Esacure One are preferable from the viewpoint of yellowing resistance after curing with active energy rays.
  • the photopolymerization initiator (C) may be used in combination of two or more. It may also be used in combination with a sensitizer.
  • the content of the photopolymerization initiator (C) may be 1 to 15 parts out of 100 parts of the non-volatile content of the active energy ray-curable hard coat agent from the viewpoints of curing speed, hardness and scratch resistance. It is preferable to include 3 to 10 parts, and more preferably. More preferably, it is 3 to 8 parts.
  • the hard coat agent may contain an organic solvent (D).
  • the organic solvent used is an aromatic organic solvent such as toluene or xylene; a ketone organic solvent such as methyl ethyl ketone or methyl isobutyl ketone; an ester organic solvent such as ethyl acetate, n-propyl acetate, isopropyl acetate or isobutyl acetate.
  • Alcohol-based organic solvents such as methanol, ethanol, n-propanol, isopropanol, and n-butanol; known organic solvents such as glycol ether-based organic solvents such as propylene glycol monomethyl ether can be used.
  • the content of the organic solvent (D) is such that the non-volatile content concentration of the hard coat agent is 1 to 60% in the embodiment of the present invention from the viewpoint of coatability and film forming property. It is preferable that the range is as follows.
  • the hard coat agent may further contain various additives.
  • Additives include thermosetting resins, polymerization inhibitors, leveling agents, slip agents, defoaming agents, surfactants, antibacterial agents, antiblocking agents, plasticizers, UV absorbers, infrared absorbers, antioxidants, etc. Examples thereof include silane coupling agents, conductive agents, inorganic fillers, pigments, dyes and the like.
  • the hardcoat agent may contain an acrylic resin such as a (meth) acrylic copolymer having a hydroxyl group.
  • the laminate according to the embodiment of the present invention is one in which a hard coat layer formed from the hard coat agent of the above-mentioned embodiment is laminated on the surface of a base material. Further, in the laminate according to the embodiment of the present invention, a metal thin film may be further laminated on the hard coat layer.
  • the laminate according to the embodiment of the present invention includes, for example, a hard coat layer formed by using the hard coat agent of the above-described embodiment and a metal thin film formed on the hard coat layer.
  • the method for producing a laminate includes, for example, forming a hard coat layer using the hard coat agent of the above-described embodiment, and forming a metal thin film on the hard coat layer.
  • the laminate is formed on, for example, a base material, a hard coat layer formed on the base material by using the hard coat agent of the above-described embodiment, and the hard coat layer. Includes a metal thin film formed in.
  • the method for producing a laminate includes, for example, forming a hard coat layer on a substrate by using the hard coat agent of the above-described embodiment, and forming a metal thin film on the hard coat layer.
  • the base material (also referred to as a support) is not particularly limited, and examples thereof include glass, synthetic resin molded products, and films.
  • the synthetic resin molded product include polymethylmethacrylate resin, copolymer resin containing methylmethacrylate as a main component, polystyrene resin, styrene-methylmethacrylate copolymer resin, styrene-acrylonitrile copolymer resin, polycarbonate resin, and cellulose acetate buty.
  • Examples thereof include moldings of synthetic resins such as rate resins, polyallyl diglycol carbonate resins, polyvinyl chloride resins, and polyester resins.
  • the film examples include polyester film, polyethylene film, polypropylene film, cellophane film, diacetyl cellulose film, triacetyl cellulose (TAC) film, acetyl cellulose butyrate film, polyvinyl chloride film, polyvinylidene chloride film, and polyvinyl alcohol.
  • Film ethylene vinyl alcohol film, polyolefin film, polystyrene film, polycarbonate film, polymethylpentel film, polysulphon film, polyether ether ketone film, polyether sulfone film, polyetherimide film, polyimide film, fluororesin film, nylon film , Acrylic film and the like.
  • the thickness of the hard coat layer is not particularly limited, but is usually about 0.1 to 5 ⁇ m.
  • the metal thin film examples include a metal vapor deposition film, a metal sputter film, and a metal CVD film.
  • the metal thin film when the laminate is applied to the electrode film, is particularly preferably a metal vapor deposition film or a metal sputter film.
  • the thickness of the metal thin film is not particularly limited, but is usually about 0.1 to 2 ⁇ m.
  • the metal constituting the metal thin film include, but are not limited to, copper, aluminum, silver and the like.
  • the method for manufacturing the laminated body according to the embodiment of the present invention is not particularly limited.
  • the surface of the base material for example, one side or both sides if the base material is in the form of a film
  • the base material is heated.
  • it can be manufactured through a step of curing by irradiating with active energy rays to form a hard coat layer.
  • an embodiment of (4) manufacturing through a step of forming a metal thin film on the hard coat layer can be mentioned.
  • the conditions for applying the hard coat agent to the surface of the base material are not particularly limited, and the coating means includes, for example, a spray.
  • the coating means includes, for example, a spray.
  • examples thereof include a roll coater, a reverse roll coater, a gravure coater, a knife coater, a bar coater and a dot coater.
  • the amount of coating is not particularly limited, but is usually about 0.01 to 10 g / m 2 as the dry non-volatile content.
  • the conditions for applying heat to the base material are not particularly limited, but usually, the temperature is about 80 to 150 ° C. and the time is about 10 seconds to 2 minutes.
  • the conditions for irradiating the active energy rays are not particularly limited.
  • the active energy ray include ultraviolet rays and electron beams.
  • the source of ultraviolet rays include high-pressure mercury lamps and metal halide lamps, and the irradiation energy thereof is usually about 100 to 2,000 mJ / cm 2 .
  • the electron beam supply method include a scan type electron beam irradiation method, a curtain type electron beam irradiation method, and the like, and the irradiation energy thereof is usually about 10 to 200 kGy.
  • the means for forming the metal thin film on the hard coat layer is not particularly limited, but the dry coat method is preferable. Specific examples thereof include a physical method such as a vacuum vapor deposition method or a sputtering method, and a chemical method such as CVD (chemical vapor phase reaction or the like).
  • the method for producing the conductive film is not particularly limited, but when it is used as an electrode film, various resists are applied to the metal vapor-deposited plastic film or the metal sputter film, an electrode pattern is drawn, and then an etching solution (alkali) is used. A method of immersing in a solution) to remove the resist can be mentioned.
  • the shape of the electrode pattern may be any shape such as a fine line shape, a dot shape, a mesh shape, and a surface shape.
  • the hard coat layer according to the embodiment of the present invention has a relative permittivity of 3.2 or less at a frequency of 1 GHz and 23 ° C. from the viewpoint of suppressing transmission loss due to refraction and reflection of radio waves and reducing signal loss due to high-speed transmission. Is preferable, and 3 or less is more preferable.
  • the dielectric loss tangent is preferably 0.02 or less, more preferably 0.01 or less.
  • Comparative manufacturing example 1 40.8 parts (13.6 mol%) of hydroxyethyl acrylate (HEA), methyl methacrylate (MMA) 72.0 in a reaction vessel equipped with a stirrer, thermometer, reflux cooling tube, dropping funnel and nitrogen introduction tube. 27.7 parts (27.7 mol%), 79.2 parts (23.8 mol%) of butyl acrylate (BA), 48.0 parts (about 34.9 mol%) of acrylonitrile (AN), 445.7 parts of ethyl acetate. After charging, the reaction system was set to 70 ° C.
  • HOA hydroxyethyl acrylate
  • MMA methyl methacrylate
  • BA butyl acrylate
  • AN acrylonitrile
  • Example 1 Aronix M-403 (manufactured by Toagosei Co., Ltd.) 90 copies, KBE-9007N (3-isocyanatopropyltriethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) 10 copies, and Esacure One (manufactured by DKSH Japan Co., Ltd.) 5 copies.
  • the mixture was mixed and propylene glycol monomethyl ether was adjusted as an organic solvent so as to have a non-volatile content concentration of 40% to obtain a hard coat agent.
  • Examples 2 to 11 and Comparative Examples 1 to 5 A hard coat agent having a non-volatile content concentration of 40% was obtained in the same manner as in Example 1 except that each component was blended in the composition shown in Table 1 (non-volatile content conversion).
  • the numerical values in Table 1 represent "parts" unless otherwise specified, and blanks mean that they are not mixed.
  • ⁇ Pencil hardness ⁇ For the above-mentioned laminated body, in accordance with JIS K5600-5-4, a pencil of various hardness is applied to the surface of the hard coat layer of the laminated body at an angle of 45 °, and a scratch test is performed by applying a load to prevent scratches. The hardness of the hardest pencil was defined as the pencil hardness.
  • ⁇ Measurement of haze value The haze value (HZ) on the surface of the hard coat layer was measured with the "haze meter SH7000" manufactured by Nippon Denshoku Kogyo Co., Ltd. for the above-mentioned laminated body. ⁇ Best: less than 1.0% ⁇ Good: 1.0% or more and less than 2.0% ⁇ Defective: 2.0% or more
  • ⁇ Scratch resistance The scratch resistance of the above-mentioned laminated body was evaluated by a "Gakushin type friction fastness tester" manufactured by Tester Sangyo Co., Ltd. Steel wool # 0000 was attached to a friction element (surface area 1 cm 2 ) to which a load of 200 g was attached, and the surface of the hard coat layer (1 cm ⁇ 15 cm) was reciprocated 10 times. Then, the number of scratches on the surface of the hard coat layer was counted and evaluated according to the following criteria. ⁇ 3: No scratches (0) ⁇ 2: 1 to 10 scratches ⁇ 1: 11 or more scratches
  • a copper thin film was formed by sputtering copper onto the hardcourt layer of the produced laminate with "Magtron Sputter MSP-30T” manufactured by Vacuum Device Co., Ltd. to a thickness of 300 nm, 500 nm, and 1 ⁇ m.
  • the adhesion between the copper thin film and the underhard coat layer is such that the copper thin film is scratched in a grid pattern at 1 mm intervals to form a grid pattern of 100 squares, and then the entire grid pattern is covered.
  • the cellophane tape was attached, peeled off, and the peeled state of the copper thin film was visually observed and evaluated according to the following criteria.
  • ⁇ 5 The circumference of the scratch line is completely smooth, and there is no peeling on any grid.
  • ⁇ 4 Small peeling of the copper thin film is observed around the intersection of the scratches, but the total peeled area is less than 5% of the grid.
  • -3 The copper thin film is peeled off along the edge direction of the scratch, or the copper thin film is peeled off at the intersection of the scratches, and the total peeled area is 5% or more and less than 15% of the grid.
  • ⁇ 2 The total peeled area is 15% or more and less than 35% of the grid.
  • -1 The total peeled area is 35% or more and less than 80% of the grid.
  • 0 The total peeled area is 80% or more of the grid, and peeling is also observed outside the grid-shaped scratches.
  • a laminate having a copper thin film (thickness 300 nm) that has not been evaluated for copper adhesion is immersed in a 5% sodium hydroxide aqueous solution heated to 40 ° C. for 5 minutes, thoroughly washed with water, and then heated to 100 ° C. After drying in a warm oven for 15 minutes to remove water, the copper adhesion was evaluated in the same manner as above.
  • the obtained measurement test piece is subjected to the relative permittivity according to the following procedure in accordance with "Flexible Printed Wiring Board and Material for Flexible Printed Wiring Board-Part 2 Integrated Standard- (JPCA-DG03)" of the Japan Electronic Circuit Industry Association. And the dielectric loss tangent was measured.
  • Three test pieces were set in the relative permittivity measuring device "ADMS01Oc” manufactured by AET Co., Ltd., and the ratio at a measurement temperature of 23 ° C. and a measurement frequency of 1 GHz by the cavity resonator method. The permittivity and the dielectric loss tangent were determined. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

One embodiment relates to an active-energy-curable hard coat agent for forming a hard coat layer having a metal thin film thereon, the active-energy-curable hard coat agent comprising (A) a compound having three or more (meth)acryloyl groups, (B) a silane coupling agent having an isocyanato group, and (C) a photopolymerization initiator, in which the compound (A) is contained in an amount of 70 parts by mass or more in 100 parts by mass of a non-volatile matter of the active-energy-curable hard coat agent.

