WO2022137728A1 - リン化インジウム基板、リン化インジウム基板の製造方法及び半導体エピタキシャルウエハ - Google Patents

リン化インジウム基板、リン化インジウム基板の製造方法及び半導体エピタキシャルウエハ Download PDF

Info

Publication number
WO2022137728A1
WO2022137728A1 PCT/JP2021/037241 JP2021037241W WO2022137728A1 WO 2022137728 A1 WO2022137728 A1 WO 2022137728A1 JP 2021037241 W JP2021037241 W JP 2021037241W WO 2022137728 A1 WO2022137728 A1 WO 2022137728A1
Authority
WO
WIPO (PCT)
Prior art keywords
indium phosphide
substrate
edge portion
wafer
phosphide substrate
Prior art date
Application number
PCT/JP2021/037241
Other languages
English (en)
French (fr)
Inventor
航大 山岸
俊介 岡
健二 鈴木
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to EP21909886.0A priority Critical patent/EP4215650A4/en
Priority to US18/034,327 priority patent/US20230392289A1/en
Priority to CN202180054263.9A priority patent/CN116057212A/zh
Publication of WO2022137728A1 publication Critical patent/WO2022137728A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02019Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02021Edge treatment, chamfering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments

Definitions

  • the present invention relates to an indium phosphide substrate, a method for manufacturing an indium phosphide substrate, and a semiconductor epitaxial wafer.
  • Indium phosphide is a group III-V compound semiconductor material composed of group III indium (In) and group V phosphorus (P).
  • the characteristics as a semiconductor material are a band gap of 1.35 eV and electron mobility of -5400 cm 2 / V ⁇ s, and the electron mobility under a high electric field is higher than that of other general semiconductor materials such as silicon and gallium arsenide. It has the characteristic of becoming.
  • the stable crystal structure under normal temperature and pressure is a cubic sphalerite-type structure, and its lattice constant is larger than that of compound semiconductors such as gallium arsenide (GaAs) and gallium phosphide (GaP). It has the characteristic of having a lattice constant.
  • the ingot of ingot phosphate which is the raw material of the ingot phosphate substrate, is usually sliced to a predetermined thickness, ground to a desired shape, appropriately mechanically polished, and then removed from polishing debris and damage caused by polishing. Therefore, it is used for etching, precision polishing (polishing), etc. (Patent Document 1).
  • the processing of the edge portion of the indium phosphide substrate is usually carried out by a chamfering device, and is carried out by polishing with a grindstone having a count of # 800 or # 1200.
  • the grinding abrasive grains used for processing after chamfering and the polishing liquid will remain on the edge portion.
  • the residue of such an edge portion is brought into the final cleaning and moves to the surface of the substrate by the lift-off action of the cleaning liquid.
  • the movement of the residue to the surface of the substrate may contaminate the surface of the indium phosphide substrate, which is the final product, and may lead to a decrease in yield during substrate manufacturing. Further, if the surface of the substrate is contaminated, the surface quality after the epitaxial growth may be deteriorated.
  • the present invention has been made to solve the above-mentioned problems, and is capable of suppressing the generation of surface contamination of the indium phosphide substrate caused by the residue at the edge portion.
  • the above problem is solved by an embodiment of the present invention, which is specified as follows.
  • a phosphorized indium substrate having a root mean square height Sq of 0.15 ⁇ m or less measured by a laser microscope over the entire surface of the edge portion.
  • the edge portion of the substrate is A surface inclined from one surface, and It has a surface with curvature from the position where the inclined surface ends from one surface to the position where the inclined surface ends from the other surface.
  • the root mean square height Sq measured by a laser microscope on the surface inclined from one of the surfaces is 0.15 ⁇ m or less.
  • the indium phosphide (InP) substrate of the present embodiment includes a substrate front surface, a substrate back surface, and an edge portion.
  • the edge portion may have an orientation flat (OF) indicating the orientation of the crystal and an index flat (IF) for distinguishing the main surface and the back surface of the substrate.
  • OF orientation flat
  • IF index flat
  • the main surface of the indium phosphide substrate can be a surface for forming an epitaxial crystal layer.
  • the surface for forming the epitaxial crystal layer is a surface for actually performing epitaxial growth when the indium phosphide substrate of the present embodiment is used as a substrate for epitaxial growth for forming a semiconductor device structure.
  • the maximum diameter of the main surface of the indium phosphide substrate is not particularly limited, but may be 49 to 151 mm or 49 to 101 mm.
  • the planar shape of the indium phosphide substrate may be circular or rectangular such as a quadrangle.
  • the thickness of the indium phosphide substrate is not particularly limited, but is preferably 300 to 900 ⁇ m, more preferably 300 to 700 ⁇ m, for example.
  • the diameter is large, if the indium phosphide substrate is less than 300 ⁇ m, it may crack, and if it exceeds 900 ⁇ m, there may be a problem that the base metal crystal is wasted.
  • the phosphorinated indium substrate of the present embodiment may contain Zn as a dopant (impurity) so that the carrier concentration is 1 ⁇ 10 16 cm -3 or more and 1 ⁇ 10 19 cm -3 or less, and S has a carrier concentration of S. It may be contained so as to be 1 ⁇ 10 16 cm -3 or more and 1 ⁇ 10 19 cm -3 or less, and Sn may be contained so that the carrier concentration is 1 ⁇ 10 16 cm -3 or more and 1 ⁇ 10 19 cm -3 or less. However, Fe may be contained so that the carrier concentration is 1 ⁇ 10 6 cm -3 or more and 1 ⁇ 10 9 cm -3 or less.
  • FIG. 1 shows a schematic cross-sectional view of the vicinity of the edge portion of the indium phosphide substrate according to the embodiment of the present invention.
  • the cross section of the edge portion of the indium phosphide substrate has a curved shape with the corners of the rectangle cut off (chamfered).
  • the "edge portion” refers to the side surface of the indium phosphide substrate, that is, the outer surface excluding the main surface and the back surface, and specifically, the end portion (flat main surface) of the main surface shown in FIG.
  • the "edge portion" of the present invention also includes an orientation flat (OF) and an index flat (IF).
  • FIG. 1 is a drawing for understanding the main surface, the back surface, and the edge portion of the indium phosphide substrate according to the embodiment of the present invention, and these show the indium phosphide substrate according to the embodiment of the present invention as they are. It's not a thing.
  • the phosphorized indium substrate according to the embodiment of the present invention has a root mean square height Sq of 0.15 ⁇ m or less as measured by a laser microscope over the entire surface of the edge portion with respect to the surface roughness of the edge portion.
  • the root mean square height Sq of the edge portion of the indium phosphide substrate according to the embodiment of the present invention is a parameter representing the standard deviation from the average plane measured in accordance with ISO25178.
  • the root mean square height Sq of the edge portion of the phosphorinated indium substrate according to the embodiment of the present invention can be measured using, for example, a 3D measuring laser microscope OLS5000 manufactured by OLYMPUS.
  • the phosphorized indium substrate according to the embodiment of the present invention preferably has a root mean square height Sq of 0.07 ⁇ m or less as measured by a laser microscope over the entire surface of the edge portion with respect to the surface roughness of the edge portion. .. Further, the lower limit of the root mean square height Sq of the edge portion of the indium phosphide substrate according to the embodiment of the present invention is not particularly limited, but may be 0.01 ⁇ m or more and 0.015 ⁇ m or more.
  • the phosphorized indium substrate according to the embodiment of the present invention is inclined from the surface roughness of the edge portion from the surface inclined from one surface and the position where the surface inclined from one surface ends. It has a surface with curvature up to the position where the surface ends, and the root mean square height Sq measured by a laser microscope on the surface inclined from one surface is 0.15 ⁇ m or less, as described above. It is preferable that the root mean square height Sq measured by a laser microscope on a surface having a curvature is 0.15 ⁇ m or less.
  • the "plane inclined from one surface” is a surface shown in the measurement region 1 which is a surface inclined from the main surface shown in FIG. 3 described later, and the “plane inclined from one surface” is the surface.
