WO2018198692A1 - Active energy ray-curable composition and hard coat film - Google Patents

Active energy ray-curable composition and hard coat film Download PDF

Info

Publication number
WO2018198692A1
WO2018198692A1 PCT/JP2018/014230 JP2018014230W WO2018198692A1 WO 2018198692 A1 WO2018198692 A1 WO 2018198692A1 JP 2018014230 W JP2018014230 W JP 2018014230W WO 2018198692 A1 WO2018198692 A1 WO 2018198692A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
active energy
energy ray
acrylate
curable composition
Prior art date
Application number
PCT/JP2018/014230
Other languages
French (fr)
Japanese (ja)
Inventor
友梨亜 久野
麸山 解
彰朗 奥村
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2018557953A priority Critical patent/JP6531969B2/en
Priority to CN201880027309.6A priority patent/CN110573534B/en
Publication of WO2018198692A1 publication Critical patent/WO2018198692A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings

Definitions

  • the present invention relates to an active energy ray-curable composition and a hard coat film.
  • Cyclic olefin resin films are excellent in transparency, low birefringence, low moisture absorption, heat resistance, electrical insulation, chemical resistance, etc., and are widely used in optical members, medical, packaging films, automobiles, semiconductor applications, etc. .
  • optical members are highly transparent in place of plastic films such as polyethylene terephthalate (PET) and triacetyl cellulose (TAC) that have been used in the past in line with diversification of units for liquid crystal display and touch panel applications.
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • the cyclic olefin resin film has insufficient surface hardness, there is a risk of scratching during processing, and an active energy ray-curable composition is formed on the surface for improving wear resistance and scratch resistance. It has been studied to provide a protective layer such as a hard coat layer made of a cured film of a product.
  • a protective layer such as a hard coat layer made of a cured film of a product.
  • the cyclic olefin resin film has an alicyclic structure as its main structure, the polarity of the film surface is low and the water contact angle is as high as about 90 °, so when an active energy ray-curable composition is applied, There was a problem that the coating material was difficult to spread and the adhesion between the surface of the cyclic olefin resin film substrate and the hard coat layer was low.
  • a cured coating film of a curable composition containing a (meth) acrylate having an alicyclic structure is used as the hard coat layer. It has been proposed to use (see, for example, Patent Document 2).
  • this curable composition it is necessary to increase the ratio of (meth) acrylate having an alicyclic structure in order to achieve sufficient adhesion to the surface of the cyclic olefin resin film substrate.
  • the ratio of the (meth) acrylate having an alicyclic structure is increased, there is a problem that the crosslink density of the cured coating film is lowered and the scratch resistance on the surface of the cured coating film becomes insufficient.
  • the adhesiveness (initial adhesiveness) immediately after forming the cured coating film of the active energy ray-curable composition on the surface of the cyclic olefin resin film substrate is high, the adhesiveness when exposed to strong light thereafter A decrease in (light resistance) is a problem.
  • the problem to be solved by the present invention is that a high scratch resistance can be imparted to the substrate surface, and a cured coating film having excellent adhesion with the substrate surface can be formed without a primer layer. It is to provide an active energy ray-curable composition that does not decrease even after being exposed to strong light.
  • the present invention is selected from the group consisting of an active energy ray-curable compound (A), a hindered amine light stabilizer (B1) having a polymerizable functional group, and a hindered amine light stabilizer (B2) having a hindered phenol group.
  • An active energy ray-curable composition comprising at least one compound (C) selected from the group consisting of 3) is provided.
  • the present invention also provides a hard coat film characterized by having a cured coating film of the active energy ray-curable composition on at least one surface of a cyclic olefin resin film substrate.
  • the active energy ray-curable composition of the present invention can impart high scratch resistance to the substrate surface, can form a cured coating film having excellent adhesion with the substrate surface without a primer layer, and Its adhesion does not decrease even after exposure to strong light. Therefore, the active energy ray-curable composition of the present invention can be used as an optical film used for liquid crystal displays and touch panel applications.
  • the active energy ray-curable composition of the present invention comprises an active energy ray-curable compound (A), a hindered amine light stabilizer (B1) having a polymerizable functional group, and a hindered amine light stabilizer having a hindered phenol group (
  • One or more compounds (C) selected from the group consisting of polymerizable monomers (c-3) are contained as essential components.
  • Examples of the active energy ray-curable compound (A) include polyfunctional (meth) acrylate (A1) and urethane (meth) acrylate (A2). These can be used alone or in combination of two or more.
  • (meth) acrylate refers to one or both of acrylate and methacrylate
  • (meth) acryloyl group refers to one or both of acryloyl group and methacryloyl group.
  • the polyfunctional (meth) acrylate (A1) is a compound having two or more (meth) acryloyl groups in one molecule.
  • Specific examples of the polyfunctional (meth) acrylate (A1) include 1,4-butanediol di (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) acrylate, and 1,6-hexanediol.
  • polyfunctional (meth) acrylates (A1) can be used alone or in combination of two or more.
  • these polyfunctional (meth) acrylates (A1) since the scratch resistance of the cured coating film of the active energy ray-curable composition used in the present invention is improved, dipentaerythritol hexa (meth) acrylate, Dipentaerythritol penta (meth) acrylate, pentaerythritol tetra (meth) acrylate, and pentaerythritol tri (meth) acrylate are preferable, and dipentaerythritol hexa (meth) acrylate and dipentaerythritol penta (meth) acrylate are more preferable.
  • the urethane (meth) acrylate (A2) is obtained by reacting polyisocyanate (a2-1) with (meth) acrylate (a2-2) having a hydroxyl group.
  • polyisocyanate (a2-1) examples include aliphatic polyisocyanates and aromatic polyisocyanates. However, since the coloring of the cured coating film of the active energy ray-curable composition used in the present invention can be further reduced, Group polyisocyanates are preferred.
  • the aliphatic polyisocyanate is a compound in which a portion excluding an isocyanate group is composed of an aliphatic hydrocarbon.
  • Specific examples of the aliphatic polyisocyanate include aliphatic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, and lysine triisocyanate; norbornane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), 1,3-bis (isocyanato).
  • cycloaliphatic polyisocyanates such as methyl) cyclohexane, 2-methyl-1,3-diisocyanatocyclohexane and 2-methyl-1,5-diisocyanatocyclohexane.
  • a trimerized product obtained by trimming the aliphatic polyisocyanate or the alicyclic polyisocyanate can also be used as the aliphatic polyisocyanate.
  • these aliphatic polyisocyanates can be used alone or in combination of two or more.
  • aliphatic polyisocyanates in order to improve the scratch resistance of the coating film, among the aliphatic polyisocyanates, hexamethylene diisocyanate, which is a linear aliphatic hydrocarbon diisocyanate, norbornane diisocyanate, which is an alicyclic diisocyanate, isophorone Diisocyanate is preferred.
  • the (meth) acrylate (a2-2) is a compound having a hydroxyl group and a (meth) acryloyl group.
  • Specific examples of the (meth) acrylate (a2-2) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth).
  • Divalent compounds such as acrylate, 1,5-pentanediol mono (meth) acrylate, 1,6-hexanediol mono (meth) acrylate, neopentyl glycol mono (meth) acrylate, and hydroxypivalate neopentyl glycol mono (meth) acrylate Mono (meth) acrylate of alcohol; trimethylolpropane di (meth) acrylate, ethylene oxide (EO) modified trimethylolpropane (meth) acrylate, propylene oxide (PO) modified trimethylolpropane di (meta) Mono- or di (meth) acrylate of trivalent alcohol such as acrylate, glycerin di (meth) acrylate, bis (2- (meth) acryloyloxyethyl) hydroxyethyl isocyanurate, or a part of these alcoholic hydroxyl groups Mono- and di (meth) acrylates having hydroxyl groups modified with
  • the urethane (meth) acrylate (A2) since the scratch resistance of the cured coating film of the active energy ray-curable composition used in the present invention can be improved, four or more (meth) acryloyl groups are contained in one molecule. What has is preferable. Since the urethane (meth) acrylate (A2) has four or more (meth) acryloyl groups in one molecule, the (meth) acrylate (a2-2) has 2 (meth) acryloyl groups. Those having at least two are preferred.
  • Examples of such (meth) acrylate (a2-2) include trimethylolpropane di (meth) acrylate, ethylene oxide modified trimethylolpropane di (meth) acrylate, propylene oxide modified trimethylolpropane di (meth) acrylate, Glycerin di (meth) acrylate, bis (2- (meth) acryloyloxyethyl) hydroxyethyl isocyanurate, pentaerythritol tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, etc. Can be mentioned.
  • (meth) acrylates (a2-2) can be used alone or in combination of two or more with respect to one of the aliphatic polyisocyanates.
  • pentaerythritol tri (meth) acrylate and dipentaerythritol penta (meth) acrylate are preferable because they can improve scratch resistance.
  • the reaction of the polyisocyanate (a2-1) and the (meth) acrylate (a2-2) can be carried out by a conventional urethanization reaction. Moreover, in order to accelerate
  • urethanization catalyst examples include amine compounds such as pyridine, pyrrole, triethylamine, diethylamine and dibutylamine; phosphorus compounds such as triphenylphosphine and triethylphosphine; dibutyltin dilaurate, octyltin trilaurate, octyltin diacetate, dibutyltin Examples thereof include organic tin compounds such as diacetate and tin octylate, and organic zinc compounds such as zinc octylate.
  • active energy ray-curable compound (A) other than said polyfunctional (meth) acrylate (A1) and urethane (meth) acrylate (A2) epoxy (meth) acrylate, polyester (meth)
  • a relatively high molecular weight (meth) acrylate (A3) such as acrylate or polyether (meth) acrylate can be used.
  • the epoxy (meth) acrylate include those obtained by reacting (meth) acrylic acid with bisphenol-type epoxy resin, novolac-type epoxy resin, polyglycidyl methacrylate and the like and esterifying it.
  • polyester (meth) acrylate (meth) acrylic acid is made to react and esterify with the polyester which the both terminal obtained by polycondensation of polyhydric carboxylic acid and polyhydric alcohol is a hydroxyl group, for example. Or a product obtained by reacting (meth) acrylic acid with ester obtained by adding an alkylene oxide to a polyvalent carboxylic acid.
  • polyether (meth) acrylate what was obtained by reacting (meth) acrylic acid with polyether polyol and esterifying is mentioned, for example.
  • the said (meth) acrylate (A3) can be used individually or can be used together 2 or more types.
  • the active energy ray-curable composition used in the present invention in addition to (A1) to (A3) exemplified as the active energy ray-curable compound (A), a (meth) acrylate having a phosphate group (When A4) is blended, the adhesion to the substrate can be further improved, which is preferable.
  • the (meth) acrylate (A4) having a phosphate group is a (meth) acrylate having at least one phosphate group in one molecule.
  • Examples of the (meth) acrylate (A4) having a phosphate group include (meth) acryloyloxyethyl phosphate, di (meth) acryloyloxyethyl phosphate, tri (meth) acryloyloxyethyl phosphate, caprolactone-modified phosphorus An acid (meth) acryloyloxyethyl etc. are mentioned, The compound which has a 2 or more (meth) acryloyl group in 1 molecule can also be used. These (meth) acrylates (A4) having a phosphate group can be used alone or in combination of two or more.
  • the blending amount can improve the adhesion to the substrate, and the cured coating film. Since the scratch resistance of the surface can be further improved, the content of the active energy ray-curable compound (A) is preferably 0.1 to 30% by mass, and more preferably 0.5 to 20% by mass.
  • Examples of the light stabilizer (B1) include hindered amine light stabilizers having a polymerizable functional group such as a (meth) acryloyl group and a vinyl group. More specifically, 2,2,6,6-tetramethyl-4-piperidyl (meth) acrylate, 1,2,2,6,6-pentamethyl-4-piperidyl (meth) acrylate and the like can be mentioned. These light stabilizers (B1) can be used alone or in combination of two or more.
  • Examples of the light stabilizer (B2) include hindered amine light stabilizers having a hindered phenol group such as 3,5-di-t-butyl-4-hydroxyphenyl group. More specifically, the compound etc. which are represented by following formula (1) are mentioned. This light stabilizer (B2) can also be used in combination with the light stabilizer (B1).
  • the amount of the hindered amine light stabilizer (B) is preferably 0.05 to 5 parts by mass, more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the active energy ray-curable compound (A).
  • the compound (C) has a silane coupling agent (c-1), a (meth) acrylamide compound (c-2), and a polymerizable monomer having a tricyclodecane structure in order to obtain excellent light-resistant adhesion ( It is essential to use one or more compounds selected from the group consisting of c-3).
  • the silane coupling agent (c-1) can obtain excellent light-resistant adhesion by a covalent bond formed at the substrate interface as an adherend.
  • Specific examples of the silane coupling agent (c-1) include silane coupling agents having a vinyl group such as vinyltrimethoxysilane and vinyltriethoxysilane; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3 A silane coupling agent having an epoxy group such as glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; Silane coupling agents having a styryl group such as p-styryltrimethoxysilane; 3- (meth) acryloxypropylmethyldimethoxysilane, 3- (meth) acryloxypropyltrimethoxys
  • silane coupling agents may be used alone or in combination of two or more.
  • one or more functional groups selected from the group consisting of an alkyl group, a phenyl group, and a (meth) acryloyl group from the viewpoint of further improving the light-resistant adhesion while maintaining excellent scratch resistance. It is preferable to use a silane coupling agent having
  • silane coupling agent (c-1) when using a silane coupling agent having an alkyl group and a phenyl group, and a silane coupling agent having a (meth) acryloyl group and a phenyl group, From the viewpoint of obtaining even better light-resistant adhesion, the range of 5 to 30% by mass in the silane coupling agent is preferable, the range of 10 to 25% by mass is more preferable, and the range of 13 to 22% by mass is even more preferable.
  • the (meth) acrylamide compound (c-2) has excellent light resistance due to the progress of curing at the interface of the substrate in order to cause erosion of the substrate and promote the hydrogen abstraction reaction of the photopolymerization initiator (D). Adhesion can be obtained.
  • (meth) acrylamide compound (c-2) examples include (meth) acrylamide, dimethyl (meth) acrylamide, acryloylmorpholine, N- [3- (N ′, N′-dimethylaminopropyl) (meth).
  • Quaternary salts of dimethylaminopropyl (meth) acrylamide such as acrylamide, 3- (acryloylamino) propyltrimethylammonium chloride, isopropyl (meth) acrylamide, diethyl (meth) acrylamide, N- (2-hydroxyethyl) (meth) Acrylamide, 2- (meth) acrylamide-2-methylpropanesulfonic acid, (3- (meth) acrylamidepropyl) trimethyltrimethylammonium chloride, 3-acryloyl-2-oxazolidine, acrylamidehexanoic acid, te t-butylacrylamide, butoxymethylacrylamide, N, N ′-(1,2-dihydroxyethylene) bisacrylamide, dodecylacrylamide, N, N′-ethylenebisacrylamide, N, N′-methylenebisacrylamide, hydroxymethyl (meta ) Acrylamide, phenylacrylamide and the like.
  • (meth) acrylamides may be used alone or in combination of two or more.
  • N- [3- (N ′, N′-dimethylaminopropyl) (meth) acrylamide, 3- (acryloyl) is able to further improve the light adhesion while maintaining excellent scratch resistance. It is preferable to use one or more compounds selected from the group consisting of amino) propyltrimethylammonium chloride and N- (2-hydroxyethyl) (meth) acrylamide.
  • (meth) acrylamide refers to acrylamide and / or methacrylamide.
  • the polymerizable monomer (c-3) having a tricyclodecane structure is capable of obtaining excellent light-resistant adhesion, and the approximation is particularly obtained when a cyclic olefin resin film substrate is used as the substrate. Due to the affinity due to the structure, further excellent light-resistant adhesion can be obtained.
  • polymerizable monomer (c-3) examples include dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and the like.
  • a monomer having one radical polymerizable group radical polymerizable group such as dimethylol tricyclodecane di (meth) acrylate, tricyclodecanediol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate A monomer having two of these can be used. These polymerizable monomers may be used alone or in combination of two or more.
  • a monomer having two radical polymerizable groups from the standpoint that even more excellent light-resistant adhesion is obtained, and dimethylol tricyclodecane di (meth) acrylate, tricyclodecanediol.
  • One or more polymerizable monomers selected from the group consisting of di (meth) acrylate and tricyclodecane dimethanol di (meth) acrylate are more preferable.
  • the content of the compound (C) is in the range of 1 to 50 parts by mass with respect to 100 parts by mass of the active energy ray-curable compound (A) from the standpoint that even better light-resistant adhesion is obtained.
  • the range of 1.5 to 40 parts by mass is more preferable, and the range of 2 to 25 parts by mass is even more preferable.
  • the active energy ray-curable compound (A) is more preferable because the light-resistant adhesion is further improved.
  • the range is preferably 1 to 50 parts by mass, more preferably 1.5 to 40 parts by mass, and still more preferably 2 to 25 parts by mass with respect to 100 parts by mass.
  • the active energy ray-curable compound (A ) is preferably 3 to 50 parts by mass, more preferably 5 to 40 parts by mass, and still more preferably 7 to 25 parts by mass with respect to 100 parts by mass.
  • the active energy ray-curable compound (A) can be obtained from the viewpoint that a longer light-resistant adhesion can be obtained.
  • It is preferably in the range of 1-50 parts by weight, more preferably in the range of 1.5-40 parts by weight, still more preferably in the range of 2-25 parts by weight, and 11-20 parts by weight with respect to 100 parts by weight. Is particularly preferred.
  • the active energy ray-curable composition of the present invention can be formed into a cured coating film by irradiating active energy rays after coating on a substrate.
  • the active energy rays refer to ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • a photopolymerization initiator (D) described later is added to the active energy ray curable composition of the present invention to improve curability. Is preferred.
  • a photosensitizer (E) can be further added to improve curability.
  • Examples of the photopolymerization initiator (D) include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, oligo ⁇ 2-hydroxy-2-methyl-1- [4- ( 1-methylvinyl) phenyl] propanone ⁇ , benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy -2-propyl) ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) -Acetophenone compounds such as butanone; benzoin, benzoin methyl ether, benzo Benzoin compounds such as isopropyl ether; acylphosphine oxide compounds such as 2,4,6-
  • Examples of the photosensitizer (E) include tertiary amine compounds such as diethanolamine, N-methyldiethanolamine and tributylamine, urea compounds such as o-tolylthiourea, sodium diethyldithiophosphate, s-benzylisothiuro And sulfur compounds such as nitro-p-toluenesulfonate.
  • tertiary amine compounds such as diethanolamine, N-methyldiethanolamine and tributylamine
  • urea compounds such as o-tolylthiourea, sodium diethyldithiophosphate, s-benzylisothiuro
  • sulfur compounds such as nitro-p-toluenesulfonate.
  • the photopolymerization initiator (D) and the photosensitizer (E) are used in the active energy ray-curable compound (A) and the compound (B) in the active energy ray-curable composition of the present invention. Is preferably 0.05 to 20 parts by mass, and more preferably 0.5 to 10 parts by mass per 100 parts by mass in total.
  • the active energy ray-curable composition of the present invention depending on the use and required characteristics, Organic solvents, polymerization inhibitors, surface modifiers, antistatic agents, antifoaming agents, viscosity modifiers, light stabilizers, weather stabilizers, heat stabilizers, UV absorbers, antioxidants, leveling agents, organic pigments, inorganic Additives such as pigments, pigment dispersants, and organic beads; inorganic fillers such as silicon oxide (silica particles), aluminum oxide, titanium oxide, zirconia, and antimony pentoxide can be blended. These other blends can be used alone or in combination of two or more.
  • the scratch resistance of the cured coating film surface of the active energy ray-curable composition of the present invention can be further improved, and the adhesion to the substrate can be further improved.
  • the silica particles may have a surface modified with an organic group or a surface not modified.
  • the silica particles are preferably nanometer-sized silica fine particles, more preferably colloidal silica, since the transparency and surface scratch resistance of the cured coating film of the active energy ray-curable composition of the present invention can be further improved.
  • the average particle diameter of the silica fine particles is preferably in the range of 5 to 200 nm, more preferably in the range of 5 to 100 nm.
  • the average particle diameter is a value measured by a dynamic light scattering method.
  • the blending amount when blending the inorganic filler can improve the scratch resistance of the cured coating film surface of the active energy ray-curable composition of the present invention, and can also improve the adhesion to the substrate,
  • the amount is preferably 1 to 150 parts by mass and more preferably 5 to 100 parts by mass with respect to 100 parts by mass of the active energy ray-curable compound (A).
  • the organic solvent is useful for appropriately adjusting the solution viscosity of the active energy ray-curable composition of the present invention, and it is particularly easy to adjust the film thickness for thin film coating.
  • the organic solvent that can be used here include aromatic hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, isopropanol, and t-butanol; esters such as ethyl acetate, butyl acetate, and propylene glycol monomethyl ether acetate.
  • Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; These solvents can be used alone or in combination of two or more.
  • Examples of the method of forming a cured coating film using the active energy ray-curable composition of the present invention include a method of applying the active energy ray-curable composition to a substrate and then irradiating the active energy ray. .
  • the substrate examples include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyolefin resins such as polypropylene, polyethylene, and polymethylpentene-1; cellulose acetate (diacetyl cellulose, triacetyl cellulose, and the like) Cellulose-based resins such as cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate, cellulose acetate phthalate, and cellulose nitrate; acrylic resins such as polymethyl methacrylate; polyvinyl chloride, polyvinylidene chloride, etc.
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate
  • polyolefin resins such as polypropylene, polyethylene, and polymethylpentene-1
  • cellulose acetate diacetyl cellulose, triacetyl
  • Vinyl chloride resin polyvinyl alcohol; ethylene-vinyl acetate copolymer; polystyrene; polyamide; polycarbonate; Hong; polyether sulfone; polyether ether ketone; polyimide, polyimide-based resins such as polyether imide; cyclic olefin resin film substrate, and the like.
  • the active energy ray-curable composition of the present invention can obtain excellent transparency, scratch resistance, and light-resistant adhesion even when any of these substrates is used.
  • the said cyclic olefin resin film base material can be used conveniently.
  • the cyclic olefin resin film substrate may be a homopolymer or a copolymer as long as it is a polymer of cyclic olefin, and can be used without particular limitation.
  • Commercially available products of cyclic olefin resins include, for example, “ZEONOR (registered trademark)” and “ZEONEX (registered trademark)” manufactured by Nippon Zeon Co., Ltd .; “ARTON (registered trademark)” manufactured by JSR Corporation; Examples include “TOPAS (registered trademark)” manufactured by the company.
  • the cyclic olefin resin film substrate is obtained by molding a cyclic olefin resin on a film.
  • the surface of the cyclic olefin resin film substrate is used to improve the adhesion with the cured coating film of the active energy ray-curable composition used in the present invention.
  • Those treated by electrical treatment corona discharge treatment, atmospheric pressure plasma treatment), chromic acid treatment, flame treatment, hot air treatment, ozone / ultraviolet ray / electron beam irradiation treatment, oxidation treatment, etc. are preferred, and among these, corona discharge treatment Those subjected to electrical treatment such as atmospheric pressure plasma treatment are more preferred.
  • the thickness of the cyclic olefin resin film substrate is preferably 1 to 200 ⁇ m, more preferably 5 to 100 ⁇ m, and even more preferably 10 to 50 ⁇ m. By setting the thickness of the film substrate within the range, curling can be easily suppressed even when a cured coating film of the active energy ray-curable composition of the present invention is provided on one surface of the cyclic olefin resin film substrate. .
  • the hard coat film of the present invention is obtained by applying the active energy ray-curable composition to at least one surface of a cyclic olefin resin film substrate, and then irradiating the active energy ray to form a cured coating film. It is a thing.
  • the method for applying the active energy ray-curable composition to the cyclic olefin resin film substrate include die coating, micro gravure coating, gravure coating, roll coating, comma coating, air knife coating, kiss coating, spray coating, and delivery. Examples thereof include a coat, a dip coat, a spinner coat, a wheeler coat, a brush coat, a solid coat by silk screen, a wire bar coat, and a flow coat.
  • examples of the device for irradiating the ultraviolet rays include a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, Examples include electrodeless lamps (fusion lamps), chemical lamps, black light lamps, mercury-xenon lamps, short arc lamps, helium / cadmium lasers, argon lasers, sunlight, and LEDs.
  • the hard coat film of the present invention is applicable to various applications because of its excellent optical properties, dimensional stability, heat resistance, transparency, and light-resistant adhesion, as well as its surface scratch resistance. It is useful as an optical film used in an image display unit of an image display device such as a display (LCD) or an organic EL display (OLED). In particular, since it has excellent scratch resistance even if it is thin, for example, electronic notebooks, mobile phones, smartphones, portable audio players, mobile personal computers, tablet terminals, etc. It can use suitably as an optical film of the image display part of this image display apparatus. Moreover, when using as an optical film, it can use as a protective film used for the outermost surface of the image display part of an image display apparatus, and a base material of a touch panel.
  • an optical film since it has excellent scratch resistance even if it is thin, for example, electronic notebooks, mobile phones, smartphones, portable audio players, mobile personal computers, tablet terminals, etc. It can use suitably as an optical film of the image display part of this image display apparatus.
  • the transparent panel when used as a protective film, for example, in an image display device having a configuration in which a transparent panel for protecting the image display module is provided on the upper part of an image display module such as an LCD module or an OLED module, the transparent panel By sticking to the front or back surface of the plate, it is effective for preventing damage and preventing scattering when the transparent panel is damaged.
  • Example 2 An active energy ray-curable composition (2) was prepared in the same manner as in Example 1 except that the amount of ADK STAB LA-87 was changed from 0.5 parts by mass to 0.1 parts by mass.
  • Example 3 An active energy ray-curable composition (3) was prepared in the same manner as in Example 1 except that the amount of ADK STAB LA-87 was changed from 0.5 parts by mass to 1 part by mass.
  • Example 4 An active energy ray-curable composition (4) was prepared in the same manner as in Example 1 except that the amount of KBM-13 was changed from 20 parts by mass to 5 parts by mass.
  • Adekastab LA-87 used in Example 1 was replaced with a hindered amine light stabilizer having a methacryloyl group (“Adekastab (registered trademark) LA-82” manufactured by ADEKA Corporation); 1,2,2,6,6-pentamethyl- An active energy ray-curable composition (5) was prepared in the same manner as in Example 1 except that 4-piperidyl methacrylate was changed.
  • Example 6 Adekastab LA-87 used in Example 1 was converted into a hindered amine light stabilizer having a hindered phenol group ("TINUVIN (registered trademark) PA144" manufactured by BASF Japan Ltd .; compound represented by the following formula (1)). Except having changed, it carried out similarly to Example 1 and prepared active energy ray hardening composition (6).
  • TINUVIN registered trademark
  • PA144 hindered phenol group
  • Example 8 An active energy ray-curable composition (8) was prepared in the same manner as in Example 1 except that the amount of ADK STAB LA-87 was changed from 0.5 parts by mass to 1 part by mass.
  • Example 9 An active energy ray-curable composition (9) was prepared in the same manner as in Example 1 except that the amount of DMAPAA was changed from 15 parts by mass to 10 parts by mass.
  • Example 10 An active energy ray-curable composition (Example 1) was used in the same manner as in Example 1 except that 3- (acryloylamino) propyltrimethylammonium chloride (hereinafter abbreviated as “DMAPAA-Q”) was used instead of DMAPAA. 10) was prepared.
  • DMAPAA-Q 3- (acryloylamino) propyltrimethylammonium chloride
  • Example 11 An active energy ray-curable composition (11) was prepared in the same manner as in Example 1 except that 2-hydroxyethylacrylamide (hereinafter abbreviated as “HEAA”) was used instead of DMAPAA.
  • HEAA 2-hydroxyethylacrylamide
  • Adekastab LA-87 used in Example 1 was replaced with a hindered amine light stabilizer having a methacryloyl group (“Adekastab (registered trademark) LA-82” manufactured by ADEKA Corporation); 1,2,2,6,6-pentamethyl-
  • An active energy ray-curable composition (12) was prepared in the same manner as in Example 1 except that 4-piperidyl methacrylate was changed.
  • Adekastab LA-87 used in Example 1 was converted into a hindered amine light stabilizer having a hindered phenol group ("TINUVIN (registered trademark) PA144" manufactured by BASF Japan Ltd .; compound represented by the following formula (1)). Except having changed, it carried out similarly to Example 1 and prepared the active energy ray-curable composition (13).
  • TINUVIN registered trademark
  • PA144 hindered phenol group
  • Example 15 An active energy ray-curable composition (15) was prepared in the same manner as in Example 1 except that the blending amount of dimethylol tricyclodecane diacrylate was changed from 15 parts by mass to 10 parts by mass.
  • Adekastab LA-87 used in Example 1 was converted into a hindered amine light stabilizer having a hindered phenol group ("TINUVIN (registered trademark) PA144" manufactured by BASF Japan Ltd .; compound represented by the following formula (1)). Except having changed, it carried out similarly to Example 1 and prepared the active energy ray-curable composition (16).
  • Example 2 Adekastab LA-87 used in Example 1 was replaced with a hindered amine light stabilizer (“TINUVIN (registered trademark) 111FDL” manufactured by BASF Japan Ltd.); dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl.
  • TINUVIN hindered amine light stabilizer
  • An active energy ray-curable composition (R2) was prepared.
  • Adeka Stub LA-87 used in Example 1 was replaced with a hindered amine light stabilizer (“ADEKA STAB (registered trademark) LA-81” manufactured by ADEKA Corporation); bis (1-undecanoxy-2,2,6,6-tetramethyl
  • ADEKA STAB hindered amine light stabilizer
  • R4 bis (1-undecanoxy-2,2,6,6-tetramethyl
  • Example 5 Adekastab LA-87 used in Example 1 was replaced with a hindered amine light stabilizer (“TINUVIN® 123” manufactured by BASF Japan Ltd.); bis (2,2,6,6-tetramethyl-1-decanoic acid)
  • An active energy ray-curable composition (R5) was prepared in the same manner as in Example 1 except that (octyloxy) piperidin-4-yl ⁇ ) was changed.
  • Adekastab LA-87 used in Example 1 was replaced with a hindered amine light stabilizer (“TINUVIN® 5100” manufactured by BASF Japan Ltd.); bis (2,2,6,6-tetramethyl-1-octyloxypiperidine -4-yl) -1,10-decandioate and 1,8-bis [ ⁇ 2,2,6,6-tetramethyl-4-((2,2,6,6-tetramethyl-1-octyl) Oxypiperidin-4-yl) -decane-1,10-diyl) piperidin-1-yl ⁇ oxy] octane)) except that the active energy ray-curable composition (R6 ) was prepared.
  • TINUVIN® 5100 hindered amine light stabilizer
  • Example 7 Adekastab LA-87 used in Example 1 was replaced with a hindered amine light stabilizer (“TINUVIN (registered trademark) 292” manufactured by BASF Japan Ltd.); bis (1,2,2,6,6-pentamethyl-4-piperidyl) A mixture of 70 to 80% by mass of sebacate and 20 to 30% by mass of methyl-1,2,2,6,6-pentamethyl-4-piperidylsebacate).
  • TINUVIN hindered amine light stabilizer
  • R7 A curable composition was prepared.
  • Adeka Stub LA-87 used in Example 1 was replaced with a hindered amine light stabilizer (“ADEKA STAB (registered trademark) LA-52” manufactured by ADEKA Corporation); tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl).
  • ADEKA STAB hindered amine light stabilizer
  • tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl.
  • Active energy ray-curable composition (R8) was prepared in the same manner as in Example 1 except that it was changed to (butane-1,2,3,4-tetracarboxylate).
  • Example 9 An active energy ray-curable composition was carried out in the same manner as in Example 1 except that Adeka Stab LA-87 used in Example 1 was changed to an ultraviolet absorber (“TINUVIN (registered trademark) 400” manufactured by BASF Japan Ltd.). (R9) was prepared.
  • Adeka Stab LA-87 used in Example 1 was changed to an ultraviolet absorber (“TINUVIN (registered trademark) 400” manufactured by BASF Japan Ltd.). (R9) was prepared.
  • Example 10 Active energy ray curability was carried out in the same manner as in Example 1 except that Adeka Stub LA-87 used in Example 1 was changed to a UV absorber (“TINUVIN (registered trademark) 384-2” manufactured by BASF Japan Ltd.). A composition (R10) was prepared.
  • Example 11 An active energy ray-curable composition was carried out in the same manner as in Example 1 except that Adeka Stab LA-87 used in Example 1 was changed to an antioxidant (“IRGANOX (registered trademark) 1010” manufactured by BASF Japan Ltd.). (R11) was prepared.
  • Adeka Stab LA-87 used in Example 1 was changed to an antioxidant (“IRGANOX (registered trademark) 1010” manufactured by BASF Japan Ltd.). (R11) was prepared.
  • Cyclic olefin resin film base material (Nippon ZEON) whose surface was previously electrically treated (corona discharge treatment; output 100 W, speed 1.0 m / min) for the active energy ray-curable compositions obtained in Examples and Comparative Examples.
  • ZEONOR (registered trademark) film PT14-080 manufactured by Co., Ltd., 25 ⁇ m thick
  • coated with a wire bar heated at 60 ° C.
  • Tables 1 to 3 show the compositions of the active energy ray-curable compositions of Examples and Comparative Examples and the evaluation results of the hard coat films obtained above.
  • the compositions in Tables 1 to 3 are all described in terms of non-volatile content, and the mass part is a value obtained by rounding off the first decimal place.
  • the active energy ray-curable composition of the present invention has excellent scratch resistance on the surface of the cured coating film, high initial adhesion to the cyclic olefin resin film substrate, and light resistance.
  • the adhesion adheresion after the light resistance test was also excellent.
  • Comparative Examples 1 to 11 shown in Tables 4 and 5 are embodiments using an active energy ray-curable composition that does not contain the hindered amine light stabilizer (B) used in the present invention. At least one of the initial adhesion and the light-resistant adhesion was not sufficient, and there was a problem in practicality. Moreover, although the comparative example 12 is an aspect using the active energy ray curable composition which does not contain a compound (C), light-resistant adhesiveness was not enough.

