WO2022135016A1 - 一种燃料电池控制方法、装置、设备及存储介质 - Google Patents

一种燃料电池控制方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022135016A1
WO2022135016A1 PCT/CN2021/133087 CN2021133087W WO2022135016A1 WO 2022135016 A1 WO2022135016 A1 WO 2022135016A1 CN 2021133087 W CN2021133087 W CN 2021133087W WO 2022135016 A1 WO2022135016 A1 WO 2022135016A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell voltage
threshold
equal
minimum
fuel cell
Prior art date
Application number
PCT/CN2021/133087
Other languages
English (en)
French (fr)
Inventor
郝志强
赵洪辉
丁天威
黄兴
韩令海
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022135016A1 publication Critical patent/WO2022135016A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/04873Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the embodiments of the present application relate to the technical field of vehicles, for example, to a fuel cell control method, apparatus, device, and storage medium.
  • a hydrogen fuel cell is a power generation device that utilizes the direct conversion of chemical energy stored in hydrogen and oxygen into electrical energy with high efficiency and without pollution.
  • the fuel cell generates water during the power generation process. In the subzero low temperature environment, the generated water will freeze inside the fuel cell, preventing the gas reaction medium of the cathode and anode from reaching the catalytic layer to react, and even lead to irreversible performance degradation of the fuel cell. .
  • Start-up heating mainly includes external preheating method and internal heating method.
  • the external preheating method mainly uses a positive temperature coefficient (Positive Temperature Coefficient, PTC) electric heater to heat the cooling circuit when the fuel cell heats up, and the internal heating mainly uses the fuel cell to generate heat. Warm up fuel cells.
  • PTC Positive Temperature Coefficient
  • the embodiments of the present application provide a fuel cell control method, device, device, and storage medium, so as to realize that when the fuel cell self-generated heat is used to heat up the fuel cell, the cell voltage consistency and the reverse polarity phenomenon of the fuel cell can be considered.
  • the fuel cell generates a large amount of thermal energy without reversing the polarity, so that the fuel cell can achieve a fast cold start and reduce the impairment of the life of the fuel cell.
  • the embodiments of the present application provide fuel cell control, including:
  • An operating voltage value is determined according to the minimum cell voltage and the cell voltage difference, and a loading operation is performed according to the operating voltage value.
  • the embodiments of the present application also provide a fuel cell control device, the device comprising:
  • the acquisition module is set to acquire the cell voltage of the fuel cell during the cold start process
  • a determining module configured to determine the minimum cell voltage and the cell voltage difference according to the cell voltage of the fuel cell
  • the loading module is configured to determine an operating voltage value according to the minimum cell voltage and the cell voltage difference, and perform a loading operation according to the operating voltage value.
  • an embodiment of the present application further provides a computer device, including a memory, a processor, and a computer program stored in the memory and running on the processor, the processor implementing the program as described in the present application when the processor executes the program.
  • a computer device including a memory, a processor, and a computer program stored in the memory and running on the processor, the processor implementing the program as described in the present application when the processor executes the program.
  • an embodiment of the present application further provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the fuel cell control method described in any one of the embodiments of the present application.
  • FIG. 1 is a flowchart of a fuel cell control method in Embodiment 1 of the present application
  • FIG. 2 is a flowchart of a fuel cell control method in Embodiment 2 of the present application.
  • Fig. 2a is a specific implementation of the fuel cell control method in the second embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a fuel cell control device in Embodiment 3 of the present application.
  • FIG. 4 is a schematic structural diagram of a computer device in Embodiment 4 of the present application.
  • FIG. 1 is a flowchart of a fuel cell control method provided in Embodiment 1 of the present application. This embodiment is applicable to the case of fuel cell cold start control, and the method can be executed by the fuel cell control device in the embodiment of the present application.
  • the device can be implemented in software and/or hardware. As shown in Figure 1, the method includes the following steps:
  • the fuel cell is formed by stacking and combining a plurality of single cells in a certain manner, each single cell itself is an independent entity, and the single cell voltage refers to the voltage of each single cell.
  • the voltage of each single cell of the fuel cell is obtained.
  • S120 Determine the minimum cell voltage and the cell voltage difference according to the cell voltage of the fuel cell.
