WO2015098495A1 - Hard coat film and information display device - Google Patents

Hard coat film and information display device Download PDF

Info

Publication number
WO2015098495A1
WO2015098495A1 PCT/JP2014/082509 JP2014082509W WO2015098495A1 WO 2015098495 A1 WO2015098495 A1 WO 2015098495A1 JP 2014082509 W JP2014082509 W JP 2014082509W WO 2015098495 A1 WO2015098495 A1 WO 2015098495A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coat
meth
acrylate
mass
coat film
Prior art date
Application number
PCT/JP2014/082509
Other languages
French (fr)
Japanese (ja)
Inventor
佳美 杉浦
佑輔 高橋
大亮 渡辺
詩織 高石
茂年 西澤
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53478360&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015098495(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2015539313A priority Critical patent/JP5939449B2/en
Publication of WO2015098495A1 publication Critical patent/WO2015098495A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/343Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives

Definitions

  • the present invention relates to a hard coat film that can be used in fields such as manufacturing scenes of information display devices, for example.
  • Smaller electronic terminals such as mobile computers, electronic notebooks, and mobile phones are required to be further reduced in size and thickness. Accordingly, the information display device installed in the small electronic terminal is also required to be small and thin.
  • an information display device equipped with a so-called touch panel function is usually used for the purpose of preventing the information display unit from being damaged or damaged when operated using a touch pen or the like.
  • a hard coat film or the like is provided on the upper surface of the display portion.
  • the hard coat film examples include a polyfunctional (meth) acrylate (A) having two or more (meth) acryloyl groups in the molecule, and a urethane (meth) having two (meth) acryloyl groups in the molecule.
  • An ultraviolet curable hard coat resin composition for a film containing acrylate (B-1) and / or epoxy (meth) acrylate (B-2) and colloidal silica (C) having a primary particle size of 1 nm to 200 nm is used.
  • the hard coat film obtained by this is known (for example, refer patent document 1).
  • the information display unit may be dented or damaged.
  • the problem to be solved by the present invention is, for example, provided with a level of hardness that does not cause dents or the like of the information display unit even when an operation using a touch pen or the like is repeated, and has excellent scratch resistance. It is to provide a hard coat film.
  • the present invention provides a hard coat containing a first hard coat layer (A) containing a filler and an active energy ray-curable compound (b1) having a fluorine atom and a silicon atom on at least one surface of a transparent substrate.
  • the second hard coat layer (B) formed using the agent (b2) is laminated in order.
  • the hard coat film of the present invention has the above-described configuration, and has a hardness level that does not cause dents or the like in the information display portion even when the operation with a touch pen or the like is repeated, for example. Since it has scratch resistance, it can be used, for example, in the manufacture of information display devices constituting screen panels and electronic terminals.
  • the hard coat film of the present invention can maintain excellent slipperiness and antifouling properties for a long period of time, and therefore can be used for manufacturing information display devices constituting screen panels and electronic terminals.
  • the hard coat film of the present invention comprises a first hard coat layer (A) containing a filler and an active energy ray-curable compound (b1) having a fluorine atom and a silicon atom on at least one surface of a transparent substrate.
  • the second hard coat layer (B) formed using the hard coat agent (b2) contained therein is laminated in order.
  • various resin film base materials generally used as the base material of the hard coat film can be used.
  • the resin film substrate examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, cellophane, diacetyl cellulose, triacetyl cellulose, acetyl cellulose butyrate, cellulose acetate propionate, cycloolefin polymer, cycloolefin Olefin copolymer, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyetheretherketone, polyethersulfone, polyetherimide, polyimide, fluororesin,
  • a resin film substrate obtained by using nylon, acrylic resin or the like can be used.
  • the resin film base material it is preferable to use the resin film base material obtained using a polyethylene terephthalate, a triacetyl cellulose, poly
  • the transparent substrate a substrate composed only of the resin film may be used. However, in order to further improve the adhesion with the first hard coat layer (A), the resin film substrate is used. It is preferable to use a transparent substrate having a primer layer on its surface.
  • said transparent base material in order to improve the adhesiveness with said 1st hard-coat layer (A) further, uneven
  • the transparent substrate preferably has a thickness in the range of 50 ⁇ m to 200 ⁇ m, preferably has a thickness in the range of 75 ⁇ m to 150 ⁇ m, and has a thickness in the range of 90 ⁇ m to 130 ⁇ m. It is more preferable to use a thin film and to obtain a hard coat film that is thin and can prevent curling.
  • the transparent substrate for example, a material having excellent transparency at a level that can ensure good visibility when applied to a display of an information display device is used.
  • the transparent substrate one having a total light transmittance of 85% or more is preferably used, more preferably 88% or more, and more preferably 90% or more. Is more preferable.
  • a substrate having an elastic modulus in the range of 3 GPa to 7 GPa is preferably used, and a film substrate in the range of 3 GPa to 5 GPa is more preferable.
  • a transparent substrate having an elastic modulus in the above range cracks in the hard coat layer due to deformation of the film substrate can be suppressed, and a decrease in the surface hardness of the hard coat film can be suppressed. .
  • flexibility can be ensured by using the base material provided with the said elasticity modulus, it becomes possible to affix the hard coat film of this invention on a loose curved surface part.
  • a 1st hard-coat layer (A) is a layer laminated
  • the first hard coat layer (A) imparts high hardness to the hard coat film of the present invention.
  • the first hard coat layer (A) preferably has a thickness in the range of 5 ⁇ m to 30 ⁇ m, and a thickness in the range of 10 ⁇ m to 25 ⁇ m is preferable for obtaining a hard coat film with higher hardness. And more preferable.
  • the first hard coat layer (A) can be formed by using a hard coat agent (a1) containing a filler.
  • the hard coat agent (a1) for example, a material containing a filler and an active energy ray-curable compound can be used.
  • Examples of the filler that can be used include silica, zirconia, titanium oxide, antimony pentoxide, magnesium carbonate, aluminum hydroxide, barium sulfate, and organic beads. Among these, it is preferable to use silica as the filler in order to further improve the hardness of the hard coat film.
  • silica those generally called reactive silica and non-reactive silica can be used alone or in combination.
  • Examples of the reactive silica include those obtained by adding a reactive group such as a (meth) acryloyl group to the surface of silica particles.
  • the reactive silica in order to achieve both high transparency of the hard coat layer (A) and high hardness, it is preferable to use what is generally referred to as colloidal silica having an average particle size of nanometer order. It is more preferable to use those having an average particle size in the range of 5 nm to 200 nm, and it is more preferable to use those having an average particle size in the range of 5 nm to 100 nm.
  • non-reactive silica silica particles having no reactive group as described above can be used.
  • Nonreactive functional groups may be introduced on the surface of the nonreactive silica.
  • the non-reactive silica in order to achieve both high transparency and high hardness of the hard coat layer (A) and to prevent curling of the hard coat film, it has an average particle size of nanometer order, Generally, what is called colloidal silica is preferably used, more preferably one having an average particle size in the range of 5 nm to 200 nm, more preferably one having an average particle size in the range of 5 nm to 100 nm. Further preferred.
  • the filler it is preferable to use a combination of the reactive silica and the non-reactive silica.
  • the reactive silica and the non-reactive silica have a mass ratio of [reactive silica / non-reactive silica] of 0. It is preferable to use a combination so as to be in the range of 5 to 1.5, and it is preferable to use a combination so as to be in the range of 0.6 to 1, because the hardness of the first hard coat layer (A) Since the hardness of a coat film can be improved further, it is more preferable.
  • the urethane (meth) acrylate mentioned later which may be contained in the said hard-coat agent (a1), and three or more It is preferable to use a filler containing 100 to 300 parts by mass of filler with respect to a total of 100 parts by mass of the polyfunctional (meth) acrylate having a (meth) acryloyl group, and 150 to 280 parts by mass. It is more preferable to use those contained in the range of parts in order to obtain a hard coat film having higher hardness and more excellent scratch resistance.
  • the hard coat agent (a1) that can be used for forming the hard coat layer (A) a material containing an active energy ray-curable compound in addition to the filler can be used.
  • urethane (meth) acrylate for example, urethane (meth) acrylate, polyfunctional (meth) acrylate having three or more (meth) acryloyl groups other than the urethane (meth) acrylate, and the like can be used.
  • (meth) acrylate refers to one or both of acrylate and methacrylate
  • (meth) acryloyl group refers to one or both of acryloyl group and methacryloyl group.
  • urethane (meth) acrylate for example, those having four or more (meth) acryloyl groups obtained by reacting an aliphatic polyisocyanate and a (meth) acrylate having a hydroxyl group can be used.
  • aliphatic polyisocyanate examples include aliphatic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, and lysine triisocyanate; norbornane diisocyanate, isophorone diisocyanate, methylenebis (4-cyclohexylisocyanate), 1,3-bis (isocyanatomethyl)
  • cycloaliphatic polyisocyanates such as cyclohexane, 2-methyl-1,3-diisocyanatocyclohexane, 2-methyl-1,5-diisocyanatocyclohexane, and their trimers (trimers) can do.
  • aliphatic polyisocyanate it is possible to use at least one selected from the group consisting of hexamethylene diisocyanate, norbornane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate) and trimers thereof among the above-mentioned aliphatic polyisocyanates. It is preferable for further increasing the hardness of the hard coat layer (A) and the hard coat film.
  • the (meth) acrylate having a hydroxyl group that can be reacted with the aliphatic polyisocyanate for example, when producing a urethane (meth) acrylate having preferably 4 or more (meth) acryloyl groups, It is preferable to use those having two or more acryloyl groups.
  • Examples of the (meth) acrylate having a hydroxyl group include trimethylolpropane di (meth) acrylate, ethylene oxide-modified trimethylolpropane di (meth) acrylate, propylene oxide-modified trimethylolpropane di (meth) acrylate, and glycerin di (meth).
  • (meth) acrylates having a hydroxyl group among them, pentaerythritol tri (meth) acrylate and dipentaerythritol penta (meth) acrylate may be used.
  • the hardness of the hard coat layer (A) and the present invention It is preferable for further increasing the hardness of the hard coat film.
  • the reaction between the aliphatic polyisocyanate and the (meth) acrylate having a hydroxyl group can be carried out by a conventional urethanization reaction. Moreover, in order to accelerate
  • urethanization catalyst examples include amine compounds such as pyridine, pyrrole, triethylamine, diethylamine and dibutylamine; phosphorus compounds such as triphenylphosphine and triethylphosphine; dibutyltin dilaurate, octyltin trilaurate, octyltin diacetate, dibutyltin Examples thereof include organic tin compounds such as diacetate and tin octylate, and organic zinc compounds such as zinc octylate.
  • the hard coat agent (a1) usable in the present invention may be one containing one type of urethane (meth) acrylate as the urethane (meth) acrylate, or two or more types of urethane (meth). You may use what contains an acrylate.
  • the hard coating agent (a1) urethane acrylate obtained by reacting hexamethylene diisocyanate with an acrylate having an arbitrary hydroxyl group, and a trimer of hexamethylene diisocyanate (trimerized product) and an arbitrary
  • a combination of urethane acrylates obtained by reacting with an acrylate having a hydroxyl group it is preferable to use a combination of urethane acrylates obtained by reacting with an acrylate having a hydroxyl group.
  • the hard coating agent (a1) is preferably one containing the urethane (meth) acrylate in the range of 1% by mass to 80% by mass with respect to the total nonvolatile content. It is preferable to use what is contained in the range of mass%.
  • said hard-coat agent (a1) what contains the polyfunctional (meth) acrylate which has a 3 or more (meth) acryloyl group as needed other than the above-mentioned filler and urethane (meth) acrylate. Can be used.
  • polyfunctional (meth) acrylate examples include trimethylolpropane tri (meth) acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, and ditrimethylolpropane tri (meth).
  • the (meth) acryloyl group equivalent is 50 g / eq. ⁇ 200 g / eq. In the range of 70 g / eq. ⁇ 150 g / eq. In the range of 80 g / eq. To 120 g / eq. It is more preferable to use the thing of the range.
  • polyfunctional (meth) acrylate it is preferable to use pentaerythritol tetraacrylate (acryloyl group equivalent: 88 g / eq.), Dipentaerythritol hexaacrylate (acryloyl group equivalent: 118 g / eq.), Or the like.
  • the urethane (meth) acrylate and the polyfunctional (meth) acrylate may be used in a mass ratio of [the urethane (meth) acrylate / the polyfunctional (meth) acrylate] in the range of 90/10 to 10/90. Preferably, it is used in the range of 80/20 to 20/80, more preferably in the range of 75/25 to 25/75.
  • the (meth) acrylate having one (meth) acryloyl group and two You may use what contains other (meth) acrylates, such as (meth) acrylate which has a (meth) acryloyl group.
  • the usage-amount of other (meth) acrylate is 40 mass parts or less with respect to a total of 100 mass parts of the said urethane (meth) acrylate and the said polyfunctional (meth) acrylate. It is preferable that it is 20 parts by mass or less.
  • the hard coat agent (a1) in addition to the above-described ones, for example, a polymerization inhibitor, a surface conditioner, an antistatic agent, an antifoaming agent, and a viscosity adjuster as long as the effects of the present invention are not impaired.
  • Agents, light-resistant stabilizers, weather-resistant stabilizers, heat-resistant stabilizers, ultraviolet absorbers, antioxidants, leveling agents, organic pigments, inorganic pigments, pigment dispersants and the like can be used alone or in combination.
  • the second hard coat layer (B) to be described later is laminated on the surface of the first hard coat layer (A) formed using the hard coat agent (a1), the interlayer between these layers is laminated. It is preferable not to contain the component which reduces adhesiveness as much as possible. Specifically, it is preferable that the hard coating agent (a1) does not contain an active energy ray-curable compound (b1) having a fluorine atom and a silicon atom, which will be described later.
  • the first hard coat layer (A) is formed, for example, by applying the hard coat agent (a1) to one or both sides of the transparent base material, drying it, and then irradiating with active energy rays.
  • the active energy rays include ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • ultraviolet rays it is preferable to use those containing a photopolymerization initiator or a photosensitizer as the hard coat agent (a1).
  • a hard coating agent (a1) that does not contain a photopolymerization initiator or a photosensitizer is used. Also good.
  • Examples of the photopolymerization initiator include intramolecular cleavage type photopolymerization initiators and hydrogen abstraction type photopolymerization initiators.
  • Examples of the intramolecular cleavage type photopolymerization initiator include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, oligo [2-hydroxy-2-methyl-1- [4- ( 1-methylvinyl) phenyl] propanone], benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy -2-propyl) ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) -Acetophenone compounds such as butanone
  • the hydrogen abstraction type photopolymerization initiator includes, for example, benzophenone, methyl 4-phenylbenzophenone o-benzoylbenzoate, 4,4′-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide.
  • the photosensitizer examples include tertiary amine compounds such as diethanolamine, N-methyldiethanolamine and tributylamine, urea compounds such as o-tolylthiourea, sodium diethyldithiophosphate, s-benzylisothuronium-p. -Sulfur compounds such as toluene sulfonate.
  • tertiary amine compounds such as diethanolamine, N-methyldiethanolamine and tributylamine
  • urea compounds such as o-tolylthiourea, sodium diethyldithiophosphate, s-benzylisothuronium-p.
  • -Sulfur compounds such as toluene sulfonate.
  • photopolymerization initiators and photosensitizers are each 0.05 parts by mass with respect to a total of 100 parts by mass of urethane (meth) acrylate and polyfunctional (meth) acrylate contained in the hard coat agent (a1). It is preferably used in the range of ⁇ 20 parts by mass, and more preferably in the range of 0.5 to 15 parts by mass.
  • the second hard coat layer (B) is a layer laminated on the surface of the first hard coat layer (A) constituting the hard coat film of the present invention.
  • the second hard coat layer (B) imparts excellent slipperiness to the hard coat film of the present invention, and as a result, imparts excellent scratch resistance.
  • the second hard coat layer (B) preferably has a thickness in the range of 500 nm to 15 ⁇ m, and the thickness in the range of 1 ⁇ m to 10 ⁇ m achieves both a reduction in thickness and excellent scratch resistance. It is more preferable for obtaining a hard coat film.
  • the second hard coat layer (B) can be formed by using a hard coat agent (b2) containing an active energy ray-curable compound (b1) having a fluorine atom and a silicon atom.
  • a hard coat agent (b2) containing an active energy ray-curable compound (b1) having a fluorine atom and a silicon atom.
  • the hard coat agent (b2) one containing an active energy ray-curable compound (b1) having a fluorine atom and a silicon atom can be used. Thereby, it is possible to obtain a hard coat film that achieves both high hardness and excellent scratch resistance, and is excellent in stain resistance and fingerprint resistance.
  • active energy ray-curable compound (b1) for example, compounds having a fluorine atom and a silicon atom among compounds having a fluorocarbon chain, a siloxane chain, or a hydrocarbon chain can be used.
  • the active energy ray-curable compound (b1) having a poly (perfluoroalkylene ether) chain as a fluorocarbon chain and a cyclopolysiloxane structure.
  • It is preferable to use the compound (b1-1) having a poly (perfluoroalkylene ether) chain as a fluorocarbon chain and a cyclopolysiloxane structure.
  • Examples of the poly (perfluoroalkylene ether) chain of the compound (b1-1) include those having a structure in which a divalent fluorocarbon group having 1 to 3 carbon atoms and oxygen atoms are alternately connected.
  • the divalent fluorocarbon group having 1 to 3 carbon atoms may be one type or a combination of two or more types. Specifically, those represented by the following structural formula (1) may be used. Can be mentioned.
  • X is the following formulas (1-1) to (1-5), and X is one of the following formulas (1-1) to (1-5)
  • two or more of the following formulas (1-1) to (1-5) may be present in a random or block form, and n represents a repeating unit. Represents an integer of 2 to 200.
  • poly (perfluoroalkylene ether) chains among the above, a perfluoromethylene group represented by the formula (1-1), a perfluoroethylene group represented by the formula (1-2), and It is preferable that the poly (perfluoroalkylene ether) chain is constituted by the following in order to further improve the antifouling property of the hard coat film.
  • the molar ratio of the perfluoromethylene group represented by the formula (1-1) to the perfluoroethylene group represented by the formula (1-2) [the perfluoromethylene represented by the formula (1-1) Methylene group / perfluoroethylene group represented by the formula (1-2)] is preferably in the range of 1/10 to 10/1.
  • the value of n in the general formula (1) is preferably in the range of 2 to 200, more preferably in the range of 10 to 100, and still more preferably in the range of 20 to 80.
  • Examples of the cyclopolysiloxane structure that the compound (b1-1) has include a structure represented by the following general formula (2).
  • R 1 is a methyl group
  • R 3 is a divalent organic group bonded to a poly (perfluoroalkylene ether) chain
  • R 4 is a 1 having a (meth) acryloyl group.
  • m is an integer of 2 to 5.
  • the cyclopolysiloxane structure is preferably a cyclotetrasiloxane structure in which m in the general formula (2) is 3, among the above-described cyclopolysiloxane structures.
  • the divalent linking group that connects the poly (perfluoroalkylene ether) chain and the cyclopolysiloxane structure is not particularly limited as long as it is a divalent organic group.
  • the divalent linking group is represented by the following general formula (3). Can be mentioned.
  • Y is an alkylene group having 1 to 6 carbon atoms.
  • the divalent linking group that bonds the cyclopolysiloxane structure and the (meth) acryloyl group is not particularly limited as long as it is a divalent organic group.
  • it is represented by the following general formula (4). Things.
  • Z 1 , Z 2 and Z 3 are each independently an alkylene group having 1 to 6 carbon atoms.
  • the compound (b1-1) can be produced, for example, through the following steps (1) to (3).
  • a compound having an allyl group at both ends of a poly (perfluoroalkylene ether) chain and a cyclopolysiloxane compound having a hydrosilyl group are reacted in the presence of a platinum-based catalyst to form both poly (perfluoroalkylene ether) chains.
  • (2) A step of reacting the compound obtained in the step (1) with allyloxyalkanol in the presence of a platinum-based catalyst and adding a hydroxyl group to the cyclopolysiloxane structure portion of the compound obtained in the step (1).
  • the active energy ray-curable compound (b1) such as the compound (b1-1) obtained by the above method is 0.05% by mass to 5% by mass with respect to the total nonvolatile content of the hard coat agent (b2). It is preferably included in the range, and more preferably in the range of 0.1% by mass to 2% by mass in order to achieve both excellent surface hardness and scratch resistance.
  • a hard coat agent (b2) that can be used for forming the second hard coat layer (B) in addition to the active energy ray-curable compound (b1) having a fluorine atom and a silicon atom, if necessary, Other active energy ray-curable compounds can be used.
  • urethane (meth) acrylate for example, urethane (meth) acrylate, polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups, and the like can be used.
  • urethane (meth) acrylate As said urethane (meth) acrylate, the thing similar to the urethane (meth) acrylate illustrated as what can be used for the hard-coat agent (a1) which can be used for formation of said 1st hard-coat layer (A) is used. can do.
  • polyfunctional (meth) acrylate which has a 3 or more (meth) acryloyl group it can be used for the hard-coat agent (a1) which can be used for formation of said 1st hard-coat layer (A).
  • the thing similar to the polyfunctional (meth) acrylate which has three or more (meth) acryloyl groups illustrated can be used.
  • a polymerization inhibitor in addition to those described above, a polymerization inhibitor, a surface conditioner, an antistatic agent, an antifoaming agent, and a viscosity conditioner are added as necessary, as long as the effects of the present invention are not impaired.
  • a light-resistant stabilizer, a weather-resistant stabilizer, a heat-resistant stabilizer, an ultraviolet absorber, an antioxidant, and a leveling agent can be used alone or in combination of two or more.
  • the second hard coat layer (B) is applied to the hard coat agent (b2) on a part or all of the surface of the first hard coat layer (A) formed by the above method, and dried. It can be formed by irradiating active energy rays.
  • the active energy rays include ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • a hard coating agent (b2) containing a photopolymerization initiator or a photosensitizer it is preferable to use a hard coating agent (b2) containing a photopolymerization initiator or a photosensitizer.
  • a hard coating agent (b2) containing no photopolymerization initiator or photosensitizer is used. Also good.
  • photopolymerization initiator and photosensitizer those similar to those exemplified as those usable for the hard coat agent (a1) usable for the formation of the first hard coat layer (A) are used. can do.
  • ionizing radiation such as electron beam, ⁇ ray, ⁇ ray, and ⁇ ray is used as the active energy ray, it is not necessary to use the photopolymerization initiator or photosensitizer.
  • the active energy ray used when the hard coat agent (b2) is cured and the light source thereof are the same as those exemplified as those that can be used when forming the first hard coat layer (A). Things can be used.
  • the hard coat film of the present invention is, for example, (i) a step of forming a first hard coat layer (A) on at least one surface of the transparent substrate using the hard coat agent (a1), (ii) It can manufacture by passing through the process of forming a 2nd hard-coat layer (B) on a part or all of the surface of the said hard-coat layer (A) using the said hard-coat agent (b2).
  • the hard coat layer (A) and the hard coat layer (B) can be cured at once by irradiating with active energy rays. .
  • step (i) will be described.
  • the hard coat agent (a1) is applied to a part or all of one side or both sides of the transparent substrate and The method of drying and hardening is mentioned.
  • Examples of the method for applying the hard coating agent to one or both sides of the transparent substrate include die coating, micro gravure coating, gravure coating, roll coating, comma coating, air knife coating, kiss coating, spray coating, and coating.
  • Examples include transfer coating, dip coating, spinner coating, wheeler coating, brush coating, silk screen solid coating, wire bar coating, and flow coating.
  • the hard coat agent (a1) contains an active energy ray-curable compound
  • the hard coating agent (a1) is applied and dried on the coated surface. And then curing.
  • Examples of the active energy rays include ionizing radiation such as ultraviolet rays, electron rays, ⁇ rays, ⁇ rays, and ⁇ rays.
  • the generation source thereof is a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, an electrodeless lamp (fusion lamp), a chemical lamp, a black light Lamps, mercury-xenon lamps, short arc lamps, helium / cadmium lasers, argon lasers, sunlight, LEDs and the like.
  • the first hard coat layer (A) is formed on the surface of the transparent substrate by the above-described method, and then the second hard coat layer (B) is sequentially laminated.
  • the hard coat agent (a1) is applied to the surface of the transparent substrate. After drying, an active energy ray is not irradiated, or an active energy ray sufficient for complete curing is not irradiated to form an uncured or semi-cured hard coat layer (A ′), and then described later.
  • the hard coat layer (B) may be laminated in order to produce a hard coat film. In this case, the hard coat layer (A ′) can be fully cured by active energy rays irradiated when the hard coat layer (B) is formed to form the hard coat layer (A).
  • the surface of the hard coat layer (A) may be subjected to corona treatment, plasma treatment or the like in order to further improve interlayer adhesion when laminated with the hard coat layer (B).
  • step (ii) will be described.
  • the hard coat agent (b2) is applied to the surface of the hard coat layer (A) or the hard coat layer (A ′) formed in the step (i), dried and cured. It is.
  • Examples of the method for applying the hard coating agent (b2) include die coating, micro gravure coating, gravure coating, roll coating, comma coating, air knife coating, kiss coating, spray coating, transfer coating, dip coating, spinner coating, and wheeler coating. , Brush coating, silk screen solid coating, wire bar coating, flow coating, and the like.
  • the hard coat agent (b2) contains an active energy ray-curable compound
  • the hard coating agent (b2) is applied and dried on the coated surface with active energy rays.
  • the method of hardening is mentioned.
  • Examples of the active energy rays include ionizing radiation such as ultraviolet rays, electron rays, ⁇ rays, ⁇ rays, and ⁇ rays.
  • the generation source thereof is a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, an electrodeless lamp (fusion lamp), a chemical lamp, a black light Lamps, mercury-xenon lamps, short arc lamps, helium / cadmium lasers, argon lasers, sunlight, LEDs and the like.
  • the hard coat agent (b2) when the hard coat agent (b2) is applied to the surface of the uncured or semi-cured hard coat layer (A ′), active energy rays are applied to the application surface of the hard coat agent (b2).
  • active energy rays are applied to the application surface of the hard coat agent (b2).
  • the other surface of the transparent base material constituting the hard cord film on the opposite side of the surface on which the first hard coat layer (A) and the second hard coat layer (B) are laminated).
  • a surface having a third hard coat layer it is preferable to use.
  • the third hard coat layer preferably has a thickness in the range of 2 ⁇ m to 50 ⁇ m, more preferably in the range of 5 ⁇ m to 30 ⁇ m, in order to suppress the occurrence of curling.
  • the thickness of the third hard coat layer is about ⁇ 50% of the total thickness of the first hard coat layer (A) and the second hard coat layer (B). It is preferable to suppress the occurrence of curling.
  • the third hard coat layer can be formed by applying, drying, and curing a third hard coat agent.
  • a third hard coat agent the thing similar to the hard-coat agent (a1) illustrated as what can be used for formation of said 1st hard-coat layer (A) can be used.
  • said 3rd hard-coat agent what does not contain a filler among the hard-coat agents (a1) illustrated as what can be used for formation of said 1st hard-coat layer (A) should be used. Can do.
  • the hard coat film of the present invention may have a decorative layer or an adhesive layer on part or all of one side or both sides.
  • the hard coat film of the present invention provided with the decorative layer can be used as a decorative film.
  • the hard coat film of this invention provided with the said adhesive layer can be used as a protective film.
  • the decoration layer or the pressure-sensitive adhesive layer is preferably provided on a part or all of the surface of the third hard coat layer that can constitute the hard coat film.
  • Examples of the decorative layer include those composed of a frame-like border for the purpose of imparting concealment and design, as well as letters, figures and symbols.
  • the hard coat film of the present invention may be used as a decorative film by providing a decorative layer.
  • the decorative layer can be provided on the hard coat film by general printing. Examples of the printing method include silk printing, screen printing, thermal transfer printing, and gravure printing.
  • the decorative layer is not particularly limited as long as it imparts various design properties to the hard coat film, for example, characters and figures that are visually recognized around the information display unit when used as an information display panel, or Examples thereof include a black border-shaped decorative layer provided in a frame shape on the information display section.
  • the thickness of the decoration layer is preferably 30 ⁇ m or less, more preferably 15 ⁇ m or less, and particularly preferably 10 ⁇ m or less. It becomes easy to obtain suitable designability by setting it as the decoration layer of the said thickness.
  • the decorative layer can be provided at any location on one or both sides of the hard coat film, but is usually provided at a location other than the information display section when used for a display of an information display device.
  • the hard coat film of the present invention may be used as a protective film by providing an adhesive layer.
  • the pressure-sensitive adhesive layer can be provided by sticking a pressure-sensitive adhesive tape to the hard coat film or by directly applying a pressure-sensitive adhesive layer on the surface opposite to the hard coat layer (B) constituting the hard coat film.
  • the thickness of the pressure-sensitive adhesive layer is preferably in the range of 5 ⁇ m to 50 ⁇ m, more preferably in the range of 8 ⁇ m to 30 ⁇ m, and still more preferably in the range of 10 ⁇ m to 25 ⁇ m.
  • it is excellent in adhesive reliability, and can maintain the surface hardness of a hard coat film not remarkably impaired.
  • the pressure-sensitive adhesive used in the pressure-sensitive adhesive layer used in the present invention known acrylic, rubber-based, silicone-based pressure-sensitive resins can be used.
  • an acrylic pressure-sensitive adhesive containing an acrylic polymer it is preferable to use an acrylic pressure-sensitive adhesive containing an acrylic polymer in order to further improve interference fringe reduction, adhesion to a film substrate, transparency, weather resistance, and the like.
  • the acrylic polymer a polymer obtained by polymerizing a (meth) acrylic monomer can be used.
  • the (meth) acrylic monomer include (meth) acrylate, and it is preferable to use a monomer containing (meth) acrylate having an alkyl group having 2 to 14 carbon atoms.
  • Examples of the (meth) acrylate having an alkyl group having 2 to 14 carbon atoms include ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, sec-butyl acrylate, t-butyl acrylate, and n-hexyl.
  • alkyl (meth) acrylates having an alkyl group having 4 to 9 carbon atoms
  • alkyl acrylates having an alkyl group having 4 to 9 carbon atoms More preferably, is used.
  • alkyl acrylate having an alkyl group having 4 to 9 carbon atoms n-butyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, isononyl acrylate, and ethyl acrylate are more preferable because it is easy to ensure suitable adhesive strength. .
  • the (meth) acrylate having an alkyl group having 2 to 14 carbon atoms is preferably used in a range of 90% by mass to 99% by mass with respect to the total amount of the (meth) acrylic monomer. It is more preferable to use in the range of -96 mass% because it is easy to ensure a suitable adhesive force.
  • acrylic polymer for example, a polymer having a polar group such as a hydroxyl group, a carboxyl group, and an amide group can be used.
  • the acrylic polymer can be produced by polymerizing a (meth) acrylic monomer containing a (meth) acrylic monomer having a polar group such as a hydroxyl group, a carboxyl group, or an amide group.
  • Examples of the (meth) acrylate monomer having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, hydroxypropyl (meth) acrylate, Examples include caprolactone-modified (meth) acrylate, polyethylene glycol mono (meth) acrylate, and polypropylene glycol mono (meth) acrylate. Of these, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 6-hydroxyhexyl (meth) acrylate are preferably used.
  • Examples of the (meth) acrylate monomer having a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, maleic acid, crotonic acid, acrylic acid or methacrylic acid dimer, ethylene oxide-modified succinic acid acrylate, and the like. Can be mentioned. Among these, it is preferable to use acrylic acid.
  • Examples of the (meth) acrylate monomer having an amide group include N-vinyl-2-pyrrolidone, N-vinylcaprolactam, acryloylmorpholine, acrylamide, N, N-dimethylacrylamide, and 2- (perhydrophthalimide-N -Yl) ethyl acrylate and the like.
  • N-vinyl-2-pyrrolidone, N-vinylcaprolactam, and acryloylmorpholine are preferably used.
  • Examples of the other vinyl monomers having a polar group include vinyl acetate, acrylonitrile, maleic anhydride, itaconic anhydride and the like.
  • the (meth) acrylic monomer having a polar group should be used in the range of 0.1% by mass to 20% by mass with respect to the total amount of the (meth) acrylic monomer used for the production of the acrylic polymer. It is preferable to use in the range of 1% by mass to 13% by mass, and it is preferable to use in the range of 1.5% by mass to 8% by weight to make the cohesive strength, holding power, and adhesiveness suitable. It is more preferable because it is easy to adjust.
  • the weight average molecular weight of the acrylic polymer is preferably 400,000 to 1,400,000, more preferably 600,000 to 1,200,000 because the adhesive force can be easily adjusted to a specific range.
  • the weight average molecular weight can be measured by gel permeation chromatograph (GPC). More specifically, as a GPC measurement device, “SC8020” manufactured by Tosoh Corporation can be used to measure and obtain the following GPC measurement conditions based on polystyrene conversion values. (GPC measurement conditions) Sample concentration: 0.5% by mass (tetrahydrofuran solution) Sample injection volume: 100 ⁇ L ⁇ Eluent: Tetrahydrofuran (THF) ⁇ Flow rate: 1.0 mL / min Column temperature (measurement temperature): 40 ° C ⁇ Column: “TSKgel GMHHR-H” manufactured by Tosoh Corporation ⁇ Detector: Differential refraction
  • the pressure-sensitive adhesive it is preferable to use a material containing a crosslinking agent in addition to the acrylic polymer in order to further increase the cohesive force.
  • crosslinking agent examples include isocyanate crosslinking agents, epoxy crosslinking agents, chelate crosslinking agents, and the like.
  • the crosslinking agent is preferably used in a range where the gel fraction of the pressure-sensitive adhesive layer to be formed is 25% by mass to 80% by mass, and is used in a range where the gel fraction is 40% by mass to 75% by mass. More preferably, the use within the range of 50% by mass to 70% by mass can suppress a decrease in surface pencil hardness when the protective film is attached to the substrate, and has sufficient adhesiveness. can do.
  • the gel fraction in the present invention is expressed as a percentage of the original mass by immersing the cured pressure-sensitive adhesive layer in toluene, measuring the mass after drying of the insoluble matter remaining after standing for 24 hours, and the original mass. Is.
  • a material containing a tackifying resin can be used to further increase the adhesive strength.
  • the tackifying resin is preferably used in the range of 10 to 60 parts by mass with respect to 100 parts by mass of the acrylic polymer. Further, when importance is attached to adhesiveness, it is preferably added in the range of 20 to 50 parts by mass.
  • the pressure-sensitive adhesive those containing known and commonly used additives other than the above can be used.
  • a silane coupling agent is added in the range of 0.001 to 0.005 parts by mass with respect to 100 parts by mass of the pressure-sensitive adhesive in order to improve adhesion to the substrate. Is preferred. Furthermore, as necessary, plasticizers, softeners, fillers, pigments, flame retardants, and the like can be added as other additives.
  • the hard coat film of the present invention has suitable scratch resistance, slipperiness and antifouling properties and can be applied to various applications.
  • information on information display devices such as liquid crystal displays (LCDs) and organic EL displays can be used. It can be suitably applied to a display unit.
  • LCDs liquid crystal displays
  • organic EL displays can be used. It can be suitably applied to a display unit.
  • portable electronic devices that are highly demanded for miniaturization and thinning such as electronic notebooks, mobile phones, smartphones, portable audio players, mobile PCs, tablet terminals etc. It is suitable for the purpose of protecting the information display unit of the terminal information display device.
  • an image display module such as an LCD module or an organic EL module is included in the configuration, and a transparent panel for protecting the image display module is provided above the image display module.
  • a transparent panel for protecting the image display module is provided above the image display module.
  • urethane acrylate (A1-3) having 6 acryloyl groups in one molecule A non-volatile content 80% by mass solution was obtained. This solution contains 19.5% by mass of PE4A in addition to urethane acrylate (A1-3) in the nonvolatile content.
  • urethane acrylate (A1-4) having 6 acryloyl groups in one molecule was obtained.
  • a non-volatile content 80% by mass solution was obtained. This solution contains 19.9% by mass of PE4A in addition to urethane acrylate (A1-4) in the nonvolatile content.
  • a perfluoropolyether compound (2) which is a pale yellow transparent liquid represented by
  • Preparation Example 2 The compounding amount of the methyl ethyl ketone dispersion having a nonvolatile content of 40% by mass of the reactive silica (C1-1) used in Preparation Example 1 is 287.5 parts by mass to 200 parts by mass (reactive silica (C1-1) as 200 parts by mass).
  • the hard coat agent (a1-2) having a nonvolatile content of 40% by mass was prepared in the same manner as in Preparation Example 1, except that the non-reactive silica (C2-1) was not blended.
  • the blending amount of the non-reactive silica (C2-1) methyl ethyl ketone dispersion having a nonvolatile content of 40% by mass used in Preparation Example 1 is from 312.5 parts by mass to 500 parts by mass (200 as non-reactive silica (C2-1)).
  • the hard coat agent (a1-3) having a nonvolatile content of 40% by mass was prepared in the same manner as in Preparation Example 1, except that the reactive silica (C1-1) was not blended.
  • the compounding amount of the methyl ethyl ketone dispersion having a nonvolatile content of 40% by mass of the reactive silica (C1-1) used in Preparation Example 1 is 287.5 parts by mass to 312.5 parts by mass (125% as reactive silica (C1-1)).
  • the non-reactive silica (C2-1) is mixed in a methyl ethyl ketone dispersion having a nonvolatile content of 40% by mass from 312.5 parts by mass to 287.5 parts by mass (non-reactive silica (C2-1)).
  • the hard coat agent (a1-4) having a nonvolatile content of 40% by mass was prepared in the same manner as in Preparation Example 1 except that the content was changed to 115 parts by mass).
  • Preparation Example 5 The compounding amount of the methyl ethyl ketone dispersion having a nonvolatile content of 40% by mass of the reactive silica (C1-1) used in Preparation Example 1 is 287.5 parts by mass to 187.5 parts by mass (75 as reactive silica (C1-1)).
  • a hard coat agent (a1-5) having a nonvolatile content of 40% by mass was prepared in the same manner as in Preparation Example 1, except that the content was changed to (parts by mass).
  • Preparation Example 6 The hard coat agent (a1) having a nonvolatile content of 40% by mass was the same as in Preparation Example 1 except that the reactive silica (C1-1) and the non-reactive silica (C2-1) used in Preparation Example 1 were not blended. -6) was prepared.
  • Synthesis Example 7 31.3 parts by mass of the solution containing urethane acrylate (A1-3) obtained in Synthesis Example 3 (including 20.1 parts by mass of urethane acrylate (A1-3) and 4.9 parts by mass of PE4A), Synthesis Example 4 31.3 parts by mass of the solution containing urethane acrylate (A1-4) obtained in the above (including 20 parts by mass of urethane acrylate (A1-4) and 5 parts by mass of PE4A), the urethane acrylate obtained in Synthesis Example 5 ( 25 parts by mass of a solution containing A1-5) (including 18 parts by mass of urethane acrylate (A1-5) and 2 parts by mass of PE4A), dipentaerythritol hexaacrylate (hereinafter abbreviated as “DPHA”), and dipentaeri.
  • DPHA dipentaerythritol hexaacrylate
  • DPPA thrisitol pentaacrylate
  • Preparation Example 9 A hard coat agent (b1-3) having a nonvolatile content of 40% by mass was prepared in the same manner as in Preparation Example 7, except that the fluorine compound (B1-1) used in Preparation Example 7 was not blended.
  • Example 1 The hard coat agent (a1-1) obtained above was applied to one side of a polyethylene terephthalate film (“Cosmo Shine A4300” manufactured by Toyobo Co., Ltd., thickness 100 ⁇ m) using a wire bar (# 40), After drying at 60 ° C. for 1 minute, using an ultraviolet irradiation device (“MIDN-042-C1” manufactured by Eye Graphics Co., Ltd., lamp: 120 W / cm, high pressure mercury lamp) in an air atmosphere, the irradiation light quantity is 0.1 J / cm. 2 was irradiated with ultraviolet rays to obtain a hard coat film (X-1a) having a cured coating film (hard coat layer) having a thickness of 15 ⁇ m.
  • a polyethylene terephthalate film (“Cosmo Shine A4300” manufactured by Toyobo Co., Ltd., thickness 100 ⁇ m) using a wire bar (# 40)
  • an ultraviolet irradiation device (“MIDN-042-
  • a hard coat agent (a1-1) is applied to the other surface of the base material, and a first hard coat layer having a thickness of 15 ⁇ m is formed in the same manner as in the above (X-1a).
  • a film (X-1b) was obtained.
  • the hard coat agent (b1-1) is applied to one surface of the first hard coat layer using a wire bar, dried at 60 ° C. for 1 minute, and then irradiated with ultraviolet rays in an atmosphere having an oxygen concentration of 5000 ppm or less.
  • a device (“MIDN-042-C1” manufactured by Eye Graphics Co., Ltd., lamp: 120 W / cm, high-pressure mercury lamp)
  • ultraviolet light was irradiated with an irradiation light amount of 0.3 J / cm 2 , and a second of 5 ⁇ m thickness
  • a hard coat film (X-1) was obtained by forming a hard coat layer.
  • Example 2 A hard coat film (X-2) was produced in the same manner as in Example 1 except that the hard coat agent (a1-1) was changed to the hard coat agent (a1-2).
  • Example 3 A hard coat film (X-3) was produced in the same manner as in Example 1 except that the hard coat agent (a1-1) was changed to the hard coat agent (a1-3).
  • Example 4 A hard coat film (X-4) was produced in the same manner as in Example 1 except that the hard coat agent (a1-1) was changed to the hard coat agent (a1-4).
  • Example 5 A hard coat film (X-5) was produced in the same manner as in Example 1 except that the hard coat agent (a1-1) was changed to the hard coat agent (a1-5).
  • Example 6 A hard coat film (X-6) was produced in the same manner as in Example 1 except that the thickness of the first hard coat layer was changed from 15 ⁇ m to 10 ⁇ m.
  • Example 7 The hard coat agent (a1-1) obtained above was applied to one side of a polyethylene terephthalate film (“Cosmo Shine A4300” manufactured by Toyobo Co., Ltd., thickness 100 ⁇ m) using a wire bar (# 40). After drying for 1 minute at a temperature of 0.1 J / cm 2 in an air atmosphere, an ultraviolet irradiation device (“MIDN-042-C1” manufactured by Eye Graphics Co., Ltd., lamp: 120 W / cm, high-pressure mercury lamp) is used. The hard coat film (X-1a) having a cured coating film (first hard coat layer) having a thickness of 15 ⁇ m was obtained.
  • a polyethylene terephthalate film (“Cosmo Shine A4300” manufactured by Toyobo Co., Ltd., thickness 100 ⁇ m) using a wire bar (# 40). After drying for 1 minute at a temperature of 0.1 J / cm 2 in an air atmosphere, an ultraviolet irradiation device (“MIDN-042-
  • the hard coat agent (b1-1) was applied to the surface of the first hard coat layer constituting the hard coat film (X-1a) using a wire bar, dried at 60 ° C. for 1 minute, and then oxygenated. Irradiation of ultraviolet rays with an irradiation light quantity of 0.3 J / cm 2 using an ultraviolet irradiation device (“MIDN-042-C1” manufactured by Eye Graphics Co., Ltd., lamp: 120 W / cm, high-pressure mercury lamp) in an atmosphere having a concentration of 5000 ppm or less Thus, a hard coat film (X-7) on which a second hard coat layer having a thickness of 5 ⁇ m was formed was obtained.
  • MIDN-042-C1 ultraviolet irradiation device
  • a hard coat film (X′-1) was produced in the same manner as in Example 1 except that the thickness of the first hard coat layer was changed from 15 ⁇ m to 20 ⁇ m and the second hard coat layer was not formed. .
  • the hard coat agent (a1-1) obtained above was applied to one side of a polyethylene terephthalate film (“Cosmo Shine A4300” manufactured by Toyobo Co., Ltd., thickness 100 ⁇ m) using a wire bar (# 40), After drying at 60 ° C. for 1 minute, using an ultraviolet irradiation device (“MIDN-042-C1” manufactured by Eye Graphics Co., Ltd., lamp: 120 W / cm, high pressure mercury lamp) in an air atmosphere, the irradiation light quantity is 0.1 J / cm. 2 was irradiated with ultraviolet rays to form a cured coating film (third hard coat layer) having a thickness of 15 ⁇ m.
  • a polyethylene terephthalate film (“Cosmo Shine A4300” manufactured by Toyobo Co., Ltd., thickness 100 ⁇ m) using a wire bar (# 40)
  • an ultraviolet irradiation device (“MIDN-042-C1” manufactured by Eye Graphics Co., Ltd
  • the hard coat agent (b1-1) is applied to the other surface of the polyethylene terephthalate film (the surface opposite to the surface on which the third hard coat layer is formed) using a wire bar.
  • a wire bar After coating and drying at 60 ° C. for 1 minute, using an ultraviolet irradiation device (“MIDN-042-C1” manufactured by Eye Graphics Co., Ltd., lamp: 120 W / cm, high-pressure mercury lamp) in an atmosphere with an oxygen concentration of 5000 ppm or less, A hard coat film (X′-2) on which a second hard coat layer having a thickness of 5 ⁇ m was formed was obtained by irradiating ultraviolet rays with an irradiation light amount of 0.3 J / cm 2 .
  • MIDN-042-C1 manufactured by Eye Graphics Co., Ltd., lamp: 120 W / cm, high-pressure mercury lamp
  • Example 3 A hard coat film (X′-3) was produced in the same manner as in Example 1 except that the hard coat agent (a1-1) was changed to the hard coat agent (a1-6).
  • Example 4 A hard coat film (X′-4) was produced in the same manner as in Example 1 except that the hard coat agent (b1-1) was changed to the hard coat agent (b1-2).
  • Example 5 A hard coat film (X′-5) was produced in the same manner as in Example 1 except that the hard coat agent (b1-1) was changed to the hard coat agent (b1-3).
  • the hard coat film obtained above was cut into 10 cm squares, placed on a glass plate so that the second hard coat layer was on the top, and the four corners were fixed with cellophane tape.
  • the pencil hardness of the surface of the second hard coat layer was determined using a pencil scratch tester (manual type) for coating film manufactured by Imoto Seisakusho Co., Ltd. based on the provisions of JIS K 5600-5-4 (1999 edition). It was measured.
  • the hardness of the hardest pencil that did not cause scars was evaluated as the pencil hardness of the surface of the hard coat layer.
  • a hard coat film having a surface hardness of 3H or more was determined to be excellent in surface hardness.
  • pencil hardness was evaluated by making the 1st hard coat layer into the outermost surface.
  • test piece A sample obtained by cutting the hard coat film obtained above into a 30 cm ⁇ 2 cm rectangle was used as a test piece.
  • the test piece is fixed to a flat friction tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.) using a jig so that the second hard coat layer constituting the test piece is the upper surface, and steel wool # 0000 is used.
  • the surface was abraded at a load of 0.5 kg / cm 2 , a stroke of 100 mm, and a speed of 30 times / min.
  • the scratched state of the scratched portion of the test piece was visually observed, and the scratch resistance was evaluated according to the following criteria. It was determined that the hard coat film that was evaluated as O had excellent scratch resistance. In addition, about the hard coat film obtained by the comparative example 1 which does not provide the 2nd hard coat layer, scratch resistance was evaluated so that a 1st hard coat layer might become an upper surface.
  • No scratches were observed even after 10,000 round trips.
  • The surface was scratched by carrying out 10,000 round trips, but was not scratched by 2000 round trips.
  • Scratched by 2000 reciprocations.
  • the contact angle of water on the surface of the test piece was contacted with 3 to 3.5 ⁇ L of purified water using an automatic contact angle meter “DM-501” manufactured by Kyowa Interface Science Co., Ltd., and contacted after 1 second. The corner was measured.
  • the water contact angle of the surface of a 1st hard coat layer was evaluated.
  • A The ink repelled in a dot shape.
  • The ink repelled in the form of dots and lines.
  • The ink repelled linearly.
  • X Ink did not repel and a linear circle was drawn.
  • the slipperiness was evaluated based on the slipperiness when the surface of the second hardcoat layer of the hardcoat film obtained above was rubbed with Bencott (manufactured by Asahi Kasei Fibers Co., Ltd.). In addition, about the hard coat film obtained by the comparative example 1 which is not providing the 2nd hard coat layer, the slip property of the surface of a 1st hard coat layer was evaluated.
  • the height of the four corners of the hard coat film was measured with respect to the smooth surface, and the average value was taken as the curl height. Evaluation was performed according to the following evaluation criteria based on the average value.
  • curl height (average value) of 4 corners is less than 2 mm ⁇ : curl height (average value) of 4 corners is 2 mm or more and less than 5 mm ⁇ : curl height (average value) of 4 corners is 5 mm or more
  • the table shows the composition and evaluation results of the hard coat agent that forms the hard coat films obtained in Examples 1 to 7 and Comparative Examples 1 to 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

The present invention addresses the problem of providing a hard coat film which exhibits excellent scratch resistance and has such a hardness that prevents the formation of a dent or the like even if a touch pen or the like is used for operation. The present invention relates to a hard coat film which is characterized by being obtained by sequentially laminating, on at least one surface of a transparent base, a first hard coat layer (A) containing a filler and a second hard coat layer (B) that is formed using a hard coat agent (b2) which contains an active energy ray-curable compound (b1) having a fluorine atom and a silicon atom.