Abstract

The present invention provides an active energy ray-curable composition which is characterized by containing: an active energy ray-curable compound (A); at least one hindered amine light stabilizer (B) that is selected from the group consisting of hindered amine light stabilizers (B1) having a polymerizable functional group and hindered amine light stabilizers (B2) having a hindered phenol group; and one or more compounds (C) that are selected from the group consisting of silane coupling agents (c-1), (meth)acrylamide compounds (c-2) and polymerizable monomers (c-3) having a tricyclodecane structure. The present invention also provides a hard coat film which is characterized by having a cured coating film of the active energy ray-curable composition on at least one surface of a cyclic olefin resin film substrate.

Description

活性エネルギー線硬化性組成物、及び、ハードコートフィルムActive energy ray-curable composition and hard coat film
 本発明は、活性エネルギー線硬化性組成物、及び、ハードコートフィルムに関する。 The present invention relates to an active energy ray-curable composition and a hard coat film.
 環状オレフィン樹脂フィルムは、透明性、低複屈折、低吸湿性、耐熱性、電気絶縁性、耐薬品性等に優れ、光学部材、医療、包装フィルム、自動車、半導体用途等で幅広く用いられている。特に、光学部材においては、液晶ディスプレイやタッチパネル用途でのユニットの多様化に合わせ、従来用いられていたポリエチレンテレフタレート(PET)、トリアセチルセルロース(TAC)等のプラスチックフィルムに代えて、透明性の高く、低吸湿性に優れた環状オレフィン樹脂フィルムを用いることが検討されている。 Cyclic olefin resin films are excellent in transparency, low birefringence, low moisture absorption, heat resistance, electrical insulation, chemical resistance, etc., and are widely used in optical members, medical, packaging films, automobiles, semiconductor applications, etc. . In particular, optical members are highly transparent in place of plastic films such as polyethylene terephthalate (PET) and triacetyl cellulose (TAC) that have been used in the past in line with diversification of units for liquid crystal display and touch panel applications. The use of a cyclic olefin resin film excellent in low hygroscopicity has been studied.
 また、環状オレフィン樹脂フィルムは、表面硬度が不十分であるため、加工時において傷が付くおそれがあり、耐摩耗性、耐擦傷性の向上のために、その表面に、活性エネルギー線硬化性組成物の硬化塗膜からなるハードコート層等の保護層を設けることが検討されている。しかし、環状オレフィン樹脂フィルムは、その主構造が脂環構造であるため、フィルム表面の極性が低く、水接触角が90°程度と高いため、活性エネルギー線硬化性組成物を塗工した場合、塗材が塗れ広がりにくく、環状オレフィン樹脂フィルム基材表面とハードコート層との間の密着性が低いという問題あった。 In addition, since the cyclic olefin resin film has insufficient surface hardness, there is a risk of scratching during processing, and an active energy ray-curable composition is formed on the surface for improving wear resistance and scratch resistance. It has been studied to provide a protective layer such as a hard coat layer made of a cured film of a product. However, since the cyclic olefin resin film has an alicyclic structure as its main structure, the polarity of the film surface is low and the water contact angle is as high as about 90 °, so when an active energy ray-curable composition is applied, There was a problem that the coating material was difficult to spread and the adhesion between the surface of the cyclic olefin resin film substrate and the hard coat layer was low.
 環状オレフィン樹脂フィルム基材表面とハードコート層との間の密着性を向上する方法として、環状オレフィン樹脂フィルム基材表面に極性基を有する変性オレフィン系樹脂を主成分としたプライマー層を設けた後、電離放射線硬化型樹脂を塗工、硬化させる方法が提案されている(例えば、特許文献1参照。)。この方法では、環状オレフィン樹脂フィルム基材表面とハードコート層との間の密着性を向上することはできるが、プライマー層を塗工、乾燥する工程が増え、さらに歩留まりの低下やコストアップを生じる問題があった。 After providing a primer layer mainly composed of a modified olefin-based resin having a polar group on the surface of the cyclic olefin resin film substrate as a method for improving the adhesion between the surface of the cyclic olefin resin film substrate and the hard coat layer A method of applying and curing an ionizing radiation curable resin has been proposed (for example, see Patent Document 1). Although this method can improve the adhesion between the surface of the cyclic olefin resin film substrate and the hard coat layer, the number of steps for coating and drying the primer layer increases, which further reduces yield and increases costs. There was a problem.
 また、プライマー層を設けずにハードコート層を環状オレフィン樹脂フィルム基材表面に密着させる方法として、脂環構造を有する(メタ)アクリレートを含有する硬化性組成物の硬化塗膜をハードコート層として用いることが提案されている(例えば、特許文献2参照。)。この硬化性組成物を用いた場合、環状オレフィン樹脂フィルム基材表面との密着性を十分なものとするためには、脂環構造を有する(メタ)アクリレートの比率を高める必要がある。しかし、脂環構造を有する(メタ)アクリレートの比率を高めれば、硬化塗膜の架橋密度が低下し、硬化塗膜表面の耐擦傷性が不十分となる問題があった。 Moreover, as a method of closely attaching the hard coat layer to the surface of the cyclic olefin resin film substrate without providing a primer layer, a cured coating film of a curable composition containing a (meth) acrylate having an alicyclic structure is used as the hard coat layer. It has been proposed to use (see, for example, Patent Document 2). When this curable composition is used, it is necessary to increase the ratio of (meth) acrylate having an alicyclic structure in order to achieve sufficient adhesion to the surface of the cyclic olefin resin film substrate. However, when the ratio of the (meth) acrylate having an alicyclic structure is increased, there is a problem that the crosslink density of the cured coating film is lowered and the scratch resistance on the surface of the cured coating film becomes insufficient.
 さらに、環状オレフィン樹脂フィルム基材表面に活性エネルギー線硬化性組成物の硬化塗膜を形成した直後の密着性(初期密着性)は高いが、その後、強い光に晒された場合、その密着性(耐光密着性)の低下が問題になっている。 Furthermore, although the adhesiveness (initial adhesiveness) immediately after forming the cured coating film of the active energy ray-curable composition on the surface of the cyclic olefin resin film substrate is high, the adhesiveness when exposed to strong light thereafter A decrease in (light resistance) is a problem.
 そこで、環状オレフィン樹脂フィルム基材表面に高い耐擦傷性を付与ができ、プライマー層なしで環状オレフィン樹脂フィルム基材表面との間で優れた密着性を有する硬化塗膜を形成でき、さらにその密着性が強い光に晒された後にも低下しない活性エネルギー線硬化性組成物が求められていた。 Therefore, high scratch resistance can be imparted to the surface of the cyclic olefin resin film substrate, and a cured coating film having excellent adhesion with the surface of the cyclic olefin resin film substrate can be formed without a primer layer. There has been a demand for an active energy ray-curable composition that does not decrease even after being exposed to strong light.
特開2004-284158号公報JP 2004-284158 A 特開2010-89458号公報JP 2010-89458 A
 本発明が解決しようとする課題は、基材表面に高い耐擦傷性を付与ができ、プライマー層なしで基材表面との間で優れた密着性を有する硬化塗膜を形成でき、さらにその密着性が強い光に晒された後にも低下しない活性エネルギー線硬化性組成物を提供することである。 The problem to be solved by the present invention is that a high scratch resistance can be imparted to the substrate surface, and a cured coating film having excellent adhesion with the substrate surface can be formed without a primer layer. It is to provide an active energy ray-curable composition that does not decrease even after being exposed to strong light.
 本発明は、活性エネルギー線硬化性化合物(A)と、重合性官能基を有するヒンダードアミン系光安定剤(B1)及びヒンダードフェノール基を有するヒンダードアミン系光安定剤(B2)からなる群から選ばれる少なくとも1種であるヒンダードアミン系光安定剤(B)と、シランカップリング剤(c-1)、(メタ)アクリルアミド化合物(c-2)及びトリシクロデカン構造を有する重合性単量体(c-3)からなる群より選ばれる1種以上の化合物(C)とを含有することを特徴とする活性エネルギー線硬化性組成物を提供するものである。 The present invention is selected from the group consisting of an active energy ray-curable compound (A), a hindered amine light stabilizer (B1) having a polymerizable functional group, and a hindered amine light stabilizer (B2) having a hindered phenol group. At least one hindered amine light stabilizer (B), a silane coupling agent (c-1), a (meth) acrylamide compound (c-2), and a polymerizable monomer having a tricyclodecane structure (c- An active energy ray-curable composition comprising at least one compound (C) selected from the group consisting of 3) is provided.
 また、本発明は、環状オレフィン樹脂フィルム基材の少なくとも1面に、前記活性エネルギー線硬化性組成物の硬化塗膜を有することを特徴とするハードコートフィルムを提供するものである。 The present invention also provides a hard coat film characterized by having a cured coating film of the active energy ray-curable composition on at least one surface of a cyclic olefin resin film substrate.
 本発明の活性エネルギー線硬化性組成物は、基材表面に高い耐擦傷性を付与ができ、プライマー層なしで基材表面との間で優れた密着性を有する硬化塗膜を形成でき、さらにその密着性が強い光に晒された後にも低下しないものである。したがって、本発明の活性エネルギー線硬化性組成物は、液晶ディスプレイやタッチパネル用途で用いられる光学フィルムとして用いることができる。 The active energy ray-curable composition of the present invention can impart high scratch resistance to the substrate surface, can form a cured coating film having excellent adhesion with the substrate surface without a primer layer, and Its adhesion does not decrease even after exposure to strong light. Therefore, the active energy ray-curable composition of the present invention can be used as an optical film used for liquid crystal displays and touch panel applications.
 本発明の活性エネルギー線硬化性組成物は、活性エネルギー線硬化性化合物(A)と、重合性官能基を有するヒンダードアミン系光安定剤(B1)及びヒンダードフェノール基を有するヒンダードアミン系光安定剤(B2)からなる群から選ばれる少なくとも1種であるヒンダードアミン系光安定剤(B)と、シランカップリング剤(c-1)、(メタ)アクリルアミド化合物(c-2)及びトリシクロデカン構造を有する重合性単量体(c-3)からなる群より選ばれる1種以上の化合物(C)とを必須成分として含有するものである。 The active energy ray-curable composition of the present invention comprises an active energy ray-curable compound (A), a hindered amine light stabilizer (B1) having a polymerizable functional group, and a hindered amine light stabilizer having a hindered phenol group ( A hindered amine light stabilizer (B) that is at least one selected from the group consisting of B2), a silane coupling agent (c-1), a (meth) acrylamide compound (c-2), and a tricyclodecane structure One or more compounds (C) selected from the group consisting of polymerizable monomers (c-3) are contained as essential components.
 前記活性エネルギー線硬化性化合物(A)としては、例えば、多官能(メタ)アクリレート(A1)、ウレタン(メタ)アクリレート(A2)等が挙げられる。これらは、1種で用いることも2種以上併用することもできる。 Examples of the active energy ray-curable compound (A) include polyfunctional (meth) acrylate (A1) and urethane (meth) acrylate (A2). These can be used alone or in combination of two or more.
 なお、本発明において、「(メタ)アクリレート」とは、アクリレートとメタクリレートの一方又は両方をいい、「(メタ)アクリロイル基」とは、アクリロイル基とメタクリロイル基の一方又は両方をいう。 In the present invention, “(meth) acrylate” refers to one or both of acrylate and methacrylate, and “(meth) acryloyl group” refers to one or both of acryloyl group and methacryloyl group.
 前記多官能(メタ)アクリレート(A1)は、1分子中に2つ以上の(メタ)アクリロイル基を有する化合物である。この多官能(メタ)アクリレート(A1)の具体例としては、1,4-ブタンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、2-メチル-1,8-オクタンジオールジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートのジ(メタ)アクリレート、ネオペンチルグリコール1モルに4モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート、ビスフェノールA1モルに2モルのエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、トリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。これらの多官能(メタ)アクリレート(A1)は、1種で用いることも2種以上併用することもできる。また、これらの多官能(メタ)アクリレート(A1)の中でも、本発明で用いる活性エネルギー線硬化性組成物の硬化塗膜の耐擦傷性が向上することから、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートが好ましく、ジペンタエリスリトールヘキサ(メタ)アクリレート、及びジペンタエリスリトールペンタ(メタ)アクリレートがより好ましい。 The polyfunctional (meth) acrylate (A1) is a compound having two or more (meth) acryloyl groups in one molecule. Specific examples of the polyfunctional (meth) acrylate (A1) include 1,4-butanediol di (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) acrylate, and 1,6-hexanediol. Di (meth) acrylate, neopentyl glycol di (meth) acrylate, 2-methyl-1,8-octanediol di (meth) acrylate, 2-butyl-2-ethyl-1,3-propanediol di (meth) acrylate , Ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate , Polyp Di (meth) acrylate of diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of pyrene glycol di (meth) acrylate, di (meth) acrylate of tris (2-hydroxyethyl) isocyanurate, neopentyl glycol ) Acrylate, di (meth) acrylate obtained by adding 2 mol of ethylene oxide or propylene oxide to 1 mol of bisphenol A, trimethylolpropane tri (meth) acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, Propylene oxide modified trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate Tris (2- (meth) acryloyloxyethyl) isocyanurate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipenta Examples include erythritol penta (meth) acrylate and dipentaerythritol hexa (meth) acrylate. These polyfunctional (meth) acrylates (A1) can be used alone or in combination of two or more. Among these polyfunctional (meth) acrylates (A1), since the scratch resistance of the cured coating film of the active energy ray-curable composition used in the present invention is improved, dipentaerythritol hexa (meth) acrylate, Dipentaerythritol penta (meth) acrylate, pentaerythritol tetra (meth) acrylate, and pentaerythritol tri (meth) acrylate are preferable, and dipentaerythritol hexa (meth) acrylate and dipentaerythritol penta (meth) acrylate are more preferable.
 前記ウレタン(メタ)アクリレート(A2)は、ポリイソシアネート(a2-1)と水酸基を有する(メタ)アクリレート(a2-2)とを反応させて得られたものである。 The urethane (meth) acrylate (A2) is obtained by reacting polyisocyanate (a2-1) with (meth) acrylate (a2-2) having a hydroxyl group.
 前記ポリイソシアネート(a2-1)としては、脂肪族ポリイソシアネートと芳香族ポリイソシアネートとが挙げられるが、本発明で用いる活性エネルギー線硬化性組成物の硬化塗膜の着色をより低減できることから、脂肪族ポリイソシアネートが好ましい。 Examples of the polyisocyanate (a2-1) include aliphatic polyisocyanates and aromatic polyisocyanates. However, since the coloring of the cured coating film of the active energy ray-curable composition used in the present invention can be further reduced, Group polyisocyanates are preferred.
 前記脂肪族ポリイソシアネートは、イソシアネート基を除く部位が脂肪族炭化水素から構成される化合物である。この脂肪族ポリイソシアネートの具体例としては、ヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等の脂肪族ポリイソシアネート;ノルボルナンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、1,3-ビス(イソシアナトメチル)シクロヘキサン、2-メチル-1,3-ジイソシアナトシクロヘキサン、2-メチル-1,5-ジイソシアナトシクロヘキサン等の脂環式ポリイソシアネートなどが挙げられる。また、前記脂肪族ポリイソシアネート又は脂環式ポリイソシアネートを3量化した3量化物も前記脂肪族ポリイソシアネートとして用いることができる。また、これらの脂肪族ポリイソシアネートは、1種で用いることも2種以上併用することもできる。 The aliphatic polyisocyanate is a compound in which a portion excluding an isocyanate group is composed of an aliphatic hydrocarbon. Specific examples of the aliphatic polyisocyanate include aliphatic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, and lysine triisocyanate; norbornane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), 1,3-bis (isocyanato). And cycloaliphatic polyisocyanates such as methyl) cyclohexane, 2-methyl-1,3-diisocyanatocyclohexane and 2-methyl-1,5-diisocyanatocyclohexane. A trimerized product obtained by trimming the aliphatic polyisocyanate or the alicyclic polyisocyanate can also be used as the aliphatic polyisocyanate. Moreover, these aliphatic polyisocyanates can be used alone or in combination of two or more.
 前記脂肪族ポリイソシアネートの中でも塗膜の耐擦傷性を向上させるには、脂肪族ポリイソシアネートの中でも、直鎖脂肪族炭化水素のジイソシアネートであるヘキサメチレンジイソシアネート、脂環式ジイソシアネートであるノルボルナンジイソシアネート、イソホロンジイソシアネートが好ましい。 Among the aliphatic polyisocyanates, in order to improve the scratch resistance of the coating film, among the aliphatic polyisocyanates, hexamethylene diisocyanate, which is a linear aliphatic hydrocarbon diisocyanate, norbornane diisocyanate, which is an alicyclic diisocyanate, isophorone Diisocyanate is preferred.