  • the minimum cell voltage and the cell voltage difference are determined according to the cell voltage of the fuel cell, and the cell voltage difference reflects the inconsistency of the cell voltages. Due to the influence of differences in temperature, ventilation conditions, self-discharge degree, and electrolyte concentration of multiple cells in a fuel cell, the inconsistency of cell voltage will increase to a certain extent. When the minimum cell voltage is less than a certain threshold or the cell voltage difference exceeds a certain threshold, if a low-voltage battery is used together with a normal battery, it will become the load of the battery pack, affecting the work of other batteries, and thus affecting the life of the entire battery pack.
  • the cell voltage difference is a difference between a maximum cell voltage and a minimum cell voltage.
  • the maximum cell voltage U cellmax is the maximum voltage value among the multiple cell voltages in the fuel cell
  • the minimum cell voltage U cellmin is the minimum voltage value among the multiple cell voltages in the fuel cell.
  • S130 Determine an operating voltage value according to the minimum cell voltage and the cell voltage difference, and perform a loading operation according to the operating voltage value.
  • an operating voltage value is determined according to the minimum cell voltage and the cell voltage difference, and a loading operation is performed according to the operating voltage value. During the loading process, the values of voltage and current are always changing, and the loading operation is stopped if the operating voltage value reaches the preset voltage value.
  • the operating voltage value is determined according to the minimum cell voltage and the cell voltage difference, and the loading operation is performed according to the operating voltage value.
  • FIG. 2 is a flowchart of a fuel cell control method in Embodiment 2 of the present application. This embodiment is refined based on the above-mentioned embodiment.
  • the body voltage difference value determines the operating voltage value, and the loading operation is performed according to the operating voltage value, including: when the PTC heating is turned on, if the fuel cell outlet temperature is lower than the first temperature threshold, the loading operation is performed according to the first set voltage, and the During the loading process, it is continuously judged whether the minimum cell voltage is greater than or equal to the first threshold and whether the cell voltage difference is less than the second threshold; if the minimum cell voltage is greater than or equal to the first threshold, and the single If the cell voltage difference is less than the second threshold, the loading operation is performed according to the first set voltage; if the minimum cell voltage is less than the first threshold, or the cell voltage difference is greater than or equal to the second threshold, the loading operation is performed Load shedding operation; if the minimum cell voltage is greater than or equal
  • the method of this embodiment includes the following steps:
  • S220 Determine the minimum cell voltage and the cell voltage difference according to the cell voltage of the fuel cell.
  • the first temperature threshold may be set according to actual conditions, for example, the first temperature threshold may be 0°C.
  • the PTC heating system and the system cooling cycle are first started, and the system is heated by means of external preheating.
  • a high metering ratio of air is also used for purging through devices such as an air compressor to remove excess moisture.
  • the high metering ratio ie, the ratio of air to hydrogen
  • the air compressor speed can be set to 30000rpm.
  • the loading operation is performed according to the set current rate and the first set voltage.
  • the set current rate and the first set voltage may be set according to actual conditions, which are not limited in this embodiment of the present application, for example, the set current rate is 5 A/s.
  • the first threshold and the second threshold may be set according to actual conditions.
  • the first threshold is used to define the minimum cell voltage
  • the second threshold is used to ensure that the voltage consistency of the single cells is within a safe range, so as to avoid the phenomenon of single cell reverse polarity and prevent the life of the fuel cell from decaying.
  • the second threshold can be is 0.02V.
  • the minimum cell voltage is greater than or equal to the first threshold, and the cell voltage difference is smaller than the second threshold, that is, if the single cell meets the minimum cell voltage threshold requirement and the voltage consistency requirement, then keep The first set voltage performs a loading operation to heat up the fuel cell.
  • the first threshold value is any value greater than or equal to 0V and less than or equal to 0.5V.
  • the first threshold is a minimum cell voltage threshold for ensuring that the single cell does not have a reverse polarity phenomenon, and the first threshold may be 0.3V.
  • the load shedding operation is performed. , and then load until the minimum cell voltage recovers to the first threshold value, so as to ensure that the battery does not reverse polarity due to too small cell voltage, and prevent the life of the fuel cell from deteriorating.
  • the minimum cell voltage is less than the first threshold, or the cell voltage difference is greater than or equal to the second threshold, the cell voltage discharge value will be too low, and the positive electrode potential of the cell with the smallest voltage value will be below the negative electrode potential, resulting in a reverse polarity phenomenon. If the battery is reversed for a long time without correction, the battery will fail or even break down and cause an explosion. Therefore, during the cold start of the fuel cell, it is necessary to ensure that the cells meet the minimum cell voltage threshold requirements and cell consistency requirements in real time.
  • performing the load shedding operation includes:
  • a load shedding operation is performed according to a preset load shedding rate.