Description

ハードコートフィルム及び情報表示装置Hard coat film and information display device
 本発明は、例えば情報表示装置等の製造場面をはじめとする分野で使用可能なハードコートフィルムに関する。 The present invention relates to a hard coat film that can be used in fields such as manufacturing scenes of information display devices, for example.
 モバイル用コンピュータ、電子手帳、携帯電話等の小型電子端末には、より一層の小型化及び薄型化が求められている。それに伴って、前記小型電子端末に設置される情報表示装置にも小型化及び薄型化が求められている。 Smaller electronic terminals such as mobile computers, electronic notebooks, and mobile phones are required to be further reduced in size and thickness. Accordingly, the information display device installed in the small electronic terminal is also required to be small and thin.
 前記情報表示装置のうち、いわゆるタッチパネル機能が搭載された情報表示装置は、通常、タッチペン等を用いて操作した際に生じうる情報表示部の傷つきや破損等を防止することを目的として、前記情報表示部の上面にハードコートフィルム等を有する場合が多い。 Among the information display devices, an information display device equipped with a so-called touch panel function is usually used for the purpose of preventing the information display unit from being damaged or damaged when operated using a touch pen or the like. In many cases, a hard coat film or the like is provided on the upper surface of the display portion.
 前記ハードコートフィルムとしては、例えば、分子中に2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート(A)、分子中に2個の(メタ)アクリロイル基を有するウレタン(メタ)アクリレート(B-1)及び/又はエポキシ(メタ)アクリレート(B-2)及び一次粒径が1nm以上200nm以下のコロイダルシリカ(C)を含有するフィルム用の紫外線硬化型ハードコート樹脂組成物を用いて得られるハードコートフィルムが知られている(例えば、特許文献1参照。)。 Examples of the hard coat film include a polyfunctional (meth) acrylate (A) having two or more (meth) acryloyl groups in the molecule, and a urethane (meth) having two (meth) acryloyl groups in the molecule. An ultraviolet curable hard coat resin composition for a film containing acrylate (B-1) and / or epoxy (meth) acrylate (B-2) and colloidal silica (C) having a primary particle size of 1 nm to 200 nm is used. The hard coat film obtained by this is known (for example, refer patent document 1).
 しかし、前記タッチペン等による操作が繰り返し行われた場合に、前記情報表示部の凹みや傷つき等を引き起こす場合があった。 However, when the operation with the touch pen or the like is repeatedly performed, the information display unit may be dented or damaged.
特開2009-24168号公報JP 2009-24168 A
 本発明が解決しようとする課題は、例えばタッチペン等を用いた操作が繰り返しされた場合であっても、情報表示部の凹み等を引き起こさないレベルの硬度を備え、かつ、耐擦傷性に優れたハードコートフィルムを提供することである。 The problem to be solved by the present invention is, for example, provided with a level of hardness that does not cause dents or the like of the information display unit even when an operation using a touch pen or the like is repeated, and has excellent scratch resistance. It is to provide a hard coat film.
 本発明は、透明基材の少なくとも一方の面に、フィラーを含有する第一のハードコート層(A)と、フッ素原子及びケイ素原子を有する活性エネルギー線硬化性化合物(b1)を含有するハードコート剤(b2)を用いて形成された第二のハードコート層(B)とが順に積層されたものであることを特徴とするハードコートフィルムに関するものである。 The present invention provides a hard coat containing a first hard coat layer (A) containing a filler and an active energy ray-curable compound (b1) having a fluorine atom and a silicon atom on at least one surface of a transparent substrate. The second hard coat layer (B) formed using the agent (b2) is laminated in order.
 本発明のハードコートフィルムは、上記構成を有することで、例えばタッチペン等による操作が繰り返しされた場合であっても、情報表示部等の凹み等を引き起こさないレベルの硬度を備え、かつ、優れた耐擦傷性を備えたものであるから、例えばスクリーンパネルや電子端末を構成する情報表示装置の製造に使用することが可能である。 The hard coat film of the present invention has the above-described configuration, and has a hardness level that does not cause dents or the like in the information display portion even when the operation with a touch pen or the like is repeated, for example. Since it has scratch resistance, it can be used, for example, in the manufacture of information display devices constituting screen panels and electronic terminals.
 また、本発明のハードコートフィルムは、優れた滑り性や防汚性を長期間保持できることから、スクリーンパネルや電子端末を構成する情報表示装置の製造に使用することが可能である。 Also, the hard coat film of the present invention can maintain excellent slipperiness and antifouling properties for a long period of time, and therefore can be used for manufacturing information display devices constituting screen panels and electronic terminals.
 本発明のハードコートフィルムは、透明基材の少なくとも一方の面に、フィラーを含有する第一のハードコート層(A)と、フッ素原子及びケイ素原子を有する活性エネルギー線硬化性化合物(b1)を含有するハードコート剤(b2)を用いて形成された第二のハードコート層(B)とが順に積層されたものであることを特徴とする。 The hard coat film of the present invention comprises a first hard coat layer (A) containing a filler and an active energy ray-curable compound (b1) having a fluorine atom and a silicon atom on at least one surface of a transparent substrate. The second hard coat layer (B) formed using the hard coat agent (b2) contained therein is laminated in order.
 前記ハードコートフィルムを構成する透明基材としては、一般にハードコートフィルムの基材として使用される各種の樹脂フィルム基材を使用することができる。 As the transparent base material constituting the hard coat film, various resin film base materials generally used as the base material of the hard coat film can be used.
 前記樹脂フィルム基材としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリエチレン、ポリプロピレン、セロファン、ジアセチルセルロース、トリアセチルセルロース、アセチルセルロースブチレート、セルロースアセテートプロピオネート、シクロオレフィンポリマー、シクロオレフィンコポリマー、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、ポリスチレン、ポリカーボネート、ポリメチルペンテン、ポリスルホン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリエーテルイミド、ポリイミド、フッ素樹脂、ナイロン、アクリル樹脂等を用いて得られる樹脂フィルム基材を使用することができる。なかでも、前記樹脂フィルム基材としては、ポリエチレンテレフタレート、トリアセチルセルロース、ポリカーボネート、アクリル樹脂を用いて得られる樹脂フィルム基材を使用することが好ましい。 Examples of the resin film substrate include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, cellophane, diacetyl cellulose, triacetyl cellulose, acetyl cellulose butyrate, cellulose acetate propionate, cycloolefin polymer, cycloolefin Olefin copolymer, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyetheretherketone, polyethersulfone, polyetherimide, polyimide, fluororesin, A resin film substrate obtained by using nylon, acrylic resin or the like can be used. Especially, as said resin film base material, it is preferable to use the resin film base material obtained using a polyethylene terephthalate, a triacetyl cellulose, a polycarbonate, and an acrylic resin.
 前記透明基材としては、上記樹脂フィルムのみからなる基材を使用してもよいが、前記第一のハードコート層(A)との密着性をより一層向上させるうえで、上記樹脂フィルム基材の表面にプライマー層を有する透明基材を使用することが好ましい。 As the transparent substrate, a substrate composed only of the resin film may be used. However, in order to further improve the adhesion with the first hard coat layer (A), the resin film substrate is used. It is preferable to use a transparent substrate having a primer layer on its surface.
 また、前記透明基材としては、前記第一のハードコート層(A)との密着性をより一層向上させるうえで、サンドブラスト法や溶剤処理法等の凹凸化処理、コロナ放電処理、大気圧プラズマ処理、クロム酸処理、火炎処理、熱風処理、オゾン処理、紫外線照射処理、酸化処理などの表面処理が施された透明基材を使用することが好ましい。 Moreover, as said transparent base material, in order to improve the adhesiveness with said 1st hard-coat layer (A) further, uneven | corrugated processing, such as a sandblasting method and a solvent processing method, corona discharge processing, atmospheric pressure plasma It is preferable to use a transparent substrate that has been subjected to surface treatment such as treatment, chromic acid treatment, flame treatment, hot air treatment, ozone treatment, ultraviolet irradiation treatment, oxidation treatment, and the like.
 前記透明基材としては、50μm~200μmの範囲の厚さを有するものを使用することが好ましく、75μm~150μmの範囲の厚さを有するものを使用することが好ましく、90μm~130μmの範囲の厚さのものを使用することが、薄型で、かつ、カールの発生を防止可能なハードコートフィルムを得るうえでより好ましい。 The transparent substrate preferably has a thickness in the range of 50 μm to 200 μm, preferably has a thickness in the range of 75 μm to 150 μm, and has a thickness in the range of 90 μm to 130 μm. It is more preferable to use a thin film and to obtain a hard coat film that is thin and can prevent curling.
 前記透明基材としては、例えば情報表示装置のディスプレイに適用した際に、良好な視認性を確保できるレベルの透明性に優れたものを使用する。前記透明基材としては、その全光線透過率が85%以上であるものを使用することが好ましく、88%以上であるものを使用することがより好ましく、90%以上であるものを使用することがさらに好ましい。 As the transparent substrate, for example, a material having excellent transparency at a level that can ensure good visibility when applied to a display of an information display device is used. As the transparent substrate, one having a total light transmittance of 85% or more is preferably used, more preferably 88% or more, and more preferably 90% or more. Is more preferable.
 前記透明基材としては、弾性率が3GPa~7GPaの範囲の基材を使用することが好ましく、3GPa~5GPaの範囲のフィルム基材を使用することがより好ましい。前記範囲の弾性率を備えた透明基材を使用することによって、フィルム基材の変形に起因したハードコート層の割れを抑制でき、かつ、ハードコートフィルムの表面硬度の低下を抑制することができる。また、前記弾性率を備えた基材を使用することによって、良好な柔軟性を確保できるため、本発明のハードコートフィルムを、緩やかな曲面部に貼付することが可能となる。 As the transparent substrate, a substrate having an elastic modulus in the range of 3 GPa to 7 GPa is preferably used, and a film substrate in the range of 3 GPa to 5 GPa is more preferable. By using a transparent substrate having an elastic modulus in the above range, cracks in the hard coat layer due to deformation of the film substrate can be suppressed, and a decrease in the surface hardness of the hard coat film can be suppressed. . Moreover, since a favorable softness | flexibility can be ensured by using the base material provided with the said elasticity modulus, it becomes possible to affix the hard coat film of this invention on a loose curved surface part.
 [第一のハードコート層(A)]
 第一のハードコート層(A)は、前記透明基材の少なくとも一方の面に積層される層であり、フィラーを含有する層である。
[First hard coat layer (A)]
A 1st hard-coat layer (A) is a layer laminated | stacked on the at least one surface of the said transparent base material, and is a layer containing a filler.
 前記第一のハードコート層(A)は、本発明のハードコートフィルムに高硬度を付与する。 The first hard coat layer (A) imparts high hardness to the hard coat film of the present invention.
 前記第一のハードコート層(A)は、5μm~30μmの範囲の厚さであることが好ましく、10μm~25μmの範囲の厚さであることが、より一層高硬度のハードコートフィルムを得るうえでより好ましい。 The first hard coat layer (A) preferably has a thickness in the range of 5 μm to 30 μm, and a thickness in the range of 10 μm to 25 μm is preferable for obtaining a hard coat film with higher hardness. And more preferable.
 前記第一のハードコート層(A)は、フィラーを含有するハードコート剤(a1)を使用することによって形成することができる。 The first hard coat layer (A) can be formed by using a hard coat agent (a1) containing a filler.
 前記ハードコート剤(a1)としては、例えばフィラーと、活性エネルギー線硬化性化合物とを含有するものを使用することができる。 As the hard coat agent (a1), for example, a material containing a filler and an active energy ray-curable compound can be used.
 前記フィラーとしては、例えばシリカ、ジルコニア、酸化チタン、五酸化アンチモン、炭酸マグネシウム、水酸化アルミニウム、硫酸バリウム、有機ビーズ等を使用することができる。なかでも、前記フィラーとしては、シリカを使用することが、ハードコートフィルムの硬度をより一層向上させるうえで好ましい。 Examples of the filler that can be used include silica, zirconia, titanium oxide, antimony pentoxide, magnesium carbonate, aluminum hydroxide, barium sulfate, and organic beads. Among these, it is preferable to use silica as the filler in order to further improve the hardness of the hard coat film.
 前記シリカとしては、一般に反応性シリカ、非反応性シリカといわれるものを単独または組み合わせ使用することができる。 As the silica, those generally called reactive silica and non-reactive silica can be used alone or in combination.
 前記反応性シリカとしては、例えばシリカ粒子の表面に(メタ)アクリロイル基等の反応性基を付与したものが挙げられる。 Examples of the reactive silica include those obtained by adding a reactive group such as a (meth) acryloyl group to the surface of silica particles.
 前記反応性シリカとしては、ハードコート層(A)の高い透明性と、高硬度とを両立するうえで、ナノメーターオーダーの平均粒子径を有する、一般にコロイダルシリカといわれるものを使用することが好ましく、5nm~200nmの範囲の平均粒子径を有するものを使用することがより好ましく、5nm~100nmの範囲の平均粒子径を有するものを使用することがさらに好ましい。 As the reactive silica, in order to achieve both high transparency of the hard coat layer (A) and high hardness, it is preferable to use what is generally referred to as colloidal silica having an average particle size of nanometer order. It is more preferable to use those having an average particle size in the range of 5 nm to 200 nm, and it is more preferable to use those having an average particle size in the range of 5 nm to 100 nm.
 また、前記非反応性シリカとしては、前記したような反応性基を有さないシリカ粒子を使用することができる。前記非反応性シリカの表面には、非反応性の官能基が導入されていてもよい。 Further, as the non-reactive silica, silica particles having no reactive group as described above can be used. Nonreactive functional groups may be introduced on the surface of the nonreactive silica.
 前記非反応性シリカとしては、前記ハードコート層(A)の高い透明性と高硬度とを両立し、かつ、ハードコートフィルムのカールを防止するうえで、ナノメーターオーダーの平均粒子径を有する、一般にコロイダルシリカといわれるものを使用することが好ましく、5nm~200nmの範囲の平均粒子径を有するものを使用することがより好ましく、5nm~100nmの範囲の平均粒子径を有するものを使用することがさらに好ましい。 As the non-reactive silica, in order to achieve both high transparency and high hardness of the hard coat layer (A) and to prevent curling of the hard coat film, it has an average particle size of nanometer order, Generally, what is called colloidal silica is preferably used, more preferably one having an average particle size in the range of 5 nm to 200 nm, more preferably one having an average particle size in the range of 5 nm to 100 nm. Further preferred.
 前記フィラーとしては、前記反応性シリカと非反応性シリカとを組み合わせ使用することが好ましく、前記反応性シリカと前記非反応性シリカとは、[反応性シリカ/非反応性シリカ]の質量割合0.5~1.5の範囲となるよう組み合わせ使用することが好ましく、0.6~1の範囲となるよう組み合わせ使用することが、第一のハードコート層(A)の硬度及び本発明のハードコートフィルムの硬度をより一層向上できるためより好ましい。 As the filler, it is preferable to use a combination of the reactive silica and the non-reactive silica. The reactive silica and the non-reactive silica have a mass ratio of [reactive silica / non-reactive silica] of 0. It is preferable to use a combination so as to be in the range of 5 to 1.5, and it is preferable to use a combination so as to be in the range of 0.6 to 1, because the hardness of the first hard coat layer (A) Since the hardness of a coat film can be improved further, it is more preferable.
 また、前記ハードコート層(A)の形成に使用できる前記ハードコート剤(a1)としては、前記ハードコート剤(a1)に含まれていてもよい後述するウレタン(メタ)アクリレート及び3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートの合計100質量部に対して、フィラーを100質量部~300質量部の範囲で含有するものを使用することが好ましく、150質量部~280質量部の範囲で含有するものを使用することが、より一層高硬度で、かつ、より一層優れた耐擦傷性を備えたハードコートフィルムを得るうえでより好ましい。 Moreover, as said hard-coat agent (a1) which can be used for formation of the said hard-coat layer (A), the urethane (meth) acrylate mentioned later which may be contained in the said hard-coat agent (a1), and three or more It is preferable to use a filler containing 100 to 300 parts by mass of filler with respect to a total of 100 parts by mass of the polyfunctional (meth) acrylate having a (meth) acryloyl group, and 150 to 280 parts by mass. It is more preferable to use those contained in the range of parts in order to obtain a hard coat film having higher hardness and more excellent scratch resistance.
 前記ハードコート層(A)の形成に使用可能なハードコート剤(a1)としては、前記フィラーの他に活性エネルギー線硬化性化合物を含有するものを使用することができる。 As the hard coat agent (a1) that can be used for forming the hard coat layer (A), a material containing an active energy ray-curable compound in addition to the filler can be used.
 前記活性エネルギー線硬化性化合物としては、例えばウレタン(メタ)アクリレート、前記ウレタン(メタ)アクリレート以外の3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート等を使用することができる。なお、本発明において、「(メタ)アクリレート」とは、アクリレートとメタクリレートの一方又は両方をいい、「(メタ)アクリロイル基」とは、アクリロイル基とメタクリロイル基の一方または両方をいう。 As the active energy ray-curable compound, for example, urethane (meth) acrylate, polyfunctional (meth) acrylate having three or more (meth) acryloyl groups other than the urethane (meth) acrylate, and the like can be used. In the present invention, “(meth) acrylate” refers to one or both of acrylate and methacrylate, and “(meth) acryloyl group” refers to one or both of acryloyl group and methacryloyl group.
 前記ウレタン(メタ)アクリレートとしては、例えば脂肪族ポリイソシアネートと水酸基を有する(メタ)アクリレートとを反応させて得られた4個以上の(メタ)アクリロイル基を有するものを使用することができる。 As the urethane (meth) acrylate, for example, those having four or more (meth) acryloyl groups obtained by reacting an aliphatic polyisocyanate and a (meth) acrylate having a hydroxyl group can be used.
 前記脂肪族ポリイソシアネートとしては、例えばヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等の脂肪族ポリイソシアネート;ノルボルナンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、1,3-ビス(イソシアナトメチル)シクロヘキサン、2-メチル-1,3-ジイソシアナトシクロヘキサン、2-メチル-1,5-ジイソシアナトシクロヘキサン等の脂環式ポリイソシアネート、及び、それらの3量化物(3量体)等を使用することができる。 Examples of the aliphatic polyisocyanate include aliphatic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, and lysine triisocyanate; norbornane diisocyanate, isophorone diisocyanate, methylenebis (4-cyclohexylisocyanate), 1,3-bis (isocyanatomethyl) Use cycloaliphatic polyisocyanates such as cyclohexane, 2-methyl-1,3-diisocyanatocyclohexane, 2-methyl-1,5-diisocyanatocyclohexane, and their trimers (trimers) can do.
 前記脂肪族ポリイソシアネートとしては、前記したなかでもヘキサメチレンジイソシアネート、ノルボルナンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)及びこれらの3量体からなる群より選ばれる1種以上を使用することが、ハードコート層(A)及びハードコートフィルムの硬度をより一層高めるうえで好ましい。 As the aliphatic polyisocyanate, it is possible to use at least one selected from the group consisting of hexamethylene diisocyanate, norbornane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate) and trimers thereof among the above-mentioned aliphatic polyisocyanates. It is preferable for further increasing the hardness of the hard coat layer (A) and the hard coat film.
 前記脂肪族ポリイソシアネートと反応させることのできる前記水酸基を有する(メタ)アクリレートとしては、例えば、好ましくは4個以上の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートを製造するうえで、(メタ)アクリロイル基を2個以上有するものを使用することが好ましい。 As the (meth) acrylate having a hydroxyl group that can be reacted with the aliphatic polyisocyanate, for example, when producing a urethane (meth) acrylate having preferably 4 or more (meth) acryloyl groups, It is preferable to use those having two or more acryloyl groups.
 前記水酸基を有する(メタ)アクリレートとしては、例えばトリメチロールプロパンジ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパンジ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ビス(2-(メタ)アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等を、単独または2種以上組み合わせ使用することができる。 Examples of the (meth) acrylate having a hydroxyl group include trimethylolpropane di (meth) acrylate, ethylene oxide-modified trimethylolpropane di (meth) acrylate, propylene oxide-modified trimethylolpropane di (meth) acrylate, and glycerin di (meth). Acrylate, bis (2- (meth) acryloyloxyethyl) hydroxyethyl isocyanurate, pentaerythritol tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, etc. These can be used in combination.
 前記水酸基を有する(メタ)アクリレートとしては、前記したなかでも、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートを使用することが、ハードコート層(A)の硬度及び本発明のハードコートフィルムの硬度をより一層高めるうえで好ましい。 Among the above-mentioned (meth) acrylates having a hydroxyl group, among them, pentaerythritol tri (meth) acrylate and dipentaerythritol penta (meth) acrylate may be used. The hardness of the hard coat layer (A) and the present invention It is preferable for further increasing the hardness of the hard coat film.
 前記脂肪族ポリイソシアネートと前記水酸基を有する(メタ)アクリレートとの反応は、常法のウレタン化反応により行うことができる。また、前記ウレタン化反応の進行を促進するために、ウレタン化触媒の存在下でそれらをウレタン化反応させることが好ましい。 The reaction between the aliphatic polyisocyanate and the (meth) acrylate having a hydroxyl group can be carried out by a conventional urethanization reaction. Moreover, in order to accelerate | stimulate progress of the said urethanation reaction, it is preferable to make them urethanize in presence of a urethanization catalyst.
 前記ウレタン化触媒としては、例えば、ピリジン、ピロール、トリエチルアミン、ジエチルアミン、ジブチルアミン等のアミン化合物;トリフェニルホスフィン、トリエチルホスフィン等のリン化合物;ジブチル錫ジラウレート、オクチル錫トリラウレート、オクチル錫ジアセテート、ジブチル錫ジアセテート、オクチル酸錫等の有機錫化合物、オクチル酸亜鉛等の有機亜鉛化合物などが挙げられる。 Examples of the urethanization catalyst include amine compounds such as pyridine, pyrrole, triethylamine, diethylamine and dibutylamine; phosphorus compounds such as triphenylphosphine and triethylphosphine; dibutyltin dilaurate, octyltin trilaurate, octyltin diacetate, dibutyltin Examples thereof include organic tin compounds such as diacetate and tin octylate, and organic zinc compounds such as zinc octylate.
 本発明で使用可能な前記ハードコート剤(a1)は、前記ウレタン(メタ)アクリレートとして、1種のウレタン(メタ)アクリレートを含有するものを使用してもよく、2種以上のウレタン(メタ)アクリレートを含有するものを使用してもよい。例えば、前記ハードコート剤(a1)としては、ヘキサメチレンジイソシアネートと任意の水酸基を有するアクリレートとを反応させて得られたウレタンアクリレート、及び、ヘキサメチレンジイソシアネートの3量体(3量化物)と任意の水酸基を有するアクリレートとを反応させて得られたウレタンアクリレートを組み合わせ含有するものを使用することが、ハードコート層(A)の硬度及び本発明のハードコートフィルムの硬度をより一層高めるうえで好ましい。 The hard coat agent (a1) usable in the present invention may be one containing one type of urethane (meth) acrylate as the urethane (meth) acrylate, or two or more types of urethane (meth). You may use what contains an acrylate. For example, as the hard coating agent (a1), urethane acrylate obtained by reacting hexamethylene diisocyanate with an acrylate having an arbitrary hydroxyl group, and a trimer of hexamethylene diisocyanate (trimerized product) and an arbitrary In order to further increase the hardness of the hard coat layer (A) and the hardness of the hard coat film of the present invention, it is preferable to use a combination of urethane acrylates obtained by reacting with an acrylate having a hydroxyl group.