 前記(メタ)アクリレート(a2-2)は、水酸基と(メタ)アクリロイル基とを有する化合物である。この(メタ)アクリレート(a2-2)の具体例としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、1,5-ペンタンジオールモノ(メタ)アクリレート、1,6-ヘキサンジオールモノ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールモノ(メタ)アクリレート等の2価アルコールのモノ(メタ)アクリレート;トリメチロールプロパンジ(メタ)アクリレート、エチレンオキサイド(EO)変性トリメチロールプロパン(メタ)アクリレート、プロピレンオキサイド(PO)変性トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ビス(2-(メタ)アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレート等の3価のアルコールのモノ又はジ(メタ)アクリレート、あるいは、これらのアルコール性水酸基の一部をε-カプロラクトンで変性した水酸基を有するモノ及びジ(メタ)アクリレート;ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の1官能の水酸基と3官能以上の(メタ)アクリロイル基を有する化合物、あるいは、該化合物をさらにε-カプロラクトンで変性した水酸基を有する多官能(メタ)アクリレート;ジプロピレングリコールモノ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート等のオキシアルキレン鎖を有する(メタ)アクリレート;ポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート、ポリオキシブチレン-ポリオキシプロピレンモノ(メタ)アクリレート等のブロック構造のオキシアルキレン鎖を有する(メタ)アクリレート;ポリ(エチレングリコール-テトラメチレングリコール)モノ(メタ)アクリレート、ポリ(プロピレングリコール-テトラメチレングリコール)モノ(メタ)アクリレート等のランダム構造のオキシアルキレン鎖を有する(メタ)アクリレートなどが挙げられる。これらの(メタ)アクリレート(a2-2)は、1種で用いることも2種以上併用することもできる。 The (meth) acrylate (a2-2) is a compound having a hydroxyl group and a (meth) acryloyl group. Specific examples of the (meth) acrylate (a2-2) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth). Divalent compounds such as acrylate, 1,5-pentanediol mono (meth) acrylate, 1,6-hexanediol mono (meth) acrylate, neopentyl glycol mono (meth) acrylate, and hydroxypivalate neopentyl glycol mono (meth) acrylate Mono (meth) acrylate of alcohol; trimethylolpropane di (meth) acrylate, ethylene oxide (EO) modified trimethylolpropane (meth) acrylate, propylene oxide (PO) modified trimethylolpropane di (meta) Mono- or di (meth) acrylate of trivalent alcohol such as acrylate, glycerin di (meth) acrylate, bis (2- (meth) acryloyloxyethyl) hydroxyethyl isocyanurate, or a part of these alcoholic hydroxyl groups Mono- and di (meth) acrylates having hydroxyl groups modified with ε-caprolactone; monofunctional hydroxyl groups such as pentaerythritol tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and 3 A compound having a functional (meth) acryloyl group or a polyfunctional (meth) acrylate having a hydroxyl group in which the compound is further modified with ε-caprolactone; dipropylene glycol mono (meth) acrylate, diethylene group (Meth) acrylates having an oxyalkylene chain such as coal mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, etc .; polyethylene glycol-polypropylene glycol mono (meth) acrylate, polyoxybutylene-poly (Meth) acrylate having an oxyalkylene chain having a block structure such as oxypropylene mono (meth) acrylate; poly (ethylene glycol-tetramethylene glycol) mono (meth) acrylate, poly (propylene glycol-tetramethylene glycol) mono (meth) And (meth) acrylate having an oxyalkylene chain having a random structure such as acrylate. These (meth) acrylates (a2-2) can be used alone or in combination of two or more.
 前記ウレタン(メタ)アクリレート(A2)の中でも、本発明で用いる活性エネルギー線硬化性組成物の硬化塗膜の耐擦傷性を向上できるため、1分子中に4つ以上の(メタ)アクリロイル基を有するものが好ましい。前記ウレタン(メタ)アクリレート(A2)を1分子中に4つ以上の(メタ)アクリロイル基を有するものとするため、前記(メタ)アクリレート(a2-2)としては、(メタ)アクリロイル基は2つ以上有するものが好ましい。このような(メタ)アクリレート(a2-2)としては、例えば、トリメチロールプロパンジ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパンジ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ビス(2-(メタ)アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。これらの(メタ)アクリレート(a2-2)は、前記脂肪族ポリイソシアネートの1種に対して、1種を用いることも2種以上併用することもできる。また、これらの(メタ)アクリレート(a2-2)の中でも、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートは、耐擦傷性を向上できるため好ましい。 Among the urethane (meth) acrylate (A2), since the scratch resistance of the cured coating film of the active energy ray-curable composition used in the present invention can be improved, four or more (meth) acryloyl groups are contained in one molecule. What has is preferable. Since the urethane (meth) acrylate (A2) has four or more (meth) acryloyl groups in one molecule, the (meth) acrylate (a2-2) has 2 (meth) acryloyl groups. Those having at least two are preferred. Examples of such (meth) acrylate (a2-2) include trimethylolpropane di (meth) acrylate, ethylene oxide modified trimethylolpropane di (meth) acrylate, propylene oxide modified trimethylolpropane di (meth) acrylate, Glycerin di (meth) acrylate, bis (2- (meth) acryloyloxyethyl) hydroxyethyl isocyanurate, pentaerythritol tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, etc. Can be mentioned. These (meth) acrylates (a2-2) can be used alone or in combination of two or more with respect to one of the aliphatic polyisocyanates. Among these (meth) acrylates (a2-2), pentaerythritol tri (meth) acrylate and dipentaerythritol penta (meth) acrylate are preferable because they can improve scratch resistance.
 前記ポリイソシアネート(a2-1)と前記(メタ)アクリレート(a2-2)との反応は、常法のウレタン化反応により行うことができる。また、ウレタン化反応の進行を促進するために、ウレタン化触媒の存在下でウレタン化反応を行うことが好ましい。前記ウレタン化触媒としては、例えば、ピリジン、ピロール、トリエチルアミン、ジエチルアミン、ジブチルアミン等のアミン化合物;トリフェニルホスフィン、トリエチルホスフィン等のリン化合物;ジブチル錫ジラウレート、オクチル錫トリラウレート、オクチル錫ジアセテート、ジブチル錫ジアセテート、オクチル酸錫等の有機錫化合物、オクチル酸亜鉛等の有機亜鉛化合物などが挙げられる。 The reaction of the polyisocyanate (a2-1) and the (meth) acrylate (a2-2) can be carried out by a conventional urethanization reaction. Moreover, in order to accelerate | stimulate progress of a urethanation reaction, it is preferable to perform a urethanation reaction in presence of a urethanization catalyst. Examples of the urethanization catalyst include amine compounds such as pyridine, pyrrole, triethylamine, diethylamine and dibutylamine; phosphorus compounds such as triphenylphosphine and triethylphosphine; dibutyltin dilaurate, octyltin trilaurate, octyltin diacetate, dibutyltin Examples thereof include organic tin compounds such as diacetate and tin octylate, and organic zinc compounds such as zinc octylate.
 また、必要に応じて、上記の多官能(メタ)アクリレート(A1)、ウレタン(メタ)アクリレート(A2)以外の活性エネルギー線硬化性化合物(A)として、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート等の比較的高分子量の(メタ)アクリレート(A3)を用いることができる。前記エポキシ(メタ)アクリレートとしては、例えば、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ポリグリシジルメタクリレート等に、(メタ)アクリル酸を反応しエステル化することにより得られるものが挙げられる。また、前記ポリエステル(メタ)アクリレートとしては、例えば、多価カルボン酸と多価アルコールを重縮合して得られた両末端が水酸基であるポリエステルに、(メタ)アクリル酸を反応しエステル化することにより得られたもの、あるいは、多価カルボン酸にアルキレンオキシドを付加したものに(メタ)アクリル酸を反応しエステル化することにより得られたものが挙げられる。さらに、前記ポリエーテル(メタ)アクリレートとしては、例えば、ポリエーテルポリオールに(メタ)アクリル酸を反応しエステル化することにより得られたものが挙げられる。また、前記(メタ)アクリレート(A3)は、単独で用いることも2種以上併用することもできる。 Moreover, as needed, as active energy ray-curable compound (A) other than said polyfunctional (meth) acrylate (A1) and urethane (meth) acrylate (A2), epoxy (meth) acrylate, polyester (meth) A relatively high molecular weight (meth) acrylate (A3) such as acrylate or polyether (meth) acrylate can be used. Examples of the epoxy (meth) acrylate include those obtained by reacting (meth) acrylic acid with bisphenol-type epoxy resin, novolac-type epoxy resin, polyglycidyl methacrylate and the like and esterifying it. Moreover, as said polyester (meth) acrylate, (meth) acrylic acid is made to react and esterify with the polyester which the both terminal obtained by polycondensation of polyhydric carboxylic acid and polyhydric alcohol is a hydroxyl group, for example. Or a product obtained by reacting (meth) acrylic acid with ester obtained by adding an alkylene oxide to a polyvalent carboxylic acid. Furthermore, as said polyether (meth) acrylate, what was obtained by reacting (meth) acrylic acid with polyether polyol and esterifying is mentioned, for example. Moreover, the said (meth) acrylate (A3) can be used individually or can be used together 2 or more types.
 さらに、本発明で用いる活性エネルギー線硬化性組成物には、上記の活性エネルギー線硬化性化合物(A)として例示した(A1)~(A3)以外に、リン酸基を有する(メタ)アクリレート(A4)を配合すると、基材への密着性がより向上できることから好ましい。前記リン酸基を有する(メタ)アクリレート(A4)は、1分子中に少なくとも1個のリン酸基を有する(メタ)アクリレートである。このリン酸基を有する(メタ)アクリレート(A4)としては、例えば、リン酸(メタ)アクリロイルオキシエチル、リン酸ジ(メタ)アクリロイルオキシエチル、リン酸トリ(メタ)アクリロイルオキシエチル、カプロラクトン変性リン酸(メタ)アクリロイルオキシエチル等が挙げられ、1分子中に2以上の(メタ)アクリロイル基を有する化合物も用いることができる。また、これらのリン酸基を有する(メタ)アクリレート(A4)は、1種で用いることも2種以上併用することもできる。 Furthermore, in the active energy ray-curable composition used in the present invention, in addition to (A1) to (A3) exemplified as the active energy ray-curable compound (A), a (meth) acrylate having a phosphate group ( When A4) is blended, the adhesion to the substrate can be further improved, which is preferable. The (meth) acrylate (A4) having a phosphate group is a (meth) acrylate having at least one phosphate group in one molecule. Examples of the (meth) acrylate (A4) having a phosphate group include (meth) acryloyloxyethyl phosphate, di (meth) acryloyloxyethyl phosphate, tri (meth) acryloyloxyethyl phosphate, caprolactone-modified phosphorus An acid (meth) acryloyloxyethyl etc. are mentioned, The compound which has a 2 or more (meth) acryloyl group in 1 molecule can also be used. These (meth) acrylates (A4) having a phosphate group can be used alone or in combination of two or more.
 本発明で用いる活性エネルギー線硬化性組成物に、前記リン酸基を有する(メタ)アクリレート(A4)を配合する場合のその配合量は、基材への密着性がより向上でき、硬化塗膜表面の耐擦傷性もより向上できることから、前記活性エネルギー線硬化性化合物(A)中に0.1~30質量%が好ましく、0.5~20質量%がより好ましい。 When the (meth) acrylate (A4) having a phosphoric acid group is blended with the active energy ray-curable composition used in the present invention, the blending amount can improve the adhesion to the substrate, and the cured coating film. Since the scratch resistance of the surface can be further improved, the content of the active energy ray-curable compound (A) is preferably 0.1 to 30% by mass, and more preferably 0.5 to 20% by mass.
 次に、前記ヒンダードアミン系光安定剤(B)について説明する。 Next, the hindered amine light stabilizer (B) will be described.
 前記光安定剤(B1)としては、例えば、(メタ)アクリロイル基、ビニル基等の重合性官能基を有するヒンダードアミン系光安定剤が挙げられる。より具体的には、2,2,6,6-テトラメチル-4-ピペリジル(メタ)アクリレート、1,2,2,6,6-ペンタメチル-4-ピペリジル(メタ)アクリレート等が挙げられる。これらの前記光安定剤(B1)は、1種で用いることも2種以上併用することもできる。 Examples of the light stabilizer (B1) include hindered amine light stabilizers having a polymerizable functional group such as a (meth) acryloyl group and a vinyl group. More specifically, 2,2,6,6-tetramethyl-4-piperidyl (meth) acrylate, 1,2,2,6,6-pentamethyl-4-piperidyl (meth) acrylate and the like can be mentioned. These light stabilizers (B1) can be used alone or in combination of two or more.
 前記光安定剤(B2)としては、例えば、3,5-ジ-t-ブチル-4-ヒドロキシフェニル基等のヒンダードフェノール基を有するヒンダードアミン系光安定剤が挙げられる。より具体的には、下記式(1)で表される化合物等が挙げられる。この光安定剤(B2)は、前記光安定剤(B1)と併用することもできる。 Examples of the light stabilizer (B2) include hindered amine light stabilizers having a hindered phenol group such as 3,5-di-t-butyl-4-hydroxyphenyl group. More specifically, the compound etc. which are represented by following formula (1) are mentioned. This light stabilizer (B2) can also be used in combination with the light stabilizer (B1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 前記ヒンダードアミン系光安定剤(B)の含有量としては、環状オレフィン樹脂との密着性がより向上し、強い光に晒された後の密着性(以下、「耐光密着性」と略記する。)もより低下を抑制できることから、活性エネルギー線硬化性化合物(A)100質量部に対して、0.05~5質量部が好ましく、0.1~2質量部がより好ましい。 As the content of the hindered amine light stabilizer (B), the adhesion with the cyclic olefin resin is further improved and the adhesion after exposure to strong light (hereinafter abbreviated as “light-resistant adhesion”). Therefore, the amount is preferably 0.05 to 5 parts by mass, more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the active energy ray-curable compound (A).
 次に、前記化合物(C)について説明する。前記化合物(C)は、優れた耐光密着性を得る上で、シランカップリング剤(c-1)、(メタ)アクリルアミド化合物(c-2)及びトリシクロデカン構造を有する重合性単量体(c-3)からなる群より選ばれる1種以上の化合物を用いることが必須である。 Next, the compound (C) will be described. The compound (C) has a silane coupling agent (c-1), a (meth) acrylamide compound (c-2), and a polymerizable monomer having a tricyclodecane structure in order to obtain excellent light-resistant adhesion ( It is essential to use one or more compounds selected from the group consisting of c-3).
 前記シランカップリング剤(c-1)は、被着体である基材界面でなされる共有結合により、優れた耐光密着性を得ることができる。前記シランカップグ剤(c-1)の具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニル基を有するシランカップリング剤;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ基を有するシランカップリング剤;p-スチリルトリメトキシシラン等のスチリル基を有するシランカップリング剤;3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、3-(メタ)クリロキシプロピルトリエトキシシラン等の(メタ)クリロイル基を有するシランカップリング剤;N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩等のアミノ基を有するシランカップリング剤;3-ウイレドプロピルトリアルコキシシラン等のウイレド基を有するシランカップリング剤;3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等のメルカプト基を有するシランカップリング剤;ビス(トリエトキシシリルプロピル)テトラスルフィド等のスルフィド基を有するシランカップリング剤;トリス-(トリメトキシシリルプロピル)イソシアヌレート等のイソシアヌレート骨格を有するシランカップリング剤;メチル基及びフェニル基を有するアルコキシシラン化合物、プロピル基及びフェニル基を有するアルコキシシラン化合物等のアルキル基及びフェニル基を有するシランカップリング剤;、アクリロイル基及びフェニル基を有するアルコキシシラン化合物、メタクリロイル基及びフェニル基を有するアルコキシシラン化合物等の(メタ)アクリロイル基及びフェニル基を有するシランカップリング剤;3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基を有するシランカップリング剤;メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ブチルトリメトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン等のアルキル基を有するシランカップリング剤などが挙げられる。これらのシランカップリング剤は単独で用いても2種以上を併用してもよい。これらの中でも、優れた耐擦傷性を維持しつつ、耐光密着性をより一層向上できる点から、アルキル基、フェニル基、及び、(メタ)アクリロイル基からなる群より選ばれる1種以上の官能基を有するシランカップリング剤を用いることが好ましい。 The silane coupling agent (c-1) can obtain excellent light-resistant adhesion by a covalent bond formed at the substrate interface as an adherend. Specific examples of the silane coupling agent (c-1) include silane coupling agents having a vinyl group such as vinyltrimethoxysilane and vinyltriethoxysilane; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3 A silane coupling agent having an epoxy group such as glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; Silane coupling agents having a styryl group such as p-styryltrimethoxysilane; 3- (meth) acryloxypropylmethyldimethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropylmethyl Diethoxysilane Silane coupling agents having a (meth) acryloyl group such as 3- (meth) acryloxypropyltriethoxysilane; N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N- (vinylbenzyl ) A silane coupling agent having an amino group such as hydrochloride of 2-aminoethyl-3-aminopropyltrimethoxysilane; a silane coupling agent having a willed group such as 3-willedpropyltrialkoxysilane; 3-mercapto Propylmethyldimethoxysilane, 3-mercaptopropyl Silane coupling agents having mercapto groups such as limethoxysilane; silane coupling agents having sulfide groups such as bis (triethoxysilylpropyl) tetrasulfide; and isocyanurate skeletons such as tris- (trimethoxysilylpropyl) isocyanurate Silane coupling agent having an alkyl group and a phenyl group, such as an alkoxysilane compound having a methyl group and a phenyl group, an alkoxysilane compound having a propyl group and a phenyl group, an alkoxy having an acryloyl group and a phenyl group Silane coupling agents having (meth) acryloyl groups and phenyl groups, such as silane compounds, alkoxysilane compounds having methacryloyl groups and phenyl groups; 3-isocyanatopropyltriethoxysilane Silane coupling agent having an isocyanate group such as silane; Silane coupling having an alkyl group such as methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane Agents and the like. These silane coupling agents may be used alone or in combination of two or more. Among these, one or more functional groups selected from the group consisting of an alkyl group, a phenyl group, and a (meth) acryloyl group from the viewpoint of further improving the light-resistant adhesion while maintaining excellent scratch resistance. It is preferable to use a silane coupling agent having