Description

活性エネルギー線硬化性ハードコート剤、ハードコート層および積層体Active energy ray-curable hardcoat agent, hardcoat layer and laminate
 本発明の実施形態は、ハードコート層上に金属薄膜を有するハードコート層を形成するための活性エネルギー線硬化性ハードコート剤、ハードコート層および積層体に関する。 An embodiment of the present invention relates to an active energy ray-curable hardcoat agent, a hardcoat layer, and a laminate for forming a hardcoat layer having a metal thin film on the hardcoat layer.
 透明なプラスチックフィルム基材上に、透明導電性材料を積層させた透明導電性フィルムは、液晶ディスプレイやエレクトロルミネッセンス(以下、ELと略記する)ディスプレイ等のようなフラットパネルディスプレイ、タッチパネル、照明、太陽電池、電気電子等の分野の用途に広く使用されている。 A transparent conductive film in which a transparent conductive material is laminated on a transparent plastic film base material is a flat panel display such as a liquid crystal display or an electroluminescence (hereinafter abbreviated as EL) display, a touch panel, lighting, and the sun. It is widely used in fields such as batteries and electrical and electronic equipment.
 透明導電性材料としては、可視光透過率が高く、表面抵抗値が比較的低いこと、環境特性に優れていることから、インジウム系酸化物である酸化インジウム-錫(ITO/Indium Tin Oxide)(以下ITOと略記する)を主成分としたものが広く用いられている。しかし、ITOの表面抵抗値の下限は50Ω/□であり、大型ディスプレイの電極として用いるには、応答性が足りず不適とされている。ITO膜は脆く曲げ耐性に劣るうえに、屈曲時の表面抵抗値が高いことから、ディスプレイのフレキシブル化への対応が困難とされている。 As a transparent conductive material, indium-tin oxide (ITO / Indium Tin Oxide), which is an indium-based oxide, has a high visible light transmittance, a relatively low surface resistance value, and excellent environmental characteristics. Those containing (hereinafter abbreviated as ITO) as a main component are widely used. However, the lower limit of the surface resistance value of ITO is 50Ω / □, which is unsuitable for use as an electrode of a large display due to insufficient responsiveness. Since the ITO film is brittle and inferior in bending resistance and has a high surface resistance value at the time of bending, it is difficult to make the display flexible.
 そのため、銀や銅、アルミニウム合金等の金属材料の薄膜を、真空蒸着法、スパッタリング法等の物理蒸着法(PDV/Physical Vapor Deposition)、化学蒸着法(CVD/Chemical Vapor Deposition)等の方法により、基材上に形成させ、微細なパターニングを施すことで、電極パターンを目視で見えなくする金属メッシュや、金属をナノ分散させた導電性インク等、ITOを代替する材料や技術の開発が行われている。 Therefore, a thin film of a metal material such as silver, copper, or an aluminum alloy is subjected to a method such as a vacuum vapor deposition method, a physical vapor deposition method such as a sputtering method (PDV / Physical Vapor Deposition), or a chemical vapor deposition method (CVD / Chemical Vapor Deposition). Materials and technologies that replace ITO, such as metal mesh that makes the electrode pattern visually invisible by forming it on a base material and applying fine patterning, and conductive ink in which metal is nano-dispersed, are being developed. ing.
 特許文献1には、ポリアミック酸樹脂、感光材、イソシアヌレート化合物、カーボネート化合物、分子量100~10,000のデンドリマー若しくはハイパーブランチポリマーから選ばれる1種、及び溶剤を含む感光性樹脂組成物、多孔質樹脂、回路基板、並びに、回路付サスペンション基板が開示されている。 Patent Document 1 describes a photosensitive resin composition containing a polyamic acid resin, a photosensitive material, an isocyanurate compound, a carbonate compound, a dendrimer having a molecular weight of 100 to 10,000 or a hyperbranched polymer, and a solvent. Resins, circuit boards, and suspension boards with circuits are disclosed.
 特許文献2には、ジイソシアネートの3量体と水酸基含有(メタ)アクリレートとを反応させてなるウレタン(メタ)アクリレート系樹脂、並びに、(メタ)アクリル酸のミカエル付加物及び2-(メタ)アクリロイルオキシアルキルカルボン酸モノエステルからなる群から選ばれた少なくとも1種を含む活性エネルギー線硬化性樹脂組成物が開示されている。 Patent Document 2 describes a urethane (meth) acrylate-based resin obtained by reacting a trimer of diisocyanate with a hydroxyl group-containing (meth) acrylate, a Michael adduct of (meth) acrylic acid, and 2- (meth) acryloyl. An active energy ray-curable resin composition containing at least one selected from the group consisting of oxyalkylcarboxylic acid monoesters is disclosed.
 特許文献3には、(メタ)アクリロイル基を有する(メタ)アクリレートモノマー及び/又はアクリレートオリゴマー、チオウレア型シランカップリング剤、及び平均粒径100~500nmのナノシリカ微粒子を含む紫外線硬化性樹脂組成物及びフィルム並びに導電性フィルムが開示されている。 Patent Document 3 describes an ultraviolet curable resin composition containing a (meth) acrylate monomer and / or an acrylate oligomer having a (meth) acryloyl group, a thiourea type silane coupling agent, and nanosilica fine particles having an average particle size of 100 to 500 nm. Films as well as conductive films are disclosed.
 特許文献4には、金属酸化物からなるコート層、並びに、イソシアヌル環を有するトリ(メタ)アクリレート化合物、芳香環を有するジ(メタ)アクリレート、及びテトラヒドロフタルイミド型シランカップリング剤とコロイダルシリカとの反応物を含むプライマー層を有する樹脂材及びその製造方法が開示されている。 Patent Document 4 describes a coat layer made of a metal oxide, a tri (meth) acrylate compound having an isocyanul ring, a di (meth) acrylate having an aromatic ring, and a tetrahydrophthalimide-type silane coupling agent and colloidal silica. A resin material having a primer layer containing a reactant and a method for producing the same are disclosed.
 特許文献5には、多価イソシアネート系化合物とε-カプロラクトン由来の構造部位を含む水酸基含有(メタ)アクリレート系化合物を反応させてなるウレタン(メタ)アクリレート系化合物と、ウレタン(メタ)アクリレート以外の窒素含有(メタ)アクリレート化合物を含む活性エネルギー線硬化性樹脂組成物、コーティング剤、並びに、プレコートメタル用コーティング剤が開示されている。 Patent Document 5 describes a urethane (meth) acrylate-based compound obtained by reacting a polyvalent isocyanate-based compound with a hydroxyl group-containing (meth) acrylate-based compound containing a structural moiety derived from ε-caprolactone, and a urethane (meth) acrylate-based compound other than urethane (meth) acrylate. An active energy ray-curable resin composition containing a nitrogen-containing (meth) acrylate compound, a coating agent, and a coating agent for pre-coated metal are disclosed.
 金属材料をフィルム基材上に形成するためには、通常プライマー処理が必要となるが、従来のアンカーコート剤による処理は金属材料との良好な密着性を向上させる一方で、表面硬度を低下させるため、導電性フィルムの製造工程や加工工程等における傷付き対策が課題となっている。 In order to form a metal material on a film substrate, primer treatment is usually required, but treatment with a conventional anchor coating agent improves good adhesion to the metal material while lowering the surface hardness. Therefore, measures against scratches in the manufacturing process and processing process of the conductive film have become an issue.
 上記課題の解決のため、下記のように、金属材料との親和性に優れた有機材及び又は無機材を含むUV硬化型アンカーコート剤が検討されているが、それらの硬化膜は表面硬度を高めるために架橋密度を高くするとアンカーコートとしての性能が落ち金属材料に対する密着性が低下しやすくなる傾向にある。 In order to solve the above problems, UV curable anchor coating agents containing organic materials and / or inorganic materials having excellent compatibility with metal materials have been studied as described below, but these cured films have a surface hardness. If the crosslink density is increased in order to increase the crosslink density, the performance as an anchor coat is deteriorated and the adhesion to the metal material tends to be deteriorated.
 特許文献6には、水酸基、アルキルエステル基及びニトリル基並びに場合により一級アミド基を有するアクリルコポリマー(A)と、イソシアネート基を少なくとも3つ有するポリイソシアネート(B)と、炭素-炭素二重結合含有基を少なくとも3つ有する活性エネルギー線重合型化合物(C)と、(イソシアネート基を含む反応性基から選ばれる反応基有する)反応性アルコキシシリル化合物(D)と、を含有する、銅薄膜付基材用アンダーコート剤が開示されている。 Patent Document 6 contains an acrylic copolymer (A) having a hydroxyl group, an alkyl ester group and a nitrile group, and optionally a primary amide group, a polyisocyanate (B) having at least three isocyanate groups, and a carbon-carbon double bond. A group with a copper thin film containing an active energy ray-polymerized compound (C) having at least three groups and a reactive alkoxysilyl compound (D) (having a reactive group selected from reactive groups including an isocyanate group). Undercoating agents for materials are disclosed.
 特許文献7には、ジカルボン酸類及びジオール類を反応成分とするガラス転移温度が80℃以下のポリエステルポリオール(A)と、イソシアネート基を少なくとも3つ有するポリイソシアネート(B)と、(イソシアネート基を含む反応性基から選ばれる反応基有する)反応性アルコキシシリル化合物(C)と炭素-炭素二重結合含有基を少なくとも3つ有する活性エネルギー線重合型化合物(E)とを含有する、銅薄膜付基材用アンダーコート剤が提案されている。 Patent Document 7 includes a polyester polyol (A) containing dicarboxylic acids and diols as reaction components and having a glass transition temperature of 80 ° C. or lower, a polyisocyanate (B) having at least three isocyanate groups, and (isocyanate groups). A group with a copper thin film containing a reactive alkoxysilyl compound (C) (having a reactive group selected from reactive groups) and an active energy ray-polymerized compound (E) having at least three carbon-carbon double bond-containing groups. Undercoating agents for materials have been proposed.
 上記のように熱架橋性のイナート樹脂と活性エネルギー線重合型化合物の併用では反応性アルコキシル化合物による導電性フィルムの製造工程や加工工程等における耐擦傷性の課題解決までには至っていない。また、高速データ通信の進展に対応して、誘電率や誘電正接の上昇を抑える観点から、アンダーコートへの極性の高い材料の使用も極力抑えなければならない。 As described above, the combined use of the heat-crosslinkable inert resin and the active energy ray-polymerized compound has not yet solved the problem of scratch resistance in the manufacturing process and processing process of the conductive film using the reactive alkoxyl compound. In addition, in response to the progress of high-speed data communication, it is necessary to suppress the use of highly polar materials for the undercoat as much as possible from the viewpoint of suppressing the increase in the dielectric constant and the dielectric loss tangent.
 しかしながら、上記文献に開示されている材料では、いずれもハードコート層を形成した際に、高い透明性、硬度、耐擦傷性、耐アルカリ性、金属薄膜との密着性に優れたハードコート層を形成することができなかった。 However, all of the materials disclosed in the above documents form a hardcoat layer having high transparency, hardness, scratch resistance, alkali resistance, and adhesion to a metal thin film when the hardcoat layer is formed. Couldn't.
特開2001-214058号公報Japanese Unexamined Patent Publication No. 2001-214058 特開2002-285043号公報JP-A-2002-285043 特開2016-008241号公報Japanese Unexamined Patent Publication No. 2016-0087241 特開2016-112702号公報Japanese Unexamined Patent Publication No. 2016-112072 特開2019-112637号公報Japanese Unexamined Patent Publication No. 2019-112637 特開2016-069653号公報Japanese Unexamined Patent Publication No. 2016-069653 特開2015-199946号公報JP-A-2015-199946
 本発明の実施形態が解決しようとする課題は、ハードコート層を形成した際に、高い透明性と硬度を有し、耐擦傷性、耐アルカリ性、金属薄膜との密着性に優れたハードコート層を形成するための活性エネルギー線硬化性ハードコート剤を提供することである。また、本発明の他の実施形態が解決しようとする課題は、前記活性エネルギー線硬化性ハードコート剤を用いて形成されたハードコート層、及び、前記ハードコート層を含む積層体を提供することである。 The problem to be solved by the embodiment of the present invention is that the hard coat layer has high transparency and hardness when the hard coat layer is formed, and has excellent scratch resistance, alkali resistance, and adhesion to a metal thin film. Is to provide an active energy ray-curable hardcoat agent for forming. Further, a problem to be solved by another embodiment of the present invention is to provide a hard coat layer formed by using the active energy ray-curable hard coat agent and a laminate containing the hard coat layer. Is.
 本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、以下の発明に至った。
 すなわち、第1の実施形態は、ハードコート層上に金属薄膜を有するハードコート層を形成するための活性エネルギー線硬化性ハードコート剤であって、(メタ)アクリロイル基を3個以上有する化合物(A)と、イソシアナト基を有するシランカップリング剤(B)と、光重合開始剤(C)とを含み、活性エネルギー線硬化性ハードコート剤の不揮発分100質量部中、前記化合物(A)を70質量部以上含む活性エネルギー線硬化性ハードコート剤に関する。