 前記ハードコート剤(a1)としては、その不揮発分の全量に対して前記ウレタン(メタ)アクリレートを1質量%~80質量%の範囲で含有するものを使用することが好ましく、1質量%~50質量%の範囲で含有するものを使用することが好ましい。 The hard coating agent (a1) is preferably one containing the urethane (meth) acrylate in the range of 1% by mass to 80% by mass with respect to the total nonvolatile content. It is preferable to use what is contained in the range of mass%.
 前記ハードコート剤(a1)としては、前記したフィラー及びウレタン(メタ)アクリレートの他に、必要に応じて、3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートを含有するものを使用することができる。 As said hard-coat agent (a1), what contains the polyfunctional (meth) acrylate which has a 3 or more (meth) acryloyl group as needed other than the above-mentioned filler and urethane (meth) acrylate. Can be used.
 前記多官能(メタ)アクリレートとしては、例えばトリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、トリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等を、単独または2種以上組み合わせ使用することができる。 Examples of the polyfunctional (meth) acrylate include trimethylolpropane tri (meth) acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, and ditrimethylolpropane tri (meth). ) Acrylate, ditrimethylolpropane tetra (meth) acrylate, tris (2- (meth) acryloyloxyethyl) isocyanurate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate , Dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol The hexa (meth) acrylate, can be combined used alone or two or more.
 前記多官能(メタ)アクリレートとしては、前記したなかでも、ハードコート層(A)及びハードコートフィルムの硬度をより一層高めるうえで、その(メタ)アクリロイル基当量が50g/eq.~200g/eq.の範囲のものを使用することが好ましく、70g/eq.~150g/eq.の範囲のものを使用することがより好ましく、80g/eq.~120g/eq.の範囲のものを使用することがさらに好ましい。前記多官能(メタ)アクリレートとしては、ペンタエリスリトールテトラアクリレート(アクリロイル基当量:88g/eq.)、ジペンタエリスリトールヘキサアクリレート(アクリロイル基当量:118g/eq.)等を使用することが好ましい。 Among the above-mentioned polyfunctional (meth) acrylates, in order to further increase the hardness of the hard coat layer (A) and the hard coat film, the (meth) acryloyl group equivalent is 50 g / eq. ~ 200 g / eq. In the range of 70 g / eq. ~ 150 g / eq. In the range of 80 g / eq. To 120 g / eq. It is more preferable to use the thing of the range. As the polyfunctional (meth) acrylate, it is preferable to use pentaerythritol tetraacrylate (acryloyl group equivalent: 88 g / eq.), Dipentaerythritol hexaacrylate (acryloyl group equivalent: 118 g / eq.), Or the like.
 前記ウレタン(メタ)アクリレートと前記多官能(メタ)アクリレートとの質量割合[前記ウレタン(メタ)アクリレート/前記多官能(メタ)アクリレート]は、90/10~10/90の範囲で使用することが好ましく、80/20~20/80の範囲で使用することがより好ましく、75/25~25/75の範囲で使用することがさらに好ましい。 The urethane (meth) acrylate and the polyfunctional (meth) acrylate may be used in a mass ratio of [the urethane (meth) acrylate / the polyfunctional (meth) acrylate] in the range of 90/10 to 10/90. Preferably, it is used in the range of 80/20 to 20/80, more preferably in the range of 75/25 to 25/75.
 前記ハードコート剤(a1)としては、前記したもののほかに、必要に応じて、本発明の効果を損なわない範囲で、1個の(メタ)アクリロイル基を有する(メタ)アクリレート、2個の(メタ)アクリロイル基を有する(メタ)アクリレート等のその他の(メタ)アクリレートを含有するものを使用してもよい。その他の(メタ)アクリレートを使用する場合、その他の(メタ)アクリレートの使用量は、前記ウレタン(メタ)アクリレート及び前記多官能(メタ)アクリレートの合計100質量部に対して、40質量部以下であることが好ましく、20質量部以下であることがより好ましい。 As the hard coat agent (a1), in addition to those described above, if necessary, the (meth) acrylate having one (meth) acryloyl group and two ( You may use what contains other (meth) acrylates, such as (meth) acrylate which has a (meth) acryloyl group. When using other (meth) acrylate, the usage-amount of other (meth) acrylate is 40 mass parts or less with respect to a total of 100 mass parts of the said urethane (meth) acrylate and the said polyfunctional (meth) acrylate. It is preferable that it is 20 parts by mass or less.
 前記ハードコート剤(a1)としては、前記したもののほかに、必要に応じて、本発明の効果を損なわない範囲で、例えば重合禁止剤、表面調整剤、帯電防止剤、消泡剤、粘度調整剤、耐光安定剤、耐候安定剤、耐熱安定剤、紫外線吸収剤、酸化防止剤、レベリング剤、有機顔料、無機顔料、顔料分散剤等を、単独または2種以上組み合わせ使用することができる。 As the hard coat agent (a1), in addition to the above-described ones, for example, a polymerization inhibitor, a surface conditioner, an antistatic agent, an antifoaming agent, and a viscosity adjuster as long as the effects of the present invention are not impaired. Agents, light-resistant stabilizers, weather-resistant stabilizers, heat-resistant stabilizers, ultraviolet absorbers, antioxidants, leveling agents, organic pigments, inorganic pigments, pigment dispersants and the like can be used alone or in combination.
 一方、前記ハードコート剤(a1)を用いて形成される第一のハードコート層(A)の表面には、後述する第二のハードコート層(B)が積層されるため、それらの層間の密着性を低下させる成分は、できるだけ含有しないことが好ましい。具体的には、前記ハードコート剤(a1)は、後述するフッ素原子及びケイ素原子を有する活性エネルギー線硬化性化合物(b1)を含有しないものであることが好ましい。 On the other hand, since the second hard coat layer (B) to be described later is laminated on the surface of the first hard coat layer (A) formed using the hard coat agent (a1), the interlayer between these layers is laminated. It is preferable not to contain the component which reduces adhesiveness as much as possible. Specifically, it is preferable that the hard coating agent (a1) does not contain an active energy ray-curable compound (b1) having a fluorine atom and a silicon atom, which will be described later.
 前記第一のハードコート層(A)は、例えば前記透明基材の片面または両面に、前記ハードコート剤(a1)を塗布し、乾燥した後、活性エネルギー線を照射することによって形成される。 The first hard coat layer (A) is formed, for example, by applying the hard coat agent (a1) to one or both sides of the transparent base material, drying it, and then irradiating with active energy rays.
 前記活性エネルギー線としては、例えば紫外線、電子線、α線、β線、γ線等の電離放射線が挙げられる。活性エネルギー線として紫外線を使用する場合、前記ハードコート剤(a1)として光重合開始剤や光増感剤を含有するものを使用することが好ましい。一方、活性エネルギー線として電子線、α線、β線、γ線等の電離放射線を用いる場合、前記ハードコート剤(a1)として光重合開始剤や光増感剤を含有しないものを使用してもよい。 Examples of the active energy rays include ionizing radiation such as ultraviolet rays, electron beams, α rays, β rays, and γ rays. When ultraviolet rays are used as the active energy ray, it is preferable to use those containing a photopolymerization initiator or a photosensitizer as the hard coat agent (a1). On the other hand, when ionizing radiation such as electron beam, α ray, β ray, γ ray and the like is used as the active energy ray, a hard coating agent (a1) that does not contain a photopolymerization initiator or a photosensitizer is used. Also good.
 前記光重合開始剤としては、分子内開裂型光重合開始剤及び水素引き抜き型光重合開始剤が挙げられる。分子内開裂型光重合開始剤としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、オリゴ[2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン]、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等のアセトフェノン系化合物;ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン;2,4,6-トリメチルベンゾインジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド等のアシルホスフィンオキシド系化合物;ベンジル、メチルフェニルグリオキシエステル等が挙げられる。 Examples of the photopolymerization initiator include intramolecular cleavage type photopolymerization initiators and hydrogen abstraction type photopolymerization initiators. Examples of the intramolecular cleavage type photopolymerization initiator include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, oligo [2-hydroxy-2-methyl-1- [4- ( 1-methylvinyl) phenyl] propanone], benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy -2-propyl) ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) -Acetophenone compounds such as butanone; benzoin, benzoin methyl ether, benzo Benzoin such as isopropyl ether; acylphosphine oxide compounds such as 2,4,6-trimethylbenzoin diphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide; benzyl, methylphenylglyoxyester, etc. Is mentioned.
 一方、水素引き抜き型光重合開始剤としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル-4-フェニルベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルスルフィド、アクリル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-メチルベンゾフェノン等のベンゾフェノン系化合物;2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン等のチオキサントン系化合物;ミヒラ-ケトン、4,4’-ジエチルアミノベンゾフェノン等のアミノベンゾフェノン系化合物;10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、9,10-フェナンスレンキノン、カンファーキノン、1-[4-(4-ベンゾイルフェニルスルファニル)フェニル]-2-メチル-2-(4-メチルフェニルスルホニル)プロパン-1-オン等が挙げられる。これらの光重合開始剤は、単独で用いることも、2種以上を併用することもできる。 On the other hand, the hydrogen abstraction type photopolymerization initiator includes, for example, benzophenone, methyl 4-phenylbenzophenone o-benzoylbenzoate, 4,4′-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide. Acrylated benzophenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 3,3′-dimethyl-4-methoxybenzophenone, 2,4,6-trimethylbenzophenone, 4-methylbenzophenone Benzophenone compounds such as 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, etc .; Michler-ketone, 4,4′-diethyl Aminobenzophenone compounds such as minobenzophenone; 10-butyl-2-chloroacridone, 2-ethylanthraquinone, 9,10-phenanthrenequinone, camphorquinone, 1- [4- (4-benzoylphenylsulfanyl) phenyl ] -2-methyl-2- (4-methylphenylsulfonyl) propan-1-one and the like. These photopolymerization initiators can be used alone or in combination of two or more.
 また、前記光増感剤としては、例えば、ジエタノールアミン、N-メチルジエタノールアミン、トリブチルアミン等の3級アミン化合物、o-トリルチオ尿素等の尿素化合物、ナトリウムジエチルジチオホスフェート、s-ベンジルイソチウロニウム-p-トルエンスルホネート等の硫黄化合物などが挙げられる。 Examples of the photosensitizer include tertiary amine compounds such as diethanolamine, N-methyldiethanolamine and tributylamine, urea compounds such as o-tolylthiourea, sodium diethyldithiophosphate, s-benzylisothuronium-p. -Sulfur compounds such as toluene sulfonate.
 これらの光重合開始剤及び光増感剤は、前記ハードコート剤(a1)に含まれるウレタン(メタ)アクリレート及び多官能(メタ)アクリレートの合計100質量部に対して、各々0.05質量部~20質量部の範囲で使用することが好ましく、0.5質量部~15質量部の範囲で使用することがより好ましい。 These photopolymerization initiators and photosensitizers are each 0.05 parts by mass with respect to a total of 100 parts by mass of urethane (meth) acrylate and polyfunctional (meth) acrylate contained in the hard coat agent (a1). It is preferably used in the range of ˜20 parts by mass, and more preferably in the range of 0.5 to 15 parts by mass.
 [第二のハードコート層(B)]
 前記第二のハードコート層(B)は、本発明のハードコートフィルムを構成する前記第一のハードコート層(A)の表面に積層された層である。
[Second hard coat layer (B)]
The second hard coat layer (B) is a layer laminated on the surface of the first hard coat layer (A) constituting the hard coat film of the present invention.
 前記第二のハードコート層(B)は、本発明のハードコートフィルムに優れた滑り性を付与し、その結果、優れた耐擦傷性を付与する。 The second hard coat layer (B) imparts excellent slipperiness to the hard coat film of the present invention, and as a result, imparts excellent scratch resistance.
 前記第二のハードコート層(B)は、500nm~15μmの範囲の厚さであることが好ましく、1μm~10μmの範囲の厚さであることが、薄型化と優れた耐擦傷性とを両立したハードコートフィルムを得るうえでより好ましい。 The second hard coat layer (B) preferably has a thickness in the range of 500 nm to 15 μm, and the thickness in the range of 1 μm to 10 μm achieves both a reduction in thickness and excellent scratch resistance. It is more preferable for obtaining a hard coat film.
 前記第二のハードコート層(B)は、フッ素原子及びケイ素原子を有する活性エネルギー線硬化性化合物(b1)を含有するハードコート剤(b2)を使用することによって形成することができる。前記ハードコート剤(b2)を用いることによって、高硬度と優れた耐擦傷性とを両立したハードコートフィルムを得ることができる。 The second hard coat layer (B) can be formed by using a hard coat agent (b2) containing an active energy ray-curable compound (b1) having a fluorine atom and a silicon atom. By using the hard coat agent (b2), a hard coat film having both high hardness and excellent scratch resistance can be obtained.
 前記ハードコート剤(b2)としては、フッ素原子及びケイ素原子を有する活性エネルギー線硬化性化合物(b1)を含有するものを使用することができる。これにより、高硬度と優れた耐擦傷性とを両立し、さらには、耐汚染性や耐指紋性等に優れたハードコートフィルムを得ることができる。 As the hard coat agent (b2), one containing an active energy ray-curable compound (b1) having a fluorine atom and a silicon atom can be used. Thereby, it is possible to obtain a hard coat film that achieves both high hardness and excellent scratch resistance, and is excellent in stain resistance and fingerprint resistance.
 前記活性エネルギー線硬化性化合物(b1)としては、例えばフルオロカーボン鎖、シロキサン鎖、または、ハイドロカーボン鎖等を有する化合物のうち、フッ素原子とケイ素原子とを有するものを使用することができる。 As the active energy ray-curable compound (b1), for example, compounds having a fluorine atom and a silicon atom among compounds having a fluorocarbon chain, a siloxane chain, or a hydrocarbon chain can be used.
 具体的には、前記活性エネルギー線硬化性化合物(b1)としては、フルオロカーボン鎖としてポリ(パーフルオロアルキレンエーテル)鎖を有し、かつ、シクロポリシロキサン構造を有するものを使用することが好ましく、ポリ(パーフルオロアルキレンエーテル)鎖の両末端に2価の連結基を介してシクロポリシロキサン構造が結合し、前記シクロポリシロキサン構造に2価の連結基を介して(メタ)アクリロイル基が結合した構造を有する化合物(b1-1)を使用することが好ましい。 Specifically, it is preferable to use the active energy ray-curable compound (b1) having a poly (perfluoroalkylene ether) chain as a fluorocarbon chain and a cyclopolysiloxane structure. A structure in which a cyclopolysiloxane structure is bonded to both ends of a (perfluoroalkylene ether) chain via a divalent linking group, and a (meth) acryloyl group is bonded to the cyclopolysiloxane structure via a divalent linking group It is preferable to use the compound (b1-1) having
 前記化合物(b1-1)が有するポリ(パーフルオロアルキレンエーテル)鎖としては、炭素原子数1~3個の2価フッ化炭素基と酸素原子が交互に連結した構造を有するものが挙げられる。炭素原子数1~3個の2価フッ化炭素基は、1種類であっても2種類以上の組み合わせであってもよく、具体的には、下記構造式(1)で表されるものが挙げられる。 Examples of the poly (perfluoroalkylene ether) chain of the compound (b1-1) include those having a structure in which a divalent fluorocarbon group having 1 to 3 carbon atoms and oxygen atoms are alternately connected. The divalent fluorocarbon group having 1 to 3 carbon atoms may be one type or a combination of two or more types. Specifically, those represented by the following structural formula (1) may be used. Can be mentioned.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(上記一般式(1)中、Xは下記式(1-1)~(1-5)であり、Xが下記式(1-1)~(1-5)のいずれか1種類のものであってもよいし、また、下記式(1-1)~(1-5)のうち、2種類以上のものがランダム状又はブロック状に存在していてもよい。また、nは繰り返し単位を表す2~200の整数である。) (In the above general formula (1), X is the following formulas (1-1) to (1-5), and X is one of the following formulas (1-1) to (1-5) In addition, two or more of the following formulas (1-1) to (1-5) may be present in a random or block form, and n represents a repeating unit. Represents an integer of 2 to 200.)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 前記ポリ(パーフルオロアルキレンエーテル)鎖としては、前記したなかでも、前記式(1-1)で表されるパーフルオロメチレン基と、前記式(1-2)で表されるパーフルオロエチレン基とによって構成されるポリ(パーフルオロアルキレンエーテル)鎖であることが、ハードコートフィルムの防汚性をより一層向上させるうえで好ましい。 Among the poly (perfluoroalkylene ether) chains, among the above, a perfluoromethylene group represented by the formula (1-1), a perfluoroethylene group represented by the formula (1-2), and It is preferable that the poly (perfluoroalkylene ether) chain is constituted by the following in order to further improve the antifouling property of the hard coat film.
 前記式(1-1)で表されるパーフルオロメチレン基と、前記式(1-2)で表されるパーフルオロエチレン基とのモル比率[前記式(1-1)で表されるパーフルオロメチレン基/前記式(1-2)で表されるパーフルオロエチレン基]は、1/10~10/1の範囲であることが好ましい。また、前記一般式(1)中のnの値は、2~200の範囲であることが好ましく、10~100の範囲であることがより好ましく、20~80の範囲であることがさらに好ましい。 The molar ratio of the perfluoromethylene group represented by the formula (1-1) to the perfluoroethylene group represented by the formula (1-2) [the perfluoromethylene represented by the formula (1-1) Methylene group / perfluoroethylene group represented by the formula (1-2)] is preferably in the range of 1/10 to 10/1. Further, the value of n in the general formula (1) is preferably in the range of 2 to 200, more preferably in the range of 10 to 100, and still more preferably in the range of 20 to 80.
 前記化合物(b1-1)が有するシクロポリシロキサン構造としては、例えば、下記一般式(2)で表される構造が挙げられる。 Examples of the cyclopolysiloxane structure that the compound (b1-1) has include a structure represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(上記一般式(2)中、Rはメチル基であり、Rはポリ(パーフルオロアルキレンエーテル)鎖と結合する2価の有機基であり、Rは(メタ)アクリロイル基を有する1価の有機基である。また、mは2~5の整数である。) (In the general formula (2), R 1 is a methyl group, R 3 is a divalent organic group bonded to a poly (perfluoroalkylene ether) chain, and R 4 is a 1 having a (meth) acryloyl group. And m is an integer of 2 to 5.)
 前記シクロポリシロキサン構造としては、前記したなかでも、上記一般式(2)中のmが3であるシクロテトラシロキサン構造であることが好ましい。 The cyclopolysiloxane structure is preferably a cyclotetrasiloxane structure in which m in the general formula (2) is 3, among the above-described cyclopolysiloxane structures.
 前記ポリ(パーフルオロアルキレンエーテル)鎖とシクロポリシロキサン構造とを結合する2価の連結基としては、2価の有機基であれば特に限定されないが、例えば、下記一般式(3)で表されるものが挙げられる。 The divalent linking group that connects the poly (perfluoroalkylene ether) chain and the cyclopolysiloxane structure is not particularly limited as long as it is a divalent organic group. For example, the divalent linking group is represented by the following general formula (3). Can be mentioned.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(上記一般式(3)中、Yは炭素原子数1~6のアルキレン基である。) (In the above general formula (3), Y is an alkylene group having 1 to 6 carbon atoms.)
 また、前記シクロポリシロキサン構造と(メタ)アクリロイル基とを結合する2価の連結基としては、2価の有機基であれば特に限定されないが、例えば、下記一般式(4)で表されるものが挙げられる。 In addition, the divalent linking group that bonds the cyclopolysiloxane structure and the (meth) acryloyl group is not particularly limited as long as it is a divalent organic group. For example, it is represented by the following general formula (4). Things.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(上記一般式(4)中、Z、Z及びZは、それぞれ独立して炭素原子数1~6のアルキレン基である。) (In the general formula (4), Z 1 , Z 2 and Z 3 are each independently an alkylene group having 1 to 6 carbon atoms.)
 前記化合物(b1-1)は、例えば、下記の(1)~(3)の工程を経ることによって製造することができる。
(1)ポリ(パーフルオロアルキレンエーテル)鎖の両末端にアリル基を有する化合物とヒドロシリル基を有するシクロポリシロキサン化合物とを白金系触媒存在下で反応させ、ポリ(パーフルオロアルキレンエーテル)鎖の両末端にシクロポリシロキサン構造を有する化合物を得る工程。
(2)前記工程(1)で得られた化合物とアリルオキシアルカノールとを白金系触媒存在下で反応させ、前記工程(1)で得られた化合物のシクロポリシロキサン構造部位に水酸基を付加する工程。
(3)前記工程(2)で付加した水酸基にイソシアネート基を有する(メタ)アクリレートを反応させ、(メタ)アクリロイル基を導入する工程。
The compound (b1-1) can be produced, for example, through the following steps (1) to (3).
(1) A compound having an allyl group at both ends of a poly (perfluoroalkylene ether) chain and a cyclopolysiloxane compound having a hydrosilyl group are reacted in the presence of a platinum-based catalyst to form both poly (perfluoroalkylene ether) chains. A step of obtaining a compound having a cyclopolysiloxane structure at the terminal.
(2) A step of reacting the compound obtained in the step (1) with allyloxyalkanol in the presence of a platinum-based catalyst and adding a hydroxyl group to the cyclopolysiloxane structure portion of the compound obtained in the step (1). .
(3) A step of introducing a (meth) acryloyl group by reacting the hydroxyl group added in the step (2) with a (meth) acrylate having an isocyanate group.
 前記方法で得られた化合物(b1-1)等の活性エネルギー線硬化性化合物(b1)は、前記ハードコート剤(b2)の不揮発分の全量に対して0.05質量%~5質量%の範囲で含まれることが好ましく、0.1質量%~2質量%の範囲で含まれることが、より一層優れた表面硬度と耐擦傷性とを両立するうえでより好ましい。 The active energy ray-curable compound (b1) such as the compound (b1-1) obtained by the above method is 0.05% by mass to 5% by mass with respect to the total nonvolatile content of the hard coat agent (b2). It is preferably included in the range, and more preferably in the range of 0.1% by mass to 2% by mass in order to achieve both excellent surface hardness and scratch resistance.
 前記第二のハードコート層(B)の形成に使用可能なハードコート剤(b2)としては、前記フッ素原子及びケイ素原子を有する活性エネルギー線硬化性化合物(b1)の他に、必要に応じてその他の活性エネルギー線硬化性化合物を使用することができる。 As a hard coat agent (b2) that can be used for forming the second hard coat layer (B), in addition to the active energy ray-curable compound (b1) having a fluorine atom and a silicon atom, if necessary, Other active energy ray-curable compounds can be used.
 前記その他の活性エネルギー線硬化性化合物としては、例えばウレタン(メタ)アクリレート、3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート等を使用することができる。 As the other active energy ray-curable compound, for example, urethane (meth) acrylate, polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups, and the like can be used.
 前記ウレタン(メタ)アクリレートとしては、前記第一のハードコート層(A)の形成に使用可能なハードコート剤(a1)に使用可能なものとして例示したウレタン(メタ)アクリレートと同様のものを使用することができる。 As said urethane (meth) acrylate, the thing similar to the urethane (meth) acrylate illustrated as what can be used for the hard-coat agent (a1) which can be used for formation of said 1st hard-coat layer (A) is used. can do.
 また、3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートとしては、前記第一のハードコート層(A)の形成に使用可能なハードコート剤(a1)に使用可能なものとして例示した3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートと同様のものを使用することができる。 Moreover, as polyfunctional (meth) acrylate which has a 3 or more (meth) acryloyl group, it can be used for the hard-coat agent (a1) which can be used for formation of said 1st hard-coat layer (A). The thing similar to the polyfunctional (meth) acrylate which has three or more (meth) acryloyl groups illustrated can be used.
 前記ハードコート剤(b2)としては、前記したもののほかに、必要に応じて、本発明の効果を損なわない範囲で、重合禁止剤、表面調整剤、帯電防止剤、消泡剤、粘度調整剤、耐光安定剤、耐候安定剤、耐熱安定剤、紫外線吸収剤、酸化防止剤、レベリング剤を、単独または2種以上組み合わせ使用することができる。 As the hard coat agent (b2), in addition to those described above, a polymerization inhibitor, a surface conditioner, an antistatic agent, an antifoaming agent, and a viscosity conditioner are added as necessary, as long as the effects of the present invention are not impaired. , A light-resistant stabilizer, a weather-resistant stabilizer, a heat-resistant stabilizer, an ultraviolet absorber, an antioxidant, and a leveling agent can be used alone or in combination of two or more.