 前記シランカップリング剤(c-1)として、アルキル基及びフェニル基を有するシランカップリング剤、(メタ)アクリロイル基及びフェニル基を有するシランカップリング剤を用いる場合のアルコキシル基の含有量としては、より一層優れた耐光密着性が得られる点から、シランカップリング剤中5~30質量%の範囲が好ましく、10~25質量%の範囲がより好ましく、13~22質量%の範囲が更に好ましい。 As the silane coupling agent (c-1), when using a silane coupling agent having an alkyl group and a phenyl group, and a silane coupling agent having a (meth) acryloyl group and a phenyl group, From the viewpoint of obtaining even better light-resistant adhesion, the range of 5 to 30% by mass in the silane coupling agent is preferable, the range of 10 to 25% by mass is more preferable, and the range of 13 to 22% by mass is even more preferable.
 前記(メタ)アクリルアミド化合物(c-2)は、基材の浸食を起こしたり、光重合開始剤(D)の水素引き抜き反応を促進するため、基材界面での硬化が進むことによって優れた耐光密着性を得ることができる。 The (meth) acrylamide compound (c-2) has excellent light resistance due to the progress of curing at the interface of the substrate in order to cause erosion of the substrate and promote the hydrogen abstraction reaction of the photopolymerization initiator (D). Adhesion can be obtained.
 前記(メタ)アクリルアミド化合物(c-2)の具体例としては、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、アクリロイルモルホリン、N-[3-(N’,N’-ジメチルアミノプロピル)(メタ)アクリルアミド、3-(アクリロイルアミノ)プロピルトリメチルアンモニウム=クロリド等のジメチルアミノプロピル(メタ)アクリルアミドの4級塩、イソプロピル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(3-(メタ)アクリルアミドプロピル)トリメチルトリメチルアンモニウムクロライド、3-アクリロイル-2-オキサゾリジン、アクリルアミドヘキサン酸、tert-ブチルアクリルアミド、ブトキシメチルアクリルアミド、N,N’-(1,2-ジヒドロキシエチレン)ビスアクリルアミド、ドデシルアクリルアミド、N,N’-エチレンビスアクリルアミド、N,N’-メチレンビスアクリルアミド、ヒドロキシメチル(メタ)アクリルアミド、フェニルアクリルアミドなどが挙げられる。これらの(メタ)アクリルアミドは単独で用いても2種以上を併用してもよい。これらの中でも、優れた耐擦傷性を維持しつつ、耐光密着性をより一層向上できる点から、N-[3-(N’,N’-ジメチルアミノプロピル)(メタ)アクリルアミド、3-(アクリロイルアミノ)プロピルトリメチルアンモニウム=クロリド、及びN-(2-ヒドロキシエチル)(メタ)アクリルアミドからなる群より選ばれる1種以上の化合物を用いることが好ましい。 Specific examples of the (meth) acrylamide compound (c-2) include (meth) acrylamide, dimethyl (meth) acrylamide, acryloylmorpholine, N- [3- (N ′, N′-dimethylaminopropyl) (meth). Quaternary salts of dimethylaminopropyl (meth) acrylamide such as acrylamide, 3- (acryloylamino) propyltrimethylammonium chloride, isopropyl (meth) acrylamide, diethyl (meth) acrylamide, N- (2-hydroxyethyl) (meth) Acrylamide, 2- (meth) acrylamide-2-methylpropanesulfonic acid, (3- (meth) acrylamidepropyl) trimethyltrimethylammonium chloride, 3-acryloyl-2-oxazolidine, acrylamidehexanoic acid, te t-butylacrylamide, butoxymethylacrylamide, N, N ′-(1,2-dihydroxyethylene) bisacrylamide, dodecylacrylamide, N, N′-ethylenebisacrylamide, N, N′-methylenebisacrylamide, hydroxymethyl (meta ) Acrylamide, phenylacrylamide and the like. These (meth) acrylamides may be used alone or in combination of two or more. Among these, N- [3- (N ′, N′-dimethylaminopropyl) (meth) acrylamide, 3- (acryloyl) is able to further improve the light adhesion while maintaining excellent scratch resistance. It is preferable to use one or more compounds selected from the group consisting of amino) propyltrimethylammonium chloride and N- (2-hydroxyethyl) (meth) acrylamide.
 なお、本発明において、「(メタ)アクリルアミド」とは、アクリルアミド及び/又はメタアクリルアミドを示す。 In the present invention, “(meth) acrylamide” refers to acrylamide and / or methacrylamide.
 前記トリシクロデカン構造を有する重合性単量体(c-3)は、優れた耐光密着性が得られるものであるが、特に基材として環状オレフィン樹脂フィルム基材を使用した場合に、その近似した構造による親和性により、更に優れた耐光密着性を得ることができる。 The polymerizable monomer (c-3) having a tricyclodecane structure is capable of obtaining excellent light-resistant adhesion, and the approximation is particularly obtained when a cyclic olefin resin film substrate is used as the substrate. Due to the affinity due to the structure, further excellent light-resistant adhesion can be obtained.
 前記重合性単量体(c-3)の具体例としては、ジシクロペンテニル(メタ)アクリレ-ト、ジシクロペンテニルオキシエチル(メタ)アクリレ-ト、ジシクロペンタニル(メタ)アクリレ-ト等のラジカル重合性基を1個有する単量体;ジメチロールトリシクロデカンジ(メタ)アクリレート、トリシクロデカンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等のラジカル重合性基を2個有する単量体などを用いることができる。これらの重合性単量体は単独で用いても2種以上を併用してもよい。これらの中でも、より一層優れた耐光密着性が得られる点から、前記ラジカル重合性基を2個有する単量体を用いることが好ましく、ジメチロールトリシクロデカンジ(メタ)アクリレート、トリシクロデカンジオールジ(メタ)アクリレート、及びトリシクロデカンジメタノールジ(メタ)アクリレートからなる群より選ばれる1種以上の重合性単量体がより好ましい。 Specific examples of the polymerizable monomer (c-3) include dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and the like. A monomer having one radical polymerizable group: radical polymerizable group such as dimethylol tricyclodecane di (meth) acrylate, tricyclodecanediol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate A monomer having two of these can be used. These polymerizable monomers may be used alone or in combination of two or more. Among these, it is preferable to use a monomer having two radical polymerizable groups from the standpoint that even more excellent light-resistant adhesion is obtained, and dimethylol tricyclodecane di (meth) acrylate, tricyclodecanediol. One or more polymerizable monomers selected from the group consisting of di (meth) acrylate and tricyclodecane dimethanol di (meth) acrylate are more preferable.
 前記化合物(C)の含有量としては、より一層優れた耐光密着性が得られる点から、前記活性エネルギー線硬化性化合物(A)100質量部に対して、1~50質量部の範囲であることが好ましく、1.5~40質量部の範囲がより好ましく、2~25質量部の範囲が更に好ましい。 The content of the compound (C) is in the range of 1 to 50 parts by mass with respect to 100 parts by mass of the active energy ray-curable compound (A) from the standpoint that even better light-resistant adhesion is obtained. The range of 1.5 to 40 parts by mass is more preferable, and the range of 2 to 25 parts by mass is even more preferable.
 前記化合物(C)として前記シランカップリング剤(c-1)を単独で用いる場合の含有量としては、より一層優れた耐光密着性が得られる点から、前記活性エネルギー線硬化性化合物(A)100質量部に対して、1~50質量部の範囲であることが好ましく、1.5~40質量部の範囲がより好ましく、2~25質量部の範囲が更に好ましい。 When the silane coupling agent (c-1) is used alone as the compound (C), the active energy ray-curable compound (A) is more preferable because the light-resistant adhesion is further improved. The range is preferably 1 to 50 parts by mass, more preferably 1.5 to 40 parts by mass, and still more preferably 2 to 25 parts by mass with respect to 100 parts by mass.
 前記化合物(C)として前記(メタ)アクリルアミド化合物(c-2)を単独で用いる場合の含有量としては、より一層優れた耐光密着性が得られる点から、前記活性エネルギー線硬化性化合物(A)100質量部に対して、3~50質量部の範囲であることが好ましく、5~40質量部の範囲がより好ましく、7~25質量部の範囲が更に好ましい。 When the (meth) acrylamide compound (c-2) is used alone as the compound (C), the active energy ray-curable compound (A ) The range is preferably 3 to 50 parts by mass, more preferably 5 to 40 parts by mass, and still more preferably 7 to 25 parts by mass with respect to 100 parts by mass.
 前記化合物(C)として前記重合性単量体(c-3)を単独で用いる場合の含有量としては、より長時間の耐光密着性が得られる点から、前記活性エネルギー線硬化性化合物(A)100質量部に対して、1~50質量部の範囲であることが好ましく、1.5~40質量部の範囲がより好ましく、2~25質量部の範囲が更に好ましく、11~20質量部が特に好ましい。 When the polymerizable monomer (c-3) is used alone as the compound (C), the active energy ray-curable compound (A) can be obtained from the viewpoint that a longer light-resistant adhesion can be obtained. ) It is preferably in the range of 1-50 parts by weight, more preferably in the range of 1.5-40 parts by weight, still more preferably in the range of 2-25 parts by weight, and 11-20 parts by weight with respect to 100 parts by weight. Is particularly preferred.
 また、本発明の活性エネルギー線硬化性組成物は、基材に塗工後、活性エネルギー線を照射することで硬化塗膜とすることができる。この活性エネルギー線とは、紫外線、電子線、α線、β線、γ線等の電離放射線をいう。活性エネルギー線として紫外線を照射して硬化塗膜とする場合には、本発明の活性エネルギー線硬化性組成物中に、後述する光重合開始剤(D)を添加し、硬化性を向上することが好ましい。また、必要であればさらに光増感剤(E)を添加して、硬化性を向上することもできる。一方、電子線、α線、β線、γ線等の電離放射線を用いる場合には、光重合開始剤(D)や光増感剤(E)を用いなくても速やかに硬化するので、特に光重合開始剤(D)や光増感剤(E)を添加する必要はない。 Moreover, the active energy ray-curable composition of the present invention can be formed into a cured coating film by irradiating active energy rays after coating on a substrate. The active energy rays refer to ionizing radiation such as ultraviolet rays, electron beams, α rays, β rays, and γ rays. When a cured coating film is formed by irradiating ultraviolet rays as active energy rays, a photopolymerization initiator (D) described later is added to the active energy ray curable composition of the present invention to improve curability. Is preferred. Further, if necessary, a photosensitizer (E) can be further added to improve curability. On the other hand, in the case of using ionizing radiation such as electron beam, α ray, β ray, γ ray, etc., since it cures quickly without using a photopolymerization initiator (D) or photosensitizer (E), It is not necessary to add a photopolymerization initiator (D) or a photosensitizer (E).
 前記光重合開始剤(D)としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、オリゴ{2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン}、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等のアセトフェノン系化合物;ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン系化合物;2,4,6-トリメチルベンゾインジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド等のアシルホスフィンオキシド系化合物;ベンジル(ジベンゾイル)、メチルフェニルグリオキシエステル、オキシフェニル酢酸2-(2-ヒドロキシエトキシ)エチルエステル、オキシフェニル酢酸2-(2-オキソ-2-フェニルアセトキシエトキシ)エチルエステル等のベンジル系化合物;ベンゾフェノン、o-ベンゾイル安息香酸メチル-4-フェニルベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-メチルベンゾフェノン等のベンゾフェノン系化合物;2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン等のチオキサントン系化合物;ミヒラ-ケトン、4,4’-ジエチルアミノベンゾフェノン等のアミノベンゾフェノン系化合物;10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、9,10-フェナンスレンキノン、カンファーキノン、1-[4-(4-ベンゾイルフェニルサルファニル)フェニル]-2-メチル-2-(4-メチルフェニルサルフォニル)プロパン-1-オン等が挙げられる。これらの光重合開始剤(C)は、1種で用いることも、2種以上併用することもできる。 Examples of the photopolymerization initiator (D) include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, oligo {2-hydroxy-2-methyl-1- [4- ( 1-methylvinyl) phenyl] propanone}, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy -2-propyl) ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) -Acetophenone compounds such as butanone; benzoin, benzoin methyl ether, benzo Benzoin compounds such as isopropyl ether; acylphosphine oxide compounds such as 2,4,6-trimethylbenzoin diphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide; benzyl (dibenzoyl), methyl Benzyl compounds such as phenylglyoxyester, oxyphenylacetic acid 2- (2-hydroxyethoxy) ethyl ester, oxyphenylacetic acid 2- (2-oxo-2-phenylacetoxyethoxy) ethyl ester; benzophenone, o-benzoylbenzoic acid Methyl-4-phenylbenzophenone, 4,4′-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide, acrylated benzophenone, 3,3 ′ Benzophenone compounds such as 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 3,3′-dimethyl-4-methoxybenzophenone, 2,4,6-trimethylbenzophenone, 4-methylbenzophenone; 2-isopropylthioxanthone Thioxanthone compounds such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone; aminobenzophenone compounds such as Michler's ketone and 4,4′-diethylaminobenzophenone; 10-butyl-2 -Chloroacridone, 2-ethylanthraquinone, 9,10-phenanthrenequinone, camphorquinone, 1- [4- (4-benzoylphenylsulfanyl) phenyl] -2-methyl-2- (4-methylphenyl) Sulphonyl ) Propan-1-one and the like. These photopolymerization initiators (C) can be used alone or in combination of two or more.
 また、前記光増感剤(E)としては、例えば、ジエタノールアミン、N-メチルジエタノールアミン、トリブチルアミン等の3級アミン化合物、o-トリルチオ尿素等の尿素化合物、ナトリウムジエチルジチオホスフェート、s-ベンジルイソチウロニウム-p-トルエンスルホネート等の硫黄化合物などが挙げられる。 Examples of the photosensitizer (E) include tertiary amine compounds such as diethanolamine, N-methyldiethanolamine and tributylamine, urea compounds such as o-tolylthiourea, sodium diethyldithiophosphate, s-benzylisothiuro And sulfur compounds such as nitro-p-toluenesulfonate.
 上記の光重合開始剤(D)及び光増感剤(E)の使用量は、本発明の活性エネルギー線硬化性組成物中の前記活性エネルギー線硬化性化合物(A)及び前記化合物(B)の合計100質量部に対し、各々0.05~20質量部が好ましく、0.5~10質量部がより好ましい。 The photopolymerization initiator (D) and the photosensitizer (E) are used in the active energy ray-curable compound (A) and the compound (B) in the active energy ray-curable composition of the present invention. Is preferably 0.05 to 20 parts by mass, and more preferably 0.5 to 10 parts by mass per 100 parts by mass in total.
 本発明の活性エネルギー線硬化性組成物には、上記の活性エネルギー線硬化性化合物(A)、ヒンダードアミン系光安定剤(B)、化合物(C)等以外に、用途や要求特性に応じて、有機溶剤、重合禁止剤、表面調整剤、帯電防止剤、消泡剤、粘度調整剤、耐光安定剤、耐候安定剤、耐熱安定剤、紫外線吸収剤、酸化防止剤、レベリング剤、有機顔料、無機顔料、顔料分散剤、有機ビーズ等の添加剤;酸化ケイ素(シリカ粒子)、酸化アルミニウム、酸化チタン、ジルコニア、五酸化アンチモン等の無機充填剤などを配合することができる。これらその他の配合物は、1種で用いることも2種以上併用することもできる。 In addition to the above active energy ray-curable compound (A), hindered amine light stabilizer (B), compound (C) and the like, the active energy ray-curable composition of the present invention, depending on the use and required characteristics, Organic solvents, polymerization inhibitors, surface modifiers, antistatic agents, antifoaming agents, viscosity modifiers, light stabilizers, weather stabilizers, heat stabilizers, UV absorbers, antioxidants, leveling agents, organic pigments, inorganic Additives such as pigments, pigment dispersants, and organic beads; inorganic fillers such as silicon oxide (silica particles), aluminum oxide, titanium oxide, zirconia, and antimony pentoxide can be blended. These other blends can be used alone or in combination of two or more.
 前記無機充填剤の中でもシリカ粒子を配合することにより、本発明の活性エネルギー線硬化性組成物の硬化塗膜表面の耐擦傷性をより向上でき、基材への密着性もより向上できる。前記シリカ粒子としては、その表面が有機基で表面修飾されたものであっても表面修飾されていないものであってもよい。また、前記シリカ粒子は、本発明の活性エネルギー線硬化性組成物の硬化塗膜の透明性及び表面の耐擦傷性をより向上できることから、ナノメーターオーダーサイズのシリカ微粒子が好ましく、コロイダルシリカがより好ましい。前記シリカ微粒子の平均粒子径としては、5~200nmの範囲が好ましく、5~100nmの範囲がより好ましい。なお、この平均粒子径は、動的光散乱法で測定した値である。 By blending silica particles among the inorganic fillers, the scratch resistance of the cured coating film surface of the active energy ray-curable composition of the present invention can be further improved, and the adhesion to the substrate can be further improved. The silica particles may have a surface modified with an organic group or a surface not modified. The silica particles are preferably nanometer-sized silica fine particles, more preferably colloidal silica, since the transparency and surface scratch resistance of the cured coating film of the active energy ray-curable composition of the present invention can be further improved. preferable. The average particle diameter of the silica fine particles is preferably in the range of 5 to 200 nm, more preferably in the range of 5 to 100 nm. The average particle diameter is a value measured by a dynamic light scattering method.
 前記無機充填剤を配合する場合のその配合量は、本発明の活性エネルギー線硬化性組成物の硬化塗膜表面の耐擦傷性をより向上でき、基材への密着性もより向上できることから、前記活性エネルギー線硬化性化合物(A)100質量部に対して、1~150質量部が好ましく、5~100質量部がより好ましい。 The blending amount when blending the inorganic filler can improve the scratch resistance of the cured coating film surface of the active energy ray-curable composition of the present invention, and can also improve the adhesion to the substrate, The amount is preferably 1 to 150 parts by mass and more preferably 5 to 100 parts by mass with respect to 100 parts by mass of the active energy ray-curable compound (A).
 前記有機溶媒は、本発明の活性エネルギー線硬化性組成物の溶液粘度を適宜調整する上で有用であり、特に薄膜コーティングを行うためには、膜厚を調整することが容易となる。ここで使用できる有機溶媒としては、例えば、トルエン、キシレン等の芳香族炭化水素;メタノール、エタノール、イソプロパノール、t-ブタノール等のアルコール類;酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類などが挙げられる。これらの溶剤は、1種で用いることも、2種以上を併用することもできる。 The organic solvent is useful for appropriately adjusting the solution viscosity of the active energy ray-curable composition of the present invention, and it is particularly easy to adjust the film thickness for thin film coating. Examples of the organic solvent that can be used here include aromatic hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, isopropanol, and t-butanol; esters such as ethyl acetate, butyl acetate, and propylene glycol monomethyl ether acetate. Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; These solvents can be used alone or in combination of two or more.