As a result of diligent research to solve the above problems, the present inventors have reached the following inventions.
That is, the first embodiment is an active energy ray-curable hardcoat agent for forming a hardcoat layer having a metal thin film on the hardcoat layer, and is a compound having three or more (meth) acryloyl groups (meth). The compound (A) is contained in 100 parts by mass of a non-volatile content of an active energy ray-curable hardcoat agent containing A), a silane coupling agent (B) having an isocyanato group, and a photopolymerization initiator (C). The present invention relates to an active energy ray-curable hardcoat agent containing 70 parts by mass or more.
 また、第2の実施形態は、前記化合物(A)が、(メタ)アクリロイル基を3個以上有し、かつ窒素原子を有する化合物(a1)を含む前記活性エネルギー線硬化性ハードコート剤に関する。 The second embodiment relates to the active energy ray-curable hardcoat agent containing the compound (a1) in which the compound (A) has three or more (meth) acryloyl groups and has a nitrogen atom.
 また、第3の実施形態は、前記化合物(a1)が、(メタ)アクリロイル基を3個以上有し、かつヌレート環骨格を有する化合物(a2)を含む前記活性エネルギー線硬化性ハードコート剤に関する。 The third embodiment relates to the active energy ray-curable hardcoat agent containing the compound (a2) in which the compound (a1) has three or more (meth) acryloyl groups and has a nurate ring skeleton. ..
 また、第4の実施形態は、前記シランカップリング剤(B)を、前記活性エネルギー線硬化性ハードコート剤の不揮発分100質量部中、5~30質量部含む、前記活性エネルギー線硬化性ハードコート剤に関する。 Further, in the fourth embodiment, the active energy ray-curable hard containing 5 to 30 parts by mass of the silane coupling agent (B) in 100 parts by mass of the non-volatile content of the active energy ray-curable hardcoat agent. Regarding coating agents.
 また、第5の実施形態は、前記活性エネルギー線硬化性ハードコート剤より形成されたハードコート層に関する。 The fifth embodiment relates to a hard coat layer formed from the active energy ray-curable hard coat agent.
 また、第6の実施形態は、周波数1GHz、23℃における、比誘電率が3.2以下であり、誘電正接が0.02以下である前記ハードコート層に関する。 The sixth embodiment relates to the hard coat layer having a relative permittivity of 3.2 or less and a dielectric loss tangent of 0.02 or less at a frequency of 1 GHz and 23 ° C.
 また、第7の実施形態は、基材上に、前記ハードコート層が積層されてなる積層体に関する。 Further, the seventh embodiment relates to a laminated body in which the hard coat layer is laminated on a base material.
 更に、第8の実施形態は、ハードコート層上に金属薄膜が積層されてなる前記積層体に関する。 Further, the eighth embodiment relates to the laminated body in which a metal thin film is laminated on the hard coat layer.
 本発明の実施形態によって、ハードコート層を形成した際に、高い透明性と硬度を有し、耐擦傷性、耐アルカリ性、金属薄膜との密着性に優れたハードコート層を形成するための活性エネルギー線硬化性ハードコート剤を提供することができるようになった。また、本発明の他の実施形態によって、前記活性エネルギー線硬化性ハードコート剤を用いて形成されたハードコート層、及び、前記ハードコート層を含む積層体を提供することができるようになった。 According to the embodiment of the present invention, when a hardcoat layer is formed, it has high transparency and hardness, and is active for forming a hardcoat layer having excellent scratch resistance, alkali resistance, and adhesion to a metal thin film. It has become possible to provide an energy ray-curable hard coat agent. Further, according to another embodiment of the present invention, it has become possible to provide a hard coat layer formed by using the active energy ray-curable hard coat agent and a laminate containing the hard coat layer. ..
 以下、本発明の実施形態について説明するが、初めに本明細書で用いられる用語について説明する。尚、本明細書では、「(メタ)アクリル」、「(メタ)アクリロ」、「(メタ)アクリル酸」、「(メタ)アクリレート」、および「(メタ)アクリロイルオキシ」と表記した場合には、特に断りがない限り、それぞれ「アクリルまたはメタクリル」、「アクリロまたはメタクリロ」、「アクリル酸またはメタクリル酸」、「アクリレートまたはメタクリレート」および「アクリロイルオキシまたはメタクリロイルオキシ」を表すものとする。また、特に断りがない限り、「部」とは「質量部」を、「%」とは「質量%」をそれぞれ表すものとする。また、「本発明の実施形態の活性エネルギー線硬化性ハードコート剤」を「ハードコート剤」、「(メタ)アクリロイル基を3個以上有する化合物(A)」を「化合物(A)」、「イソシアナト基を有するシランカップリング剤(B)」を「シランカップリング剤(B)」、「(メタ)アクリロイル基を3個以上有し、かつ窒素原子を有する化合物(a1)」を「化合物(a1)」、「(メタ)アクリロイル基を3個以上有し、かつヌレート環骨格を有する化合物(a2)」を「化合物(a2)」、「化合物(a2)以外の化合物(A)」を「化合物(a)」、「(メタ)アクリロイル基を1または2個有する化合物(a0)」を「化合物(a0)」と、それぞれ略記することがある。 Hereinafter, embodiments of the present invention will be described, but first, terms used in the present specification will be described. In addition, in this specification, when it is described as "(meth) acrylic", "(meth) acrylo", "(meth) acrylic acid", "(meth) acrylate", and "(meth) acryloyloxy" Unless otherwise specified, "acrylic or methacrylic", "acrylo or methacrylic acid", "acrylic acid or methacrylic acid", "acrylate or methacrylate" and "acryloyloxy or methacryloyloxy" are used. Unless otherwise specified, "parts" means "parts by mass" and "%" means "% by mass". Further, the "active energy ray-curable hard coat agent of the embodiment of the present invention" is a "hard coat agent", and the "compound (A) having three or more (meth) acryloyl groups" is "compound (A)", " The "silane coupling agent (B) having an isocyanato group" is "silane coupling agent (B)", and the "compound (a1) having three or more (meth) acryloyl groups and having a nitrogen atom" is "compound (a1). "a1)", "compound (a2) having three or more (meth) acryloyl groups and having a nitrate ring skeleton" is "compound (a2)", and "compound (A) other than compound (a2)" is " "Compound (a)" and "compound (a0) having one or two (meth) acryloyl groups" may be abbreviated as "compound (a0)", respectively.
 本発明の実施形態であるハードコート剤は、化合物(A)と、シランカップリング剤(B)と、光重合開始剤(C)とを含み、活性エネルギー線硬化性ハードコート剤の不揮発分100質量部中、前記化合物(A)を70質量部以上含むことを特徴とする。 The hard coat agent according to the embodiment of the present invention contains the compound (A), the silane coupling agent (B), and the photopolymerization initiator (C), and has a non-volatile content of 100 of the active energy ray-curable hard coat agent. It is characterized by containing 70 parts by mass or more of the compound (A) in a mass portion.
<(メタ)アクリロイル基を3個以上有する化合物(A)>
 化合物(A)としては、例えば、
 トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、及びペンタエリスリトールテトラ(メタ)アクリレート等のポリオールポリ(メタ)アクリレート化合物;
 トリス(2-アクリロキシエチル)イソシアヌレート、EO変性トリス(2-アクリロキシエチル)イソシアヌレート、PO変性トリス(2-アクリロキシエチル)イソシアヌレート、及びε-カプロラクトン変性トリス(2-アクリロキシエチル)イソシアヌレート等のイソシアナト基を有する(メタ)アクリレートの三量体(イソシアヌレート);その他に、
 (メタ)アクリロイル基が3つ以上のポリアクリルポリ(メタ)アクリレート、ポリウレタンポリ(メタ)アクリレート、及びポリエステル(メタ)アクリレート等のポリマーポリオールのポリアクリレート;
 ポリエポキシ(メタ)アクリレート;
 等が挙げられるが、これらに限定されない。
<Compound (A) having 3 or more (meth) acryloyl groups>
Examples of compound (A) include, for example.
Trimethylolpropane Tri (meth) acrylate, glycerintri (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol tetra (meth) acrylate Polypoly (meth) acrylate compounds such as;
Tris (2-acryloxyethyl) isocyanurate, EO-modified tris (2-acryloxyethyl) isocyanurate, PO-modified tris (2-acryloxyethyl) isocyanurate, and ε-caprolactone-modified tris (2-acryloxyethyl) Trimer of (meth) acrylate having an isocyanato group such as isocyanate (isocyanurate);
Polyacrylates of polymer polyols such as polyacrylic poly (meth) acrylates, polyurethane poly (meth) acrylates, and polyester (meth) acrylates having three or more (meth) acryloyl groups;
Polyepoxy (meth) acrylate;
Etc., but are not limited to these.
 さらに、化合物(A)は、金属薄膜に対する密着性の観点から、(メタ)アクリロイル基を3個以上有し、かつ窒素原子を有する化合物(a1)を含むことが好ましく、さらに、(メタ)アクリロイル基を3個以上有し、かつヌレート環構造を有する化合物(a2)を含むことがより好ましい。化合物(A)が、化合物(a1)を含むことにより、硬度、耐擦傷性、金属薄膜に対する密着性に優れたハードコート層が得られる。ヌレート環構造は窒素原子を有するイソシアネート化合物の三量体で、六員環であるため、その剛直な六員環の周りで(メタ)クリロイル基の重合が進み反応が起こり、シランカップリング剤(B)及び金属薄膜双方の親和性との相乗効果により、優れた硬度、耐擦傷性、金属薄膜密着を発現する。 Further, the compound (A) preferably contains the compound (a1) having three or more (meth) acryloyl groups and having a nitrogen atom from the viewpoint of adhesion to the metal thin film, and further, (meth) acryloyl. It is more preferable to contain the compound (a2) having three or more groups and having a nurate ring structure. When the compound (A) contains the compound (a1), a hard coat layer having excellent hardness, scratch resistance, and adhesion to a metal thin film can be obtained. The nurate ring structure is a trimer of an isocyanate compound having a nitrogen atom and is a six-membered ring. By the synergistic effect with the affinity of both B) and the metal thin film, excellent hardness, scratch resistance, and adhesion to the metal thin film are exhibited.
 化合物(a1)としては、(メタ)アクリロイル基を3個以上有するウレタンアクリレートの他、トリス(2-アクリロキシエチル)イソシアヌレート(日立化成社製FANCRYL FA-731A、第一工業製薬社製NEW FRONTIER TEICA(GX-8430)等)、EO変性トリス(2-アクリロキシエチル)イソシアヌレート(東亞合成社製アロニクスM-313、M-315、新中村化学工業社製NKエステルA-9300、ARKEMA社製SARTOMER SR-368等)、PO変性トリス(2-アクリロキシエチル)イソシアヌレート、ε-カプロラクトン変性トリス(2-アクリロキシエチル)イソシアヌレート(新中村化学工業社製NKエステルA-9300-1CL等)等の市販品が挙げられるが、これらに限定されない。 Examples of the compound (a1) include urethane acrylate having three or more (meth) acryloyl groups, tris (2-acryloxyethyl) isocyanurate (FANCRYL FA-731A manufactured by Hitachi Chemical Co., Ltd., NEW FRONTIER manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.). TEICA (GX-8430), etc.), EO-modified tris (2-acryloxyethyl) isocyanurate (Aronix M-313, M-315 manufactured by Toa Synthetic Co., Ltd., NK ester A-9300 manufactured by Shin-Nakamura Chemical Industry Co., Ltd., manufactured by ARKEMA) SARTOMER SR-368 etc.), PO-modified tris (2-acryloxyethyl) isocyanurate, ε-caprolactone-modified tris (2-acryloxyethyl) isocyanurate (NK ester A-9300-1CL manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) Examples thereof include, but are not limited to, commercial products such as.
 本発明の実施形態において、活性エネルギー線硬化性ハードコート剤の不揮発分100部中、化合物(A)が70部以上含まれていれば、硬度、及び耐擦傷性に優れた金属薄膜を形成することができるハードコート層が得られる。活性エネルギー線硬化性ハードコート剤の不揮発分100部中、化合物(A)の含有量の上限は、100部未満である。化合物(A)の含有量は、例えば、80部以上、又は、90部以上である。 In the embodiment of the present invention, if 70 parts or more of the compound (A) is contained in 100 parts of the non-volatile content of the active energy ray-curable hardcoat agent, a metal thin film having excellent hardness and scratch resistance is formed. A hardcourt layer that can be obtained. The upper limit of the content of the compound (A) in 100 parts of the non-volatile content of the active energy ray-curable hard coat agent is less than 100 parts. The content of compound (A) is, for example, 80 parts or more, or 90 parts or more.
<イソシアナト基を有するシランカップリング剤(B)>
 シランカップリング剤(B)は、一般式(1):X1-Si(R1)(OR2)3-a(式(1)中、X1は、イソシアナト基を、R1は炭素数1~8の炭化水素基を、R2は炭素数1~8の炭化水素基を、aは0、1又は2を示す。)で表される反応性アルコキシシリル化合物であることが好ましい。シランカップリング剤(B)は、イソシアナト基を含めばよく、X1は、イソシアナトアルキル基であってもよい。
<Silane coupling agent (B) having an isocyanato group>
The silane coupling agent (B) has a general formula (1): X1-Si (R1) a (OR2) 3-a (in the formula (1), X1 is an isocyanato group and R1 has 1 to 8 carbon atoms. A hydrocarbon group is preferably used, R2 is a hydrocarbon group having 1 to 8 carbon atoms, and a is a reactive alkoxysilyl compound represented by 0, 1 or 2). The silane coupling agent (B) may contain an isocyanato group, and X1 may be an isocyanatoalkyl group.