  • the output power of the fuel cell is de-loaded, and the current is derated according to the preset load during the de-loading process. It is assumed that the load shedding rate is reduced, and the preset load shedding rate may be set according to actual requirements, which is not limited in this embodiment of the present application. For example, the preset load shedding rate may be 100A/s.
  • the minimum cell voltage U cellmin is greater than or equal to the first threshold, and the cell voltage difference U d is greater than or equal to the second threshold, that is, the single cell meets the minimum cell voltage threshold requirement, but If the voltage consistency requirement is not met, a loading operation is performed according to the minimum cell voltage and the number of cells, so as to warm up the fuel cell.
  • the way of performing the loading operation according to the minimum cell voltage and the number of cells may be to switch the operating voltage to the product of the minimum cell voltage value U cellmin and the number of cells n, that is, to switch the operating voltage to U cellmin ⁇ n.
  • the operating voltage value is determined according to the minimum cell voltage and the cell voltage difference, and loading is performed according to the operating voltage value, including:
  • the loading operation is performed according to the second set voltage, and during the loading process, it is continuously judged whether the minimum cell voltage is greater than or equal to the first temperature threshold. a threshold and whether the cell voltage difference is less than a second threshold;
  • a loading operation is performed according to the minimum cell voltage and the number of single cells.
  • the operating voltage is raised to the second set voltage U 2 , which is greater than the first set voltage U 1 , that is, U 2 >U 1 , and the second set voltage can be set according to the actual situation.
  • the loading operation is performed according to the second set voltage.
  • the load reduction operation is performed until the minimum The cell voltage is restored to the first threshold and then loaded; if the minimum cell voltage is greater than or equal to the first threshold, and the cell voltage difference is greater than or equal to the second threshold, according to the minimum cell voltage and The number of single cells is loaded to make the fuel cell continue to heat up.
  • the operating voltage value is determined according to the minimum cell voltage and the cell voltage difference, and loading is performed according to the operating voltage value, including:
  • the operating voltage value is determined according to the minimum cell voltage and the cell voltage difference, and the loading operation is performed according to the operating voltage value.
  • the steps of the technical solution of this embodiment are: starting the PTC heating system and the air compressor purging system to assist in the cold start of the fuel cell.
  • the first temperature threshold (0°C)
  • the first set voltage is used for slow loading, and during the loading process, it is continuously judged whether the minimum cell voltage is greater than or equal to the first threshold (0.3V) and the cell is Whether the voltage difference is less than the second threshold value (0.02V), the fuel cell can meet the requirements of voltage consistency and minimum voltage threshold.
  • the first set voltage is maintained to perform the loading operation; if the minimum cell voltage is less than the first threshold threshold, or, if the cell voltage difference is greater than or equal to the second threshold, a load shedding operation is performed, if the minimum cell voltage is greater than or equal to the first threshold, and the cell voltage difference is greater than or equal to the first threshold If there are two thresholds, the loading operation is performed according to the minimum cell voltage and the number of cells.
  • the loading operation is performed according to the second set voltage; similarly, continuous judgment is made during the loading process. Whether the minimum cell voltage is greater than or equal to the first threshold and whether the cell voltage difference is less than the second threshold enables the fuel cell to continue to heat up under the condition that the voltage consistency requirements and the minimum voltage threshold requirements are met. Until the fuel cell outlet temperature is greater than the second temperature threshold (10° C.), then switch to the normal idle speed condition to complete the cold start.
  • FIG. 3 is a schematic structural diagram of a fuel cell control device provided in Embodiment 3 of the present application. This embodiment can be applied to the case of fuel cell cold start control, the device can be implemented in software and/or hardware, and the device can be integrated in any device that provides the function of fuel cell control, as shown in FIG. 3 , the The fuel cell control device includes: an acquisition module 310 , a determination module 320 and a loading module 330 .
  • the obtaining module 310 is configured to obtain the cell voltage of the fuel cell during the cold start process
  • the determining module 320 is configured to determine the minimum cell voltage and the cell voltage difference according to the cell voltage of the fuel cell;
  • the loading module 330 is configured to determine an operating voltage value according to the minimum cell voltage and the cell voltage difference, and perform a loading operation according to the operating voltage value.