 本発明の活性エネルギー線硬化性組成物により硬化塗膜を形成する方法としては、例えば、前記活性エネルギー線硬化性組成物を、基材に塗工後、活性エネルギー線を照射する方法が挙げられる。 Examples of the method of forming a cured coating film using the active energy ray-curable composition of the present invention include a method of applying the active energy ray-curable composition to a substrate and then irradiating the active energy ray. .
 前記基材としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリプロピレン、ポリエチレン、ポリメチルペンテン-1等のポリオレフィン系樹脂;セルロースアセテート(ジアセチルセルロース、トリアセチルセルロース等)、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートプロピオネートブチレート、セルロースアセテートフタレート、硝酸セルロース等のセルロース系樹脂;ポリメチルメタクリレート等のアクリル系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン等の塩化ビニル系樹脂;ポリビニルアルコール;エチレン-酢酸ビニル共重合体;ポリスチレン;ポリアミド;ポリカーボネート;ポリスルホン;ポリエーテルスルホン;ポリエーテルエーテルケトン;ポリイミド、ポリエーテルイミド等のポリイミド系樹脂;環状オレフィン樹脂フィルム基材などが挙げられる。本発明の活性エネルギー線硬化性組成物は、これらのどの基材を用いても優れた透明性、耐擦傷性、及び耐光密着性を得ることができるが、とりわけ、近年需要が増加している前記環状オレフィン樹脂フィルム基材を好適に使用することができる。 Examples of the substrate include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyolefin resins such as polypropylene, polyethylene, and polymethylpentene-1; cellulose acetate (diacetyl cellulose, triacetyl cellulose, and the like) Cellulose-based resins such as cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate, cellulose acetate phthalate, and cellulose nitrate; acrylic resins such as polymethyl methacrylate; polyvinyl chloride, polyvinylidene chloride, etc. Vinyl chloride resin; polyvinyl alcohol; ethylene-vinyl acetate copolymer; polystyrene; polyamide; polycarbonate; Hong; polyether sulfone; polyether ether ketone; polyimide, polyimide-based resins such as polyether imide; cyclic olefin resin film substrate, and the like. The active energy ray-curable composition of the present invention can obtain excellent transparency, scratch resistance, and light-resistant adhesion even when any of these substrates is used. The said cyclic olefin resin film base material can be used conveniently.
 前記環状オレフィン樹脂フィルム基材としては、環状オレフィンを重合したものであれば、単独重合体であっても、共重合体であっても特に制限なく用いることができる。環状オレフィン樹脂の市販品としては、例えば、日本ゼオン株式会社製の「ZEONOR(登録商標)」、「ZEONEX(登録商標)」;JSR株式会社製の「ARTON(登録商標)」;ポリプラスチックス株式会社製の「TOPAS(登録商標)」等が挙げられる。 The cyclic olefin resin film substrate may be a homopolymer or a copolymer as long as it is a polymer of cyclic olefin, and can be used without particular limitation. Commercially available products of cyclic olefin resins include, for example, “ZEONOR (registered trademark)” and “ZEONEX (registered trademark)” manufactured by Nippon Zeon Co., Ltd .; “ARTON (registered trademark)” manufactured by JSR Corporation; Examples include “TOPAS (registered trademark)” manufactured by the company.
 前記環状オレフィン樹脂フィルム基材は、環状オレフィン樹脂をフィルム上に成形したものである。また、環状オレフィン樹脂フィルム基材の表面は、本発明で用いる活性エネルギー線硬化性組成物の硬化塗膜との密着性を向上するため、サンドブラスト法、溶剤処理法等による表面の凹凸化処理、電気的処理(コロナ放電処理、大気圧プラズマ処理)、クロム酸処理、火炎処理、熱風処理、オゾン・紫外線・電子線照射処理、酸化処理等により処理をしたものが好ましく、これらの中でもコロナ放電処理、大気圧プラズマ処理等の電気的処理をしたものがより好ましい。 The cyclic olefin resin film substrate is obtained by molding a cyclic olefin resin on a film. In addition, the surface of the cyclic olefin resin film substrate is used to improve the adhesion with the cured coating film of the active energy ray-curable composition used in the present invention. Those treated by electrical treatment (corona discharge treatment, atmospheric pressure plasma treatment), chromic acid treatment, flame treatment, hot air treatment, ozone / ultraviolet ray / electron beam irradiation treatment, oxidation treatment, etc. are preferred, and among these, corona discharge treatment Those subjected to electrical treatment such as atmospheric pressure plasma treatment are more preferred.
 また、前記環状オレフィン樹脂フィルム基材の厚さは、1~200μmの範囲が好ましく、5~100μmの範囲がより好ましく、10~50μmの範囲がさらに好ましい。フィルム基材の厚さを当該範囲とすることで、環状オレフィン樹脂フィルム基材の片面に、本発明の活性エネルギー線硬化性組成物の硬化塗膜を設けた場合にもカールを抑制しやすくなる。 The thickness of the cyclic olefin resin film substrate is preferably 1 to 200 μm, more preferably 5 to 100 μm, and even more preferably 10 to 50 μm. By setting the thickness of the film substrate within the range, curling can be easily suppressed even when a cured coating film of the active energy ray-curable composition of the present invention is provided on one surface of the cyclic olefin resin film substrate. .
 本発明のハードコートフィルムは、環状オレフィン樹脂フィルム基材の少なくとも1面に、前記活性エネルギー線硬化性組成物を塗工し、その後活性エネルギー線を照射して硬化塗膜とすることで得られたものである。環状オレフィン樹脂フィルム基材に前記活性エネルギー線硬化性組成物を塗工する方法としては、例えば、ダイコート、マイクログラビアコート、グラビアコート、ロールコート、コンマコート、エアナイフコート、キスコート、スプレーコート、かけ渡しコート、ディップコート、スピンナーコート、ホイーラーコート、刷毛塗り、シルクスクリーンによるベタコート、ワイヤーバーコート、フローコート等が挙げられる。 The hard coat film of the present invention is obtained by applying the active energy ray-curable composition to at least one surface of a cyclic olefin resin film substrate, and then irradiating the active energy ray to form a cured coating film. It is a thing. Examples of the method for applying the active energy ray-curable composition to the cyclic olefin resin film substrate include die coating, micro gravure coating, gravure coating, roll coating, comma coating, air knife coating, kiss coating, spray coating, and delivery. Examples thereof include a coat, a dip coat, a spinner coat, a wheeler coat, a brush coat, a solid coat by silk screen, a wire bar coat, and a flow coat.
 また、活性エネルギー線硬化性組成物を硬化するために、活性エネルギー線として紫外線を用いる場合、紫外線を照射する装置としては、例えば、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、無電極ランプ(フュージョンランプ)、ケミカルランプ、ブラックライトランプ、水銀-キセノンランプ、ショートアーク灯、ヘリウム・カドミニウムレーザー、アルゴンレーザー、太陽光、LED等が挙げられる。 In addition, when ultraviolet rays are used as the active energy rays to cure the active energy ray curable composition, examples of the device for irradiating the ultraviolet rays include a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, Examples include electrodeless lamps (fusion lamps), chemical lamps, black light lamps, mercury-xenon lamps, short arc lamps, helium / cadmium lasers, argon lasers, sunlight, and LEDs.
 本発明のハードコートフィルムは、優れた光学特性、寸法安定性、耐熱性、透明性、耐光密着性に加え、その表面の耐擦傷性に優れることから、各種用途に適用できるが、特に、液晶ディスプレイ(LCD)、有機ELディスプレイ(OLED)等の画像表示装置の画像表示部に用いる光学フィルムとして有用である。特に、薄型であっても優れた耐擦傷性を有することから、例えば、電子手帳、携帯電話、スマートフォン、携帯オーディオプレイヤー、モバイルパソコン、タブレット端末等の小型化や薄型化の要請の高い携帯電子端末の画像表示装置の画像表示部の光学フィルムとして好適に用いることができる。また、光学フィルムとして用いる場合、画像表示装置の画像表示部の最表面に用いる保護フィルム、タッチパネルの基材として用いることができる。さらに、保護フィルムとして用いた場合には、例えば、LCDモジュールやOLEDモジュール等の画像表示モジュールの上部に当該画像表示モジュールを保護する透明パネルが設けられた構成の画像表示装置においては、当該透明パネルの表面又は裏面に貼り付けて使用することで、傷つき防止や透明パネルが破損した際の飛散防止に有効である。 The hard coat film of the present invention is applicable to various applications because of its excellent optical properties, dimensional stability, heat resistance, transparency, and light-resistant adhesion, as well as its surface scratch resistance. It is useful as an optical film used in an image display unit of an image display device such as a display (LCD) or an organic EL display (OLED). In particular, since it has excellent scratch resistance even if it is thin, for example, electronic notebooks, mobile phones, smartphones, portable audio players, mobile personal computers, tablet terminals, etc. It can use suitably as an optical film of the image display part of this image display apparatus. Moreover, when using as an optical film, it can use as a protective film used for the outermost surface of the image display part of an image display apparatus, and a base material of a touch panel. Furthermore, when used as a protective film, for example, in an image display device having a configuration in which a transparent panel for protecting the image display module is provided on the upper part of an image display module such as an LCD module or an OLED module, the transparent panel By sticking to the front or back surface of the plate, it is effective for preventing damage and preventing scattering when the transparent panel is damaged.
 以下に実施例により本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
(実施例1)
 ジペンタエリスリトールヘキサアクリレート(以下、「DPHA」と略記する。)及びジペンタエリスリトールペンタアクリレート(以下、「DPPA」と略記する。)の混合物(DPHA/DPPA=65/35(質量比))100質量部、シリカ微粒子(日産化学工業株式会社製「MEK-ST40」、平均粒子径10~20nm、オルガノシリカゾル(コロイダルシリカ)の40質量%メチルエチルケトン分散液)26質量部(シリカ微粒子として、)、メタクリルロイル基を有するヒンダードアミン系光安定剤(株式会社ADEKA製「アデカスタブ(登録商標) LA-87」;2,2,6,6-テトラメチル-4-ピペリジルメタクリレート)0.5質量部、及び1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製「IRGACURE(登録商標) 184」)6質量部、メチルトリメトキシシラン(信越化学工業株式会社製「KBM-13」)20質量部を均一に攪拌した後、メチルエチルケトンで希釈して、不揮発分40質量%の活性エネルギー線硬化性組成物(1)を調製した。
Example 1
Mixture of dipentaerythritol hexaacrylate (hereinafter abbreviated as “DPHA”) and dipentaerythritol pentaacrylate (hereinafter abbreviated as “DPPA”) (DPHA / DPPA = 65/35 (mass ratio)) 100 mass Parts, silica fine particles (“MEK-ST40” manufactured by Nissan Chemical Industries, Ltd., average particle size 10-20 nm, organosilica sol (colloidal silica) 40% by weight methyl ethyl ketone dispersion) 26 parts by weight (as silica fine particles), methacryloyl Hindered amine-based light stabilizer having a group (“ADEKA STAB (registered trademark) LA-87” manufactured by ADEKA Corporation; 0.5 parts by mass of 2,2,6,6-tetramethyl-4-piperidyl methacrylate), and 1-hydroxy Cyclohexyl phenyl ketone (BASF Japan “IRGACURE (registered trademark) 184” manufactured by Co., Ltd.) 6 parts by mass and 20 parts by mass of methyltrimethoxysilane (“KBM-13” manufactured by Shin-Etsu Chemical Co., Ltd.) were uniformly stirred, diluted with methyl ethyl ketone, and nonvolatile An active energy ray-curable composition (1) having a content of 40% by mass was prepared.
(実施例2)
 アデカスタブ LA-87の配合量を、0.5質量部から0.1質量部に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(2)を調製した。
(Example 2)
An active energy ray-curable composition (2) was prepared in the same manner as in Example 1 except that the amount of ADK STAB LA-87 was changed from 0.5 parts by mass to 0.1 parts by mass.
(実施例3)
 アデカスタブ LA-87の配合量を、0.5質量部から1質量部に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(3)を調製した。
(Example 3)
An active energy ray-curable composition (3) was prepared in the same manner as in Example 1 except that the amount of ADK STAB LA-87 was changed from 0.5 parts by mass to 1 part by mass.
(実施例4)
 KBM-13の配合量を、20質量部から5質量部に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(4)を調製した。
Example 4
An active energy ray-curable composition (4) was prepared in the same manner as in Example 1 except that the amount of KBM-13 was changed from 20 parts by mass to 5 parts by mass.
(実施例5)
 実施例1で用いたアデカスタブ LA-87を、メタクリルロイル基を有するヒンダードアミン系光安定剤(株式会社ADEKA製「アデカスタブ(登録商標) LA-82」;1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート)に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(5)を調製した。
(Example 5)
Adekastab LA-87 used in Example 1 was replaced with a hindered amine light stabilizer having a methacryloyl group (“Adekastab (registered trademark) LA-82” manufactured by ADEKA Corporation); 1,2,2,6,6-pentamethyl- An active energy ray-curable composition (5) was prepared in the same manner as in Example 1 except that 4-piperidyl methacrylate was changed.
(実施例6)
 実施例1で用いたアデカスタブ LA-87を、ヒンダードフェノール基を有するヒンダードアミン系光安定剤(BASFジャパン株式会社製「TINUVIN(登録商標) PA144」;下記式(1)で表される化合物)に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(6)を調製した。
(Example 6)
Adekastab LA-87 used in Example 1 was converted into a hindered amine light stabilizer having a hindered phenol group ("TINUVIN (registered trademark) PA144" manufactured by BASF Japan Ltd .; compound represented by the following formula (1)). Except having changed, it carried out similarly to Example 1 and prepared active energy ray hardening composition (6).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(実施例7)
 ジペンタエリスリトールヘキサアクリレート(以下、「DPHA」と略記する。)及びジペンタエリスリトールペンタアクリレート(以下、「DPPA」と略記する。)の混合物(DPHA/DPPA=65/35(質量比))100質量部、メタクリルロイル基を有するヒンダードアミン系光安定剤(株式会社ADEKA製「アデカスタブ(登録商標) LA-87」;2,2,6,6-テトラメチル-4-ピペリジルメタクリレート)0.5質量部、及び1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製「RUNTECURE(登録商標) 1104」)6質量部、N-[3-(N’,N’-ジメチルアミノプロピル)アクリルアミド(以下、「DMAPAA」と略記する。)15質量部を均一に攪拌した後、メチルエチルケトンで希釈して、不揮発分40質量%の活性エネルギー線硬化性組成物(7)を調製した。
(Example 7)
Mixture of dipentaerythritol hexaacrylate (hereinafter abbreviated as “DPHA”) and dipentaerythritol pentaacrylate (hereinafter abbreviated as “DPPA”) (DPHA / DPPA = 65/35 (mass ratio)) 100 mass Parts, hindered amine light stabilizer having a methacryloyl group (“ADEKA STAB (registered trademark) LA-87” manufactured by ADEKA Corporation; 0.5 parts by mass of 2,2,6,6-tetramethyl-4-piperidyl methacrylate), And 6 parts by mass of 1-hydroxycyclohexyl phenyl ketone ("RUNTECURE (registered trademark) 1104" manufactured by BASF Japan Ltd.), N- [3- (N ', N'-dimethylaminopropyl) acrylamide (hereinafter referred to as "DMAPAA") Abbreviated.) After uniformly stirring 15 parts by mass, The active energy ray-curable composition (7) having a nonvolatile content of 40% by mass was prepared by diluting with ruethyl ketone.
(実施例8)
 アデカスタブ LA-87の配合量を、0.5質量部から1質量部に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(8)を調製した。
(Example 8)
An active energy ray-curable composition (8) was prepared in the same manner as in Example 1 except that the amount of ADK STAB LA-87 was changed from 0.5 parts by mass to 1 part by mass.
(実施例9)
 DMAPAAの配合量を、15質量部から    10質量部に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(9)を調製した。
Example 9
An active energy ray-curable composition (9) was prepared in the same manner as in Example 1 except that the amount of DMAPAA was changed from 15 parts by mass to 10 parts by mass.
(実施例10)
 DMAPAAの代わりに、3-(アクリロイルアミノ)プロピルトリメチルアンモニウム=クロリド(以下、「DMAPAA-Q」と略記する。)を用いた以外は、実施例1と同様にして活性エネルギー線硬化性組成物(10)を調製した。
(Example 10)
An active energy ray-curable composition (Example 1) was used in the same manner as in Example 1 except that 3- (acryloylamino) propyltrimethylammonium chloride (hereinafter abbreviated as “DMAPAA-Q”) was used instead of DMAPAA. 10) was prepared.
(実施例11)
 DMAPAAの代わりに、2-ヒドロキシエチルアクリルアミド(以下、「HEAA」と略記する。)を用いた以外は、実施例1と同様にして活性エネルギー線硬化性組成物(11)を調製した。
(Example 11)
An active energy ray-curable composition (11) was prepared in the same manner as in Example 1 except that 2-hydroxyethylacrylamide (hereinafter abbreviated as “HEAA”) was used instead of DMAPAA.
(実施例12)
 実施例1で用いたアデカスタブ LA-87を、メタクリルロイル基を有するヒンダードアミン系光安定剤(株式会社ADEKA製「アデカスタブ(登録商標) LA-82」;1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート)に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(12)を調製した。
(Example 12)
Adekastab LA-87 used in Example 1 was replaced with a hindered amine light stabilizer having a methacryloyl group (“Adekastab (registered trademark) LA-82” manufactured by ADEKA Corporation); 1,2,2,6,6-pentamethyl- An active energy ray-curable composition (12) was prepared in the same manner as in Example 1 except that 4-piperidyl methacrylate was changed.
(実施例13)