 シランカップリング剤(B)としては、3-イソシアナトプロピルトリメトキシシラン、3-イソシアナトプロピルトリエトキシシラン、3-イソシアナトプロピルメチルジメトキシシラン、3-イソシアナトプロピルメチルジエトキシシラン及びこれら化合物の三量体(イソシアヌレート)等が挙げられる。 Examples of the silane coupling agent (B) include 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-isocyanatopropylmethyldimethoxysilane, 3-isocyanatopropylmethyldiethoxysilane, and compounds thereof. Examples thereof include a trimer (isocyanurate).
 シランカップリング剤(B)の市販品としては、KBE-9007N(3-イソシアナトプロピルトリエトキシシラン、信越化学社製)、X-12-1159(化学構造式不明、信越化学社製)、KBM-9659(トリス(トリメトキシシリルプロピル)イソシアヌレート、信越化学社製)、SILQUEST Silane A-1310(3-イソシアナトプロピルトリエトキシシラン、MOMENTIVE社製)、及び、SILQUEST Silane Y-5187(3-イソシアナトプロピルトリメトキシシラン、MOMENTIVE社製)等が挙げられる。 Commercially available products of the silane coupling agent (B) include KBE-9007N (3-isocyanatopropyltriethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.), X-12-1159 (chemical structural formula unknown, manufactured by Shin-Etsu Chemical Co., Ltd.), KBM. -9659 (Tris (trimethoxysilylpropyl) isocyanurate, manufactured by Shin-Etsu Chemical Co., Ltd.), SILQUEST Silane A-1310 (3-isosianatopropyltriethoxysilane, manufactured by MOMENTIVE), and SILQUEST Silane Y-5187 (3-isosia). Natopropyltrimethoxysilane, manufactured by MOMENTIVE) and the like.
 シランカップリング剤(B)は、硬度及び耐擦傷性、並びに、金属薄膜との密着性の両方の観点から、活性エネルギー線硬化性ハードコート剤の不揮発分100部中、5~30部含むことが好ましく、7~25部含むことがより好ましく、8~15部含むことがさらに好ましい。 The silane coupling agent (B) contains 5 to 30 parts of the non-volatile content of the active energy ray-curable hardcoat agent from the viewpoints of both hardness and scratch resistance and adhesion to a metal thin film. It is more preferable to contain 7 to 25 parts, and even more preferably 8 to 15 parts.
 本発明の実施形態において、ハードコート剤は、上記以外に、化合物(a0)、イソシアナト基有さないシランカップリング剤やシラン化合物、及びその縮合物、並びに、後述するその他添加剤を含有してもよい。 In the embodiment of the present invention, the hard coat agent contains, in addition to the above, compound (a0), a silane coupling agent or silane compound having no isocyanato group, a condensate thereof, and other additives described later. May be good.
 化合物(a0)としては、例えば、
 1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート及びビスフェノールAのエチレンオキサイド変性ジ(メタ)アクリレート等のジ(メタ)アクリレート類;
 ポリウレタンポリ(メタ)アクリレート及びポリエステルポリ(メタ)アクリレート等のジ(メタ)アクリレートオリゴマー;並びに
 2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロペンタニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、及びイソボニル(メタ)アクリレート等のモノ(メタ)アクリレート類
 が挙げられるが、これらに限定されない。
Examples of the compound (a0) include, for example.
1,3-Butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, diethylene glycol di (meth) acrylate, neopentyl glycol di (meth) Di (meth) acrylates such as ethylene oxide-modified di (meth) acrylates of acrylates and bisphenol A;
Di (meth) acrylate oligomers such as polyurethane poly (meth) acrylates and polyester poly (meth) acrylates; and 2-ethylhexyl (meth) acrylates, isodecyl (meth) acrylates, isooctyl (meth) acrylates, benzyl (meth) acrylates, cyclos. Examples include, but are not limited to, mono (meth) acrylates such as pentanyl (meth) acrylates, cyclohexyl (meth) acrylates, dicyclopentenyl (meth) acrylates, and isobonyl (meth) acrylates.
<光重合開始剤(C)>
 光重合開始剤(C)としては、例えば、モノカルボニル系光重合開始剤、ジカルボニル系光重合開始剤、アセトフェノン系光重合開始剤、ベンゾインエーテル系光重合開始剤、アシルホスフィンオキシド系光重合開始剤、アミノカルボニル系光重合開始剤が使用できる。
<Photopolymerization initiator (C)>
Examples of the photopolymerization initiator (C) include a monocarbonyl-based photopolymerization initiator, a dicarbonyl-based photopolymerization initiator, an acetophenone-based photopolymerization initiator, a benzoin ether-based photopolymerization initiator, and an acylphosphine oxide-based photopolymerization initiator. Agents and aminocarbonyl-based photopolymerization initiators can be used.
 光重合開始剤(C)として、例えば、
 ベンゾフェノン、4-メチルベンゾフェノン、2,4,6-トリメチルベンゾフェノン、メチル-o-ベンゾイルベンゾエート、4-フェニルベンゾフェノン、3,3´,4,4´-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2-/4-イソ-プロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、及び1-クロロ-4-プロポキシチオキサントン等のモノカルボニル系光重合開始剤;
 2-エチルアントラキノン、9,10-フェナントレンキノン、及びメチル-α-オキソベンゼンアセテート等のジカルボニル系光重合開始剤;
 2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシ-シクロヘキシルフェニルケトン、ジエトキシアセトフェノン、ジブトキシアセトフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2,2-ジエトキシ-1,2-ジフェニルエタン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタン-1-オン、及び1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム等のアセトフェノン系光重合開始剤;
 ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイゾブチルエーテル、及びベンゾインノルマルブチルエーテル等のベンゾインエーテル系光重合開始剤;
 2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、及び4-n-プロピルフェニル-ジ(2,6-ジクロロベンゾイル)ホスフィンオキシド等のアシルホスフィンオキシド系光重合開始剤;並びに、
 エチル-4-(ジメチルアミノ)ベンゾエート、2-n-ブトキシエチル-4-(ジメチルアミノ)ベンゾエート、イソアミル-4-(ジメチルアミノ)ベンゾエート、2-(ジメチルアミノ)エチルベンゾエート、4,4´-ビス-4-ジメチルアミノベンゾフェノン、4,4´-ビス-4-ジエチルアミノベンゾフェノン、及び2,5´-ビス(4-ジエチルアミノベンザル)シクロペンタノン等のアミノカルボニル系光重合開始剤;
 等が挙げられる。
As the photopolymerization initiator (C), for example,
Benzophenone, 4-methylbenzophenone, 2,4,6-trimethylbenzophenone, methyl-o-benzoylbenzoate, 4-phenylbenzophenone, 3,3', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 2- Monocarbonyl-based photopolymerization initiators such as / 4-iso-propylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, and 1-chloro-4-propoxythioxanthone;
Dicarbonyl-based photopolymerization initiators such as 2-ethylanthraquinone, 9,10-phenanthrenequinone, and methyl-α-oxobenzeneacetate;
2-Hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methyl-1-phenylpropane-1-one, 1-hydroxy-cyclohexylphenylketone , Diethoxyacetophenone, dibutoxyacetophenone, 2,2-dimethoxy-1,2-diphenylethan-1-one, 2,2-diethoxy-1,2-diphenylethan-1-one, 2-methyl-1-[ 4- (Methylthio) Phenyl] -2-morpholinopropane-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butane-1-one, and 1-phenyl-1,2-propane Acetphenone-based photopolymerization initiator such as dione-2- (o-ethoxycarbonyl) oxime;
Benzoin ether-based photopolymerization initiators such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, and benzoin normal butyl ether;
Acylphosphine oxide-based photopolymerization initiators such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide and 4-n-propylphenyl-di (2,6-dichlorobenzoyl) phosphine oxide;
Ethyl-4- (dimethylamino) benzoate, 2-n-butoxyethyl-4- (dimethylamino) benzoate, isoamyl-4- (dimethylamino) benzoate, 2- (dimethylamino) ethylbenzoate, 4,4'-bis Aminocarbonyl-based photopolymerization initiators such as -4-dimethylaminobenzophenone, 4,4'-bis-4-diethylaminobenzophenone, and 2,5'-bis (4-diethylaminobenzal) cyclopentanone;
And so on.
 光重合開始剤(C)の市販品としては、IGM-Resins B.V.社製のOmnirad184、651、500、907、127、369、784、2959、エサキュアワン、BASF(株)社製ルシリンTPO等が挙げられる。特に、活性エネルギー線硬化後の耐黄変の観点で、Omnirad184やエサキュアワンが好ましい。 As a commercial product of the photopolymerization initiator (C), IGM-Resins B.I. V. Examples thereof include Omnirad 184, 651, 500, 907, 127, 369, 784, 2959, Esacure One, and Lucillin TPO manufactured by BASF Corporation. In particular, Omnirad 184 and Esacure One are preferable from the viewpoint of yellowing resistance after curing with active energy rays.
 光重合開始剤(C)は、2種類以上を混合して用い併用してもよい。また、増感剤と併用してもよい。 The photopolymerization initiator (C) may be used in combination of two or more. It may also be used in combination with a sensitizer.
 光重合開始剤(C)の含有量は、硬化速度、並びに、硬度及び耐擦傷性の両方の観点から、活性エネルギー線硬化性ハードコート剤の不揮発分100部中、1~15部含むことが好ましく、3~10部含むことがより好ましい。さらに好ましくは3~8部である。 The content of the photopolymerization initiator (C) may be 1 to 15 parts out of 100 parts of the non-volatile content of the active energy ray-curable hard coat agent from the viewpoints of curing speed, hardness and scratch resistance. It is preferable to include 3 to 10 parts, and more preferably. More preferably, it is 3 to 8 parts.
 本発明の実施形態において、ハードコート剤は、有機溶剤(D)を含んでもよい。使用される有機溶剤としては、トルエン、キシレンなどの芳香族系有機溶剤;メチルエチルケトン、メチルイソブチルケトンなどのケトン系有機溶剤;酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸イソブチルなどのエステル系有機溶剤;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノールなどのアルコール系有機溶剤;プロピレングリコールモノメチルエーテルなどのグリコールエーテル系有機溶剤など、公知の有機溶剤を使用できる。特にグリコールエーテル系有機溶剤を含むことが好ましい。 In the embodiment of the present invention, the hard coat agent may contain an organic solvent (D). The organic solvent used is an aromatic organic solvent such as toluene or xylene; a ketone organic solvent such as methyl ethyl ketone or methyl isobutyl ketone; an ester organic solvent such as ethyl acetate, n-propyl acetate, isopropyl acetate or isobutyl acetate. Alcohol-based organic solvents such as methanol, ethanol, n-propanol, isopropanol, and n-butanol; known organic solvents such as glycol ether-based organic solvents such as propylene glycol monomethyl ether can be used. In particular, it is preferable to contain a glycol ether-based organic solvent.
 有機溶剤(D)を含む場合の有機溶剤(D)の含有量は、塗工性及び成膜性の観点から、本発明の実施形態において、ハードコート剤の不揮発分濃度が1~60%となる範囲であることが好ましい。 When the organic solvent (D) is contained, the content of the organic solvent (D) is such that the non-volatile content concentration of the hard coat agent is 1 to 60% in the embodiment of the present invention from the viewpoint of coatability and film forming property. It is preferable that the range is as follows.
 本発明の実施形態において、ハードコート剤には、さらに様々な添加剤を含有してもよい。添加剤としては、熱硬化性樹脂、重合禁止剤、レベリング剤、スリップ剤、消泡剤、界面活性剤、抗菌剤、アンチブロッキング剤、可塑剤、紫外線吸収剤、赤外線吸収剤、酸化防止剤、シランカップリング剤、導電剤、無機充填剤、顔料、染料等が挙げられる。ハードコート剤は、ヒドロキシル基を有する(メタ)アクリルコポリマー等のアクリル樹脂を含有してもよい。 In the embodiment of the present invention, the hard coat agent may further contain various additives. Additives include thermosetting resins, polymerization inhibitors, leveling agents, slip agents, defoaming agents, surfactants, antibacterial agents, antiblocking agents, plasticizers, UV absorbers, infrared absorbers, antioxidants, etc. Examples thereof include silane coupling agents, conductive agents, inorganic fillers, pigments, dyes and the like. The hardcoat agent may contain an acrylic resin such as a (meth) acrylic copolymer having a hydroxyl group.
<積層体>
 本発明の実施形態である積層体は、基材の表面に、上述の実施形態のハードコート剤より形成されたハードコート層が積層されたものである。また、本発明の実施形態である積層体は、ハードコート層上に、更に金属薄膜が積層されていてもよい。
<Laminated body>
The laminate according to the embodiment of the present invention is one in which a hard coat layer formed from the hard coat agent of the above-mentioned embodiment is laminated on the surface of a base material. Further, in the laminate according to the embodiment of the present invention, a metal thin film may be further laminated on the hard coat layer.