 前記第二のハードコート層(B)は、前記方法で形成した第一のハードコート層(A)の表面の一部または全部に、前記ハードコート剤(b2)を塗布し、乾燥した後、活性エネルギー線を照射することによって形成することができる。 The second hard coat layer (B) is applied to the hard coat agent (b2) on a part or all of the surface of the first hard coat layer (A) formed by the above method, and dried. It can be formed by irradiating active energy rays.
 前記活性エネルギー線としては、例えば紫外線、電子線、α線、β線、γ線等の電離放射線が挙げられる。活性エネルギー線として紫外線を使用する場合、前記ハードコート剤(b2)として光重合開始剤や光増感剤を含有するものを使用することが好ましい。一方、活性エネルギー線として電子線、α線、β線、γ線等の電離放射線を用いる場合、前記ハードコート剤(b2)として光重合開始剤や光増感剤を含有しないものを使用してもよい。 Examples of the active energy rays include ionizing radiation such as ultraviolet rays, electron beams, α rays, β rays, and γ rays. When ultraviolet rays are used as the active energy ray, it is preferable to use a hard coating agent (b2) containing a photopolymerization initiator or a photosensitizer. On the other hand, when ionizing radiation such as electron beam, α ray, β ray, γ ray and the like is used as the active energy ray, a hard coating agent (b2) containing no photopolymerization initiator or photosensitizer is used. Also good.
 前記光重合開始剤及び光増感剤としては、前記第一のハードコート層(A)の形成に使用可能なハードコート剤(a1)に使用可能なものとして例示したものと同様のものを使用することができる。なお、前記活性エネルギー線として電子線、α線、β線、γ線等の電離放射線を用いる場合には、前記光重合開始剤や光増感剤を使用する必要はない。 As the photopolymerization initiator and photosensitizer, those similar to those exemplified as those usable for the hard coat agent (a1) usable for the formation of the first hard coat layer (A) are used. can do. When ionizing radiation such as electron beam, α ray, β ray, and γ ray is used as the active energy ray, it is not necessary to use the photopolymerization initiator or photosensitizer.
 前記ハードコート剤(b2)を硬化させる際に使用する活性エネルギー線及びその光源等としては、前記第一のハードコート層(A)を形成する際に使用可能なものとして例示したものと同様のものを使用することができる。 The active energy ray used when the hard coat agent (b2) is cured and the light source thereof are the same as those exemplified as those that can be used when forming the first hard coat layer (A). Things can be used.
 本発明のハードコートフィルムは、例えば(i)前記透明基材の少なくとも一方の面に、前記ハードコート剤(a1)を用いて第一のハードコート層(A)を形成する工程、(ii)前記ハードコート層(A)の表面の一部または全部に、前記ハードコート剤(b2)を用いて第二のハードコート層(B)を形成する工程を経ることによって製造することができる。 The hard coat film of the present invention is, for example, (i) a step of forming a first hard coat layer (A) on at least one surface of the transparent substrate using the hard coat agent (a1), (ii) It can manufacture by passing through the process of forming a 2nd hard-coat layer (B) on a part or all of the surface of the said hard-coat layer (A) using the said hard-coat agent (b2).
 なお、前記ハードコート剤(a1)及びハードコート剤(b2)として活性エネルギー線硬化型化合物を含有するものを使用する場合、未硬化または半硬化状態のハードコート層(A’)の表面に、未硬化または半硬化状態のハードコート層(B’)を形成した後、活性エネルギー線を照射することによって、ハードコート層(A)及びハードコート層(B)を一括して硬化させることもできる。 In addition, when using what contains an active energy ray hardening-type compound as said hard-coat agent (a1) and hard-coat agent (b2), on the surface of the hard-coat layer (A ') of an unhardened or semi-hardened state, After forming an uncured or semi-cured hard coat layer (B ′), the hard coat layer (A) and the hard coat layer (B) can be cured at once by irradiating with active energy rays. .
 はじめに、前記工程(i)について説明する。 First, the step (i) will be described.
 前記工程(i)により第一のハードコート層(A)を形成する方法は、具体的には、前記透明基材の片面または両面の一部または全部に前記ハードコート剤(a1)を塗布及び乾燥し、硬化させる方法が挙げられる。 Specifically, in the method of forming the first hard coat layer (A) by the step (i), the hard coat agent (a1) is applied to a part or all of one side or both sides of the transparent substrate and The method of drying and hardening is mentioned.
 前記透明基材の片面または両面の一部または全部に前記ハードコート剤を塗布する方法としては、例えばダイコート、マイクログラビアコート、グラビアコート、ロールコート、コンマコート、エアナイフコート、キスコート、スプレーコート、かけ渡しコート、ディップコート、スピンナーコート、ホイーラーコート、刷毛塗り、シルクスクリーンによるベタコート、ワイヤーバーコート、フローコートなどの方法が挙げられる。 Examples of the method for applying the hard coating agent to one or both sides of the transparent substrate include die coating, micro gravure coating, gravure coating, roll coating, comma coating, air knife coating, kiss coating, spray coating, and coating. Examples include transfer coating, dip coating, spinner coating, wheeler coating, brush coating, silk screen solid coating, wire bar coating, and flow coating.
 前記硬化方法としては、例えば前記ハードコート剤(a1)が活性エネルギー線硬化性型化合物を含有するものであれば、前記ハードコート剤(a1)を塗布し乾燥した塗布面に活性エネルギー線を照射し硬化させる方法が挙げられる。 As the curing method, for example, if the hard coat agent (a1) contains an active energy ray-curable compound, the hard coating agent (a1) is applied and dried on the coated surface. And then curing.
 前記活性エネルギー線としては、例えば紫外線、電子線、α線、β線、γ線のような電離放射線が挙げられる。 Examples of the active energy rays include ionizing radiation such as ultraviolet rays, electron rays, α rays, β rays, and γ rays.
 前記活性エネルギー線を照射する装置としては、例えば紫外線であれば、その発生源として低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、無電極ランプ(フュージョンランプ)、ケミカルランプ、ブラックライトランプ、水銀-キセノンランプ、ショートアーク灯、ヘリウム・カドミニウムレーザー、アルゴンレーザー、太陽光、LEDなどが挙げられる。 As an apparatus for irradiating the active energy ray, for example, in the case of ultraviolet rays, the generation source thereof is a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, an electrodeless lamp (fusion lamp), a chemical lamp, a black light Lamps, mercury-xenon lamps, short arc lamps, helium / cadmium lasers, argon lasers, sunlight, LEDs and the like.
 本発明のハードコートフィルムを製造する際には、前記した方法によって、透明基材の表面に第一のハードコート層(A)を形成した後、第二のハードコート層(B)を順に積層する工程を行ってもよいが、ハードコート層(A)とハードコート層(B)との界面で高い密着性を得るうえで、透明基材の表面に前記ハードコート剤(a1)を塗布し乾燥した後、活性エネルギー線を照射しない、または、完全硬化に十分な量の活性エネルギー線を照射しないことで、未硬化または半硬化状態のハードコート層(A’)形成し、次いで、後述するハードコート層(B)を順に積層しハードコートフィルムを製造してもよい。この場合、前記ハードコート層(A’)は、前記ハードコート層(B)を形成する際に照射される活性エネルギー線によって本硬化され、ハードコート層(A)を形成することができる。 When producing the hard coat film of the present invention, the first hard coat layer (A) is formed on the surface of the transparent substrate by the above-described method, and then the second hard coat layer (B) is sequentially laminated. In order to obtain high adhesion at the interface between the hard coat layer (A) and the hard coat layer (B), the hard coat agent (a1) is applied to the surface of the transparent substrate. After drying, an active energy ray is not irradiated, or an active energy ray sufficient for complete curing is not irradiated to form an uncured or semi-cured hard coat layer (A ′), and then described later. The hard coat layer (B) may be laminated in order to produce a hard coat film. In this case, the hard coat layer (A ′) can be fully cured by active energy rays irradiated when the hard coat layer (B) is formed to form the hard coat layer (A).
 前記ハードコート層(A)の表面は、前記ハードコート層(B)と積層した際の層間密着性をより一層向上するうえで、コロナ処理、プラズマ処理などが施されていてもよい。 The surface of the hard coat layer (A) may be subjected to corona treatment, plasma treatment or the like in order to further improve interlayer adhesion when laminated with the hard coat layer (B).
 次に、前記工程(ii)について説明する。 Next, the step (ii) will be described.
 前記工程(ii)は、前記工程(i)で形成したハードコート層(A)または前記ハードコート層(A’)の表面に、前記ハードコート剤(b2)を塗布及び乾燥し、硬化させる工程である。 In the step (ii), the hard coat agent (b2) is applied to the surface of the hard coat layer (A) or the hard coat layer (A ′) formed in the step (i), dried and cured. It is.
 前記ハードコート剤(b2)を塗布する方法としては、例えばダイコート、マイクログラビアコート、グラビアコート、ロールコート、コンマコート、エアナイフコート、キスコート、スプレーコート、かけ渡しコート、ディップコート、スピンナーコート、ホイーラーコート、刷毛塗り、シルクスクリーンによるベタコート、ワイヤーバーコート、フローコートなどの方法が挙げられる。 Examples of the method for applying the hard coating agent (b2) include die coating, micro gravure coating, gravure coating, roll coating, comma coating, air knife coating, kiss coating, spray coating, transfer coating, dip coating, spinner coating, and wheeler coating. , Brush coating, silk screen solid coating, wire bar coating, flow coating, and the like.
 前記硬化方法としては、例えば前記ハードコート剤(b2)が活性エネルギー線硬化型化合物を含有するものであれば、前記ハードコート剤(b2)を塗布し乾燥した塗布面に活性エネルギー線を照射し硬化させる方法が挙げられる。 As the curing method, for example, if the hard coat agent (b2) contains an active energy ray-curable compound, the hard coating agent (b2) is applied and dried on the coated surface with active energy rays. The method of hardening is mentioned.
 前記活性エネルギー線としては、例えば紫外線、電子線、α線、β線、γ線のような電離放射線が挙げられる。 Examples of the active energy rays include ionizing radiation such as ultraviolet rays, electron rays, α rays, β rays, and γ rays.
 前記活性エネルギー線を照射する装置としては、例えば紫外線であれば、その発生源として低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、無電極ランプ(フュージョンランプ)、ケミカルランプ、ブラックライトランプ、水銀-キセノンランプ、ショートアーク灯、ヘリウム・カドミニウムレーザー、アルゴンレーザー、太陽光、LEDなどが挙げられる。 As an apparatus for irradiating the active energy ray, for example, in the case of ultraviolet rays, the generation source thereof is a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, an electrodeless lamp (fusion lamp), a chemical lamp, a black light Lamps, mercury-xenon lamps, short arc lamps, helium / cadmium lasers, argon lasers, sunlight, LEDs and the like.
 また、前記ハードコート剤(b2)を、未硬化または半硬化状態のハードコート層(A’)の表面に塗布などした場合には、前記ハードコート剤(b2)の塗布面に活性エネルギー線を照射することによって、前記ハードコート層(A)と前記ハードコート層(B)とを形成することが、前記層間の密着性をより一層向上させ、より一層優れた耐擦傷性と、優れた防汚性などの効果を長期間持続可能とするうえで好ましい。 In addition, when the hard coat agent (b2) is applied to the surface of the uncured or semi-cured hard coat layer (A ′), active energy rays are applied to the application surface of the hard coat agent (b2). By forming the hard coat layer (A) and the hard coat layer (B) by irradiation, the adhesion between the layers is further improved, and further excellent scratch resistance and excellent anti-resistance It is preferable in order to make it possible to maintain effects such as dirtiness for a long period of time.
 本発明のハードコードフィルムとしては、それを構成する透明基材の他方の面(前記第一のハードコート層(A)及び第二のハードコート層(B)が積層された面の反対側の面)に、第三のハードコート層を有するものを使用することが、カールを防止するうえで好ましい。 As the hard cord film of the present invention, the other surface of the transparent base material constituting the hard cord film (on the opposite side of the surface on which the first hard coat layer (A) and the second hard coat layer (B) are laminated). In order to prevent curling, it is preferable to use a surface having a third hard coat layer.
 前記第三のハードコート層は、2μm~50μmの範囲の厚さであることが好ましく、5μm~30μmの範囲の厚さであることが、カールの発生を抑制するうえでより好ましい。 The third hard coat layer preferably has a thickness in the range of 2 μm to 50 μm, more preferably in the range of 5 μm to 30 μm, in order to suppress the occurrence of curling.
 前記第三のハードコート層の厚さは、前記第一のハードコート層(A)及び第二のハードコート層(B)の厚さの合計に対して、±50%程度の厚さであることが、カールの発生を抑制するうえで好ましい。 The thickness of the third hard coat layer is about ± 50% of the total thickness of the first hard coat layer (A) and the second hard coat layer (B). It is preferable to suppress the occurrence of curling.
 前記第三のハードコート層は、第三のハードコート剤を塗布及び乾燥し、硬化させることによって形成することができる。
 前記第三のハードコート剤としては、前記第一のハードコート層(A)の形成に使用可能なものとして例示したハードコート剤(a1)と同様のものを使用することができる。また、前記第三のハードコート剤としては、前記第一のハードコート層(A)の形成に使用可能なものとして例示したハードコート剤(a1)のうち、フィラーを含有しないものを使用することができる。
The third hard coat layer can be formed by applying, drying, and curing a third hard coat agent.
As said 3rd hard-coat agent, the thing similar to the hard-coat agent (a1) illustrated as what can be used for formation of said 1st hard-coat layer (A) can be used. Moreover, as said 3rd hard-coat agent, what does not contain a filler among the hard-coat agents (a1) illustrated as what can be used for formation of said 1st hard-coat layer (A) should be used. Can do.
 本発明のハードコートフィルムは、その片面または両面の一部または全部に、加飾層や粘着剤層を有していてもよい。前記加飾層が設けられた本発明のハードコートフィルムは、加飾フィルムとして使用することができる。また、前記粘着剤層が設けられた本発明のハードコートフィルムは、保護フィルムとして使用することができる。 The hard coat film of the present invention may have a decorative layer or an adhesive layer on part or all of one side or both sides. The hard coat film of the present invention provided with the decorative layer can be used as a decorative film. Moreover, the hard coat film of this invention provided with the said adhesive layer can be used as a protective film.
 前記加飾層または粘着剤層は、前記ハードコートフィルムを構成することができる前記第三のハードコート層の表面の一部または全部に設けられることが好ましい。 The decoration layer or the pressure-sensitive adhesive layer is preferably provided on a part or all of the surface of the third hard coat layer that can constitute the hard coat film.
 前記加飾層としては、例えば文字、図形、記号をはじめ、隠ぺい性やデザインを付与することを目的とした額縁状の縁取りなどによって構成されるものが挙げられる。 Examples of the decorative layer include those composed of a frame-like border for the purpose of imparting concealment and design, as well as letters, figures and symbols.
[加飾層]
 本発明のハードコートフィルムには、加飾層を設けて加飾フィルムとして使用してもよい。加飾層は、前記ハードコートフィルムに一般的な印刷により設けることができる。印刷方法は、例えば、シルク印刷、スクリーン印刷、熱転写印刷、グラビア印刷などが挙げられる。
[Decoration layer]
The hard coat film of the present invention may be used as a decorative film by providing a decorative layer. The decorative layer can be provided on the hard coat film by general printing. Examples of the printing method include silk printing, screen printing, thermal transfer printing, and gravure printing.
 加飾層は、ハードコートフィルムに各種の意匠性を付与するものであれば特に制限されず、例えば、情報表示パネルとして使用する際の情報表示部の周囲に視認される文字や図形、あるいは、情報表示部に額縁状に設けられる黒色の縁取り状の加飾層などが挙げられる。 The decorative layer is not particularly limited as long as it imparts various design properties to the hard coat film, for example, characters and figures that are visually recognized around the information display unit when used as an information display panel, or Examples thereof include a black border-shaped decorative layer provided in a frame shape on the information display section.
 加飾層の厚さとしては、30μm以下が好ましく、15μm以下がより好ましく、10μm以下が特に好ましい。当該厚さの加飾層とすることで好適な意匠性を得やすくなる。 The thickness of the decoration layer is preferably 30 μm or less, more preferably 15 μm or less, and particularly preferably 10 μm or less. It becomes easy to obtain suitable designability by setting it as the decoration layer of the said thickness.
 加飾層は、ハードコートフィルムの片面または両面の任意の箇所に設けることができるが、また、情報表示装置のディスプレイ用に使用する場合には、通常は情報表示部以外の箇所に設けられる。 The decorative layer can be provided at any location on one or both sides of the hard coat film, but is usually provided at a location other than the information display section when used for a display of an information display device.
[粘着剤層]
 本発明のハードコートフィルムは、粘着剤層を設けて保護フィルムとして使用してもよい。前記粘着層はハードコートフィルムに粘着テープを貼り合わせるか、ハードコートフィルムを構成するハードコート層(B)とは反対面に直接粘着剤層を塗布することで設けることができる。
[Adhesive layer]
The hard coat film of the present invention may be used as a protective film by providing an adhesive layer. The pressure-sensitive adhesive layer can be provided by sticking a pressure-sensitive adhesive tape to the hard coat film or by directly applying a pressure-sensitive adhesive layer on the surface opposite to the hard coat layer (B) constituting the hard coat film.
 前記粘着剤層の厚さは、5μm~50μmの範囲が好ましく、8μm~30μmの範囲がより好ましく、10μm~25μmの範囲がさらに好ましい。本発明において、粘着剤層の厚さを当該範囲とすることで、接着信頼性に優れ、またハードコートフィルムの表面硬さを著しく損なわず維持することができる。 The thickness of the pressure-sensitive adhesive layer is preferably in the range of 5 μm to 50 μm, more preferably in the range of 8 μm to 30 μm, and still more preferably in the range of 10 μm to 25 μm. In this invention, by making the thickness of an adhesive layer into the said range, it is excellent in adhesive reliability, and can maintain the surface hardness of a hard coat film not remarkably impaired.
 本発明に用いる粘着剤層に使用される粘着剤には、公知のアクリル系、ゴム系、シリコーン系などの粘着樹脂を使用することができる。そのなかでも、アクリル系重合体を含有するアクリル系粘着剤を使用することが、干渉縞低減、フィルム基材との密着性、透明性、耐候性などをより一層向上するうえで好ましい。 For the pressure-sensitive adhesive used in the pressure-sensitive adhesive layer used in the present invention, known acrylic, rubber-based, silicone-based pressure-sensitive resins can be used. Among these, it is preferable to use an acrylic pressure-sensitive adhesive containing an acrylic polymer in order to further improve interference fringe reduction, adhesion to a film substrate, transparency, weather resistance, and the like.
 前記アクリル系重合体としては、(メタ)アクリル単量体を重合して得られるものを使用することができる。前記(メタ)アクリル単量体としては、例えば(メタ)アクリレートが挙げられ、炭素原子数2~14のアルキル基を有する(メタ)アクリレートを含有するものを使用することが好ましい。 As the acrylic polymer, a polymer obtained by polymerizing a (meth) acrylic monomer can be used. Examples of the (meth) acrylic monomer include (meth) acrylate, and it is preferable to use a monomer containing (meth) acrylate having an alkyl group having 2 to 14 carbon atoms.
 前記炭素原子数2~14のアルキル基を有する(メタ)アクリレートとしては、例えば、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、sec-ブチルアクリレート、t-ブチルアクリレート、n-ヘキシルアクリレート、シクロヘキシルアクリレート、n-オクチルアクリレート、イソオクチルアクリレート、2-エチルヘキシルアクリレート、イソノニルアクリレート、イソデシルアクリレート、ラウリルアクリレート、メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、sec-ブチルメタクリレート、t-ブチルメタクリレート、n-ヘキシルメタクリレート、シクロヘキシルメタクリレート、n-オクチルメタクリレート、イソオクチルメタクリレート、2-エチルヘキシルメタクリレート、イソノニルメタクリレート、イソデシルメタクリレート、ラウリルメタクリレートなどが挙げられる。 Examples of the (meth) acrylate having an alkyl group having 2 to 14 carbon atoms include ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, sec-butyl acrylate, t-butyl acrylate, and n-hexyl. Acrylate, cyclohexyl acrylate, n-octyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, isononyl acrylate, isodecyl acrylate, lauryl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, sec -Butyl methacrylate, t-butyl methacrylate, n-hexyl methacrylate, cyclohexyl meta Relate, n- octyl methacrylate, isooctyl methacrylate, 2-ethylhexyl methacrylate, isononyl methacrylate, isodecyl methacrylate, lauryl methacrylate.
 前記の(メタ)アクリレートとしては、前記したなかでも、炭素原子数4~9のアルキル基を有するアルキル(メタ)アクリレートを使用することが好ましく、炭素原子数4~9のアルキル基を有するアルキルアクリレートを使用することがより好ましい。 Among the above-mentioned (meth) acrylates, it is preferable to use alkyl (meth) acrylates having an alkyl group having 4 to 9 carbon atoms, and alkyl acrylates having an alkyl group having 4 to 9 carbon atoms. More preferably, is used.
 前記炭素原子数4~9のアルキル基を有するアルキルアクリレートとしては、n-ブチルアクリレート、イソオクチルアクリレート、2-エチルヘキシルアクリレート、イソノニルアクリレート、エチルアクリレートが、好適な粘着力を確保しやすいためさらに好ましい。 As the alkyl acrylate having an alkyl group having 4 to 9 carbon atoms, n-butyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, isononyl acrylate, and ethyl acrylate are more preferable because it is easy to ensure suitable adhesive strength. .
 前記炭素原子数2~14のアルキル基を有する(メタ)アクリレートは、前記(メタ)アクリル単量体の全量に対して90質量%~99質量%の範囲で使用することが好ましく、90質量%~96質量%の範囲で使用することが好適な粘着力を確保しやすいためより好ましい。 The (meth) acrylate having an alkyl group having 2 to 14 carbon atoms is preferably used in a range of 90% by mass to 99% by mass with respect to the total amount of the (meth) acrylic monomer. It is more preferable to use in the range of -96 mass% because it is easy to ensure a suitable adhesive force.
 前記アクリル系重合体としては、例えば水酸基、カルボキシル基、アミド基などの極性基を有するものを使用することができる。 As the acrylic polymer, for example, a polymer having a polar group such as a hydroxyl group, a carboxyl group, and an amide group can be used.
 前記アクリル系重合体は、例えば水酸基、カルボキシル基、アミド基などの極性基を有する(メタ)アクリル単量体を含有する(メタ)アクリル単量体を重合することによって製造することができる。 The acrylic polymer can be produced by polymerizing a (meth) acrylic monomer containing a (meth) acrylic monomer having a polar group such as a hydroxyl group, a carboxyl group, or an amide group.
 前記水酸基を有する(メタ)アクリレート単量体としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、カプロラクトン変性(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレートなどが挙げられる。これらのなかでも、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレートを使用することが好ましい。 Examples of the (meth) acrylate monomer having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, hydroxypropyl (meth) acrylate, Examples include caprolactone-modified (meth) acrylate, polyethylene glycol mono (meth) acrylate, and polypropylene glycol mono (meth) acrylate. Of these, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 6-hydroxyhexyl (meth) acrylate are preferably used.
 前記カルボキシル基を有する(メタ)アクリレート単量体としては、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、クロトン酸、アクリル酸又はメタクリル酸の2量体、エチレンオキサイド変性コハク酸アクリレートなどが挙げられる。これらのなかでも、アクリル酸を使用することが好ましい。 Examples of the (meth) acrylate monomer having a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, maleic acid, crotonic acid, acrylic acid or methacrylic acid dimer, ethylene oxide-modified succinic acid acrylate, and the like. Can be mentioned. Among these, it is preferable to use acrylic acid.
 前記アミド基を有する(メタ)アクリレート単量体としては、例えば、N-ビニル-2-ピロリドン、N-ビニルカプロラクタム、アクリロイルモルホリン、アクリルアミド、N,N-ジメチルアクリルアミド、2-(パーヒドロフタルイミド-N-イル)エチルアクリレートなどが挙げられる。これらのなかでも、N-ビニル-2-ピロリドン、N-ビニルカプロラクタム、アクリロイルモルホリンを使用することが好ましい。 Examples of the (meth) acrylate monomer having an amide group include N-vinyl-2-pyrrolidone, N-vinylcaprolactam, acryloylmorpholine, acrylamide, N, N-dimethylacrylamide, and 2- (perhydrophthalimide-N -Yl) ethyl acrylate and the like. Of these, N-vinyl-2-pyrrolidone, N-vinylcaprolactam, and acryloylmorpholine are preferably used.