 実施例1で用いたアデカスタブ LA-87を、ヒンダードフェノール基を有するヒンダードアミン系光安定剤(BASFジャパン株式会社製「TINUVIN(登録商標) PA144」;下記式(1)で表される化合物)に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(13)を調製した。
(Example 13)
Adekastab LA-87 used in Example 1 was converted into a hindered amine light stabilizer having a hindered phenol group ("TINUVIN (registered trademark) PA144" manufactured by BASF Japan Ltd .; compound represented by the following formula (1)). Except having changed, it carried out similarly to Example 1 and prepared the active energy ray-curable composition (13).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(実施例14)
 ジペンタエリスリトールヘキサアクリレート(以下、「DPHA」と略記する。)及びジペンタエリスリトールペンタアクリレート(以下、「DPPA」と略記する。)の混合物(DPHA/DPPA=65/35(質量比))94質量部、1-ヒドロキシシクロヘキシルフェニルケトン(BASF株式会社製「RUNTECURE 1104」)6質量部、2,2,6,6-テトラメチル-4-ピペリジニルメタクリレート(株式会社ADEKA製、反応性ヒンダードアミン「アデカスタブLA-87」)0.5質量部、シリカ微粒子(日産化学工業株式会社製「MEK-ST40」、平均粒子径10~20nm、オルガノシリカゾルの40質量%メチルエチルケトン分散液)10質量部(シリカ微粒子として4質量部)、ジメチロールトリシクロデカンジアクリレート(共栄社化学株式会社製「ライトアクリレートDCP-A」)15質量部を均一に攪拌した後、メチルエチルケトンで希釈して、不揮発分40質量%の紫外線硬化性組成物(14)を調製した。
(Example 14)
Mixture of dipentaerythritol hexaacrylate (hereinafter abbreviated as “DPHA”) and dipentaerythritol pentaacrylate (hereinafter abbreviated as “DPPA”) (DPHA / DPPA = 65/35 (mass ratio)) 94 mass Parts, 1-hydroxycyclohexyl phenyl ketone ("RUNTECURE 1104" manufactured by BASF Corporation), 2,2,6,6-tetramethyl-4-piperidinyl methacrylate (made by ADEKA Corporation, reactive hindered amine "Adekastab" LA-87 ") 0.5 parts by mass, silica fine particles (" MEK-ST40 "manufactured by Nissan Chemical Industries, Ltd., average particle size 10 to 20 nm, organosilica sol 40 mass% methyl ethyl ketone dispersion) 10 parts by mass (as silica fine particles) 4 parts by mass), dimethylol tri After uniformly stirring 15 parts by mass of cyclodecane diacrylate (“Light Acrylate DCP-A” manufactured by Kyoeisha Chemical Co., Ltd.), it is diluted with methyl ethyl ketone to prepare an ultraviolet curable composition (14) having a nonvolatile content of 40% by mass. did.
(実施例15)
 ジメチロールトリシクロデカンジアクリレートの配合量を、15質量部から10質量部に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(15)を調製した。
(Example 15)
An active energy ray-curable composition (15) was prepared in the same manner as in Example 1 except that the blending amount of dimethylol tricyclodecane diacrylate was changed from 15 parts by mass to 10 parts by mass.
(実施例16)
 実施例1で用いたアデカスタブ LA-87を、ヒンダードフェノール基を有するヒンダードアミン系光安定剤(BASFジャパン株式会社製「TINUVIN(登録商標) PA144」;下記式(1)で表される化合物)に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(16)を調製した。
(Example 16)
Adekastab LA-87 used in Example 1 was converted into a hindered amine light stabilizer having a hindered phenol group ("TINUVIN (registered trademark) PA144" manufactured by BASF Japan Ltd .; compound represented by the following formula (1)). Except having changed, it carried out similarly to Example 1 and prepared the active energy ray-curable composition (16).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(比較例1)
 実施例1で用いたアデカスタブ LA-87を用いなかった以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(R1)を調製した。
(Comparative Example 1)
An active energy ray-curable composition (R1) was prepared in the same manner as in Example 1 except that ADK STAB LA-87 used in Example 1 was not used.
(比較例2)
 実施例1で用いたアデカスタブ LA-87を、ヒンダードアミン系光安定剤(BASFジャパン株式会社製「TINUVIN(登録商標) 111FDL」;コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物とN,N’,N’’,N’’’-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミンとの質量比1:1の混合物)に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(R2)を調製した。
(Comparative Example 2)
Adekastab LA-87 used in Example 1 was replaced with a hindered amine light stabilizer (“TINUVIN (registered trademark) 111FDL” manufactured by BASF Japan Ltd.); dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl. Polymer of -1-piperidineethanol and N, N ′, N ″, N ′ ″-tetrakis- (4,6-bis- (butyl- (N-methyl-2,2,6,6-tetramethyl Piperidin-4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10-diamine in a mass ratio of 1: 1) An active energy ray-curable composition (R2) was prepared.
(比較例3)
 実施例1で用いたアデカスタブ LA-87を、ヒンダードアミン系光安定剤(BASFジャパン株式会社製「TINUVIN(登録商標) 770DF」;ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバシエート)に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(R3)を調製した。
(Comparative Example 3)
Adekastab LA-87 used in Example 1 was replaced with a hindered amine light stabilizer (“TINUVIN (registered trademark) 770DF” manufactured by BASF Japan Ltd.); bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate The active energy ray-curable composition (R3) was prepared in the same manner as in Example 1 except for changing to).
(比較例4)
 実施例1で用いたアデカスタブ LA-87を、ヒンダードアミン系光安定剤(株式会社ADEKA製「アデカスタブ(登録商標) LA-81」;ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート)に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(R4)を調製した。
(Comparative Example 4)
Adeka Stub LA-87 used in Example 1 was replaced with a hindered amine light stabilizer (“ADEKA STAB (registered trademark) LA-81” manufactured by ADEKA Corporation); bis (1-undecanoxy-2,2,6,6-tetramethyl An active energy ray-curable composition (R4) was prepared in the same manner as in Example 1 except that the compound was changed to piperidin-4-yl) carbonate.
(比較例5)
 実施例1で用いたアデカスタブ LA-87を、ヒンダードアミン系光安定剤(BASFジャパン株式会社製「TINUVIN(登録商標) 123」;デカン二酸ビス{2,2,6,6-テトラメチル-1-(オクチルオキシ)ピペリジン-4-イル})に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(R5)を調製した。
(Comparative Example 5)
Adekastab LA-87 used in Example 1 was replaced with a hindered amine light stabilizer (“TINUVIN® 123” manufactured by BASF Japan Ltd.); bis (2,2,6,6-tetramethyl-1-decanoic acid) An active energy ray-curable composition (R5) was prepared in the same manner as in Example 1 except that (octyloxy) piperidin-4-yl}) was changed.
(比較例6)
 実施例1で用いたアデカスタブ LA-87を、ヒンダードアミン系光安定剤(BASFジャパン株式会社製「TINUVIN(登録商標) 5100」;ビス(2,2,6,6-テトラメチル-1-オクチルオキシピペリジン-4-イル)-1,10-デカンジオエートと1,8-ビス[{2,2,6,6-テトラメチル-4-((2,2,6,6-テトラメチル-1-オクチルオキシピペリジン-4-イル)-デカン-1,10-ジイル)ピペリジン-1-イル}オキシ]オクタンの混合物)に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(R6)を調製した。
(Comparative Example 6)
Adekastab LA-87 used in Example 1 was replaced with a hindered amine light stabilizer (“TINUVIN® 5100” manufactured by BASF Japan Ltd.); bis (2,2,6,6-tetramethyl-1-octyloxypiperidine -4-yl) -1,10-decandioate and 1,8-bis [{2,2,6,6-tetramethyl-4-((2,2,6,6-tetramethyl-1-octyl) Oxypiperidin-4-yl) -decane-1,10-diyl) piperidin-1-yl} oxy] octane)) except that the active energy ray-curable composition (R6 ) Was prepared.
(比較例7)
 実施例1で用いたアデカスタブ LA-87を、ヒンダードアミン系光安定剤(BASFジャパン株式会社製「TINUVIN(登録商標) 292」;ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート70~80質量%とメチル-1,2,2,6,6-ペンタメチル-4-ピペリジルセバケート20~30質量%の混合物)に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(R7)を調製した。
(Comparative Example 7)
Adekastab LA-87 used in Example 1 was replaced with a hindered amine light stabilizer (“TINUVIN (registered trademark) 292” manufactured by BASF Japan Ltd.); bis (1,2,2,6,6-pentamethyl-4-piperidyl) A mixture of 70 to 80% by mass of sebacate and 20 to 30% by mass of methyl-1,2,2,6,6-pentamethyl-4-piperidylsebacate). A curable composition (R7) was prepared.
(比較例8)
 実施例1で用いたアデカスタブ LA-87を、ヒンダードアミン系光安定剤(株式会社ADEKA製「アデカスタブ(登録商標) LA-52」;テトラキス(1,2,2,6,6―ペンタメチル-4-ピペリジル)ブタン-1,2,3,4-テトラカルボキシレート)に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(R8)を調製した。
(Comparative Example 8)
Adeka Stub LA-87 used in Example 1 was replaced with a hindered amine light stabilizer (“ADEKA STAB (registered trademark) LA-52” manufactured by ADEKA Corporation); tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl). ) Active energy ray-curable composition (R8) was prepared in the same manner as in Example 1 except that it was changed to (butane-1,2,3,4-tetracarboxylate).
(比較例9)
 実施例1で用いたアデカスタブ LA-87を、紫外線吸収剤(BASFジャパン株式会社製「TINUVIN(登録商標) 400」)に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(R9)を調製した。
(Comparative Example 9)
An active energy ray-curable composition was carried out in the same manner as in Example 1 except that Adeka Stab LA-87 used in Example 1 was changed to an ultraviolet absorber (“TINUVIN (registered trademark) 400” manufactured by BASF Japan Ltd.). (R9) was prepared.
(比較例10)
 実施例1で用いたアデカスタブ LA-87を、紫外線吸収剤(BASFジャパン株式会社製「TINUVIN(登録商標) 384-2」)に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(R10)を調製した。
(Comparative Example 10)
Active energy ray curability was carried out in the same manner as in Example 1 except that Adeka Stub LA-87 used in Example 1 was changed to a UV absorber (“TINUVIN (registered trademark) 384-2” manufactured by BASF Japan Ltd.). A composition (R10) was prepared.
(比較例11)
 実施例1で用いたアデカスタブ LA-87を、酸化防止剤(BASFジャパン株式会社製「IRGANOX(登録商標) 1010」)に変更した以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(R11)を調製した。
(Comparative Example 11)
An active energy ray-curable composition was carried out in the same manner as in Example 1 except that Adeka Stab LA-87 used in Example 1 was changed to an antioxidant (“IRGANOX (registered trademark) 1010” manufactured by BASF Japan Ltd.). (R11) was prepared.
(比較例12)
 実施例1で用いたKBM-13を用いなかった以外は実施例1と同様に行い、活性エネルギー線硬化性組成物(R12)を調製した。
(Comparative Example 12)
An active energy ray-curable composition (R12) was prepared in the same manner as in Example 1 except that KBM-13 used in Example 1 was not used.
[ハードコートフィルムの作製方法]
 実施例及び比較例で得られた活性エネルギー線硬化性組成物を、予めその表面を電気的処理(コロナ放電処理;出力100W、速度1.0m/分)した環状オレフィン樹脂フィルム基材(日本ゼオン株式会社製「ZEONOR(登録商標)フィルム PT14-080」、厚さ25μm)上に、ワイヤーバーを用いて塗布し、60℃で90秒間加熱後、空気雰囲気下で60行放置後、紫外線照射装置(アイグラフィックス株式会社製「MIDN-042-C1」、ランプ:120W/cm、高圧水銀灯)を用いて、照射光量0.22J/cmで紫外線を照射して、厚さ2μmの硬化塗膜を有するハードコートフィルム(1)~(16)、及び、(R1)~(R12)を得た。
[Method for producing hard coat film]
Cyclic olefin resin film base material (Nippon ZEON) whose surface was previously electrically treated (corona discharge treatment; output 100 W, speed 1.0 m / min) for the active energy ray-curable compositions obtained in Examples and Comparative Examples. (ZEONOR (registered trademark) film PT14-080, manufactured by Co., Ltd., 25 μm thick), coated with a wire bar, heated at 60 ° C. for 90 seconds, left in an air atmosphere for 60 lines, and then irradiated with ultraviolet light A cured coating film having a thickness of 2 μm by irradiating ultraviolet rays with an irradiation light amount of 0.22 J / cm 2 using (MIDN-042-C1 manufactured by iGraphics Co., Ltd., lamp: 120 W / cm, high-pressure mercury lamp) Hard coat films (1) to (16) and (R1) to (R12) having
[耐擦傷性の評価]
 上記で得られたハードコートフィルムの硬化塗膜の表面について、クロックメーター形摩擦試験器(直径1.0cm円形摩擦子、スチールウール#0000、荷重500g、10往復)を用いて試験を行い、試験後の硬化塗膜表面を目視で観察し、下記の基準により耐擦傷性を評価した。
 A:傷が無い。
 B:浅い傷が5本以下である。
 C:傷が5本以下である。
 D:傷が多数ある。
 E:顕著に深い傷が多数ある。
[Evaluation of scratch resistance]
The surface of the cured coating film of the hard coat film obtained above was tested using a clock meter type friction tester (diameter 1.0 cm circular friction piece, steel wool # 0000, load 500 g, 10 reciprocations). The surface of the subsequent cured coating film was visually observed, and scratch resistance was evaluated according to the following criteria.
A: There are no scratches.
B: There are 5 or less shallow scratches.
C: There are 5 or less scratches.
D: There are many scratches.
E: There are many remarkably deep scratches.
[初期密着性の評価]
 上記で得られたハードコートフィルムの硬化塗膜表面に1mm間隔で縦、横11本の切れ目を入れて100個のマス目を作製した。次いで、セロハンテープ(ニチバン株式会社製「セロテープ(登録商標) CT-18」)をその表面に密着させた後、一気に剥がす操作を2回繰り返した。剥離せずに残った残面積比率から、下記の基準により初期密着性を評価した。なお、下記の基準でD~Fの評価となったものは、不合格と判定した。
 A:残面積比率が100%である。
 B:残面積比率が95%以上99%以下である。
 C:残面積比率が85%以上95%以下である。
 D:残面積比率が50%以上84%以下である。
 E:残面積比率が35%以上49%以下である。
 F:残面積比率が34%以下である。
[Evaluation of initial adhesion]
Eleven cuts were made vertically and horizontally at intervals of 1 mm on the cured coating surface of the hard coat film obtained above to produce 100 squares. Next, the cellophane tape (“Cellotape (registered trademark) CT-18” manufactured by Nichiban Co., Ltd.) was brought into close contact with the surface and then peeled off at a stroke twice. From the remaining area ratio remaining without peeling, the initial adhesion was evaluated according to the following criteria. In addition, those evaluated as D to F based on the following criteria were judged as rejected.
A: The remaining area ratio is 100%.
B: The remaining area ratio is 95% or more and 99% or less.
C: The remaining area ratio is 85% or more and 95% or less.
D: The remaining area ratio is 50% or more and 84% or less.
E: The remaining area ratio is 35% or more and 49% or less.
F: The remaining area ratio is 34% or less.
[耐光性試験後の密着性(耐光密着性)の評価]
 上記で得られたハードコートフィルムについて、サンシャインウェザオメーターによる促進耐候性試験(JIS L0891:2007に準拠し、試験条件は下記の通りである。)を実施し、試験後に上記の初期密着性の評価と同様に行い、耐光密着性を評価した。
 光源:サンシャインカーボンアーク灯連続照射
 温度:63℃
 相対湿度:50%RH
 照射時間:50時間、100時間、150時間
 降雨の周期及び時間:設定なし
[Evaluation of adhesion after light resistance test (light adhesion resistance)]
The hard coat film obtained above was subjected to an accelerated weather resistance test using a sunshine weatherometer (based on JIS L0891: 2007, test conditions are as follows), and after the test, It carried out similarly to evaluation and evaluated light-resistant adhesiveness.
Light source: Sunshine carbon arc lamp continuous irradiation Temperature: 63 ° C
Relative humidity: 50% RH
Irradiation time: 50 hours, 100 hours, 150 hours Rain cycle and time: No setting
 実施例及び比較例の活性エネルギー線硬化性組成物の組成、及び上記で得られたハードコートフィルムの評価結果を表1~3に示す。なお、表1~3中の組成は、すべて不揮発分量で記載しており、質量部に関しては小数点第一位を四捨五入した値を記載している。 Tables 1 to 3 show the compositions of the active energy ray-curable compositions of Examples and Comparative Examples and the evaluation results of the hard coat films obtained above. The compositions in Tables 1 to 3 are all described in terms of non-volatile content, and the mass part is a value obtained by rounding off the first decimal place.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表1~3に示した評価結果から、本発明の活性エネルギー線硬化性組成物は、硬化塗膜表面の耐擦傷性に優れ、環状オレフィン樹脂フィルム基材との初期密着性も高く、さらに耐光密着性(耐光試験後の密着性)も優れたものであった。 From the evaluation results shown in Tables 1 to 3, the active energy ray-curable composition of the present invention has excellent scratch resistance on the surface of the cured coating film, high initial adhesion to the cyclic olefin resin film substrate, and light resistance. The adhesion (adhesion after the light resistance test) was also excellent.
 一方、表4及び5に示した比較例1~11は、本発明で用いるヒンダードアミン系光安定剤(B)を含有しない活性エネルギー線硬化性組成物を用いた態様であるが、耐擦傷性、初期密着性及び耐光密着性の少なくとも1つが十分でなく、実用性に問題があった。また、比較例12は、化合物(C)を含有しない活性エネルギー線硬化性組成物を用いた態様であるが、耐光密着性が十分ではなかった。 On the other hand, Comparative Examples 1 to 11 shown in Tables 4 and 5 are embodiments using an active energy ray-curable composition that does not contain the hindered amine light stabilizer (B) used in the present invention. At least one of the initial adhesion and the light-resistant adhesion was not sufficient, and there was a problem in practicality. Moreover, although the comparative example 12 is an aspect using the active energy ray curable composition which does not contain a compound (C), light-resistant adhesiveness was not enough.