  • the loading module includes:
  • the first loading unit is configured to perform the loading operation according to the first set voltage if the outlet temperature of the fuel cell is lower than the first temperature threshold when the PTC heating is turned on, and continuously judge whether the minimum cell voltage is greater than or equal to the first threshold and whether the cell voltage difference is less than the second threshold;
  • a second loading unit configured to maintain the first set voltage to perform a loading operation if the minimum cell voltage is greater than or equal to a first threshold, and the cell voltage difference is less than a second threshold;
  • a first load shedding unit configured to perform a load shedding operation if the minimum cell voltage is less than a first threshold, or if the cell voltage difference is greater than or equal to a second threshold;
  • a third loading unit configured to perform the load according to the minimum cell voltage and the number of single cells if the minimum cell voltage is greater than or equal to the first threshold and the cell voltage difference is greater than or equal to the second threshold Load operation.
  • the loading module further includes:
  • the fourth loading unit is configured to perform a loading operation according to the second set voltage if the fuel cell outlet temperature is greater than or equal to the first temperature threshold and less than or equal to the second temperature threshold, and continuously determine the minimum unit during the loading process. Whether the bulk voltage is greater than or equal to the first threshold and whether the cell voltage difference is less than the second threshold;
  • a fifth loading unit configured to maintain the second set voltage to perform the loading operation if the minimum cell voltage is greater than or equal to the first threshold and the cell voltage difference is less than the second threshold;
  • a second load shedding unit configured to perform a load shedding operation if the minimum cell voltage is less than the first threshold, or if the cell voltage difference is greater than or equal to the second threshold;
  • the sixth loading unit is set to, if the minimum cell voltage is greater than or equal to the first threshold value, and the cell voltage difference is greater than or equal to the second threshold value, perform the load according to the minimum cell voltage and the number of single cells Load operation.
  • the loading module is set to:
  • the first load reduction unit set to:
  • a load shedding operation is performed according to a preset load shedding rate.
  • the cell voltage difference is a difference between a maximum cell voltage and a minimum cell voltage.
  • the first threshold value is any value greater than or equal to 0V and less than or equal to 0.5V.
  • the above product can execute the method provided by any embodiment of the present application, and has functional modules corresponding to the execution method.
  • the operating voltage value is determined according to the minimum cell voltage and the cell voltage difference, and the loading operation is performed according to the operating voltage value. Considering the cell voltage consistency and polarity reversal phenomenon of the fuel cell, a large amount of thermal energy can be generated without reversing the polarity of the fuel cell, enabling the fuel cell to achieve fast cold start and reducing the loss of fuel cell life.
  • FIG. 4 is a schematic structural diagram of a computer device in Embodiment 4 of the present application.
  • FIG. 4 shows a block diagram of an exemplary computer device 12 suitable for use in implementing embodiments of the present application.
  • the computer device 12 shown in FIG. 4 is only an example, and should not impose any limitations on the functions and scope of use of the embodiments of the present application.
  • computer device 12 takes the form of a general-purpose computing device.
  • Components of computer device 12 may include, but are not limited to, at least one processor or processing unit 16, system memory 28, and a bus 18 connecting various system components including system memory 28 and processing unit 16.
  • the bus 18 represents at least one of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a graphics acceleration port, a processor, or a local bus using any of a variety of bus structures.
  • these architectures include, but are not limited to, Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, enhanced ISA bus, Video Electronics Standards Association (Video Electronics Standards Association) Association, VESA) local bus and Peripheral Component Interconnect (PCI) bus.
  • Computer device 12 typically includes a variety of computer system readable media. These media can be any available media that can be accessed by computer device 12, including both volatile and nonvolatile media, removable and non-removable media.
  • System memory 28 may include computer system readable media in the form of volatile memory, such as random access memory (RAM) 30 and/or cache memory 32.
  • Computer device 12 may further include other removable/non-removable, volatile/non-volatile computer system storage media.
  • storage system 34 may be configured to read and write to non-removable, non-volatile magnetic media (not shown in FIG. 4, commonly referred to as a "hard drive”).
  • a magnetic disk drive for reading and writing to removable non-volatile magnetic disks (eg "floppy disks") and removable non-volatile optical disks (eg Compact Disc-Read only) may be provided.
  • Memory 28 may include at least one program product having a set (eg, at least one) of program modules configured to perform the functions of various embodiments of the present application.
  • a program/utility 40 having a set (at least one) of program modules 42, which may be stored, for example, in memory 28, such program modules 42 including, but not limited to, an operating system, at least one application program, other program modules, and Program data, each or some combination of these examples may include an implementation of a network environment.
  • Program modules 42 generally perform the functions and/or methods of the embodiments described herein.