 前記その他の極性基を有するビニル系単量体としては、例えば、酢酸ビニル、アクリロニトリル、無水マレイン酸、無水イタコン酸などが挙げられる。 Examples of the other vinyl monomers having a polar group include vinyl acetate, acrylonitrile, maleic anhydride, itaconic anhydride and the like.
 極性基を有する(メタ)アクリル単量体は、前記アクリル系重合体の製造に使用する(メタ)アクリル単量体の全量に対して0.1質量%~20質量%の範囲で使用することが好ましく、1質量%~13質量%の範囲で使用することがより好ましく、1.5質量%~8重量%の範囲で使用することが、凝集力、保持力、接着性を好適な範囲に調整しやすいためさらに好ましい。 The (meth) acrylic monomer having a polar group should be used in the range of 0.1% by mass to 20% by mass with respect to the total amount of the (meth) acrylic monomer used for the production of the acrylic polymer. It is preferable to use in the range of 1% by mass to 13% by mass, and it is preferable to use in the range of 1.5% by mass to 8% by weight to make the cohesive strength, holding power, and adhesiveness suitable. It is more preferable because it is easy to adjust.
 前記アクリル系重合体の重量平均分子量は40万~140万であることが好ましく、60万~120万であることが、接着力を特定範囲に調整しやすいためより好ましい。 The weight average molecular weight of the acrylic polymer is preferably 400,000 to 1,400,000, more preferably 600,000 to 1,200,000 because the adhesive force can be easily adjusted to a specific range.
 なお、前記重量平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)により測定することができる。より具体的には、GPC測定装置として、東ソー株式会社製「SC8020」を用いて、ポリスチレン換算値により、次のGPC測定条件で測定して求めることができる。
(GPCの測定条件)
・サンプル濃度:0.5質量%(テトラヒドロフラン溶液)
・サンプル注入量:100μL
・溶離液:テトラヒドロフラン(THF)
・流速:1.0mL/min
・カラム温度(測定温度):40℃
・カラム:東ソー株式会社製「TSKgel GMHHR-H」
・検出器:示差屈折
The weight average molecular weight can be measured by gel permeation chromatograph (GPC). More specifically, as a GPC measurement device, “SC8020” manufactured by Tosoh Corporation can be used to measure and obtain the following GPC measurement conditions based on polystyrene conversion values.
(GPC measurement conditions)
Sample concentration: 0.5% by mass (tetrahydrofuran solution)
Sample injection volume: 100 μL
・ Eluent: Tetrahydrofuran (THF)
・ Flow rate: 1.0 mL / min
Column temperature (measurement temperature): 40 ° C
・ Column: “TSKgel GMHHR-H” manufactured by Tosoh Corporation
・ Detector: Differential refraction
 前記粘着剤としては、より一層凝集力を高めるうえで、前記アクリル系重合体などのほかに、架橋剤を含有するものを使用することが好ましい。 As the pressure-sensitive adhesive, it is preferable to use a material containing a crosslinking agent in addition to the acrylic polymer in order to further increase the cohesive force.
 前記架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、キレート系架橋剤などが挙げられる。 Examples of the crosslinking agent include isocyanate crosslinking agents, epoxy crosslinking agents, chelate crosslinking agents, and the like.
 前記架橋剤は、形成される粘着剤層のゲル分率が25質量%~80質量%となる範囲で使用することが好ましく、ゲル分率が40質量%~75質量%となる範囲で使用することがより好ましく、50質量%~70質量%となる範囲で使用することが、保護フィルムを基材に貼付した際の表面鉛筆硬度の低下を抑制することができ、接着性も十分なものとすることができる。なお、本発明におけるゲル分率は、養生後の粘着剤層をトルエン中に浸漬し、24時間放置後に残った不溶分の乾燥後の質量を測定し、元の質量に対して百分率で表したものである。 The crosslinking agent is preferably used in a range where the gel fraction of the pressure-sensitive adhesive layer to be formed is 25% by mass to 80% by mass, and is used in a range where the gel fraction is 40% by mass to 75% by mass. More preferably, the use within the range of 50% by mass to 70% by mass can suppress a decrease in surface pencil hardness when the protective film is attached to the substrate, and has sufficient adhesiveness. can do. The gel fraction in the present invention is expressed as a percentage of the original mass by immersing the cured pressure-sensitive adhesive layer in toluene, measuring the mass after drying of the insoluble matter remaining after standing for 24 hours, and the original mass. Is.
 前記粘着剤としては、より一層接着力を高めるうえで、粘着付与樹脂を含有するものを使用することができる。 As the pressure-sensitive adhesive, a material containing a tackifying resin can be used to further increase the adhesive strength.
 前記粘着付与樹脂は、前記アクリル系重合体100質量部に対して、10質量部~60質量部の範囲で使用することが好ましい。さらに接着性を重視する場合は、20質量部~50質量部の範囲で添加するのが好ましい。 The tackifying resin is preferably used in the range of 10 to 60 parts by mass with respect to 100 parts by mass of the acrylic polymer. Further, when importance is attached to adhesiveness, it is preferably added in the range of 20 to 50 parts by mass.
 前記粘着剤としては、前記以外に公知慣用の添加剤を含有するものを使用することができる。 As the pressure-sensitive adhesive, those containing known and commonly used additives other than the above can be used.
 前記添加剤としては、例えば基材への接着性を向上するために、粘着剤100質量部に対して、0.001質量部~0.005質量部の範囲でシランカップリング剤を添加することが好ましい。さらに、必要に応じて、その他の添加剤として、可塑剤、軟化剤、充填剤、顔料、難燃剤などを添加することもできる。 As the additive, for example, a silane coupling agent is added in the range of 0.001 to 0.005 parts by mass with respect to 100 parts by mass of the pressure-sensitive adhesive in order to improve adhesion to the substrate. Is preferred. Furthermore, as necessary, plasticizers, softeners, fillers, pigments, flame retardants, and the like can be added as other additives.
[実施態様]
 本発明のハードコートフィルムは、好適な耐擦傷性や滑り性および防汚性を有することから各種用途に適用できるが、なかでも、液晶ディスプレイ(LCD)や有機ELディスプレイなどの情報表示装置の情報表示部に好適に適用できる。特に、薄型であっても好適な耐擦傷性や滑り性を実現できることから、電子手帳、携帯電話、スマートフォン、携帯オーディオプレイヤー、モバイルパソコン、タブレット端末などの小型化や薄型化の要請の高い携帯電子端末の情報表示装置の情報表示部を保護する用途に好適である。このような画像表示装置においては、例えば、LCDモジュールや有機ELモジュールなどの画像表示モジュールをその構成中に有し、当該画像表示モジュール上部に当該画像表示モジュールを保護する透明パネルが設けられた構成の画像表示装置においては、当該透明パネルの表面又は裏面に貼り付けて使用することで、傷つき防止や透明パネルが破損した際の飛散防止に有効である。
[Embodiment]
The hard coat film of the present invention has suitable scratch resistance, slipperiness and antifouling properties and can be applied to various applications. Among them, information on information display devices such as liquid crystal displays (LCDs) and organic EL displays can be used. It can be suitably applied to a display unit. In particular, even if it is thin, it can realize suitable scratch resistance and slipperiness, so portable electronic devices that are highly demanded for miniaturization and thinning such as electronic notebooks, mobile phones, smartphones, portable audio players, mobile PCs, tablet terminals etc. It is suitable for the purpose of protecting the information display unit of the terminal information display device. In such an image display device, for example, an image display module such as an LCD module or an organic EL module is included in the configuration, and a transparent panel for protecting the image display module is provided above the image display module. In this image display device, it is effective to prevent scratches and to prevent scattering when the transparent panel is damaged by being attached to the front or back surface of the transparent panel.
 以下に実施例により本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
(合成例1:ウレタンアクリレート(A1-1)の合成)
 撹拌機、ガス導入管、冷却管及び温度計を備えたフラスコに、ペンタエリスリトールトリアクリレート(以下、「PE3A」と略記する。)及びペンタエリスリトールテトラアクリレート(以下、「PE4A」と略記する。)の混合物(PE3A/PE4A=60/40(質量比))549.1質量部、ジブチル錫ジアセテート0.1質量部、ジブチルヒドロキシトルエン0.6質量部、p-メトキシフェノール0.1質量部及び酢酸ブチル160質量部を加え、空気を吹き込み、均一に混合しながら徐々に昇温した。60℃に達したところでヘキサメチレンジイソシアネート90.9質量部を加えた後、80℃で5時間反応させ、1分子中に6つのアクリロイル基を有するウレタンアクリレート(A1-1)を含む不揮発分80質量%溶液を得た。なお、この溶液には、不揮発分中にウレタンアクリレート(A1-1)の他にPE4Aが34.3質量%含まれる。
(Synthesis Example 1: Synthesis of urethane acrylate (A1-1))
In a flask equipped with a stirrer, a gas introduction tube, a cooling tube, and a thermometer, pentaerythritol triacrylate (hereinafter abbreviated as “PE3A”) and pentaerythritol tetraacrylate (hereinafter abbreviated as “PE4A”). 549.1 parts by weight of the mixture (PE3A / PE4A = 60/40 (mass ratio)), 0.1 part by weight of dibutyltin diacetate, 0.6 part by weight of dibutylhydroxytoluene, 0.1 part by weight of p-methoxyphenol and acetic acid 160 parts by mass of butyl was added, air was blown in, and the temperature was gradually raised while mixing uniformly. When the temperature reached 60 ° C., 90.9 parts by mass of hexamethylene diisocyanate was added, followed by reaction at 80 ° C. for 5 hours, and a non-volatile content containing urethane acrylate (A1-1) having 6 acryloyl groups in one molecule. % Solution was obtained. This solution contains 34.3% by mass of PE4A in addition to urethane acrylate (A1-1) in the nonvolatile content.
(合成例2:ウレタンアクリレート(A1-2)の合成)
 攪拌機、ガス導入管、冷却管及び温度計を備えたフラスコに、PE3A及びPE4Aの混合物(PE3A/PE4A=60/40(質量比))242質量部、p-メトキシフェノール0.23質量部、ジブチル錫ジラウレート0.13質量部及びメチルエチルケトン100質量部を仕込み、空気を吹き込みながら、75℃に昇温した後、ヘキサメチレンジイソシアネートの3量化物(イソシアヌレート体)(住化バイエルウレタン株式会社製「デスモジュールN3390BA」、不揮発分90質量%、NCO%:19.6質量%、NCO当量:214g/eq.)107質量部及びメチルエチルケトン50質量部の混合溶液を2時間かけて滴下した。滴下終了後、75℃で4時間反応させ、さらにイソシアネート基を示す2250cm-1の赤外線吸収スペクトルが消失するまで反応を行い、1分子中に9つのアクリロイル基を有するウレタンアクリレート(A1-2)を含む不揮発分67.8質量%溶液を得た。なお、この溶液には、不揮発分中にウレタンアクリレート(A1-2)の他にPE4Aが28.6質量%含まれる。
(Synthesis Example 2: Synthesis of urethane acrylate (A1-2))
In a flask equipped with a stirrer, a gas introduction tube, a cooling tube and a thermometer, 242 parts by mass of a mixture of PE3A and PE4A (PE3A / PE4A = 60/40 (mass ratio)), 0.23 parts by mass of p-methoxyphenol, dibutyl After charging 0.13 parts by mass of tin dilaurate and 100 parts by mass of methyl ethyl ketone and raising the temperature to 75 ° C. while blowing air, a trimerized hexamethylene diisocyanate (isocyanurate) (manufactured by Sumika Bayer Urethane Co., Ltd.) Module N3390BA ”, a non-volatile content of 90% by mass, NCO%: 19.6% by mass, NCO equivalent: 214 g / eq.) A mixed solution of 107 parts by mass and methyl ethyl ketone 50 parts by mass was added dropwise over 2 hours. After completion of the dropwise addition, the mixture was reacted at 75 ° C. for 4 hours, and further reacted until the infrared absorption spectrum of 2250 cm −1 indicating the isocyanate group disappeared, and urethane acrylate (A1-2) having 9 acryloyl groups in one molecule was obtained. A 67.8 mass% solution with a nonvolatile content was obtained. This solution contains 28.6% by mass of PE4A in addition to urethane acrylate (A1-2) in the nonvolatile content.
(合成例3:ウレタンアクリレート(A1-3)の合成)
 攪拌機、ガス導入管、冷却管及び温度計を備えたフラスコに、酢酸ブチル254質量部、イソホロンジイソシアネート222質量部、p-メトキシフェノール0.5質量部及びジブチル錫ジアセテート0.5質量部を仕込み、空気を吹き込みながら、70℃に昇温した後、PE3A及びPE4Aの混合物(PE3A/PE4A=75/25(質量比))795質量部を1時間かけて滴下した。滴下終了後、70℃で3時間反応させ、さらにイソシアネート基を示す2250cm-1の赤外線吸収スペクトルが消失するまで反応を行い、1分子中に6つのアクリロイル基を有するウレタンアクリレート(A1-3)を含む不揮発分80質量%溶液を得た。なお、この溶液には、不揮発分中にウレタンアクリレート(A1-3)の他にPE4Aが19.5質量%含まれる。
(Synthesis Example 3: Synthesis of urethane acrylate (A1-3))
A flask equipped with a stirrer, gas introduction tube, cooling tube and thermometer was charged with 254 parts by mass of butyl acetate, 222 parts by mass of isophorone diisocyanate, 0.5 parts by mass of p-methoxyphenol and 0.5 parts by mass of dibutyltin diacetate. The temperature was raised to 70 ° C. while blowing air, and then 795 parts by mass of a mixture of PE3A and PE4A (PE3A / PE4A = 75/25 (mass ratio)) was added dropwise over 1 hour. After completion of the dropwise addition, the mixture is reacted at 70 ° C. for 3 hours, and further reacted until the infrared absorption spectrum of 2250 cm −1 indicating the isocyanate group disappears, thereby obtaining urethane acrylate (A1-3) having 6 acryloyl groups in one molecule. A non-volatile content 80% by mass solution was obtained. This solution contains 19.5% by mass of PE4A in addition to urethane acrylate (A1-3) in the nonvolatile content.
(合成例4:ウレタンアクリレート(A1-4)の合成)
 攪拌機、ガス導入管、冷却管及び温度計を備えたフラスコに、酢酸ブチル250質量部、ノルボルナンジイソシアネート206質量部、p-メトキシフェノール0.5質量部及びジブチル錫ジアセテート0.5質量部を仕込み、空気を吹き込みながら、70℃に昇温した後、PE3A及びPE4Aの混合物(PE3A/PE4A=75/25(質量比))795質量部を1時間かけて滴下した。滴下終了後、70℃で3時間反応させ、さらにイソシアネート基を示す2250cm-1の赤外線吸収スペクトルが消失するまで反応を行い、1分子中に6つのアクリロイル基を有するウレタンアクリレート(A1-4)を含む不揮発分80質量%溶液を得た。なお、この溶液には、不揮発分中にウレタンアクリレート(A1-4)の他にPE4Aが19.9質量%含まれる。
(Synthesis Example 4: Synthesis of urethane acrylate (A1-4))
A flask equipped with a stirrer, gas introduction tube, cooling tube and thermometer was charged with 250 parts by mass of butyl acetate, 206 parts by mass of norbornane diisocyanate, 0.5 parts by mass of p-methoxyphenol and 0.5 parts by mass of dibutyltin diacetate. The temperature was raised to 70 ° C. while blowing air, and then 795 parts by mass of a mixture of PE3A and PE4A (PE3A / PE4A = 75/25 (mass ratio)) was added dropwise over 1 hour. After completion of the dropwise addition, the mixture was reacted at 70 ° C. for 3 hours, and further reacted until the infrared absorption spectrum of 2250 cm −1 indicating the isocyanate group disappeared, and urethane acrylate (A1-4) having 6 acryloyl groups in one molecule was obtained. A non-volatile content 80% by mass solution was obtained. This solution contains 19.9% by mass of PE4A in addition to urethane acrylate (A1-4) in the nonvolatile content.
(合成例5:ウレタンアクリレート(A1-5)の合成)
 攪拌機、ガス導入管、冷却管及び温度計を備えたフラスコに、酢酸ブチル254質量部、イソホロンジイソシアネート222質量部、p-メトキシフェノール0.5質量部及びジブチル錫ジアセテート0.5質量部を仕込み、空気を吹き込みながら、70℃に昇温した後、ビス(2-アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレート369質量部とPE3A及びPE4Aの混合物(PE3A/PE4A=75/25(質量比))398質量部とを1時間かけて滴下した。滴下終了後、70℃で3時間反応させ、さらにイソシアネート基を示す2250cm-1の赤外線吸収スペクトルが消失するまで反応を行い、1分子中に4~6つのアクリロイル基を有するウレタンアクリレート(A1-5)を含む不揮発分80質量%溶液を得た。なお、この溶液には、不揮発分中にウレタンアクリレート(A1-5)の他にPE4Aが10.1質量%含まれる。
(Synthesis Example 5: Synthesis of urethane acrylate (A1-5))
A flask equipped with a stirrer, gas introduction tube, cooling tube and thermometer was charged with 254 parts by mass of butyl acetate, 222 parts by mass of isophorone diisocyanate, 0.5 parts by mass of p-methoxyphenol and 0.5 parts by mass of dibutyltin diacetate. The temperature was raised to 70 ° C. while blowing air, and then 369 parts by weight of 369 parts by weight of bis (2-acryloyloxyethyl) hydroxyethyl isocyanurate and a mixture of PE3A and PE4A (PE3A / PE4A = 75/25 (mass ratio)). Were added dropwise over 1 hour. After completion of the dropping, the reaction is carried out at 70 ° C. for 3 hours, and further, the reaction is carried out until the infrared absorption spectrum of 2250 cm −1 showing the isocyanate group disappears, and urethane acrylate having 4 to 6 acryloyl groups in one molecule (A1-5 ) Containing a non-volatile content of 80% by mass. This solution contains 10.1% by mass of PE4A in addition to urethane acrylate (A1-5) in the nonvolatile content.
(合成例6:フッ素化合物(B1-1)の合成)
 攪拌機及び冷却管を備えたフラスコに、乾燥窒素雰囲気下で、下記式(5)で表される両末端にアリル基を有するパーフルオロポリエーテル500質量部、m-キシレンヘキサフロライド700質量部及びテトラメチルシクロテトラシロキサン361質量部を仕込み、攪拌しながら90℃まで昇温した。ここに塩化白金酸/ビニルシロキサン錯体のトルエン溶液0.442質量部(Pt単体として1.1×10-6モル含有。)を仕込み、内温を90℃以上に維持したまま4時間攪拌した。H-NMRスペクトルで原料のアリル基が消失したのを確認した後、溶剤や過剰のテトラメチルシクロテトラシロキサンを減圧留去し、活性炭処理を行うことで、下記式(6)で表される無色透明の液体であるパーフルオロポリエーテル化合物(1)を得た。
(Synthesis Example 6: Synthesis of Fluorine Compound (B1-1))
In a flask equipped with a stirrer and a condenser, in a dry nitrogen atmosphere, 500 parts by mass of perfluoropolyether having allyl groups at both ends represented by the following formula (5), 700 parts by mass of m-xylene hexafluoride, 361 parts by mass of tetramethylcyclotetrasiloxane was charged, and the temperature was raised to 90 ° C. while stirring. 0.442 parts by mass of a toluene solution of a chloroplatinic acid / vinylsiloxane complex (containing 1.1 × 10 −6 mol as a simple substance of Pt) was added thereto, and the mixture was stirred for 4 hours while maintaining the internal temperature at 90 ° C. or higher. After confirming disappearance of the allyl group of the raw material by 1 H-NMR spectrum, the solvent and excess tetramethylcyclotetrasiloxane are distilled off under reduced pressure, and activated carbon treatment is performed. A perfluoropolyether compound (1) which was a colorless and transparent liquid was obtained.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、m/nは0.9であり、m及びnの合計は平均で45である。) (In the formula, m / n is 0.9, and the sum of m and n is 45 on average.)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 乾燥空気雰囲気下で、上記で得られたパーフルオロポリエーテル化合物(1)50質量部、2-アリルオキシエタノール7.05質量部、m-キシレンヘキサフロライド50質量部及び塩化白金酸/ビニルシロキサン錯体のトルエン溶液0.0442質量部(Pt単体として1.1×10-7モル含有。)を混合し、100℃で4時間攪拌した。H-NMRスペクトル及び赤外線吸収スペクトルでSi-H基が消失したのを確認した後、溶剤と過剰の2-アリルオキシエタノールを減圧留去し、活性炭処理を行うことで、下記式(7)で表される淡黄色透明の液体であるパーフルオロポリエーテル化合物(2)を得た。 Under a dry air atmosphere, 50 parts by mass of the perfluoropolyether compound (1) obtained above, 7.05 parts by mass of 2-allyloxyethanol, 50 parts by mass of m-xylene hexafluoride and chloroplatinic acid / vinylsiloxane 0.0442 parts by mass of a toluene solution of the complex (containing 1.1 × 10 −7 mol as Pt alone) was mixed and stirred at 100 ° C. for 4 hours. After confirming the disappearance of the Si—H group by 1 H-NMR spectrum and infrared absorption spectrum, the solvent and excess 2-allyloxyethanol were distilled off under reduced pressure and treated with activated carbon to obtain the following formula (7) A perfluoropolyether compound (2), which is a pale yellow transparent liquid represented by
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 乾燥空気雰囲気下で、上記で得られたパーフルオロポリエーテル化合物(2)50質量部、テトラヒドロフラン50質量部及び2-アクリロイルオキシエチルイソシアネート9質量部を混合し、50℃に加熱した。次いで、ジオクチル錫ラウレート0.05質量部を加え、50℃で24時間攪拌した。加熱終了後、80℃、0.27kPaで減圧留去することで、下記式(8)で表される淡黄色のペースト状であるフッ素化合物(B1-1)を得た。このフッ素化合物(B1-1)に、メチルエチルケトン及びメチルイソブチルケトンの混合溶剤(メチルエチルケトン/メチルイソブチルケトン=1/3(質量比))を加え、不揮発分20質量%のフッ素化合物(B1-1)溶液を調製した。 In a dry air atmosphere, 50 parts by mass of the perfluoropolyether compound (2) obtained above, 50 parts by mass of tetrahydrofuran and 9 parts by mass of 2-acryloyloxyethyl isocyanate were mixed and heated to 50 ° C. Next, 0.05 part by mass of dioctyltin laurate was added, and the mixture was stirred at 50 ° C. for 24 hours. After completion of the heating, the fluorine compound (B1-1) which is a pale yellow paste represented by the following formula (8) was obtained by distilling off under reduced pressure at 80 ° C. and 0.27 kPa. A mixed solvent of methyl ethyl ketone and methyl isobutyl ketone (methyl ethyl ketone / methyl isobutyl ketone = 1/3 (mass ratio)) was added to this fluorine compound (B1-1), and a fluorine compound (B1-1) solution having a nonvolatile content of 20% by mass Was prepared.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(調製例1)
 合成例1で得られたウレタンアクリレート(A1-1)を含む溶液62質量部(ウレタンアクリレート(A1-1)32.6質量部、PE4A 17質量部を含む。)、合成例2で得られたウレタンアクリレート(A1-2)を含む溶液18.3質量部(ウレタンアクリレート(A1-2)8.9質量部、PE4A 3.5質量部を含む。)、PE4A及びPE3Aの混合物(PE4A/PE3A=60/40(質量比))38質量部、反応性コロイダルシリカ(日産化学工業株式会社製「MEK-AC-2140Z」、不揮発分40質量%のメチルエチルケトン分散液;以下「反応性シリカ(C1-1)」と略記する。)287.5質量部(反応性シリカ(C1-1)として115質量部)、非反応性コロイダルシリカ(日産化学工業株式会社製「MEK-ST40」、不揮発分40質量%のメチルエチルケトン分散液;以下「非反応性シリカ(C2-1)」と略記する。)312.5質量部(非反応性シリカ(C2-1)として125質量部)、光重合開始剤(BASFジャパン株式会社製「イルガキュア184」、1-ヒドロキシシクロヘキシルフェニルケトン;以下、「光重合開始剤(D-1)」と略記する。)10.9質量部及び光重合開始剤(BASFジャパン株式会社製「イルガキュア754」、オキシフェニル酢酸2-[2-オキソ-2-フェニルアセトキシエトキシ]エチルエステルとオキシフェニル酢酸2-(2-ヒドロキシエトキシ)エチルエステルとの混合物;以下、「光重合開始剤(D-2)」と略記する。)1.6質量部を均一に攪拌した後、メチルエチルケトンで希釈して、不揮発分40質量%のハードコート剤(a1-1)を調製した。
(Preparation Example 1)
62 parts by mass of the solution containing urethane acrylate (A1-1) obtained in Synthesis Example 1 (including 32.6 parts by mass of urethane acrylate (A1-1) and 17 parts by mass of PE4A), obtained in Synthesis Example 2 18.3 parts by mass of a solution containing urethane acrylate (A1-2) (8.9 parts by mass of urethane acrylate (A1-2) and 3.5 parts by mass of PE4A), a mixture of PE4A and PE3A (PE4A / PE3A = 60/40 (mass ratio)) 38 parts by mass, reactive colloidal silica (“MEK-AC-2140Z” manufactured by Nissan Chemical Industries, Ltd.), methyl ethyl ketone dispersion having a nonvolatile content of 40% by mass; hereinafter, “reactive silica (C1-1) ) ") 287.5 parts by mass (115 parts by mass as reactive silica (C1-1)), non-reactive colloidal silica (Nissan Chemical Industries Ltd.) "MEK-ST40", methyl ethyl ketone dispersion having a nonvolatile content of 40% by mass; hereinafter abbreviated as "non-reactive silica (C2-1)") 312.5 parts by mass (as non-reactive silica (C2-1)) 125 parts by mass), photopolymerization initiator (“Irgacure 184” manufactured by BASF Japan Ltd., 1-hydroxycyclohexyl phenyl ketone; hereinafter abbreviated as “photopolymerization initiator (D-1)”) 10.9 parts by mass And photopolymerization initiator (“Irgacure 754” manufactured by BASF Japan Ltd., oxyphenylacetic acid 2- [2-oxo-2-phenylacetoxyethoxy] ethyl ester and oxyphenylacetic acid 2- (2-hydroxyethoxy) ethyl ester) Mixture; hereinafter abbreviated as “photopolymerization initiator (D-2).”) After 1.6 parts by mass of the mixture were uniformly stirred, methyl ethyl The hard coat agent (a1-1) having a nonvolatile content of 40% by mass was prepared by diluting with ruketone.
(調製例2)