 また、本発明の実施形態である積層体は、例えば、上述の実施形態のハードコート剤を用いて形成されたハードコート層と、前記ハードコート層上に形成された金属薄膜とを含む。積層体の製造方法は、例えば、上述の実施形態のハードコート剤を用いてハードコート層を形成すること、及び、前記ハードコート層上に金属薄膜を形成すること、を含む。さらに、本発明の実施形態によれば、積層体は、例えば、基材と、前記基材上に上述の実施形態のハードコート剤を用いて形成されたハードコート層と、前記ハードコート層上に形成された金属薄膜とを含む。積層体の製造方法は、例えば、基材上に上述の実施形態のハードコート剤を用いてハードコート層を形成すること、及び、前記ハードコート層上に金属薄膜を形成すること、を含む。 Further, the laminate according to the embodiment of the present invention includes, for example, a hard coat layer formed by using the hard coat agent of the above-described embodiment and a metal thin film formed on the hard coat layer. The method for producing a laminate includes, for example, forming a hard coat layer using the hard coat agent of the above-described embodiment, and forming a metal thin film on the hard coat layer. Further, according to the embodiment of the present invention, the laminate is formed on, for example, a base material, a hard coat layer formed on the base material by using the hard coat agent of the above-described embodiment, and the hard coat layer. Includes a metal thin film formed in. The method for producing a laminate includes, for example, forming a hard coat layer on a substrate by using the hard coat agent of the above-described embodiment, and forming a metal thin film on the hard coat layer.
 基材(支持体とも言う)としては、特に限定はなく、ガラス、合成樹脂成型物、フィルムなどが挙げられる。合成樹脂成型物としては、ポリメチルメタクリレート樹脂、メチルメタクリレートを主成分とする共重合体樹脂、ポリスチレン樹脂、スチレン-メチルメタクリレート共重合体樹脂、スチレン-アクリロニトリル共重合体樹脂、ポリカーボネート樹脂、セルロースアセテートブチレート樹脂、ポリアリルジグリコールカーボネート樹脂、ポリ塩化ビニル樹脂、ポリエステル樹脂等の合成樹脂の成型物が挙げられる。 The base material (also referred to as a support) is not particularly limited, and examples thereof include glass, synthetic resin molded products, and films. Examples of the synthetic resin molded product include polymethylmethacrylate resin, copolymer resin containing methylmethacrylate as a main component, polystyrene resin, styrene-methylmethacrylate copolymer resin, styrene-acrylonitrile copolymer resin, polycarbonate resin, and cellulose acetate buty. Examples thereof include moldings of synthetic resins such as rate resins, polyallyl diglycol carbonate resins, polyvinyl chloride resins, and polyester resins.
 また、フィルムとしては、例えば、ポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファンフィルム、ジアセチルセルロースフィルム、トリアセチルセルロース(TAC)フィルム、アセチルセルロースブチレートフィルム、ポリ塩化ビニルフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、ポリオレフィンフィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリメチルペンテルフィルム、ポリスルフォンフィルム、ポリエーテルエーテルケトンフィルム、ポリエーテルスルフォンフィルム、ポリエーテルイミドフィルム、ポリイミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、アクリルフィルム等が挙げられる。 Examples of the film include polyester film, polyethylene film, polypropylene film, cellophane film, diacetyl cellulose film, triacetyl cellulose (TAC) film, acetyl cellulose butyrate film, polyvinyl chloride film, polyvinylidene chloride film, and polyvinyl alcohol. Film, ethylene vinyl alcohol film, polyolefin film, polystyrene film, polycarbonate film, polymethylpentel film, polysulphon film, polyether ether ketone film, polyether sulfone film, polyetherimide film, polyimide film, fluororesin film, nylon film , Acrylic film and the like.
 ハードコート層の厚みは、特に限定されないが、通常0.1~5μm程度である。 The thickness of the hard coat layer is not particularly limited, but is usually about 0.1 to 5 μm.
 金属薄膜としては、例えば、金属蒸着膜、金属スパッタ膜及び金属CVD膜が挙げられる。本発明の実施形態において、積層体を電極フィルムに供する場合には、金属薄膜としては、特に金属蒸着膜又は金属スパッタ膜であることが好ましい。金属薄膜の厚みは、特に限定されないが、通常、0.1~2μm程度である。金属薄膜を構成する金属としては、銅、アルミニウム、銀等が挙げられるが、これらに限らない。 Examples of the metal thin film include a metal vapor deposition film, a metal sputter film, and a metal CVD film. In the embodiment of the present invention, when the laminate is applied to the electrode film, the metal thin film is particularly preferably a metal vapor deposition film or a metal sputter film. The thickness of the metal thin film is not particularly limited, but is usually about 0.1 to 2 μm. Examples of the metal constituting the metal thin film include, but are not limited to, copper, aluminum, silver and the like.
 本発明の実施形態である積層体の製造方法は、特に限定されない。例えば、(1)基材の表面(基材が例えばフィルム状のものであれば片面又は両面)に上述の実施形態のハードコート剤を塗布し、(2)該基材に熱を加えた後、(3)更に活性エネルギー線を照射することにより硬化させてハードコート層を形成する工程を経て製造することができる。更に必要に応じて、(4)ハードコート層上に金属薄膜を形成する工程を経て製造する態様が挙げられる。 The method for manufacturing the laminated body according to the embodiment of the present invention is not particularly limited. For example, (1) the surface of the base material (for example, one side or both sides if the base material is in the form of a film) is coated with the hard coat agent of the above-described embodiment, and (2) the base material is heated. , (3) Further, it can be manufactured through a step of curing by irradiating with active energy rays to form a hard coat layer. Further, if necessary, an embodiment of (4) manufacturing through a step of forming a metal thin film on the hard coat layer can be mentioned.
 工程(1)に関し、基材の表面(基材が例えばフィルム状のものであれば片面又は両面)にハードコート剤を塗布する条件は、特に限定されず、塗布手段としては、例えば、スプレー、ロールコーター、リバースロールコーター、グラビアコーター、ナイフコーター、バーコーター及びドットコーター等が挙げられる。また、塗工量も特に限定されないが、通常、乾燥不揮発分として0.01~10g/m2程度である。 Regarding the step (1), the conditions for applying the hard coat agent to the surface of the base material (for example, one side or both sides if the base material is in the form of a film) are not particularly limited, and the coating means includes, for example, a spray. Examples thereof include a roll coater, a reverse roll coater, a gravure coater, a knife coater, a bar coater and a dot coater. The amount of coating is not particularly limited, but is usually about 0.01 to 10 g / m 2 as the dry non-volatile content.
 工程(2)に関し、該基材に熱を加える際の条件も特に限定されないが、通常、温度80~150℃程度で、時間が10秒~2分程度である。 Regarding the step (2), the conditions for applying heat to the base material are not particularly limited, but usually, the temperature is about 80 to 150 ° C. and the time is about 10 seconds to 2 minutes.
 工程(3)に関し、活性エネルギー線を照射する際の条件も特に限定されない。活性エネルギー線としては、例えば紫外線や電子線が挙げられる。紫外線の供給源としては例えば高圧水銀灯やメタルハライドランプ等が挙げられ、その照射エネルギーは通常100~2,000mJ/cm2程度である。電子線の供給方式としては例えばスキャン式電子線照射、カーテン式電子線照射法等が挙げられ、その照射エネルギーは通常10~200kGy程度である。 Regarding the step (3), the conditions for irradiating the active energy rays are not particularly limited. Examples of the active energy ray include ultraviolet rays and electron beams. Examples of the source of ultraviolet rays include high-pressure mercury lamps and metal halide lamps, and the irradiation energy thereof is usually about 100 to 2,000 mJ / cm 2 . Examples of the electron beam supply method include a scan type electron beam irradiation method, a curtain type electron beam irradiation method, and the like, and the irradiation energy thereof is usually about 10 to 200 kGy.
 工程(4)に関し、ハードコート層に金属薄膜を形成する手段は特に限定されないが、ドライコート法が好ましい。具体的には、例えば、真空蒸着法又はスパッタリング法等の物理的方法や、CVD等の化学的方法(化学的気相反応等)が挙げられる。 Regarding the step (4), the means for forming the metal thin film on the hard coat layer is not particularly limited, but the dry coat method is preferable. Specific examples thereof include a physical method such as a vacuum vapor deposition method or a sputtering method, and a chemical method such as CVD (chemical vapor phase reaction or the like).
 該導電性フィルムの製法は特に限定されないが、これを電極フィルムとして使用する場合には、前記金属蒸着プラスチックフィルム又は金属スパッタフィルムに各種レジストを塗布し、電極パターンを描写した後でエッチング液(アルカリ溶液)に浸漬し、レジストを除去する方法が挙げられる。電極パターンの形状は細線状、ドット状、メッシュ状及び面状等、如何なる形態であってよい。 The method for producing the conductive film is not particularly limited, but when it is used as an electrode film, various resists are applied to the metal vapor-deposited plastic film or the metal sputter film, an electrode pattern is drawn, and then an etching solution (alkali) is used. A method of immersing in a solution) to remove the resist can be mentioned. The shape of the electrode pattern may be any shape such as a fine line shape, a dot shape, a mesh shape, and a surface shape.
 本発明の実施形態であるハードコート層は、電波の屈折や反射による透過損失の抑制および高速伝送による信号ロス低減の観点から、周波数1GHz、23℃における比誘電率は3.2以下であることが好ましく、3以下であることがより好ましい。また、誘電正接は0.02以下であることが好ましく、0.01以下であることがより好ましい。 The hard coat layer according to the embodiment of the present invention has a relative permittivity of 3.2 or less at a frequency of 1 GHz and 23 ° C. from the viewpoint of suppressing transmission loss due to refraction and reflection of radio waves and reducing signal loss due to high-speed transmission. Is preferable, and 3 or less is more preferable. The dielectric loss tangent is preferably 0.02 or less, more preferably 0.01 or less.
 以下、実施例及び比較例により、本発明をさらに具体的に説明するが、以下の実施例は、本発明の技術的範囲を何ら制限するものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the following Examples do not limit the technical scope of the present invention at all.
<アクリルコポリマーの製造(比較例)>
比較製造例1
 撹拌機、温度計、還流冷却管、滴下ロート及び窒素導入管を備えた反応容器に、ヒドロキシエチルアクリレート(HEA)40.8部(13.6モル%)、メチルメタアクリレート(MMA)72.0部(27.7モル%)、ブチルアクリレート(BA)79.2部(23.8モル%)、アクリロニトリル(AN)48.0部(約34.9モル%)、酢酸エチル445.7部を仕込み、反応系を70℃に設定した。次いで、2、2’―アゾビス(2、4―ジメチルバレロニトリル)(ABN-V)1.2部を仕込み、70℃付近で6時間保温した。次いで、ABN-V 2.4部を仕込み、反応系を同温度付近において更に6時間保温した。その後、反応系を室温まで冷却することにより、ガラス転移温度が13℃及び水酸基価が80mgKOH/g、不揮発分35.0%のアクリルコポリマーの溶液を得た。
<Manufacturing of acrylic copolymer (comparative example)>
Comparative manufacturing example 1
40.8 parts (13.6 mol%) of hydroxyethyl acrylate (HEA), methyl methacrylate (MMA) 72.0 in a reaction vessel equipped with a stirrer, thermometer, reflux cooling tube, dropping funnel and nitrogen introduction tube. 27.7 parts (27.7 mol%), 79.2 parts (23.8 mol%) of butyl acrylate (BA), 48.0 parts (about 34.9 mol%) of acrylonitrile (AN), 445.7 parts of ethyl acetate. After charging, the reaction system was set to 70 ° C. Next, 1.2 parts of 2,2'-azobis (2,4-dimethylvaleronitrile) (ABN-V) was charged and kept warm at around 70 ° C. for 6 hours. Next, 2.4 parts of ABN-V was charged, and the reaction system was kept warm at the same temperature for another 6 hours. Then, the reaction system was cooled to room temperature to obtain a solution of an acrylic copolymer having a glass transition temperature of 13 ° C., a hydroxyl value of 80 mgKOH / g and a non-volatile content of 35.0%.
<ハードコート剤の調製>
実施例1
 アロニックスM-403(東亞合成社製)90部、KBE-9007N(3-イソシアナトプロピルトリエトキシシラン、信越化学工業社製)10部、及びエサキュアワン(DKSHジャパン(株)社製)5部をよく混合し、有機溶剤としてプロピレングリコールモノメチルエーテルを不揮発分濃度40%となるように調整してハードコート剤を得た。
<Preparation of hard coat agent>
Example 1
Aronix M-403 (manufactured by Toagosei Co., Ltd.) 90 copies, KBE-9007N (3-isocyanatopropyltriethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) 10 copies, and Esacure One (manufactured by DKSH Japan Co., Ltd.) 5 copies. The mixture was mixed and propylene glycol monomethyl ether was adjusted as an organic solvent so as to have a non-volatile content concentration of 40% to obtain a hard coat agent.
実施例2~11、比較例1~5
 各成分を表1に示す組成(不揮発分換算)で配合したこと以外は、実施例1と同様にして、不揮発分濃度40%のハードコート剤をそれぞれ得た。表1中の数値は、特に断りのない限り「部」を表し、空欄は配合していないことを意味する。