  • the “curvatured surface from the end position to the end position of the inclined surface from the other surface” is from the position where the inclined surface from the main surface of the measurement region 1 ends, as shown in FIG. 3 described later. It is a surface shown by the measurement region 2 which is an arc region of the edge portion which is a surface having a curvature from the back surface to the position where the inclined surface ends.
  • an ingot of indium phosphide is produced by a known method.
  • the indium phosphide ingot is then ground into a cylinder.
  • an orientation flat (OF) and an index flat (IF) may be formed at predetermined positions on the outer peripheral portion of the wafer.
  • a wafer having a main surface and a back surface is cut out from the ground ingot of indium phosphide.
  • both ends of the crystal of the ingot of indium phosphide are cut along a predetermined crystal plane using a wire saw or the like, and a plurality of wafers are cut to a predetermined thickness.
  • the wafer after cutting is double-sided etched with a predetermined etching solution (primary etching).
  • the wafer can be etched by immersing the entire wafer in the etching solution.
  • the polishing step is also called a lapping step, and by polishing with a predetermined abrasive, the unevenness of the wafer surface is removed while maintaining the flatness of the wafer.
  • the entire surface of the edge portion of the wafer generated after chamfering after the lapping step is polished with a polishing film having a count of # 4000.
  • the roughness of the entire edge portion of the wafer is controlled to the same roughness. That is, by the polishing, the surface roughness of the edge portion of the wafer is controlled so that the root mean square height Sq is 0.15 ⁇ m or less when measured by a laser microscope over the entire surface of the edge portion.
  • the wafer after polishing the edge portion is double-sided etched with a predetermined etching solution (secondary etching).
  • the wafer can be etched by immersing the entire wafer in the etching solution.
  • the main surface of the wafer is polished with an abrasive for mirror polishing to finish it as a mirror surface.
  • the indium phosphide substrate according to the embodiment of the present invention is manufactured.
  • the phosphorinated indium substrate according to the embodiment of the present invention may be a substrate having an edge portion polished with a polishing film having a count of # 4000 after chamfering, or may be polished with a polishing film. After that, the substrate may be manufactured by etching, mirror polishing, cleaning, or the like.
  • semiconductor epitaxial wafer By epitaxially growing a semiconductor thin film on the main surface of the indium phosphide substrate according to the embodiment of the present invention by a known method, an epitaxial crystal layer can be formed and a semiconductor epitaxial wafer can be produced.
  • a HEMT structure in which an InAlAs buffer layer, an InGaAs channel layer, an InAlAs spacer layer, and an InP electron supply layer are epitaxially grown may be formed on the main surface of the indium phosphide substrate.
  • a mirror-finished indium phosphide substrate is subjected to an etching treatment with an etching solution such as sulfuric acid / hydrogen peroxide solution, and silicon adhered to the substrate surface. Remove impurities such as (Si). With the back surface of the indium phosphide substrate after this etching treatment in contact with the susceptor and supported, molecular beam epitaxy (MBE) or metalorganic vapor phase growth (MOCVD) is applied to the main surface of the indium phosphide substrate. : Metalorganic Chemical Vapor Deposition) to form an epitaxial film.
  • MBE molecular beam epitaxy
  • MOCVD metalorganic vapor phase growth
  • Example 1 First, a single crystal ingot of indium phosphide grown to a predetermined diameter was prepared. Next, the outer circumference of the ingot of a single crystal of indium phosphide was ground into a cylinder. At this time, an orientation flat (OF) and an index flat (IF) were formed at predetermined positions on the outer peripheral portion of the wafer.
  • OF orientation flat
  • IF index flat
  • a wafer having a main surface and a back surface was cut out from the ground ingot of indium phosphide.
  • both ends of the crystal of the ingot of indium phosphide were cut along a predetermined crystal plane using a wire saw, and a plurality of wafers were cut out to a predetermined thickness.
  • new wire was constantly sent while the wire was reciprocated, and indium phosphide was moved to the wire saw.
  • the wafer diameter of the wafer produced here was 76.2 mm, and the wafer thickness was 750 ⁇ m.
  • the cut wafer was etched from both sides with a mixed solution of 85% by mass of a phosphoric acid aqueous solution and 30% by mass of a hydrogen peroxide solution. (Primary etching). The wafer was etched by immersing the entire wafer in the etching solution.
  • the outer peripheral part of the wafer was chamfered.
  • both sides of the chamfered wafer were polished (wrapping). At this time, by polishing with an abrasive, the unevenness of the wafer surface was removed while maintaining the flatness of the wafer.
  • the wafer polished with the film was etched with a mixed solution of 85% by mass of a phosphoric acid aqueous solution, 30% by mass of hydrogen peroxide solution and ultrapure water with a total etching amount of 8 to 15 ⁇ m from both sides (2). Next etching). The wafer was etched by immersing the entire wafer in the etching solution.
  • the main surface of the wafer was polished (polished) with an abrasive for mirror polishing to give a mirror surface, and then washed to prepare an indium phosphide substrate.
  • FIG. 2 shows a schematic plan view of the indium phosphide substrate produced in Example 1.
  • FIG. 3 shows a schematic cross-sectional view of the vicinity of the edge portion of the indium phosphide substrate produced in Example 1.
  • T 650 ⁇ m
  • X1 494 ⁇ m
  • X2 432 ⁇ m
  • Y1 126 ⁇ m
  • Y2 108 ⁇ m
  • Y3 416 ⁇ m
  • R1 167 ⁇ m
  • R2 184 ⁇ m
  • R1 and R2 are the radius of curvature of the round portion of the edge portion).
  • ⁇ 1 14.5 degrees
  • ⁇ 2 13.9 degrees
  • ⁇ 1 and ⁇ 2 are inclination angles of the edge portion).
  • Comparative Example 1 As Comparative Example 1, in the above-mentioned Example 1, the indium phosphide substrate was prepared in the same manner as in Example 1 except that the edge portion was not polished with the polishing film after the lapping step and the secondary etching was performed. Made.
  • the edge portion of the indium phosphide substrate to be measured is divided into a region located on the opposite side of the OF (A- region) and a region located on the opposite side of the IF (B- region). Further, as shown in FIG. 3, (1) the surface inclined from the main surface is defined as the measurement area 1, and (2) the surface inclined from the main surface of the measurement area 1 ends, and the surface is inclined from the back surface.
  • the arc region of the edge portion which is a surface having a curvature up to the position where the surface is finished, is defined as the measurement area 2.
  • the measurement area 1 in the A-region is referred to as "A-region 1"
  • the measurement region 2 in the A-region is referred to as "A-region 2”
  • the measurement region 1 in the B-region is referred to as "B-region 1”.
  • the measurement area 2 in the B-region was designated as "B-region 2".
  • the root mean square height Sq was measured using a 3D measurement laser microscope OLS5000 manufactured by OLYMPUS in each of a total of four regions (each measurement region size: 258 ⁇ m ⁇ 258 ⁇ m) of these edge portions.
  • the measurement was carried out using a cutoff filter (L filter: cutting wavelength 20 ⁇ m). The evaluation results are shown in Table 1.
  • Example 1 the root mean square height Sq measured by a laser microscope for each surface roughness of A-regions 1 and 2 and B-regions 1 and 2 of the edge portion of the substrate is 0.15 ⁇ m.
  • the following indium phosphate substrate was obtained.
  • the entire surface of the edge portion of the substrate was polished with a polishing film having a count of # 4000, and the inclined region corresponding to the measurement region 1 was the same as the A-region 1 and the B-region 1 on the entire edge portion surface. It is considered that the surface roughness is obtained.
  • the relatively flat region (arc region) corresponding to the measurement region 2 of the edge portion such as the measurement region 2 described above has the same surface roughness as the A-region 2 and the B-region 2. Is considered to have been obtained.
  • the difference in the root mean square height Sq between the region 1 and the region 2 of the edge portion is affected by the polishing of the substrate surface by mirror polishing or the like after polishing the edge portion with the polishing film. It is thought that it is.
  • the root mean square height Sq is the same regardless of which region is measured on the entire surface of the edge portion, as long as the entire surface of the edge portion of the substrate has just been polished with a polishing film of count # 4000. it is conceivable that.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