  • the computer device 12 may also communicate with at least one external device 14 (eg, keyboard, pointing device, display 24, etc.), may also communicate with at least one device that enables a user to interact with the computer device 12, and/or communicate with the computer device 12 communicates with any device (eg, network card, modem, etc.) capable of communicating with at least one other computing device. Such communication may take place through an input/output (I/O) interface 22 .
  • the display 24 does not exist as an independent entity, but is embedded in the mirror surface. When the display surface of the display 24 is not displayed, the display surface of the display 24 and the mirror surface are visually integrated.
  • the computer device 12 may communicate with at least one network (eg, a Local Area Network (LAN), a Wide Area Network (WAN), and/or a public network such as the Internet) through a network adapter 20.
  • network adapter 20 communicates with other modules of computer device 12 via bus 18 .
  • other hardware and/or software modules may be used in conjunction with computer device 12, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, Redundant Arrays of Independent Disks, RAID) systems, tape drives, and data backup storage systems.
  • the processing unit 16 executes various functional applications and data processing by running the programs stored in the system memory 28, such as implementing the fuel cell control method provided by the embodiments of the present application:
  • An operating voltage value is determined according to the minimum cell voltage and the cell voltage difference, and a loading operation is performed according to the operating voltage value.
  • the processing unit 16 may also execute the fuel cell control method provided by any embodiment of the present application by running a program stored in the system memory 28 .
  • the fifth embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the fuel cell control methods provided by all the application embodiments of the present application:
  • An operating voltage value is determined according to the minimum cell voltage and the cell voltage difference, and a loading operation is performed according to the operating voltage value.