 調製例1で用いた反応性シリカ(C1-1)の不揮発分40質量%のメチルエチルケトン分散液の配合量を287.5質量部から500質量部(反応性シリカ(C1-1)として200質量部)に変更し、非反応性シリカ(C2-1)を配合しなかった以外は、調製例1と同様に、不揮発分40質量%のハードコート剤(a1-2)を調製した。
(Preparation Example 2)
The compounding amount of the methyl ethyl ketone dispersion having a nonvolatile content of 40% by mass of the reactive silica (C1-1) used in Preparation Example 1 is 287.5 parts by mass to 200 parts by mass (reactive silica (C1-1) as 200 parts by mass). The hard coat agent (a1-2) having a nonvolatile content of 40% by mass was prepared in the same manner as in Preparation Example 1, except that the non-reactive silica (C2-1) was not blended.
(調製例3)
 調製例1で用いた非反応性シリカ(C2-1)の不揮発分40質量%のメチルエチルケトン分散液の配合量を312.5質量部から500質量部(非反応性シリカ(C2-1)として200質量部)に変更し、反応性シリカ(C1-1)を配合しなかった以外は、調製例1と同様に、不揮発分40質量%のハードコート剤(a1-3)を調製した。
(Preparation Example 3)
The blending amount of the non-reactive silica (C2-1) methyl ethyl ketone dispersion having a nonvolatile content of 40% by mass used in Preparation Example 1 is from 312.5 parts by mass to 500 parts by mass (200 as non-reactive silica (C2-1)). The hard coat agent (a1-3) having a nonvolatile content of 40% by mass was prepared in the same manner as in Preparation Example 1, except that the reactive silica (C1-1) was not blended.
(調製例4)
 調製例1で用いた反応性シリカ(C1-1)の不揮発分40質量%のメチルエチルケトン分散液の配合量を287.5質量部から312.5質量部(反応性シリカ(C1-1)として125質量部)に変更し、非反応性シリカ(C2-1)の不揮発分40質量%のメチルエチルケトン分散液の配合量を312.5質量部から287.5質量部(非反応性シリカ(C2-1)として115質量部)に変更した以外は、調製例1と同様に、不揮発分40質量%のハードコート剤(a1-4)を調製した。
(Preparation Example 4)
The compounding amount of the methyl ethyl ketone dispersion having a nonvolatile content of 40% by mass of the reactive silica (C1-1) used in Preparation Example 1 is 287.5 parts by mass to 312.5 parts by mass (125% as reactive silica (C1-1)). The non-reactive silica (C2-1) is mixed in a methyl ethyl ketone dispersion having a nonvolatile content of 40% by mass from 312.5 parts by mass to 287.5 parts by mass (non-reactive silica (C2-1)). The hard coat agent (a1-4) having a nonvolatile content of 40% by mass was prepared in the same manner as in Preparation Example 1 except that the content was changed to 115 parts by mass).
(調製例5)
 調製例1で用いた反応性シリカ(C1-1)の不揮発分40質量%のメチルエチルケトン分散液の配合量を287.5質量部から187.5質量部(反応性シリカ(C1-1)として75質量部)に変更した以外は、調製例1と同様に、不揮発分40質量%のハードコート剤(a1-5)を調製した。
(Preparation Example 5)
The compounding amount of the methyl ethyl ketone dispersion having a nonvolatile content of 40% by mass of the reactive silica (C1-1) used in Preparation Example 1 is 287.5 parts by mass to 187.5 parts by mass (75 as reactive silica (C1-1)). A hard coat agent (a1-5) having a nonvolatile content of 40% by mass was prepared in the same manner as in Preparation Example 1, except that the content was changed to (parts by mass).
(調製例6)
 調製例1で用いた反応性シリカ(C1-1)及び非反応性シリカ(C2-1)を配合しなかった以外は、調製例1と同様に、不揮発分40質量%のハードコート剤(a1-6)を調製した。
(Preparation Example 6)
The hard coat agent (a1) having a nonvolatile content of 40% by mass was the same as in Preparation Example 1 except that the reactive silica (C1-1) and the non-reactive silica (C2-1) used in Preparation Example 1 were not blended. -6) was prepared.
(調製例7)
合成例3で得られたウレタンアクリレート(A1-3)を含む溶液31.3質量部(ウレタンアクリレート(A1-3)20.1質量部、PE4A 4.9質量部を含む。)、合成例4で得られたウレタンアクリレート(A1-4)を含む溶液31.3質量部(ウレタンアクリレート(A1-4)20質量部、PE4A 5質量部を含む。)、合成例5で得られたウレタンアクリレート(A1-5)を含む溶液25質量部(ウレタンアクリレート(A1-5)18質量部、PE4A 2質量部を含む。)、ジペンタエリスリトールヘキサアクリレート(以下「DPHA」と省略する。)及びジペンタエリスリスリトールペンタアクリレート(以下「DPPA」と省略する。)の混合物(DPHA/DPPA=60/40(質量比))30質量部、合成例6で得られたフッ素化合物(B1-1)の20質量%溶液1.5質量部(フッ素化合物(B1-1)として0.3質量部)及び光重合開始剤(D-1)4.5質量部を均一に攪拌した後、酢酸エチルで希釈して、不揮発分40質量%のハードコート剤(b1-1)を調製した。
(Preparation Example 7)
31.3 parts by mass of the solution containing urethane acrylate (A1-3) obtained in Synthesis Example 3 (including 20.1 parts by mass of urethane acrylate (A1-3) and 4.9 parts by mass of PE4A), Synthesis Example 4 31.3 parts by mass of the solution containing urethane acrylate (A1-4) obtained in the above (including 20 parts by mass of urethane acrylate (A1-4) and 5 parts by mass of PE4A), the urethane acrylate obtained in Synthesis Example 5 ( 25 parts by mass of a solution containing A1-5) (including 18 parts by mass of urethane acrylate (A1-5) and 2 parts by mass of PE4A), dipentaerythritol hexaacrylate (hereinafter abbreviated as “DPHA”), and dipentaeri. 30 parts by mass of a mixture (DPHA / DPPA = 60/40 (mass ratio)) of thrisitol pentaacrylate (hereinafter abbreviated as “DPPA”), 1.5 parts by mass of a 20% by mass solution of the fluorine compound (B1-1) obtained in Example 6 (0.3 parts by mass as the fluorine compound (B1-1)) and a photopolymerization initiator (D-1) 4 After uniformly stirring 5 parts by mass, it was diluted with ethyl acetate to prepare a hard coat agent (b1-1) having a nonvolatile content of 40% by mass.
(調製例8)
 調製例7で用いたフッ素化合物(B1-1)の20質量%溶液に代えて、ポリ(パーフルオロアルキレンエーテル)鎖の片末端にアクリロイル基を有するフッ素化合物(ダイキン工業株式会社製「オプツールDAC-HP」、不揮発分20質量部;以下、「フッ素化合物(RB-1)」と略記する。)7.5質量部(フッ素化合物(RB-1)として1.5質量部)を用いた以外は、調製例7と同様に、不揮発分40質量%のハードコート剤(b1-2)を調製した。
(Preparation Example 8)
Instead of the 20 mass% solution of the fluorine compound (B1-1) used in Preparation Example 7, a fluorine compound having an acryloyl group at one end of the poly (perfluoroalkylene ether) chain (“OPTOOL DAC-” manufactured by Daikin Industries, Ltd.) HP ”, 20 parts by mass of nonvolatile content; hereinafter abbreviated as“ fluorine compound (RB-1) ”) Except for using 7.5 parts by mass (1.5 parts by mass as fluorine compound (RB-1)) In the same manner as in Preparation Example 7, a hard coat agent (b1-2) having a nonvolatile content of 40% by mass was prepared.
(調製例9)
 調製例7で用いたフッ素化合物(B1-1)を配合しなかった以外は、調製例7と同様に、不揮発分40質量%のハードコート剤(b1-3)を調製した。
(Preparation Example 9)
A hard coat agent (b1-3) having a nonvolatile content of 40% by mass was prepared in the same manner as in Preparation Example 7, except that the fluorine compound (B1-1) used in Preparation Example 7 was not blended.
(実施例1)
 上記で得られたハードコート剤(a1-1)を、ポリエチレンテレフタレート製フィルム(東洋紡株式会社製「コスモシャインA4300」、厚さ100μm)の片面にワイヤーバー(#40)を用いて塗布して、60℃で1分間乾燥後、空気雰囲気下で紫外線照射装置(アイグラフィックス株式会社製「MIDN-042-C1」、ランプ:120W/cm、高圧水銀灯)を用いて、照射光量0.1J/cmで紫外線を照射して、厚さ15μmの硬化塗膜(ハードコート層)を有するハードコートフィルム(X-1a)を得た。
Example 1
The hard coat agent (a1-1) obtained above was applied to one side of a polyethylene terephthalate film (“Cosmo Shine A4300” manufactured by Toyobo Co., Ltd., thickness 100 μm) using a wire bar (# 40), After drying at 60 ° C. for 1 minute, using an ultraviolet irradiation device (“MIDN-042-C1” manufactured by Eye Graphics Co., Ltd., lamp: 120 W / cm, high pressure mercury lamp) in an air atmosphere, the irradiation light quantity is 0.1 J / cm. 2 was irradiated with ultraviolet rays to obtain a hard coat film (X-1a) having a cured coating film (hard coat layer) having a thickness of 15 μm.
 次に、前記基材の他方の面に、ハードコート剤(a1-1)を塗布し、上記(X-1a)と同様に15μmの第一のハードコート層を形成することによって、両面ハードコートフィルム(X-1b)を得た。 Next, a hard coat agent (a1-1) is applied to the other surface of the base material, and a first hard coat layer having a thickness of 15 μm is formed in the same manner as in the above (X-1a). A film (X-1b) was obtained.
 前記ハードコート剤(b1-1)を、前記第一のハードコート層の一方の面に、ワイヤーバーを用いて塗布し、60℃で1分間乾燥後、酸素濃度5000ppm以下の雰囲気下で紫外線照射装置(アイグラフィックス株式会社製「MIDN-042-C1」、ランプ:120W/cm、高圧水銀灯)を用いて、照射光量0.3J/cmで紫外線を照射し、厚さ5μmの第二のハードコート層を形成することによってハードコートフィルム(X-1)を得た。 The hard coat agent (b1-1) is applied to one surface of the first hard coat layer using a wire bar, dried at 60 ° C. for 1 minute, and then irradiated with ultraviolet rays in an atmosphere having an oxygen concentration of 5000 ppm or less. Using a device (“MIDN-042-C1” manufactured by Eye Graphics Co., Ltd., lamp: 120 W / cm, high-pressure mercury lamp), ultraviolet light was irradiated with an irradiation light amount of 0.3 J / cm 2 , and a second of 5 μm thickness A hard coat film (X-1) was obtained by forming a hard coat layer.
(実施例2)
 ハードコート剤(a1-1)をハードコート剤(a1-2)に変更すること以外は、実施例1と同様の方法でハードコートフィルム(X-2)を作製した。
(Example 2)
A hard coat film (X-2) was produced in the same manner as in Example 1 except that the hard coat agent (a1-1) was changed to the hard coat agent (a1-2).
(実施例3)
 ハードコート剤(a1-1)をハードコート剤(a1-3)に変更すること以外は、実施例1と同様の方法でハードコートフィルム(X-3)を作製した。
Example 3
A hard coat film (X-3) was produced in the same manner as in Example 1 except that the hard coat agent (a1-1) was changed to the hard coat agent (a1-3).
(実施例4)
 ハードコート剤(a1-1)をハードコート剤(a1-4)に変更すること以外は、実施例1と同様の方法でハードコートフィルム(X-4)を作製した。
Example 4
A hard coat film (X-4) was produced in the same manner as in Example 1 except that the hard coat agent (a1-1) was changed to the hard coat agent (a1-4).
(実施例5)
 ハードコート剤(a1-1)をハードコート剤(a1-5)に変更すること以外は、実施例1と同様の方法でハードコートフィルム(X-5)を作製した。
(Example 5)
A hard coat film (X-5) was produced in the same manner as in Example 1 except that the hard coat agent (a1-1) was changed to the hard coat agent (a1-5).
(実施例6)
 第一のハードコート層の厚さを15μmを10μmに変更すること以外は、実施例1と同様の方法でハードコートフィルム(X-6)を作製した。
(Example 6)
A hard coat film (X-6) was produced in the same manner as in Example 1 except that the thickness of the first hard coat layer was changed from 15 μm to 10 μm.
(実施例7)
 上記で得られたハードコート剤(a1-1)を、ポリエチレンテレフタレートフィルム(東洋紡株式会社製「コスモシャインA4300」、厚さ100μm)の片面にワイヤーバー(#40)を用いて塗布して、60℃で1分間乾燥後、空気雰囲気下、紫外線照射装置(アイグラフィックス株式会社製「MIDN-042-C1」、ランプ:120W/cm、高圧水銀灯)を用いて、照射光量0.1J/cmの紫外線を照射することによって、厚さ15μmの硬化塗膜(第一のハードコート層)を有するハードコートフィルム(X-1a)を得た。
(Example 7)
The hard coat agent (a1-1) obtained above was applied to one side of a polyethylene terephthalate film (“Cosmo Shine A4300” manufactured by Toyobo Co., Ltd., thickness 100 μm) using a wire bar (# 40). After drying for 1 minute at a temperature of 0.1 J / cm 2 in an air atmosphere, an ultraviolet irradiation device (“MIDN-042-C1” manufactured by Eye Graphics Co., Ltd., lamp: 120 W / cm, high-pressure mercury lamp) is used. The hard coat film (X-1a) having a cured coating film (first hard coat layer) having a thickness of 15 μm was obtained.
 前記ハードコートフィルム(X-1a)を構成する第一のハードコート層の表面に、前記ハードコート剤(b1-1)をワイヤーバーを用いて塗布し、60℃で1分間乾燥した後、酸素濃度5000ppm以下の雰囲気下で紫外線照射装置(アイグラフィックス株式会社製「MIDN-042-C1」、ランプ:120W/cm、高圧水銀灯)を用いて、照射光量0.3J/cmの紫外線を照射することによって、厚さ5μmの第二のハードコート層が形成されたハードコートフィルム(X-7)を得た。 The hard coat agent (b1-1) was applied to the surface of the first hard coat layer constituting the hard coat film (X-1a) using a wire bar, dried at 60 ° C. for 1 minute, and then oxygenated. Irradiation of ultraviolet rays with an irradiation light quantity of 0.3 J / cm 2 using an ultraviolet irradiation device (“MIDN-042-C1” manufactured by Eye Graphics Co., Ltd., lamp: 120 W / cm, high-pressure mercury lamp) in an atmosphere having a concentration of 5000 ppm or less Thus, a hard coat film (X-7) on which a second hard coat layer having a thickness of 5 μm was formed was obtained.
(比較例1)
 第一のハードコート層の厚さを15μmを20μmに変更し、第二のハードコート層を形成しないこと以外は、実施例1と同様の方法でハードコートフィルム(X’-1)を作製した。
(Comparative Example 1)
A hard coat film (X′-1) was produced in the same manner as in Example 1 except that the thickness of the first hard coat layer was changed from 15 μm to 20 μm and the second hard coat layer was not formed. .
(比較例2)
 上記で得られたハードコート剤(a1-1)を、ポリエチレンテレフタレート製フィルム(東洋紡株式会社製「コスモシャインA4300」、厚さ100μm)の片面にワイヤーバー(#40)を用いて塗布して、60℃で1分間乾燥後、空気雰囲気下で紫外線照射装置(アイグラフィックス株式会社製「MIDN-042-C1」、ランプ:120W/cm、高圧水銀灯)を用いて、照射光量0.1J/cmで紫外線を照射して、厚さ15μmの硬化塗膜(第三のハードコート層)を形成した。
(Comparative Example 2)
The hard coat agent (a1-1) obtained above was applied to one side of a polyethylene terephthalate film (“Cosmo Shine A4300” manufactured by Toyobo Co., Ltd., thickness 100 μm) using a wire bar (# 40), After drying at 60 ° C. for 1 minute, using an ultraviolet irradiation device (“MIDN-042-C1” manufactured by Eye Graphics Co., Ltd., lamp: 120 W / cm, high pressure mercury lamp) in an air atmosphere, the irradiation light quantity is 0.1 J / cm. 2 was irradiated with ultraviolet rays to form a cured coating film (third hard coat layer) having a thickness of 15 μm.
 次に、前記ポリエチレンテレフタレートフィルムの他方の面(前記第三のハードコート層が形成された面に対して反対側の面)に、前記ハードコート剤(b1-1)を、ワイヤーバーを用いて塗布し、60℃で1分間乾燥した後、酸素濃度5000ppm以下の雰囲気下、紫外線照射装置(アイグラフィックス株式会社製「MIDN-042-C1」、ランプ:120W/cm、高圧水銀灯)を用い、照射光量0.3J/cmの紫外線を照射することによって、厚さ5μmの第二のハードコート層を形成したハードコートフィルム(X’-2)を得た。 Next, the hard coat agent (b1-1) is applied to the other surface of the polyethylene terephthalate film (the surface opposite to the surface on which the third hard coat layer is formed) using a wire bar. After coating and drying at 60 ° C. for 1 minute, using an ultraviolet irradiation device (“MIDN-042-C1” manufactured by Eye Graphics Co., Ltd., lamp: 120 W / cm, high-pressure mercury lamp) in an atmosphere with an oxygen concentration of 5000 ppm or less, A hard coat film (X′-2) on which a second hard coat layer having a thickness of 5 μm was formed was obtained by irradiating ultraviolet rays with an irradiation light amount of 0.3 J / cm 2 .
(比較例3)
 ハードコート剤(a1-1)をハードコート剤(a1-6)に変更すること以外は、実施例1と同様の方法でハードコートフィルム(X’-3)を作製した。
(Comparative Example 3)
A hard coat film (X′-3) was produced in the same manner as in Example 1 except that the hard coat agent (a1-1) was changed to the hard coat agent (a1-6).
(比較例4)
 ハードコート剤(b1-1)をハードコート剤(b1-2)に変更すること以外は、実施例1と同様の方法でハードコートフィルム(X’-4)を作製した。
(Comparative Example 4)
A hard coat film (X′-4) was produced in the same manner as in Example 1 except that the hard coat agent (b1-1) was changed to the hard coat agent (b1-2).
(比較例5)
 ハードコート剤(b1-1)をハードコート剤(b1-3)に変更すること以外は、実施例1と同様の方法でハードコートフィルム(X’-5)を作製した。
(Comparative Example 5)
A hard coat film (X′-5) was produced in the same manner as in Example 1 except that the hard coat agent (b1-1) was changed to the hard coat agent (b1-3).
[鉛筆硬度の測定]
 上記で得られたハードコートフィルムを10cm角に切り、第二のハードコート層が上面となるようにガラス板上に置き、その4隅をセロハンテープで固定した。前記第二のハードコート層の表面の鉛筆硬度を、JIS K 5600-5-4(1999年版)の規定に基づき、株式会社井元製作所製の塗膜用鉛筆引掻き試験機(手動式)を用いて測定した。
[Measurement of pencil hardness]
The hard coat film obtained above was cut into 10 cm squares, placed on a glass plate so that the second hard coat layer was on the top, and the four corners were fixed with cellophane tape. The pencil hardness of the surface of the second hard coat layer was determined using a pencil scratch tester (manual type) for coating film manufactured by Imoto Seisakusho Co., Ltd. based on the provisions of JIS K 5600-5-4 (1999 edition). It was measured.
 傷跡を生じなかった最も硬い鉛筆の硬度をハードコート層の表面の鉛筆硬度として評価した。3H以上の表面硬度を有するハードコートフィルムを、表面硬度に優れていると判定した。なお、第二のハードコート層を設けていない比較例1で得たハードコートフィルムについては、第一のハードコート層を最表面として鉛筆硬度を評価した。 The hardness of the hardest pencil that did not cause scars was evaluated as the pencil hardness of the surface of the hard coat layer. A hard coat film having a surface hardness of 3H or more was determined to be excellent in surface hardness. In addition, about the hard coat film obtained in the comparative example 1 which has not provided the 2nd hard coat layer, pencil hardness was evaluated by making the 1st hard coat layer into the outermost surface.
[耐擦傷性の評価]
 上記で得られたハードコートフィルムを30cm×2cmの長方形に切り取ったものを試験片とした。前記試験片を構成する第二のハードコート層が上面となるように平面摩擦試験機(株式会社東洋精機製作所製)に治具を用いて前記試験片を固定し、スチールウール#0000を用いて荷重0.5kg/cm、ストローク100mm、速度30回/分に、その表面を擦過した。
[Evaluation of scratch resistance]
A sample obtained by cutting the hard coat film obtained above into a 30 cm × 2 cm rectangle was used as a test piece. The test piece is fixed to a flat friction tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.) using a jig so that the second hard coat layer constituting the test piece is the upper surface, and steel wool # 0000 is used. The surface was abraded at a load of 0.5 kg / cm 2 , a stroke of 100 mm, and a speed of 30 times / min.
 前記試験片の擦過部の傷付き状態を目視で観察し、下記の基準にしたがい耐擦傷性を評価した。〇の評価となるハードコートフィルムが、優れた耐擦傷性を有すると判定した。なお、第二のハードコート層を設けていない比較例1で得たハードコートフィルムについては、第一のハードコート層が上面となるよう耐擦傷性を評価した。 The scratched state of the scratched portion of the test piece was visually observed, and the scratch resistance was evaluated according to the following criteria. It was determined that the hard coat film that was evaluated as O had excellent scratch resistance. In addition, about the hard coat film obtained by the comparative example 1 which does not provide the 2nd hard coat layer, scratch resistance was evaluated so that a 1st hard coat layer might become an upper surface.
 ○:往復10000回の擦過を実施しても傷がつかなかった。
 △:往復10000回の擦過を実施したことで、その表面に傷がついたが、往復2000回の擦過では傷がつかなかった。
 ×:往復2000回の擦過で傷がついた。
○: No scratches were observed even after 10,000 round trips.
Δ: The surface was scratched by carrying out 10,000 round trips, but was not scratched by 2000 round trips.
×: Scratched by 2000 reciprocations.
[水接触角の測定]
 上記で得られたハードコートフィルムを1cm×5cmの長方形に切りとったものを試験片とした。前記試験片を構成する第二のハードコート層が上面となるように、前記試験片を両面テープでガラス板に固定した。
[Measurement of water contact angle]
A sample obtained by cutting the hard coat film obtained above into a 1 cm × 5 cm rectangle was used as a test piece. The test piece was fixed to the glass plate with double-sided tape so that the second hard coat layer constituting the test piece was on the upper surface.
 前記試験片の表面の水接触角を、協和界面科学株式会社製の自動接触角計「DM-501」を用い、精製水3~3.5μLの水滴を接触させた後、1秒後の接触角を測定した。なお、第二のハードコート層を設けていない比較例1で得たハードコートフィルムについては、第一のハードコート層の表面の水接触角を評価した。 The contact angle of water on the surface of the test piece was contacted with 3 to 3.5 μL of purified water using an automatic contact angle meter “DM-501” manufactured by Kyowa Interface Science Co., Ltd., and contacted after 1 second. The corner was measured. In addition, about the hard coat film obtained in the comparative example 1 which has not provided the 2nd hard coat layer, the water contact angle of the surface of a 1st hard coat layer was evaluated.
[防汚性の評価]
 上記で得られたハードコートフィルムを構成する第二のハードコート層の表面に、三菱鉛筆株式会社製のマーカー「ユニ・メディアックス(黒)」を用い、円を描いた。その際、前記マーカーのインクの、前記ハードコート層の表面におけるハジキ度合いを、目視で観察した。なお、第二のハードコート層を設けていない比較例1で得たハードコートフィルムについては、第一のハードコート層の表面の防汚性を評価した。
[Evaluation of antifouling properties]
A circle was drawn on the surface of the second hard coat layer constituting the hard coat film obtained above using a marker “Uni Mediax (black)” manufactured by Mitsubishi Pencil Co., Ltd. At that time, the repelling degree of the marker ink on the surface of the hard coat layer was visually observed. In addition, about the hard coat film obtained in the comparative example 1 which does not provide the 2nd hard coat layer, the antifouling property of the surface of the 1st hard coat layer was evaluated.
 ◎:インクが点状にはじいた。
 ○:インクが点状及び線状にはじいた。
 △:インクが線状にはじいた。
 ×:インクがはじかず、線状の円が描かれた。
A: The ink repelled in a dot shape.
◯: The ink repelled in the form of dots and lines.
Δ: The ink repelled linearly.
X: Ink did not repel and a linear circle was drawn.
[滑り性の評価]
 上記で得られたハードコートフィルムの第二のハードコート層の表面を、ベンコット(旭化成せんい株式会社製)を用いて擦った際の滑りやすさに基づいて、その滑り性を評価した。なお、第二のハードコート層を設けていない比較例1で得たハードコートフィルムについては、第一のハードコート層の表面の滑り性を評価した。
[Evaluation of slipperiness]
The slipperiness was evaluated based on the slipperiness when the surface of the second hardcoat layer of the hardcoat film obtained above was rubbed with Bencott (manufactured by Asahi Kasei Fibers Co., Ltd.). In addition, about the hard coat film obtained by the comparative example 1 which is not providing the 2nd hard coat layer, the slip property of the surface of a 1st hard coat layer was evaluated.
 ◎:よく滑る。
 ○:滑る。
 △:滑りにくい。
 ×:滑らない。
A: Glide well.
○: Slip.
Δ: Not slippery
×: Does not slip.
[カールの評価方法]
 上記ハードコートフィルムを10cm角に切り、25℃の環境下に1日静置した後、平滑な面の上に置いた。
[Curl evaluation method]
The hard coat film was cut into a 10 cm square, allowed to stand in a 25 ° C. environment for 1 day, and then placed on a smooth surface.
 前記平滑な面に対して、ハードコートフィルムの4隅の浮き上がりの高さを測定し、その平均値をカールの高さとした。前記平均値をもとに下記評価基準に従って評価した。 The height of the four corners of the hard coat film was measured with respect to the smooth surface, and the average value was taken as the curl height. Evaluation was performed according to the following evaluation criteria based on the average value.
 ◎:4隅のカールの高さ(平均値)が2mm未満
 ○:4隅のカールの高さ(平均値)が2mm以上5mm未満
 ×:4隅のカールの高さ(平均値)が5mm以上
◎: curl height (average value) of 4 corners is less than 2 mm ○: curl height (average value) of 4 corners is 2 mm or more and less than 5 mm ×: curl height (average value) of 4 corners is 5 mm or more
 上記の実施例1~7及び比較例1~5で得られたハードコートフィルムを形成するハードコート剤の組成及び評価結果を表に示す。 The table shows the composition and evaluation results of the hard coat agent that forms the hard coat films obtained in Examples 1 to 7 and Comparative Examples 1 to 5.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012