エッジ部の残留物を起因とするリン化インジウム基板の表面の汚染の発生を抑制することが可能なリン化インジウム基板、リン化インジウム基板の製造方法及び半導体エピタキシャルウエハを提供する。基板のエッジ部の表面粗さについて、エッジ部表面全体において、レーザー顕微鏡によって測定された、二乗平均平方根高さSqが0.15μm以下である、リン化インジウム基板。

Description

リン化インジウム基板、リン化インジウム基板の製造方法及び半導体エピタキシャルウエハ
 本発明は、リン化インジウム基板、リン化インジウム基板の製造方法及び半導体エピタキシャルウエハに関する。
 インジウムリン(InP)は、III族のインジウム(In)とV族のリン(P)とからなるIII-V族化合物半導体材料である。半導体材料としての特性は、バンドギャップ1.35eV、電子移動度~5400cm2/V・sであり、高電界下での電子移動度はシリコンやガリウム砒素といった他の一般的な半導体材料より高い値になるという特性を有している。また、常温常圧下での安定な結晶構造は立方晶の閃亜鉛鉱型構造であり、その格子定数は、ヒ化ガリウム(GaAs)やリン化ガリウム(GaP)等の化合物半導体と比較して大きな格子定数を有するという特徴を有している。
 リン化インジウム基板の原料となるリン化インジウムのインゴットは、通常、所定の厚さにスライシングされ、所望の形状に研削され、適宜機械研磨された後、研磨屑や研磨により生じたダメージを除去するために、エッチングや精密研磨(ポリシング)等に供される(特許文献1)。
 リン化インジウム基板のエッジ部の加工は、通常、面取り装置にて実施されており、番手♯800または♯1200の砥石による研磨にて実施されている。
特許第6701418号公報
 リン化インジウム基板のエッジ部の表面粗さが大きいと、面取り以降の加工に用いられる研削砥粒や、研磨液がエッジ部に残留してしまう。このようなエッジ部の残留物は、最終洗浄に持ち込まれ、洗浄液によるリフトオフ作用により、基板表面へと移動する。残留物が基板表面に移動することで、最終製品となるリン化インジウム基板の表面の汚染が発生し、基板製造時の歩留まり低下につながるおそれがある。また、基板表面が汚染されると、エピタキシャル成長を実施した後の表面品質が低下するおそれもある。
 本発明は、上記のような課題を解決するためになされたものであり、エッジ部の残留物を起因とするリン化インジウム基板の表面の汚染の発生を抑制することが可能なリン化インジウム基板、リン化インジウム基板の製造方法及び半導体エピタキシャルウエハを提供することを目的とする。
 上記課題は、以下のように特定される、本発明の実施形態によって解決される。
(1)基板のエッジ部の表面粗さについて、前記エッジ部表面全体において、レーザー顕微鏡によって測定された、二乗平均平方根高さSqが0.15μm以下である、リン化インジウム基板。
(2)前記二乗平均平方根高さSqが0.07μm以下である、(1)に記載のリン化インジウム基板。
(3)前記基板のエッジ部は、
  一方の表面から傾斜した面、及び、
  前記一方の表面から傾斜した面が終了する位置から、他方の表面から傾斜した面が終了する位置までの、曲率をもった面
を有し、
 前記一方の表面から傾斜した面におけるレーザー顕微鏡によって測定された、二乗平均平方根高さSqが0.15μm以下であり、
 前記曲率をもった面におけるレーザー顕微鏡によって測定された、二乗平均平方根高さSqが0.15μm以下である、(1)または(2)に記載のリン化インジウム基板。
(4)リン化インジウムのウエハの外周部分の面取りを行う工程と、
 前記面取り後に生じたウエハのエッジ部の表面全体を、番手#4000の研磨フィルムにて研磨する工程と、
 前記エッジ部の研磨後のウエハをエッチングする工程と、
を含む、リン化インジウム基板の製造方法。
(5)前記リン化インジウムのウエハの外周部分の面取りを行う工程と、前記面取り後に生じたウエハのエッジ部の表面全体を、番手#4000の研磨フィルムにて研磨する工程と、の間に、ウエハの少なくとも一方の表面を研磨する工程を更に含む、(4)に記載のリン化インジウム基板の製造方法。
(6)(1)~(3)のいずれかに記載のリン化インジウム基板と、前記リン化インジウム基板の主面に設けられたエピタキシャル結晶層と、を有する、半導体エピタキシャルウエハ。
 本発明の実施形態によれば、エッジ部の残留物を起因とするリン化インジウム基板の表面の汚染の発生を抑制することが可能なリン化インジウム基板、リン化インジウム基板の製造方法及び半導体エピタキシャルウエハを提供することができる。
本発明の実施形態に係るリン化インジウム基板のエッジ部付近の断面模式図である。 実施例のリン化インジウム基板の平面模式図である。 実施例のリン化インジウム基板のエッジ部付近の断面模式図である。
 〔リン化インジウム基板〕
 以下、本実施形態のリン化インジウム基板の構成について説明する。
 本実施形態のリン化インジウム(InP)基板は、基板表面、基板裏面、及び、エッジ部を備える。エッジ部は、結晶の方位を示すオリエンテーションフラット(OF)、及び、基板の主面と裏面とを見分けるためのインデックスフラット(IF)を有していてもよい。
 リン化インジウム基板の主面は、エピタキシャル結晶層を形成するための面とすることができる。エピタキシャル結晶層を形成するための面とは、本実施形態のリン化インジウム基板を、半導体素子構造の形成のためにエピタキシャル成長用の基板として使用する際に、実際にエピタキシャル成長を実施する面である。
 リン化インジウム基板の主面の最大径は特に限定されないが、49~151mmであってもよく、49~101mmであってもよい。リン化インジウム基板の平面形状は、円形であってもよく、四角形等の矩形であってもよい。
 リン化インジウム基板の厚さは特に限定されないが、例えば、300~900μmであるのが好ましく、300~700μmであるのがより好ましい。特に口径が大きい場合、リン化インジウム基板が300μm未満であると割れる恐れがあり、900μmを超えると母材結晶が無駄になるという問題が生じることがある。