  • the fuel cell control method provided by any embodiment of the present application may also be implemented.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including but not limited to wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out the operations of the present application may be written in at least one programming language, including object-oriented programming languages, such as Java, Smalltalk, C++, and conventional procedural languages, or a combination thereof.
  • a programming language such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider through Internet connection).
  • LAN local area network
  • WAN wide area network

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本申请公开了一种燃料电池控制方法、装置、设备及存储介质。该方法包括:在冷启动过程中,获取燃料电池的单体电压;根据所述燃料电池的单体电压确定最小单体电压和单体电压差值;根据所述最小单体电压和所述单体电压差值确定运行电压值,根据所述运行电压值进行加载操作。

Description

一种燃料电池控制方法、装置、设备及存储介质
本申请要求在2020年12月25日提交中国专利局、申请号为202011564111.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及车辆技术领域,例如涉及一种燃料电池控制方法、装置、设备及存储介质。
背景技术
新能源汽车以其节能、环保、高效的概念成为未来汽车发展的一大方向,而燃料电池由于具有发电效率高、环境污染小、比能量高、噪声低、可靠性高等优点,近年来备受业界关注。氢燃料电池是一种利用直接将储存在氢气和氧气中的化学能高效、无污染地转化为电能的发电装置。燃料电池发电过程中会产生水,在零下的低温环境中,生成的水会在燃料电池内部冻结,阻碍阴阳极的气体反应介质到达催化层发生反应,严重甚至导致燃料电池发生不可逆转地性能退化。不恰当的燃料电池内部反复的冻结-融化循环会对燃料电池组件的结构和性能造成损害,最终导致物理变形或击穿。但是,0℃以下低温启动是燃料电池汽车无法回避的一个重要运行工况。因此,研究燃料电池冷启动控制方法具有重要意义。
现阶段大多采用停机吹扫和启动升温结合的冷启动方式,即在停机吹扫的基础上,电池启动时使燃料电池升温融冰的速度快于燃料电池结冰的速度,来实现冷启动。启动升温主要包括外部预热方式和内部升温方式,外部预热的方式主要利用正温度系数(Positive Temperature Coefficient,PTC)电加热器加热冷却回路时燃料电池升温,内部升温主要运用燃料电池自产热升温燃料电池。而相关技术中运用燃料电池自产热来升温燃料电池时,未考虑燃料电池的单体电压一致性和反极现象,使得燃料电池寿命短。
发明内容
本申请实施例提供一种燃料电池控制方法、装置、设备及存储介质,以实现能够在运用燃料电池自产热来升温燃料电池时,考虑燃料电池的单体电压一致性和反极现象,在燃料电池不发生反极的情况下产生大量热能,使得燃料电池实现快速冷启动且减小燃料电池寿命的减损。
第一方面,本申请实施例提供了燃料电池控制,包括:
在冷启动过程中,获取燃料电池的单体电压;
根据所述燃料电池的单体电压确定最小单体电压和单体电压差值;
根据所述最小单体电压和所述单体电压差值确定运行电压值,根据所述运行电压值进行加载操作。
第二方面,本申请实施例还提供了燃料电池控制装置,该装置包括:
获取模块,设置为在冷启动过程中,获取燃料电池的单体电压;
确定模块,设置为根据所述燃料电池的单体电压确定最小单体电压和单体电压差值;
加载模块,设置为根据所述最小单体电压和所述单体电压差值确定运行电压值,根据所述运行电压值进行加载操作。
第三方面,本申请实施例还提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如本申请实施例中任一所述的燃料电池控制方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请实施例中任一所述的燃料电池控制方法。
附图说明
图1是本申请实施例一中的一种燃料电池控制方法的流程图;
图2是本申请实施例二中的一种燃料电池控制方法的流程图;
图2a是本申请实施例二中的燃料电池控制方法的一种具体实施方式;
图3是本申请实施例三中的一种燃料电池控制装置的结构示意图;
图4是本申请实施例四中的一种计算机设备的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作详细说明。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
实施例一
图1为本申请实施例一提供的一种燃料电池控制方法的流程图,本实施例可适用于燃料电池冷启动控制的情况,该方法可以由本申请实施例中的燃料电池控制装置来执行,该装置可采用软件和/或硬件的方式实现,如图1所示,该方法包括如下步骤:
S110,在冷启动过程中,获取燃料电池的单体电压。
其中,燃料电池由多个单体电池以一定的方式层叠组合而成,每个单体电池本身是一个独立的个体,单体电压是指每个单体电池的电压。示例性的,在燃料电池冷启动过程中,获取燃料电池的每个单体电池的电压。
S120,根据所述燃料电池的单体电压确定最小单体电压和单体电压差值。
示例性的,根据所述燃料电池的单体电压确定最小单体电压和单体电压差值,单体电压差值体现了单体电压不一致性。由于燃料电池中多个电池的温度、通风条件、自放电程度、电解液浓度等差别的影响,在一定程度上会增加电池电压的不一致性。当最小单体电压小于一定阈值或单体电压差值超过一定阈值,若低压电池和正常电池一起使用,将成为电池组的负载,影响其他电池的工作, 进而影响整个电池组的寿命。
可选的,所述单体电压差值为最大单体电压和最小单体电压的差值。
示例性的,所述最大单体电压U cellmax为燃料电池中多个电池电压中最大的电压值,所述最小单体电压U cellmin为燃料电池中多个电池电压中最小的电压值。单体电压差值U d为多个电池电压中最大的电压值和最小的电压值之间的差值,即U d=U cellmax-U cellmi
S130,根据所述最小单体电压和所述单体电压差值确定运行电压值,根据所述运行电压值进行加载操作。
示例性的,冷启动过程中,燃料电池的运行电压越低,则电池单位时间内产生的热量越多。为了保证燃料电池的冷启动安全,需要在保证燃料电池在不发生反极的情况下,选择较小的单体电压以产生大量的热量来加对自身加热,并对最小单体电压进行限定以防止燃料电池寿命衰减。因此,根据所述最小单体电压和所述单体电压差值确定运行电压值,根据所述运行电压值进行加载操作。在加载过程中电压与电流的值始终在变化,若运行电压值达到预设电压值则停止加载操作。
本实施例的技术方案,通过根据所述最小单体电压和所述单体电压差值确定运行电压值,根据所述运行电压值进行加载操作,在运用燃料电池自产热来升温燃料电池时,考虑燃料电池的单体电压一致性和反极现象,能够在燃料电池不发生反极的情况下产生大量热能,使得燃料电池实现快速冷启动且减小燃料电池寿命的损耗。
实施例二
图2为本申请实施例二中的一种燃料电池控制方法的流程图,本实施例以上述实施例为基础进行细化,在本实施例中,根据所述最小单体电压和所述单体电压差值确定运行电压值,根据所述运行电压值进行加载操作,包括:当开启PTC加热时,若燃料电池出口温度小于第一温度阈值,则根据第一设定电压 进行加载操作,在加载过程中不断判断所述最小单体电压是否大于或等于第一阈值且所述单体电压差值是否小于第二阈值;若所述最小单体电压大于或者等于第一阈值,且所述单体电压差值小于第二阈值,则根据第一设定电压进行加载操作;若所述最小单体电压小于第一阈值,或者,所述单体电压差值大于或者等于第二阈值,则进行降载操作;若所述最小单体电压大于或者等于第一阈值,且所述单体电压差值大于或者等于第二阈值,则根据所述最小单体电压和单体电池数量进行加载操作。
如图2所示,本实施例的方法包括如下步骤:
S210,在冷启动过程中,获取燃料电池的单体电压。
S220,根据所述燃料电池的单体电压确定最小单体电压和单体电压差值。
S230,当开启PTC加热时,若燃料电池出口温度小于第一温度阈值,则根据第一设定电压进行加载操作,在加载过程中不断判断最小单体电压是否大于或等于第一阈值且单体电压差值是否小于第二阈值。
其中,第一温度阈值可以根据实际情况设定,例如:第一温度阈值可以为0℃。
需要说明的是,在燃料电池冷启动过程中,为了使燃料电池尽可能快速的启动,除了运用燃料电池自产热来升温燃料电池,同时也会辅助停机吹扫和外部预热的方式,使燃料电池快速且安全的升温。因此,在燃料电池冷启动过程中,首先会启动PTC加热系统和系统冷却循环,通过外部预热的方式为系统加热。同时还会通过空压机等装置进行高计量比供气进行吹扫,排除多余的水分,可选的,所述高计量比(即空气与氢气的比例)高于4。此时,空压机转速可以设置为30000rpm。
示例性的,当开启PTC加热时,若燃料电池出口温度小于第一温度阈值,则根据设定电流速率和第一设定电压进行加载操作。其中,设定电流速率和第一设定电压可以根据实际情况设定,本申请实施例对此不设限制,例如,设定电流速率为5A/s。根据燃料电池反应机理,定义燃料电池单体工作在大于或等于0.3V且小于或等于0.5V对单体不会造成严重损伤。因此,第一设定电压可 以为U 1=0.5×n,其中,n为单体电池的个数。
S240,若所述最小单体电压大于或者等于第一阈值,且所述单体电压差值小于第二阈值,则保持所述第一设定电压进行加载操作。
其中,第一阈值和第二阈值可以根据实际情况设定。第一阈值用于限定最小单体电压,第二阈值用于确保单体电池的电压一致性在安全范围内,以免发生单体电池反极现象,防止燃料电池寿命衰减,例如,第二阈值可以为0.02V。
示例性的,若所述最小单体电压大于或者等于第一阈值,且所述单体电压差值小于第二阈值,即单体电池满足最小单体电压阈值要求和电压一致性要求,则保持所述第一设定电压进行加载操作,以使燃料电池升温。
可选的,所述第一阈值为大于或等于0V且小于或等于0.5V的任一数值。
示例性的,第一阈值为确保单体电池不发生反极现象的最小单体电压阈值,第一阈值可以为0.3V。
S250,若所述最小单体电压小于第一阈值,或者,所述单体电压差值大于或者等于第二阈值,则进行降载操作。