Claims (13)

  1. 活性エネルギー線硬化性化合物(A)と、重合性官能基を有するヒンダードアミン系光安定剤(B1)及びヒンダードフェノール基を有するヒンダードアミン系光安定剤(B2)からなる群から選ばれる少なくとも1種であるヒンダードアミン系光安定剤(B)と、シランカップリング剤(c-1)、(メタ)アクリルアミド化合物(c-2)及びトリシクロデカン構造を有する重合性単量体(c-3)からなる群より選ばれる1種以上の化合物(C)とを含有することを特徴とする活性エネルギー線硬化性組成物。 At least one selected from the group consisting of an active energy ray-curable compound (A), a hindered amine light stabilizer (B1) having a polymerizable functional group, and a hindered amine light stabilizer (B2) having a hindered phenol group. It consists of a hindered amine light stabilizer (B), a silane coupling agent (c-1), a (meth) acrylamide compound (c-2), and a polymerizable monomer (c-3) having a tricyclodecane structure. An active energy ray-curable composition comprising at least one compound (C) selected from the group.
  2. 前記光安定剤(B1)が、2,2,6,6-テトラメチル-4-ピペリジル(メタ)アクリレート及び1,2,2,6,6-ペンタメチル-4-ピペリジル(メタ)アクリレートからなる群から選ばれる少なくとも1種である請求項1記載の活性エネルギー線硬化性組成物。 The light stabilizer (B1) is composed of 2,2,6,6-tetramethyl-4-piperidyl (meth) acrylate and 1,2,2,6,6-pentamethyl-4-piperidyl (meth) acrylate The active energy ray-curable composition according to claim 1, which is at least one selected from the group consisting of:
  3. 前記光安定剤(B2)が、下記式(1)で表される化合物である請求項1又は2記載の活性エネルギー線硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001
    The active energy ray-curable composition according to claim 1 or 2, wherein the light stabilizer (B2) is a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
  4. 前記ヒンダードアミン系光安定剤(B)の含有量が、前記活性エネルギー線硬化性化合物(A)100質量部に対して、0.05~5質量部の範囲である請求項1~3のいずれか1項記載の活性エネルギー線硬化性組成物。 The content of the hindered amine light stabilizer (B) is in the range of 0.05 to 5 parts by mass with respect to 100 parts by mass of the active energy ray-curable compound (A). 2. The active energy ray-curable composition according to item 1.
  5. 前記シランカップリング剤(c-1)が、アルキル基、フェニル基、及び、(メタ)アクリロイル基からなる群より選ばれる1種以上の官能基を有するシランカップリング剤である請求項1~4のいずれか1項記載の活性エネルギー線硬化性組成物。 The silane coupling agent (c-1) is a silane coupling agent having one or more functional groups selected from the group consisting of an alkyl group, a phenyl group, and a (meth) acryloyl group. The active energy ray-curable composition according to any one of the above.
  6. 前記(メタ)アクリルアミド化合物(c-2)が、N-[3-(N’,N’-ジメチルアミノプロピル)(メタ)アクリルアミド、3-(アクリロイルアミノ)プロピルトリメチルアンモニウム=クロリド、及びN-(2-ヒドロキシエチル)(メタ)アクリルアミドからなる群より選ばれる1種以上の化合物である請求項1~5のいずれか1項記載の活性エネルギー線硬化性組成物。 The (meth) acrylamide compound (c-2) is N- [3- (N ′, N′-dimethylaminopropyl) (meth) acrylamide, 3- (acryloylamino) propyltrimethylammonium chloride, and N- ( 6. The active energy ray-curable composition according to claim 1, which is one or more compounds selected from the group consisting of (2-hydroxyethyl) (meth) acrylamide.
  7. 前記トリシクロデカン構造を有する重合性単量体(c-3)が、ジメチロールトリシクロデカンジ(メタ)アクリレート、トリシクロデカンジオールジ(メタ)アクリレート、及びトリシクロデカンジメタノールジ(メタ)アクリレートからなる群より選ばれる1種以上の重合性単量体である請求項1~6のいずれか1項記載の活性エネルギー線硬化性組成物。 The polymerizable monomer (c-3) having a tricyclodecane structure is composed of dimethylol tricyclodecane di (meth) acrylate, tricyclodecanediol di (meth) acrylate, and tricyclodecane dimethanol di (meth). The active energy ray-curable composition according to any one of claims 1 to 6, which is one or more polymerizable monomers selected from the group consisting of acrylates.
  8. 前記化合物(C)の含有量が、前記活性エネルギー線硬化性化合物(A)100質量部に対して、1~50質量部の範囲である請求項1~7のいずれか1項記載の活性エネルギー線硬化性組成物。 The active energy according to any one of claims 1 to 7, wherein the content of the compound (C) is in the range of 1 to 50 parts by mass with respect to 100 parts by mass of the active energy ray-curable compound (A). A linear curable composition.
  9. 前記活性エネルギー線硬化性化合物(A)が、多官能(メタ)アクリレート(A1)を含むものである請求項1~8のいずれか1項記載の活性エネルギー線硬化性組成物。 The active energy ray-curable composition according to any one of claims 1 to 8, wherein the active energy ray-curable compound (A) contains a polyfunctional (meth) acrylate (A1).
  10. 前記多官能(メタ)アクリレート(A1)が、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート及びペンタエリスリトールトリ(メタ)アクリレートからなる群から選ばれる少なくとも1種である請求項9記載の環状オレフィン樹脂フィルム。 The polyfunctional (meth) acrylate (A1) is selected from the group consisting of dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, pentaerythritol tetra (meth) acrylate and pentaerythritol tri (meth) acrylate. The cyclic olefin resin film according to claim 9, which is at least one kind.
  11. 前記活性エネルギー線硬化性組成物が、さらに無機充填剤を含有する請求項1~10のいずれか1項記載の活性エネルギー線硬化性組成物。 The active energy ray-curable composition according to any one of claims 1 to 10, wherein the active energy ray-curable composition further contains an inorganic filler.
  12. 前記無機充填剤が、シリカ粒子である請求項11記載の活性エネルギー線硬化性組成物。 The active energy ray-curable composition according to claim 11, wherein the inorganic filler is silica particles.
  13. 環状オレフィン樹脂フィルム基材の少なくとも1面に、請求項1~12のいずれか1項記載の活性エネルギー線硬化性組成物の硬化塗膜を有することを特徴とするハードコートフィルム。 A hard coat film comprising a cured coating film of the active energy ray-curable composition according to any one of claims 1 to 12 on at least one surface of a cyclic olefin resin film substrate.
PCT/JP2018/014230 2017-04-27 2018-04-03 Active energy ray-curable composition and hard coat film WO2018198692A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018557953A JP6531969B2 (en) 2017-04-27 2018-04-03 Active energy ray curable composition and hard coat film
CN201880027309.6A CN110573534B (en) 2017-04-27 2018-04-03 Active energy ray-curable composition and hard coat film