 本実施形態のリン化インジウム基板は、ドーパント(不純物)として、Znをキャリア濃度が1×1016cm-3以上1×1019cm-3以下となるように含んでもよく、Sをキャリア濃度が1×1016cm-3以上1×1019cm-3以下となるように含んでもよく、Snをキャリア濃度が1×1016cm-3以上1×1019cm-3以下となるように含んでもよく、Feをキャリア濃度が1×106cm-3以上1×109cm-3以下となるように含んでもよい。
 図1に、本発明の実施形態に係るリン化インジウム基板のエッジ部付近の断面模式図を示す。リン化インジウム基板のエッジ部の断面は、図1に示すように長方形の角が削られて(面取りがなされて)、曲線状となっている。本発明において、「エッジ部」とは、リン化インジウム基板の側面、すなわち、主面と裏面を除いた外表面を示し、具体的には、図1に示す主面の端部(平坦な主面が傾斜し始める位置)に位置する点Pから、基板の側面を亘り、裏面の端部(平坦な裏面が傾斜し始める位置)に位置する点Qまでの領域を示す。また、本発明の「エッジ部」はオリエンテーションフラット(OF)、及び、インデックスフラット(IF)も含んでいる。
 なお、図1は、本発明の実施形態に係るリン化インジウム基板における主面、裏面、エッジ部を理解するための図面であり、これらがそのまま本発明の実施形態に係るリン化インジウム基板を示すものではない。
 本発明の実施形態に係るリン化インジウム基板は、エッジ部の表面粗さについて、エッジ部表面全体において、レーザー顕微鏡によって測定された、二乗平均平方根高さSqが0.15μm以下である。リン化インジウム基板のエッジ部の二乗平均平方根高さSqが0.15μm以下に制御されていることで、面取り以降の加工に用いられる研削砥粒や、研磨液がエッジ部に残留することが抑制される。このため、基板表面に残留物(パーティクル等)が移動することを防ぐことができ、リン化インジウム基板の表面の汚染、及び、基板製造時の歩留まり低下を抑制することができる。基板表面の汚染を防ぐことができると、エピタキシャル成長を実施した後の表面品質が向上する。
 本発明の実施形態に係るリン化インジウム基板のエッジ部の二乗平均平方根高さSqは、ISO25178に準拠して測定される、平均面からの標準偏差を表すパラメータである。本発明の実施形態に係るリン化インジウム基板のエッジ部の二乗平均平方根高さSqは、例えば、OLYMPUS社製3D測定レーザー顕微鏡OLS5000を用いて測定することができる。
 本発明の実施形態に係るリン化インジウム基板は、エッジ部の表面粗さについて、エッジ部表面全体において、レーザー顕微鏡によって測定された、二乗平均平方根高さSqが0.07μm以下であるのが好ましい。また、本発明の実施形態に係るリン化インジウム基板のエッジ部の当該二乗平均平方根高さSqの下限値は特に限定されないが、0.01μm以上、0.015μm以上であってもよい。
 本発明の実施形態に係るリン化インジウム基板は、エッジ部の表面粗さについて、一方の表面から傾斜した面、及び、一方の表面から傾斜した面が終了する位置から、他方の表面から傾斜した面が終了する位置までの、曲率をもった面を有しており、一方の表面から傾斜した面におけるレーザー顕微鏡によって測定された、二乗平均平方根高さSqが0.15μm以下であり、上述の曲率をもった面におけるレーザー顕微鏡によって測定された、二乗平均平方根高さSqが0.15μm以下であることが好ましい。このような構成によれば、基板表面に残留物(パーティクル等)が移動することをより良好に防ぐことができ、リン化インジウム基板の表面の汚染、及び、基板製造時の歩留まり低下をより良好に抑制することができる。ここで、当該「一方の表面から傾斜した面」は、後述の図3に示す、主面から傾斜した面である測定領域1で示される面であり、当該「一方の表面から傾斜した面が終了する位置から、他方の表面から傾斜した面が終了する位置までの、曲率をもった面」は、後述の図3に示す、測定領域1の主面から傾斜した面が終了する位置から、裏面から傾斜した面が終了する位置までの、曲率をもった面となるエッジ部の円弧領域となる測定領域2で示される面である。
 〔リン化インジウム基板の製造方法〕
 次に、本発明の実施形態に係るリン化インジウム基板の製造方法について説明する。
 リン化インジウム基板の製造方法としては、まず、公知の方法にてリン化インジウムのインゴットを作製する。
 次に、リン化インジウムのインゴットを研削して円筒にする。このとき、ウエハの外周部分の所定位置に、オリエンテーションフラット(OF)、及び、インデックスフラット(IF)を形成してもよい。
 次に、研削したリン化インジウムのインゴットから主面及び裏面を有するウエハを切り出す。このとき、リン化インジウムのインゴットの結晶両端を所定の結晶面に沿って、ワイヤーソー等を用いて切断し、複数のウエハを所定の厚さに切り出す。
 次に、ワイヤーソーによる切断工程において生じた加工変質層を除去するために、切断後のウエハに対し、所定のエッチング液により、両面エッチングする(一次エッチング)。ウエハは、エッチング液中にウエハ全体を浸漬することで、エッチングすることができる。
 次に、ウエハの外周部分の面取りを行う。面取りの後、ウエハの少なくとも一方の表面、好ましくは両面を研磨(ポリッシング)してもよい。当該研磨工程はラッピング工程とも言われ、所定の研磨剤で研磨することで、ウエハの平坦性を保ったままウエハ表面の凹凸を取り除く。
 面取り後、または、面取り後にラッピングを行った場合は当該ラッピング工程の後、面取り後に生じたウエハのエッジ部の表面全体を、番手#4000の研磨フィルムにて研磨する。このとき、ウエハのエッジ部全面を、同じ番手#4000の研磨フィルムにて研磨するため、ウエハのエッジ部全面の粗さが、同様の粗さに制御される。すなわち、当該研磨によって、ウエハのエッジ部の表面粗さについて、エッジ部表面全体において、レーザー顕微鏡によって測定したとき、二乗平均平方根高さSqが0.15μm以下となるように制御する。