Claims (9)

  1. 透明基材の少なくとも一方の面に、フィラーを含有する第一のハードコート層(A)と、フッ素原子及びケイ素原子を有する活性エネルギー線硬化性化合物(b1)を含有するハードコート剤(b2)を用いて形成された第二のハードコート層(B)とが順に積層されたものであることを特徴とするハードコートフィルム。 A hard coat agent (b2) containing a first hard coat layer (A) containing a filler and an active energy ray-curable compound (b1) having a fluorine atom and a silicon atom on at least one surface of the transparent substrate. A hard coat film comprising a second hard coat layer (B) formed using
  2. 前記第一のハードコート層(A)が、ウレタン(メタ)アクリレートと、3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートと、フィラーとを含有するハードコート剤(a1)を用いて形成された層であり、前記フィラーが、前記ウレタン(メタ)アクリレートと前記多官能(メタ)アクリレートとの合計100質量部に対して100質量部~300質量部含まれるものである請求項1に記載のハードコートフィルム。 The first hard coat layer (A) comprises a hard coat agent (a1) containing urethane (meth) acrylate, a polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups, and a filler. A layer formed by using the filler, wherein the filler is contained in an amount of 100 to 300 parts by mass with respect to a total of 100 parts by mass of the urethane (meth) acrylate and the polyfunctional (meth) acrylate. The hard coat film according to 1.
  3. 前記ウレタン(メタ)アクリレートが、脂肪族ポリイソシアネートと水酸基を有する(メタ)アクリレートとを反応させて得られた1分子中に4個以上の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートである請求項2に記載のハードコートフィルム。 The urethane (meth) acrylate is a urethane (meth) acrylate having 4 or more (meth) acryloyl groups in one molecule obtained by reacting an aliphatic polyisocyanate and a (meth) acrylate having a hydroxyl group. The hard coat film according to claim 2.
  4. 前記脂肪族ポリイソシアネートが、ヘキサメチレンジイソシアネート、ノルボルナンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)及びこれらの3量体からなる群より選ばれる1種以上である請求項3に記載のハードコートフィルム。 The hard coat film according to claim 3, wherein the aliphatic polyisocyanate is at least one selected from the group consisting of hexamethylene diisocyanate, norbornane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), and trimers thereof. .
  5. 前記フィラーが、反応性シリカ及び非反応性シリカを含有するものである請求項1~4のいずれか1項に記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 4, wherein the filler contains reactive silica and non-reactive silica.
  6. 前記反応性シリカと非反応性シリカとの質量割合が、[反応性シリカ/非反応性シリカ]=0.5~1.5である請求項5に記載のハードコートフィルム。 The hard coat film according to claim 5, wherein a mass ratio of the reactive silica to the non-reactive silica is [reactive silica / non-reactive silica] = 0.5 to 1.5.
  7. 前記第二のハードコート層(B)の表面の水接触角が95°以上である請求項1~6のいずれか1項に記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 6, wherein the surface of the second hard coat layer (B) has a water contact angle of 95 ° or more.
  8. 前記フッ素原子及びケイ素原子を有する活性エネルギー線硬化性化合物(b1)が、ポリ(パーフルオロアルキレンエーテル)鎖の両末端に2価の連結基を介してシクロポリシロキサン構造が結合し、前記シクロポリシロキサン構造に2価の連結基を介して(メタ)アクリロイル基が結合した構造を有する化合物(b1-1)である請求項1~7のいずれか1項に記載のハードコートフィルム。 The active energy ray-curable compound (b1) having a fluorine atom and a silicon atom has a cyclopolysiloxane structure bonded to both ends of a poly (perfluoroalkylene ether) chain via a divalent linking group. The hard coat film according to any one of claims 1 to 7, which is a compound (b1-1) having a structure in which a (meth) acryloyl group is bonded to a siloxane structure via a divalent linking group.
  9. 請求項1~8のいずれか1項に記載のハードコートフィルムが、情報表示部の保護に使用された情報表示装置。 9. An information display device, wherein the hard coat film according to claim 1 is used for protecting an information display unit.
PCT/JP2014/082509 2013-12-24 2014-12-09 Hard coat film and information display device WO2015098495A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015539313A JP5939449B2 (en) 2013-12-24 2014-12-09 Hard coat film and information display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013265261 2013-12-24
JP2013-265261 2013-12-24