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017088320 2017-04-27
JP2017088321 2017-04-27
JP2017-088321 2017-04-27
JP2017-088320 2017-04-27
JP2017-093883 2017-05-10
JP2017093883 2017-05-10

Publications (1)

Publication Number Publication Date
WO2018198692A1 true WO2018198692A1 (en) 2018-11-01

Family

ID=63919725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014230 WO2018198692A1 (en) 2017-04-27 2018-04-03 Active energy ray-curable composition and hard coat film

Country Status (4)

Country Link
JP (1) JP6531969B2 (en)
CN (1) CN110573534B (en)
TW (1) TWI749213B (en)
WO (1) WO2018198692A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026675A1 (en) * 2018-07-31 2020-02-06 Ricoh Company, Ltd. Composition, artificial nail composition, nail decoration material, artificial nail, stored container, image forming apparatus, and image forming method
JP2020023662A (en) * 2018-07-31 2020-02-13 株式会社リコー Composition, artificial nail composition, nail decoration material, artificial nail, storage container, image forming device, and image forming method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6979559B1 (en) * 2020-12-21 2021-12-15 東洋インキScホールディングス株式会社 Active energy ray-curable hard coat agent, hard coat layer and laminate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09169807A (en) * 1995-12-19 1997-06-30 Dainippon Ink & Chem Inc Nonaqueous dispersion type resin and coating resin composition containing the same
JP2002338611A (en) * 2001-05-14 2002-11-27 Nippon Shokubai Co Ltd Curable composition
JP2010089458A (en) * 2008-10-10 2010-04-22 Jsr Corp Laminated film, laminated film with inorganic vapor deposition layer, and method for manufacturing the same
WO2013151169A1 (en) * 2012-04-06 2013-10-10 三菱レイヨン株式会社 Laminate having hard coat layer, and method for manufacturing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130303649A1 (en) * 2010-12-02 2013-11-14 Kaneka Corporation Active energy ray-curable composition for optical material, cured product, and production method
WO2014003139A1 (en) * 2012-06-29 2014-01-03 ソマール株式会社 Energy ray-curable resin composition and weather-resistant hard coat film utilizing same
CN105377543B (en) * 2013-03-29 2017-08-01 三菱化学株式会社 Surface possesses the article of minute concave-convex structure layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09169807A (en) * 1995-12-19 1997-06-30 Dainippon Ink & Chem Inc Nonaqueous dispersion type resin and coating resin composition containing the same
JP2002338611A (en) * 2001-05-14 2002-11-27 Nippon Shokubai Co Ltd Curable composition
JP2010089458A (en) * 2008-10-10 2010-04-22 Jsr Corp Laminated film, laminated film with inorganic vapor deposition layer, and method for manufacturing the same
WO2013151169A1 (en) * 2012-04-06 2013-10-10 三菱レイヨン株式会社 Laminate having hard coat layer, and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026675A1 (en) * 2018-07-31 2020-02-06 Ricoh Company, Ltd. Composition, artificial nail composition, nail decoration material, artificial nail, stored container, image forming apparatus, and image forming method
JP2020023662A (en) * 2018-07-31 2020-02-13 株式会社リコー Composition, artificial nail composition, nail decoration material, artificial nail, storage container, image forming device, and image forming method
JP7334461B2 (en) 2018-07-31 2023-08-29 株式会社リコー Artificial nail composition, nail decorating material, artificial nail, container, and image forming method

Also Published As

Publication number Publication date
JP6531969B2 (en) 2019-06-19
CN110573534A (en) 2019-12-13
TW201843249A (en) 2018-12-16
JPWO2018198692A1 (en) 2019-06-27
CN110573534B (en) 2021-11-09
TWI749213B (en) 2021-12-11

Similar Documents

Publication Publication Date Title
JP5954505B2 (en) Active energy ray curable composition, cured product thereof and article having cured coating film thereof
JP6057121B2 (en) Active energy ray curable composition, cured product thereof and article having cured coating film thereof
WO2015098495A1 (en) Hard coat film and information display device
JP6025010B2 (en) Active energy ray-curable composition and film using the same
JP2014106275A (en) Hard coat film, decorative film, and protective film
JP2014189566A (en) Active energy ray-curable composition for cyclic olefin resin and cyclic olefin resin film using the composition
JP6531969B2 (en) Active energy ray curable composition and hard coat film
WO2015198787A1 (en) Active-energy-curing resin composition, coating material, coating film, and laminate film
JP6372685B2 (en) Active energy ray-curable composition and film using the same
JP6135234B2 (en) Active energy ray-curable composition for cyclic olefin resin and cyclic olefin resin film using the same
WO2014192654A1 (en) Active energy ray-curable composition and film produced using same
JPWO2018100929A1 (en) Active energy ray-curable composition and film using the same
JP6578473B2 (en) Active energy ray-curable resin composition, paint, coating film, and laminated film
JP6725864B2 (en) Active energy ray curable composition and film using the same
JPWO2017221725A1 (en) Active energy ray-curable resin composition and laminated film
JP6331115B2 (en) Cyclic olefin resin film
TWI586767B (en) Cyclic olefin resin film
JPWO2019124048A1 (en) Urethane (meta) acrylate resin, curable resin composition, cured product and laminated film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018557953

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18792055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18792055

Country of ref document: EP

Kind code of ref document: A1