 次に、エッジ部の研磨後のウエハに対し、所定のエッチング液により、両面エッチングする(二次エッチング)。ウエハは、前記エッチング液中にウエハ全体を浸漬することで、エッチングすることができる。
 次に、ウエハの主面を鏡面研磨用の研磨材で研磨して鏡面に仕上げる。
 次に、洗浄を行うことで、本発明の実施形態に係るリン化インジウム基板が製造される。
 本発明の実施形態に係るリン化インジウム基板は、上述のように、面取り後の番手#4000の研磨フィルムにて研磨されたエッジ部を有する基板であってもよく、または、研磨フィルムにて研磨された後、エッチング、鏡面研磨、洗浄等を行うことで作製した基板であってもよい。
 〔半導体エピタキシャルウエハ〕
 本発明の実施形態に係るリン化インジウム基板の主面に対し、公知の方法で半導体薄膜をエピタキシャル成長させることで、エピタキシャル結晶層を形成し、半導体エピタキシャルウエハを作製することができる。当該エピタキシャル成長の例としては、リン化インジウム基板の主面に、InAlAsバッファ層、InGaAsチャネル層、InAlAsスペーサ層、InP電子供給層をエピタキシャル成長させたHEMT構造を形成してもよい。このようなHEMT構造を有する半導体エピタキシャルウエハを作製する場合、一般には、鏡面仕上げしたリン化インジウム基板に、硫酸/過酸化水素水などのエッチング溶液によるエッチング処理を施して、基板表面に付着したケイ素(Si)等の不純物を除去する。このエッチング処理後のリン化インジウム基板の裏面をサセプターに接触させて支持した状態で、リン化インジウム基板の主面に、分子線エピタキシャル成長法(MBE:Molecular Beam Epitaxy)又は有機金属気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)によりエピタキシャル膜を形成する。
 以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。
 (実施例1)
 まず、所定の直径で育成したリン化インジウムの単結晶のインゴットを準備した。
 次に、リン化インジウムの単結晶のインゴットの外周を研削し、円筒にした。このとき、ウエハの外周部分の所定位置に、オリエンテーションフラット(OF)、及び、インデックスフラット(IF)を形成した。
 次に、研削したリン化インジウムのインゴットから主面及び裏面を有するウエハを切り出した。このとき、リン化インジウムのインゴットの結晶両端を所定の結晶面に沿って、ワイヤーソーを用いて切断し、複数のウエハを所定の厚さに切り出した。ウエハを切り出す工程では、ワイヤーを往復させながら常に新線を送り続けるとともに、リン化インジウムをワイヤーソーへ移動させた。ここで作製したウエハのウエハ径は、76.2mmであり、ウエハ厚さは750μmであった。
 次に、ワイヤーソーによる切断工程において生じた加工変質層を除去するために、切断後のウエハを85質量%のリン酸水溶液及び30質量%の過酸化水素水の混合溶液により、両面からエッチングした(一次エッチング)。ウエハは、エッチング液中にウエハ全体を浸漬することで、エッチングした。
 次に、ウエハの外周部分の面取りを行った。次に、面取り後のウエハの両面を研磨した(ラッピング)。このとき、研磨剤で研磨することで、ウエハの平坦性を保ったままウエハ表面の凹凸を取り除いた。
 次に、面取りによって生じたウエハのエッジ部の表面全体を、番手#4000の研磨フィルムに押し当てて研磨した。
 次に、フィルムによる研磨後のウエハを85質量%のリン酸水溶液、30質量%の過酸化水素水及び超純水の混合溶液により、両面から合計8~15μm厚のエッチング量でエッチングした(二次エッチング)。ウエハは、前記エッチング液中にウエハ全体を浸漬することで、エッチングした。
 次に、ウエハの主面を鏡面研磨用の研磨材で研磨(ポリッシング)して鏡面に仕上げた後、洗浄することでリン化インジウム基板を作製した。
 図2に、実施例1で作製されたリン化インジウム基板の平面模式図を示す。また、図3に、実施例1で作製されたリン化インジウム基板のエッジ部付近の断面模式図を示す。図3において、T=650μm、X1=494μm、X2=432μm、Y1=126μm、Y2=108μm、Y3=416μm、R1=167μm、R2=184μm(R1、R2は、エッジ部のラウンド部の曲率半径)、θ1=14.5度、θ2=13.9度(θ1、θ2は、エッジ部の傾斜角度)であった。
 (比較例1)
 比較例1として、上述の実施例1において、ラッピング工程の後、研磨フィルムによるエッジ部の研磨を実施せず、二次エッチングを実施した以外は、実施例1と同様にしてリン化インジウム基板を作製した。
 (評価)
 リン化インジウム基板の測定対象となるエッジ部は、図2に示すように、OFの反対側に位置する領域(A-領域)と、IFの反対側に位置する領域(B-領域)とに分け、さらに、図3に示すように、(1)主面から傾斜した面を測定領域1とし、さらに、(2)測定領域1の主面から傾斜した面が終了する位置から、裏面から傾斜した面が終了する位置までの、曲率をもった面となるエッジ部の円弧領域を測定領域2とした。
 そして、A-領域における測定領域1を「A-領域1」とし、A-領域における測定領域2を「A-領域2」とし、B-領域における測定領域1を「B-領域1」とし、B-領域における測定領域2を「B-領域2」とした。
 これらエッジ部の合計4箇所の領域(各測定領域サイズ:258μm×258μm)において、それぞれ、OLYMPUS社製3D測定レーザー顕微鏡OLS5000を用いて、二乗平均平方根高さSqを測定した。
 なお、エッジ部の曲率を除去して評価するため、カットオフフィルター(Lフィルター:カットする波長20μm)を用いて測定を実施した。
 評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001