Publications (1)

Publication Number Publication Date
WO2015098495A1 true WO2015098495A1 (en) 2015-07-02

Family

ID=53478360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082509 WO2015098495A1 (en) 2013-12-24 2014-12-09 Hard coat film and information display device

Country Status (3)

Country Link
JP (1) JP5939449B2 (en)
TW (1) TW201531403A (en)
WO (1) WO2015098495A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017100435A (en) * 2015-11-25 2017-06-08 リケンテクノス株式会社 Transparent resin laminate
JP2017228238A (en) * 2016-06-24 2017-12-28 大日本印刷株式会社 Touch panel, multilayer film, and method of manufacturing multilayer film
JPWO2017090679A1 (en) * 2015-11-25 2018-09-27 リケンテクノス株式会社 Door
KR20190087439A (en) * 2016-11-25 2019-07-24 리껭테크노스 가부시키가이샤 Hard coat multilayer film
EP3513970A4 (en) * 2016-09-14 2020-04-15 Riken Technos Corporation Hard coat laminated film
US10780685B2 (en) 2015-03-18 2020-09-22 Riken Technos Corporation Hard coat laminated film
US10809418B2 (en) 2015-03-18 2020-10-20 Riken Technos Corporation Anti-glare hard coat laminated film
US10816700B2 (en) 2015-12-08 2020-10-27 Riken Technos Corporation Hard coat layered film
US11065851B2 (en) 2015-03-18 2021-07-20 Riken Technos Corporation Multilayer hard coating film
US11065852B2 (en) 2015-03-18 2021-07-20 Riken Technos Corporation Adhesive film
US11352473B2 (en) 2015-03-18 2022-06-07 Riken Technos Corporation Hard coat laminated film and method for producing same
US11360243B2 (en) 2015-07-17 2022-06-14 Dai Nippon Printing Co., Ltd. Layered body for optical member and image display device
US11433651B2 (en) 2015-03-18 2022-09-06 Riken Technos Corporation Hard coat laminated film
US11774166B2 (en) 2015-11-25 2023-10-03 Riken Technos Corporation Door body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107405859B (en) 2015-03-18 2020-04-17 理研科技株式会社 Shaped body
KR102341198B1 (en) * 2020-04-02 2021-12-20 동우 화인켐 주식회사 Hard coating film and image display device using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052472A (en) * 1998-08-04 2000-02-22 Toppan Printing Co Ltd Hard coat film or sheet, and hard coat film or sheet fitted with functional inorganic membrane
JP2001113649A (en) * 1999-10-19 2001-04-24 Nippon Kayaku Co Ltd Film having cured film of radiation curable resin composition
JP2002060529A (en) * 2000-08-22 2002-02-26 Fuji Photo Film Co Ltd High-adhesion hard coated film
WO2003026881A1 (en) * 2001-09-25 2003-04-03 Fuji Photo Film Co., Ltd. Hard coat film, base on which hard coat film is formed, image display having them
JP2003335984A (en) * 2002-03-15 2003-11-28 Fuji Photo Film Co Ltd Hard coat treated article, hard coat film and curable composition
JP2007182530A (en) * 2005-05-24 2007-07-19 Jsr Corp Curable composition, cured film, reflection-preventing laminate film and method for producing the cured film
JP2013178573A (en) * 2008-03-31 2013-09-09 Nitto Denko Corp Method for manufacturing hard-coated antidazzle film for image display device
JP2013216732A (en) * 2012-04-05 2013-10-24 Shin-Etsu Chemical Co Ltd Hard coat composition with stainproofness

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052472A (en) * 1998-08-04 2000-02-22 Toppan Printing Co Ltd Hard coat film or sheet, and hard coat film or sheet fitted with functional inorganic membrane
JP2001113649A (en) * 1999-10-19 2001-04-24 Nippon Kayaku Co Ltd Film having cured film of radiation curable resin composition
JP2002060529A (en) * 2000-08-22 2002-02-26 Fuji Photo Film Co Ltd High-adhesion hard coated film
WO2003026881A1 (en) * 2001-09-25 2003-04-03 Fuji Photo Film Co., Ltd. Hard coat film, base on which hard coat film is formed, image display having them
JP2003335984A (en) * 2002-03-15 2003-11-28 Fuji Photo Film Co Ltd Hard coat treated article, hard coat film and curable composition
JP2007182530A (en) * 2005-05-24 2007-07-19 Jsr Corp Curable composition, cured film, reflection-preventing laminate film and method for producing the cured film
JP2013178573A (en) * 2008-03-31 2013-09-09 Nitto Denko Corp Method for manufacturing hard-coated antidazzle film for image display device
JP2013216732A (en) * 2012-04-05 2013-10-24 Shin-Etsu Chemical Co Ltd Hard coat composition with stainproofness

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11065851B2 (en) 2015-03-18 2021-07-20 Riken Technos Corporation Multilayer hard coating film
US11352473B2 (en) 2015-03-18 2022-06-07 Riken Technos Corporation Hard coat laminated film and method for producing same
US11065852B2 (en) 2015-03-18 2021-07-20 Riken Technos Corporation Adhesive film
US11512176B2 (en) 2015-03-18 2022-11-29 Riken Technos Corporation Anti-glare hard coat laminated film
US11433651B2 (en) 2015-03-18 2022-09-06 Riken Technos Corporation Hard coat laminated film
US10780685B2 (en) 2015-03-18 2020-09-22 Riken Technos Corporation Hard coat laminated film
US10809418B2 (en) 2015-03-18 2020-10-20 Riken Technos Corporation Anti-glare hard coat laminated film
US11360243B2 (en) 2015-07-17 2022-06-14 Dai Nippon Printing Co., Ltd. Layered body for optical member and image display device
US11774166B2 (en) 2015-11-25 2023-10-03 Riken Technos Corporation Door body
JP2017100435A (en) * 2015-11-25 2017-06-08 リケンテクノス株式会社 Transparent resin laminate
JPWO2017090679A1 (en) * 2015-11-25 2018-09-27 リケンテクノス株式会社 Door
US11241866B2 (en) 2015-11-25 2022-02-08 Riken Technos Corporation Door body
US10816700B2 (en) 2015-12-08 2020-10-27 Riken Technos Corporation Hard coat layered film
JP2017228238A (en) * 2016-06-24 2017-12-28 大日本印刷株式会社 Touch panel, multilayer film, and method of manufacturing multilayer film
US11407870B2 (en) 2016-09-14 2022-08-09 Riken Technos Corporation Hard coat laminated film
EP3808800A1 (en) * 2016-09-14 2021-04-21 Riken Technos Corporation Hard coat laminated film
EP3513970A4 (en) * 2016-09-14 2020-04-15 Riken Technos Corporation Hard coat laminated film
EP3550335A4 (en) * 2016-11-25 2020-06-17 Riken Technos Corporation Hardcoat multilayer film
KR102470723B1 (en) 2016-11-25 2022-11-24 리껭테크노스 가부시키가이샤 hard coat multilayer film
US11639428B2 (en) 2016-11-25 2023-05-02 Riken Technos Corporation Hardcoat multilayer film
KR20190087439A (en) * 2016-11-25 2019-07-24 리껭테크노스 가부시키가이샤 Hard coat multilayer film

Also Published As

Publication number Publication date
JPWO2015098495A1 (en) 2017-03-23
TW201531403A (en) 2015-08-16
JP5939449B2 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP5939449B2 (en) Hard coat film and information display device
JP6361913B2 (en) Hard coat film, decorative film, protective film and image display device
JP6057121B2 (en) Active energy ray curable composition, cured product thereof and article having cured coating film thereof
JP5954505B2 (en) Active energy ray curable composition, cured product thereof and article having cured coating film thereof
JP5446071B2 (en) Protective adhesive film, screen panel and portable electronic terminal
JP2014106275A (en) Hard coat film, decorative film, and protective film
JP6222304B2 (en) LAMINATE AND INFORMATION DISPLAY DEVICE
JP6025010B2 (en) Active energy ray-curable composition and film using the same
JP6435601B2 (en) Hard coat film, decorative film and protective film
JP2016081004A (en) Hard coat film and information display device
JP6147130B2 (en) Photocurable composition capable of forming a cured coating having anti-fingerprint property, coating and coating substrate thereof
JP6531969B2 (en) Active energy ray curable composition and hard coat film
JP2015120253A (en) Hard coat film and image display device
JP6725864B2 (en) Active energy ray curable composition and film using the same
JPWO2018100929A1 (en) Active energy ray-curable composition and film using the same
JP6315236B2 (en) Hard coat film and image display device
JP2016085451A (en) Hard coat film and information display device
JP2016177163A (en) Hard coat film and information display device
JP6519771B2 (en) Hard coat film and information display device
WO2016152644A1 (en) Hard coat film, information display device, and portable electronic terminal
JP6503817B2 (en) Hard coat film and information display device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015539313

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873794

Country of ref document: EP

Kind code of ref document: A1