Examples 2 to 11 and Comparative Examples 1 to 5
A hard coat agent having a non-volatile content concentration of 40% was obtained in the same manner as in Example 1 except that each component was blended in the composition shown in Table 1 (non-volatile content conversion). The numerical values in Table 1 represent "parts" unless otherwise specified, and blanks mean that they are not mixed.
 表1に示す各材料の詳細は、以下のとおりである。
<化合物(A)>
 ・アロニックスM-403(ジペンタエリスリトールヘキサアクリレート(官能基数:6個):40~50%とジペンタエリスリトールペンタアクリレート(官能基数:5個):50~60%の混合物;東亞合成社製)
<化合物(a1)>
 ・Miramer PU610(ウレタンアクリレート、重量平均分子量:1800、官能基数:6個、MIWON社製)
 ・Miramer MU9800(ウレタンアクリレート、重量平均分子量:3500、官能基:9個、MIWON社製)
<化合物(a2)>
 ・アロニックスM-315(イソシアヌル酸エチレンオキサイド変性トリアクリレート、官能基数:3個、東亞合成社製)
The details of each material shown in Table 1 are as follows.
<Compound (A)>
-Aronix M-403 (dipentaerythritol hexaacrylate (number of functional groups: 6): 40 to 50% and dipentaerythritol pentaacrylate (number of functional groups: 5): 50 to 60% mixture; manufactured by Toagosei Co., Ltd.)
<Compound (a1)>
-Miramer PU610 (urethane acrylate, weight average molecular weight: 1800, number of functional groups: 6, manufactured by MIWON)
-Miramer MU9800 (urethane acrylate, weight average molecular weight: 3500, functional group: 9, manufactured by MIWON)
<Compound (a2)>
-Aronix M-315 (Isocyanuric acid ethylene oxide-modified triacrylate, number of functional groups: 3, manufactured by Toagosei Co., Ltd.)
<イソシアナト基を有するシランカップリング剤(B)>
 ・KBE-9007N(3-イソシアナトプロピルトリエトキシシラン、信越化学工業社製)
 ・KBM-9659(トリス(トリメトキシシリルプロピル)イソシアヌレート、信越化学工業社製)
 ・SILQUEST Silane Y-5187(3-イソシアナトプロピルトリメトキシシラン、MOMENTIVE社製)
<光重合開始剤(C)>
 ・Esacure One(エサキュアワン、アセトフェノン系光重合開始剤DKSHジャパン(株)社製)
<Silane coupling agent (B) having an isocyanato group>
KBE-9007N (3-isocyanatopropyltriethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.)
KBM-9569 (Tris (trimethoxysilylpropyl) isocyanurate, manufactured by Shin-Etsu Chemical Co., Ltd.)
-SILQUEST Silane Y-5187 (3-isocyanatopropyltrimethoxysilane, manufactured by MOMENTIVE)
<Photopolymerization initiator (C)>
・ Esacure One (Esacure One, acetophenone-based photopolymerization initiator DKSH Japan Co., Ltd.)
<その他>
<(メタ)アクリロイル基を2個有する化合物(a0)>
 ・NKエステルA-DCP(トリシクロデカンジメタノールジアクリレート、分子量:304、アクリロイル基数:2個、新中村化学工業社製)
<アクリロイル基を有するシランカップリング剤(b0)>
 ・KBM-5103(3-アクリロイルオキシプロピルトリメトキシシラン、信越化学工業社製)
<アクリルポリオール(比較製造例1)>
 ・アクリルポリオール(製造例1で合成したガラス転移温度が13℃及び水酸基価が80mgKOH/g、不揮発分35.0%のアクリルコポリマーの溶液)
<アルミナ粒子分散体>
 ・NANOBYK3610(アルミナ粒子メトキシプロピレンアセテート分散体、不揮発分濃度:37%、ビックケミージャパン社製)
<Others>
<Compound (a0) having two (meth) acryloyl groups>
NK ester A-DCP (tricyclodecanedimethanol diacrylate, molecular weight: 304, acryloyl radix: 2, manufactured by Shin Nakamura Chemical Industry Co., Ltd.)
<Silane coupling agent having an acryloyl group (b0)>
KBM-5103 (3-acryloyloxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.)
<Acrylic Polyol (Comparative Production Example 1)>
Acrylic polyol (a solution of an acrylic copolymer having a glass transition temperature of 13 ° C., a hydroxyl value of 80 mgKOH / g, and a non-volatile content of 35.0% synthesized in Production Example 1).
<Alumina particle dispersion>
NANOBYK3610 (alumina particles methoxypropylene acetate dispersion, non-volatile content concentration: 37%, manufactured by Big Chemie Japan)
≪ハードコート層及び積層体の作製≫
 実施例および比較例で得られたハードコート剤を、それぞれ50μm厚のポリエチレンテレフタレート(PET)フィルム(東レ(株)社製「ルミラーU403」)上に、バーコーターを用いて、乾燥後の膜厚が1.0μmになるように塗工した後、高圧水銀ランプで500mJ/cm2の紫外線を照射し、ハードコート層を形成し、積層体を作製した。
≪Preparation of hard coat layer and laminate≫
The hard coat agents obtained in Examples and Comparative Examples are placed on a polyethylene terephthalate (PET) film (“Lumilar U403” manufactured by Toray Industries, Inc.) having a thickness of 50 μm, respectively, using a bar coater to obtain a film thickness after drying. After coating to 1.0 μm, a high-pressure mercury lamp was used to irradiate ultraviolet rays of 500 mJ / cm 2 to form a hard coat layer to prepare a laminated body.
≪鉛筆硬度≫
 上記作製した積層体について、JIS K5600-5-4に準じ、各種硬度の鉛筆を45゜の角度で積層体のハードコート層の表面にあて、荷重をかけて引っ掻き試験を行い、傷がつかない最も硬い鉛筆の硬さを鉛筆硬度とした。
≪Pencil hardness≫
For the above-mentioned laminated body, in accordance with JIS K5600-5-4, a pencil of various hardness is applied to the surface of the hard coat layer of the laminated body at an angle of 45 °, and a scratch test is performed by applying a load to prevent scratches. The hardness of the hardest pencil was defined as the pencil hardness.
≪ヘイズ値の測定≫
 上記作製した積層体について、日本電色工業社製「ヘイズメーターSH7000」によりハードコート層表面のヘイズ値(HZ)を測定した。
 ・最良:1.0%未満
 ・良:1.0%以上2.0%未満
 ・不良:2.0%以上
≪Measurement of haze value≫
The haze value (HZ) on the surface of the hard coat layer was measured with the "haze meter SH7000" manufactured by Nippon Denshoku Kogyo Co., Ltd. for the above-mentioned laminated body.
・ Best: less than 1.0% ・ Good: 1.0% or more and less than 2.0% ・ Defective: 2.0% or more
≪耐擦傷性≫
 上記作製した積層体について、テスター産業社製「学振型摩擦堅牢度試験機」により耐擦傷性を評価した。荷重200gを取り付けた摩擦子(表面積1cm2)にスチールウール#0000を取り付け、ハードコート層の表面(1cm×15cm)を10往復させた。その後、ハードコート層の表面のキズの本数を数え、下記基準で評価した。
 ・3:傷なし(0本)
 ・2:傷1本以上10本以下
 ・1:傷11本以上
≪Scratch resistance≫
The scratch resistance of the above-mentioned laminated body was evaluated by a "Gakushin type friction fastness tester" manufactured by Tester Sangyo Co., Ltd. Steel wool # 0000 was attached to a friction element (surface area 1 cm 2 ) to which a load of 200 g was attached, and the surface of the hard coat layer (1 cm × 15 cm) was reciprocated 10 times. Then, the number of scratches on the surface of the hard coat layer was counted and evaluated according to the following criteria.
・ 3: No scratches (0)
・ 2: 1 to 10 scratches ・ 1: 11 or more scratches
≪銅密着性≫
 上記作製した積層体のハードコート層上に、真空デバイス社製「マグトロンスパッタMSP-30T」により銅を厚さ300nm、500nm、及び1μmになるようにスパッタリングして銅薄膜を形成した。銅薄膜とアンダーハードコート層との密着性は、銅薄膜に1mmの間隔で碁盤目状にカッターで傷を付け、100マスの格子パターンを形成した後、碁盤目状の傷全体を覆うようにセロハンテープを付着させ、引きはがし、銅薄膜の剥離状態を目視で観察し、以下の基準で評価した。
 ・5:傷の線の周囲が完全に滑らかで、どの格子にも剥がれがない。
 ・4:傷の交点周囲に銅薄膜の小さな剥がれが観察されるが、剥がれた面積の合計は碁盤目の5%未満。
 ・3:傷の縁方向に沿って銅薄膜が剥がれたり、傷の交差点で銅薄膜が剥がれたりしており、剥がれた面積の合計が碁盤目の5%以上15%未満。
 ・2:剥がれた面積の合計が碁盤目の15%以上35%未満。
 ・1:剥がれた面積の合計が碁盤目の35%以上80%未満。
 ・0:剥がれた面積の合計が碁盤目の80%以上であり、碁盤目状の傷の外部にも剥がれが観察される。
≪Copper adhesion≫
A copper thin film was formed by sputtering copper onto the hardcourt layer of the produced laminate with "Magtron Sputter MSP-30T" manufactured by Vacuum Device Co., Ltd. to a thickness of 300 nm, 500 nm, and 1 μm. The adhesion between the copper thin film and the underhard coat layer is such that the copper thin film is scratched in a grid pattern at 1 mm intervals to form a grid pattern of 100 squares, and then the entire grid pattern is covered. The cellophane tape was attached, peeled off, and the peeled state of the copper thin film was visually observed and evaluated according to the following criteria.
・ 5: The circumference of the scratch line is completely smooth, and there is no peeling on any grid.
・ 4: Small peeling of the copper thin film is observed around the intersection of the scratches, but the total peeled area is less than 5% of the grid.
-3: The copper thin film is peeled off along the edge direction of the scratch, or the copper thin film is peeled off at the intersection of the scratches, and the total peeled area is 5% or more and less than 15% of the grid.
・ 2: The total peeled area is 15% or more and less than 35% of the grid.
-1: The total peeled area is 35% or more and less than 80% of the grid.
0: The total peeled area is 80% or more of the grid, and peeling is also observed outside the grid-shaped scratches.
≪耐アルカリ性≫
 銅密着性評価をしていない銅薄膜(厚み300nm)を有する積層体を、40℃に加温した5%水酸化ナトリウム水溶液に5分間浸漬した後に十分に水で洗浄し、次いで100℃に加温したオーブン内で15分乾燥させて水分を除去した後に、上記と同様に銅密着性を評価した。
≪Alkali resistance≫
A laminate having a copper thin film (thickness 300 nm) that has not been evaluated for copper adhesion is immersed in a 5% sodium hydroxide aqueous solution heated to 40 ° C. for 5 minutes, thoroughly washed with water, and then heated to 100 ° C. After drying in a warm oven for 15 minutes to remove water, the copper adhesion was evaluated in the same manner as above.
≪比誘電率及び誘電正接の測定≫
 実施例及び比較例のハードコート剤を市販のポリエステルフィルム(商品名「ルミラーU48」、東レ(株)製、100μm厚)に、乾燥膜厚が80μm程度となるようバーコーターで塗工し、120℃で1分間乾燥させた。次いで300mJ/cm2でUV硬化させることによって、測定用塗膜(積層体)を得た。得られた測定用塗膜を幅3mm×長さ100mmの大きさに切り取り、測定用試験片とした。得られた測定用試験片を、日本電子回路工業会の「フレキシブルプリント配線板およびフレキシブルプリント配線板用材料-その2統合規格-(JPCA-DG03)に準拠して、以下の手順で比誘電率及び誘電正接を測定した。エー・イー・ティー社製の比誘電率測定装置「ADMS01Oc」に、試験片を3つセットし、空洞共振器法により、測定温度23℃、測定周波数が1GHzにおける比誘電率および誘電正接を求めた。結果を表1に示す。
≪Measurement of relative permittivity and dielectric loss tangent≫
The hard coat agents of Examples and Comparative Examples were applied to a commercially available polyester film (trade name "Lumilar U48", manufactured by Toray Industries, Inc., 100 μm thickness) with a bar coater so that the dry film thickness was about 80 μm, and 120 It was dried at ° C for 1 minute. Then, it was UV-cured at 300 mJ / cm 2 to obtain a coating film (laminated body) for measurement. The obtained coating film for measurement was cut into a size of 3 mm in width × 100 mm in length and used as a test piece for measurement. The obtained measurement test piece is subjected to the relative permittivity according to the following procedure in accordance with "Flexible Printed Wiring Board and Material for Flexible Printed Wiring Board-Part 2 Integrated Standard- (JPCA-DG03)" of the Japan Electronic Circuit Industry Association. And the dielectric loss tangent was measured. Three test pieces were set in the relative permittivity measuring device "ADMS01Oc" manufactured by AET Co., Ltd., and the ratio at a measurement temperature of 23 ° C. and a measurement frequency of 1 GHz by the cavity resonator method. The permittivity and the dielectric loss tangent were determined. The results are shown in Table 1.
 表1に示す通り、本発明の実施形態であるハードコート剤を用いた場合、高い透明性と硬度を有し、耐擦傷性、耐アルカリ性、金属薄膜との密着性に優れたハードコート層を形成できることが明らかとなった。 As shown in Table 1, when the hard coat agent according to the embodiment of the present invention is used, a hard coat layer having high transparency and hardness, and excellent scratch resistance, alkali resistance, and adhesion to a metal thin film can be obtained. It became clear that it could be formed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の開示は、2020年12月21日に出願された特願2020-211044号に記載の主題と関連しており、その開示内容は、参照によりここに援用される。 The disclosure of the present invention is related to the subject matter described in Japanese Patent Application No. 2020-211044 filed on December 21, 2020, the disclosure of which is incorporated herein by reference.