 (考察)
 実施例1では、基板のエッジ部のA-領域1、2、及び、B-領域1、2の、各表面粗さについて、レーザー顕微鏡によって測定された、二乗平均平方根高さSqが0.15μm以下である、リン化インジウム基板が得られた。基板のエッジ部表面全体において、番手#4000の研磨フィルムにて研磨したものであり、エッジ部表面全体において、測定領域1に対応する傾斜領域は、A-領域1及びB-領域1と同様の表面粗さが得られているものと考えられる。また、エッジ部表面全体において、上述の測定領域2のようなエッジ部の測定領域2に対応する比較的平坦な領域(円弧領域)は、A-領域2及びB-領域2と同様の表面粗さが得られているものと考えられる。
 なお、エッジ部の領域1と領域2とで二乗平均平方根高さSqに違いが生じたのは、研磨フィルムにてエッジ部を研磨した後の、鏡面研磨などによる基板表面の研磨による影響が出ているものと考えられる。あくまで、基板のエッジ部表面全体において、番手#4000の研磨フィルムにて研磨した直後であれば、エッジ部表面全体において、どの領域を測定しても、二乗平均平方根高さSqは同様であるものと考えられる。
 また、実施例1の基板表面のSi濃度をTOF-SIMS分析で2点測定した結果、80.3(×1010atoms/cm2)、115.8(×1010atoms/cm2)であった。このとき、濃度既知の標準試料をもとに分析装置の感度係数を求めて、Siのイオン強度をIn強度で規格化して定量化した。
 TOF-SIMS分析の分析条件は以下の通りである。
 装置名:Physical Electronics TRIFT III
 イオン源:Au+
 一次イオンエネルギー:22kV
 分析エリア:25μm×25μm
 比較例1のリン化インジウム基板は、面取り及びラッピング工程後に、基板のエッジ部表面全体において、番手#4000の研磨フィルムにて研磨しなかったため、基板のエッジ部のA-領域1、2、及び、B-領域1、2の、各表面粗さについて、レーザー顕微鏡によって測定された、二乗平均平方根高さSqが0.15μm超であった。

Claims (6)

  1.  基板のエッジ部の表面粗さについて、前記エッジ部表面全体において、レーザー顕微鏡によって測定された、二乗平均平方根高さSqが0.15μm以下である、リン化インジウム基板。
  2.  前記二乗平均平方根高さSqが0.07μm以下である、請求項1に記載のリン化インジウム基板。
  3.  前記基板のエッジ部は、
      一方の表面から傾斜した面、及び、
      前記一方の表面から傾斜した面が終了する位置から、他方の表面から傾斜した面が終了する位置までの、曲率をもった面
    を有し、
     前記一方の表面から傾斜した面におけるレーザー顕微鏡によって測定された、二乗平均平方根高さSqが0.15μm以下であり、
     前記曲率をもった面におけるレーザー顕微鏡によって測定された、二乗平均平方根高さSqが0.15μm以下である、請求項1または2に記載のリン化インジウム基板。
  4.  リン化インジウムのウエハの外周部分の面取りを行う工程と、
     前記面取り後に生じたウエハのエッジ部の表面全体を、番手#4000の研磨フィルムにて研磨する工程と、
     前記エッジ部の研磨後のウエハをエッチングする工程と、
    を含む、リン化インジウム基板の製造方法。
  5.  前記リン化インジウムのウエハの外周部分の面取りを行う工程と、前記面取り後に生じたウエハのエッジ部の表面全体を、番手#4000の研磨フィルムにて研磨する工程と、の間に、ウエハの少なくとも一方の表面を研磨する工程を更に含む、請求項4に記載のリン化インジウム基板の製造方法。
  6.  請求項1~3のいずれか一項に記載のリン化インジウム基板と、前記リン化インジウム基板の主面に設けられたエピタキシャル結晶層と、を有する、半導体エピタキシャルウエハ。
PCT/JP2021/037241 2020-12-21 2021-10-07 リン化インジウム基板、リン化インジウム基板の製造方法及び半導体エピタキシャルウエハ WO2022137728A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21909886.0A EP4215650A4 (en) 2020-12-21 2021-10-07 INDIUM PHOSPHIDE SUBSTRATE, METHOD FOR PRODUCING AN INDIUM PHOSPHIDE SUBSTRATE AND EPITATICAL SEMICONDUCTOR WAFER
US18/034,327 US20230392289A1 (en) 2020-12-21 2021-10-07 Indium phosphide substrate, method for manufacturing indium phosphide substrate, and semiconductor epitaxial wafer
CN202180054263.9A CN116057212A (zh) 2020-12-21 2021-10-07 磷化铟基板、磷化铟基板的制造方法以及半导体外延片