Claims (8)

  1.  ハードコート層上に金属薄膜を有するハードコート層を形成するための活性エネルギー線硬化性ハードコート剤であって、(メタ)アクリロイル基を3個以上有する化合物(A)と、イソシアナト基を有するシランカップリング剤(B)と、光重合開始剤(C)とを含み、活性エネルギー線硬化性ハードコート剤の不揮発分100質量部中、前記化合物(A)を70質量部以上含む活性エネルギー線硬化性ハードコート剤。 An active energy ray-curable hardcoat agent for forming a hardcoat layer having a metal thin film on the hardcoat layer, which is a compound (A) having three or more (meth) acryloyl groups and a silane having an isocyanato group. Active energy ray curing containing 70 parts by mass or more of the compound (A) in 100 parts by mass of the non-volatile content of the active energy ray-curable hardcoat agent containing the coupling agent (B) and the photopolymerization initiator (C). Sex hard coat agent.
  2.  前記化合物(A)が、(メタ)アクリロイル基を3個以上有し、かつ窒素原子を有する化合物(a1)を含む請求項1記載の活性エネルギー線硬化性ハードコート剤。 The active energy ray-curable hardcoat agent according to claim 1, wherein the compound (A) contains a compound (a1) having three or more (meth) acryloyl groups and having a nitrogen atom.
  3.  前記化合物(a1)が、(メタ)アクリロイル基を3個以上有し、かつヌレート環骨格を有する化合物(a2)を含む請求項2記載の活性エネルギー線硬化性ハードコート剤。 The active energy ray-curable hardcoat agent according to claim 2, wherein the compound (a1) contains a compound (a2) having three or more (meth) acryloyl groups and having a nurate ring skeleton.
  4.  前記シランカップリング剤(B)を、前記活性エネルギー線硬化性ハードコート剤の不揮発分100質量部中、5~30質量部含む、請求項1~3何れか1項に記載の活性エネルギー線硬化性ハードコート剤。 The active energy ray curing according to any one of claims 1 to 3, wherein the silane coupling agent (B) is contained in an amount of 5 to 30 parts by mass in 100 parts by mass of the non-volatile content of the active energy ray-curable hardcoat agent. Sex hard coat agent.
  5.  請求項1~4何れか1項に記載の活性エネルギー線硬化性ハードコート剤より形成されたハードコート層。 A hardcoat layer formed from the active energy ray-curable hardcoat agent according to any one of claims 1 to 4.
  6.  周波数1GHz、23℃における、比誘電率が3.2以下であり、誘電正接が0.02以下である請求項5記載のハードコート層。 The hard coat layer according to claim 5, wherein the relative permittivity is 3.2 or less and the dielectric loss tangent is 0.02 or less at a frequency of 1 GHz and 23 ° C.
  7.  基材上に、請求項5又は6記載のハードコート層が積層されてなる積層体。 A laminated body in which the hard coat layer according to claim 5 or 6 is laminated on a base material.
  8.  更に、ハードコート層上に金属薄膜が積層されてなる請求項7記載の積層体。 The laminate according to claim 7, wherein a metal thin film is further laminated on the hard coat layer.
PCT/JP2021/044546 2020-12-21 2021-12-03 Active-energy-curable hard coat agent, hard coat layer, and laminate WO2022138082A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180074368.0A CN116406391A (en) 2020-12-21 2021-12-03 Active energy ray-curable hard coating agent, hard coating layer, and laminate
KR1020237011420A KR20230060537A (en) 2020-12-21 2021-12-03 Active energy ray-curable hard coat agent, hard coat layer and laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-211044 2020-12-21
JP2020211044A JP6979559B1 (en) 2020-12-21 2020-12-21 Active energy ray-curable hard coat agent, hard coat layer and laminate

Publications (1)

Publication Number Publication Date
WO2022138082A1 true WO2022138082A1 (en) 2022-06-30

Family

ID=78870779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044546 WO2022138082A1 (en) 2020-12-21 2021-12-03 Active-energy-curable hard coat agent, hard coat layer, and laminate

Country Status (5)

Country Link
JP (1) JP6979559B1 (en)
KR (1) KR20230060537A (en)
CN (1) CN116406391A (en)
TW (1) TW202227562A (en)
WO (1) WO2022138082A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287215A (en) * 1992-04-06 1993-11-02 Mitsubishi Petrochem Co Ltd Abrasion-resistant ultraviolet-curable coating composition
JP2008150484A (en) * 2006-12-18 2008-07-03 Momentive Performance Materials Japan Kk Composition for hard coat
JP2009173755A (en) * 2008-01-23 2009-08-06 Fujikura Kasei Co Ltd Coating composition for plastic base material, and composite coating film formed from the same
JP2009179674A (en) * 2008-01-30 2009-08-13 Sanyo Chem Ind Ltd Active energy ray curable resin composition for hard coat
JP2011102385A (en) * 2009-10-15 2011-05-26 Sumitomo Chemical Co Ltd Resin composition
JP2011208032A (en) * 2010-03-30 2011-10-20 Dic Corp Active energy ray curable resin composition and film substrate
JP2012017404A (en) * 2010-07-08 2012-01-26 Hitachi Chem Co Ltd Photocurable resin composition and photocurable coating agent using the same
JP2014024919A (en) * 2012-07-25 2014-02-06 Dnp Fine Chemicals Co Ltd Energy ray-curable resin composition, protective film using the composition, touch panel component and touch panel component manufacturing method
JP2015199946A (en) * 2014-03-31 2015-11-12 荒川化学工業株式会社 Undercoat agent for substrate with copper thin film, substrate with copper thin film and manufacturing method thereof, conductive film, and electrode film
JP2016008241A (en) * 2014-06-24 2016-01-18 アイカ工業株式会社 Ultraviolet-curable resin composition, film, and conductive film
JP2016069653A (en) * 2014-09-30 2016-05-09 荒川化学工業株式会社 Undercoating agent for substrate with copper thin film, substrate with copper thin film, method for producing substrate with copper thin film and conductive film
WO2018105441A1 (en) * 2016-12-08 2018-06-14 Dic株式会社 Active-energy-beam-curable resin composition, and laminate
JP2018172672A (en) * 2017-03-31 2018-11-08 日本合成化学工業株式会社 Active energy ray-curable resin composition, and coating agent

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001214058A (en) 1999-11-26 2001-08-07 Nitto Denko Corp Photosensitive resin composition, porous resin, circuit substrate and suspension substrate with circuit
JP2002285043A (en) 2001-03-28 2002-10-03 Mitsubishi Chemicals Corp Active energy ray curable resin composition and usage of the same
US9034477B2 (en) 2013-03-05 2015-05-19 Dow Global Technologies Llc Coating composition, a film containing the same, and a method for forming a sealable film
JP6384305B2 (en) 2014-12-11 2018-09-05 株式会社豊田自動織機 Resin material having coating layer and method for producing the same
WO2018198692A1 (en) * 2017-04-27 2018-11-01 Dic株式会社 Active energy ray-curable composition and hard coat film

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287215A (en) * 1992-04-06 1993-11-02 Mitsubishi Petrochem Co Ltd Abrasion-resistant ultraviolet-curable coating composition
JP2008150484A (en) * 2006-12-18 2008-07-03 Momentive Performance Materials Japan Kk Composition for hard coat
JP2009173755A (en) * 2008-01-23 2009-08-06 Fujikura Kasei Co Ltd Coating composition for plastic base material, and composite coating film formed from the same
JP2009179674A (en) * 2008-01-30 2009-08-13 Sanyo Chem Ind Ltd Active energy ray curable resin composition for hard coat
JP2011102385A (en) * 2009-10-15 2011-05-26 Sumitomo Chemical Co Ltd Resin composition
JP2011208032A (en) * 2010-03-30 2011-10-20 Dic Corp Active energy ray curable resin composition and film substrate
JP2012017404A (en) * 2010-07-08 2012-01-26 Hitachi Chem Co Ltd Photocurable resin composition and photocurable coating agent using the same
JP2014024919A (en) * 2012-07-25 2014-02-06 Dnp Fine Chemicals Co Ltd Energy ray-curable resin composition, protective film using the composition, touch panel component and touch panel component manufacturing method
JP2015199946A (en) * 2014-03-31 2015-11-12 荒川化学工業株式会社 Undercoat agent for substrate with copper thin film, substrate with copper thin film and manufacturing method thereof, conductive film, and electrode film
JP2016008241A (en) * 2014-06-24 2016-01-18 アイカ工業株式会社 Ultraviolet-curable resin composition, film, and conductive film
JP2016069653A (en) * 2014-09-30 2016-05-09 荒川化学工業株式会社 Undercoating agent for substrate with copper thin film, substrate with copper thin film, method for producing substrate with copper thin film and conductive film
WO2018105441A1 (en) * 2016-12-08 2018-06-14 Dic株式会社 Active-energy-beam-curable resin composition, and laminate
JP2018172672A (en) * 2017-03-31 2018-11-08 日本合成化学工業株式会社 Active energy ray-curable resin composition, and coating agent

Also Published As

Publication number Publication date
JP2022097848A (en) 2022-07-01
TW202227562A (en) 2022-07-16
KR20230060537A (en) 2023-05-04
JP6979559B1 (en) 2021-12-15
CN116406391A (en) 2023-07-07

Similar Documents

Publication Publication Date Title
JPWO2010090116A1 (en) Active energy ray-curable resin composition for hard coat and its use
JP2010248426A (en) Transfer material excellent in fingerprint-proof property and method for producing the same
JP2002067238A (en) Film having cured coat of radiation-cured type resin composition
KR20160038853A (en) Undercoating agent for base material with copper thin layer, base material with copper thin layer, method of producing the same and conductive film
KR101436616B1 (en) Hard coating film
WO2020138241A1 (en) Multilayer body, active energy ray-curable composition and method for producing multilayer body
JP5047636B2 (en) Hard coat film
KR20130074830A (en) Anti-blocking hardcoating composition and hard coating layer for anti-blocking
WO2018079245A1 (en) Conductive sheet for touch sensor, method of manufacturing conductive sheet for touch sensor, touch sensor, touch panel laminate, touch panel, and composition for forming transparent insulating layer
JP2003306619A (en) Photosensitive resin composition for hard-coating agent and film having cured skin comprising the same
JP7136299B1 (en) Active energy ray-curable undercoating agent, undercoating layer, laminate, and substrate with metal film
WO2019065075A1 (en) Photopolymerizable composition, hard coat film, method for manufacturing hard coat film, and article provided with hard coat film
WO2014208749A1 (en) Uv-curable hard-coating resin composition
WO2014208748A1 (en) Uv-curable hard-coating resin composition
JP6979559B1 (en) Active energy ray-curable hard coat agent, hard coat layer and laminate
JP6973031B2 (en) Active energy ray curable resin composition, decorative sheet, and molded product
JP5605111B2 (en) Antistatic laminate
JP2009263410A (en) Active energy ray-curing type resin composition, active energy ray-curable coating material, and molded article
JP7140187B2 (en) Active energy ray-curable composition and film using the same
JP2009001598A (en) Active energy ray curable type antistatic hard coat resin composition
JP2023065841A (en) Active energy ray-curable undercoat agent, undercoat layer, laminate and base material with metal film
JP7044192B1 (en) Active energy ray-curable undercoat agent, undercoat layer, laminate, and substrate with metal film
JP6780799B1 (en) Active energy ray-curable hard coat agent, laminate, transparent conductive film, optical member, and electronic device
JP2023173047A (en) Active energy ray curable hard coat agent, hard coat layer, optical member, and electronic device
KR101725794B1 (en) Laminate having transparent conductive film, and method for producing the laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910233

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237011420

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910233

Country of ref document: EP

Kind code of ref document: A1