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020211685A JP7166324B2 (ja) 2020-12-21 2020-12-21 リン化インジウム基板、リン化インジウム基板の製造方法及び半導体エピタキシャルウエハ
JP2020-211685 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022137728A1 true WO2022137728A1 (ja) 2022-06-30

Family

ID=82158951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037241 WO2022137728A1 (ja) 2020-12-21 2021-10-07 リン化インジウム基板、リン化インジウム基板の製造方法及び半導体エピタキシャルウエハ

Country Status (6)

Country Link
US (1) US20230392289A1 (ja)
EP (1) EP4215650A4 (ja)
JP (2) JP7166324B2 (ja)
CN (1) CN116057212A (ja)
TW (1) TWI771208B (ja)
WO (1) WO2022137728A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7166323B2 (ja) * 2020-12-21 2022-11-07 Jx金属株式会社 リン化インジウム基板、リン化インジウム基板の製造方法及び半導体エピタキシャルウエハ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041418B2 (ja) 1984-07-04 1992-01-13 Victor Company Of Japan
JPH11204493A (ja) * 1998-01-09 1999-07-30 Komatsu Electron Metals Co Ltd 半導体ウェハの製造方法
JP2001135557A (ja) * 1999-11-08 2001-05-18 Nikko Materials Co Ltd 化合物半導体ウェハ
JP2012129416A (ja) * 2010-12-16 2012-07-05 Shin Etsu Handotai Co Ltd 半導体ウェーハ及びその製造方法
JP2012174935A (ja) * 2011-02-22 2012-09-10 Shin Etsu Handotai Co Ltd エピタキシャルウェーハの製造方法
JP2013153181A (ja) * 2009-03-04 2013-08-08 Siltronic Ag エピタキシャル被覆されたシリコンウェハ及びエピタキシャル被覆されたシリコンウェハの製造方法
JP2019219495A (ja) * 2018-06-19 2019-12-26 信越化学工業株式会社 フォトマスクブランク関連基板の評価方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4207976B2 (ja) * 2006-05-17 2009-01-14 住友電気工業株式会社 化合物半導体基板の表面処理方法、および化合物半導体結晶の製造方法
JP5644401B2 (ja) * 2010-11-15 2014-12-24 株式会社Sumco エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ
JP5880449B2 (ja) * 2011-01-26 2016-03-09 旭硝子株式会社 フォトマスクの製造方法
KR102086281B1 (ko) * 2017-04-28 2020-03-06 제이엑스금속주식회사 반도체 웨이퍼 및 반도체 웨이퍼의 연마 방법
JP7125252B2 (ja) 2017-08-30 2022-08-24 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法
JP7381214B2 (ja) * 2019-03-27 2023-11-15 株式会社東京精密 ブラストユニット付き面取り装置
JP7166323B2 (ja) * 2020-12-21 2022-11-07 Jx金属株式会社 リン化インジウム基板、リン化インジウム基板の製造方法及び半導体エピタキシャルウエハ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041418B2 (ja) 1984-07-04 1992-01-13 Victor Company Of Japan
JPH11204493A (ja) * 1998-01-09 1999-07-30 Komatsu Electron Metals Co Ltd 半導体ウェハの製造方法
JP2001135557A (ja) * 1999-11-08 2001-05-18 Nikko Materials Co Ltd 化合物半導体ウェハ
JP2013153181A (ja) * 2009-03-04 2013-08-08 Siltronic Ag エピタキシャル被覆されたシリコンウェハ及びエピタキシャル被覆されたシリコンウェハの製造方法
JP2012129416A (ja) * 2010-12-16 2012-07-05 Shin Etsu Handotai Co Ltd 半導体ウェーハ及びその製造方法
JP2012174935A (ja) * 2011-02-22 2012-09-10 Shin Etsu Handotai Co Ltd エピタキシャルウェーハの製造方法
JP2019219495A (ja) * 2018-06-19 2019-12-26 信越化学工業株式会社 フォトマスクブランク関連基板の評価方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4215650A4

Also Published As

Publication number Publication date
JP2022098504A (ja) 2022-07-01
TW202225090A (zh) 2022-07-01
US20230392289A1 (en) 2023-12-07
JP2022098257A (ja) 2022-07-01
TWI771208B (zh) 2022-07-11
CN116057212A (zh) 2023-05-02
EP4215650A4 (en) 2024-10-16
JP7166324B2 (ja) 2022-11-07
EP4215650A1 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
TWI747695B (zh) 磷化銦基板
JP6761917B1 (ja) リン化インジウム基板、半導体エピタキシャルウエハ、及びリン化インジウム基板の製造方法
WO2021019887A1 (ja) リン化インジウム基板、及びリン化インジウム基板の製造方法
JP6761915B1 (ja) リン化インジウム基板、半導体エピタキシャルウエハ、及びリン化インジウム基板の製造方法
JP6761916B1 (ja) リン化インジウム基板、半導体エピタキシャルウエハ、及びリン化インジウム基板の製造方法
WO2022137728A1 (ja) リン化インジウム基板、リン化インジウム基板の製造方法及び半導体エピタキシャルウエハ
WO2022137727A1 (ja) リン化インジウム基板、リン化インジウム基板の製造方法及び半導体エピタキシャルウエハ
US12065759B2 (en) Indium phosphide substrate
JP7055233B1 (ja) リン化インジウム基板
JP6906080B2 (ja) リン化インジウム基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909886

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021909886

Country of ref document: EP

Effective date: 20230417

NENP Non-entry into the national phase

Ref country code: DE