示例性的,若所述最小单体电压小于第一阈值,或者,所述单体电压差值大于或者等于第二阈值,即单体电池不满足最小单体电压阈值要求,则进行降载操作,直到最小单体电压恢复至第一阈值再进行加载,以确保电池不会因单体电压过小而发生反极现象,防止燃料电池寿命衰减。
需要说明的是,若最小单体电压小于第一阈值,或者,所述单体电压差值大于或者等于第二阈值,会使得单体电压放电值太低,电压值最小的单体的正极电势低于负极电势,从而导致发生反极现象。电池长期反极而不予纠正将会使电池失效甚至击穿电池引起爆炸。因此,在燃料电池冷启动过程中,必须实时保证单体满足最小单体电压阈值要求和电池一致性要求。
可选的,若所述最小单体电压小于第一阈值,或者,所述单体电压差值大于或者等于第二阈值,则进行降载操作包括:
若所述最小单体电压小于第一阈值,或者,所述单体电压差值大于或者等 于第二阈值,则根据预设降载速率进行降载操作。
示例性的,若所述最小单体电压小于第一阈值,或者,所述单体电压差值大于或者等于第二阈值,则对燃料电池输出功率进行降载,在降载过程中电流按照预设降载速率减小,预设降载速率可以根据实际需求进行设定,本申请实施例对此不设限制。例如,预设降载速率可以为100A/s。
S260,若所述最小单体电压大于或者等于第一阈值,且所述单体电压差值大于或者等于第二阈值,则根据所述最小单体电压和单体电池数量进行加载操作。
示例性的,若所述最小单体电压U cellmin大于或者等于第一阈值,且所述单体电压差值U d大于或者等于第二阈值,即单体电池满足最小单体电压阈值要求,但不满足电压一致性要求,则根据所述最小单体电压和单体电池数量进行加载操作,以使燃料电池升温。根据所述最小单体电压和单体电池数量进行加载操作的方式可以为将运行电压切换为最小单体电压值U cellmin和单体电池个数n的乘积,即,运行电压切换为U cellmin×n。
可选的,根据所述最小单体电压和单体电压差值确定运行电压值,根据所述运行电压值进行加载,包括:
若燃料电池出口温度大于或者等于第一温度阈值,且小于或者等于第二温度阈值,则根据第二设定电压进行加载操作,在加载过程中不断判断所述最小单体电压是否大于或等于第一阈值且所述单体电压差值是否小于第二阈值;
若所述最小单体电压大于或者等于第一阈值,且所述单体电压差值小于第二阈值,则保持第二设定电压进行加载操作;
若所述最小单体电压小于第一阈值,或者,所述单体电压差值大于或者等于第二阈值,则进行降载操作;
若所述最小单体电压大于或者等于第一阈值,且所述单体电压差值大于或者等于第二阈值,则根据所述最小单体电压和单体电池数量进行加载操作。
其中,随着燃料电池的温度升高,为了使燃料电池处于更安全的工作状态, 将运行电压提升到第二设定电压U 2,第二设定电压U 2大于第一设定电压U 1,即U 2>U 1,第二设定电压可以根据实际情况设定。
示例性的,若燃料电池出口温度大于或者等于第一温度阈值,且小于或者等于第二温度阈值,则根据第二设定电压进行加载操作。和S240至S260相同的原理,为了确保单体电池不发生反极现象以减少燃料电池寿命的损耗,若所述最小单体电压大于或者等于第一阈值,且所述单体电压差值小于第二阈值,则保持第二设定电压进行加载操作;若所述最小单体电压小于第一阈值,或者,所述单体电压差值大于或者等于第二阈值,则进行降载操作,直到最小单体电压恢复至第一阈值再进行加载;若所述最小单体电压大于或者等于第一阈值,且所述单体电压差值大于或者等于第二阈值,则根据所述最小单体电压和单体电池数量进行加载操作,以使燃料电池继续升温。
可选的,根据所述最小单体电压和单体电压差值确定运行电压值,根据所述运行电压值进行加载,包括:
若燃料电池出口温度大于第二温度阈值,则切换至正常怠速工况,完成冷启动。
本实施例的技术方案,通过根据所述最小单体电压和所述单体电压差值确定运行电压值,根据所述运行电压值进行加载操作,在运用燃料电池自产热来升温燃料电池时,考虑燃料电池的单体电压一致性和反极现象,能够在燃料电池不发生反极的情况下产生大量热能,使得燃料电池实现快速冷启动且减少燃料电池寿命的损耗。
如图2a所示,本实施例的技术方案的步骤为:启动PTC加热系统和空压机吹扫系统辅助燃料电池冷启动。在燃料电池出口温度小于第一温度阈值(0℃)时,以第一设定电压进行缓慢加载,在加载过程中不断判断最小单体电压是否大于或等于第一阈值(0.3V)且单体电压差值是否小于第二阈值(0.02V),使燃料电池在满足电压一致性要求和最小电压阈值要求的条件下。若所述最小单体电压大于或者等于第一阈值,且所述单体电压差值小于第二阈值,则保持所 述第一设定电压进行加载操作;若所述最小单体电压小于第一阈值,或者,所述单体电压差值大于或者等于第二阈值,则进行降载操作,若所述最小单体电压大于或者等于第一阈值,且所述单体电压差值大于或者等于第二阈值,则根据所述最小单体电压和单体电池数量进行加载操作。
若燃料电池出口温度大于或者等于第一温度阈值(0℃),且小于或者等于第二温度阈值(10℃),则根据第二设定电压进行加载操作;同理,在加载过程中不断判断最小单体电压是否大于或等于第一阈值且单体电压差值是否小于第二阈值,使燃料电池在满足电压一致性要求和最小电压阈值要求的条件下继续升温。直到燃料电池出口温度大于第二温度阈值(10℃),则切换至正常怠速工况,完成冷启动。
实施例三
图3为本申请实施例三提供的一种燃料电池控制装置的结构示意图。本实施例可适用于燃料电池冷启动控制的情况,该装置可采用软件和/或硬件的方式实现,该装置可集成在任何提供燃料电池控制的功能的设备中,如图3所示,所述燃料电池控制的装置包括:获取模块310、确定模块320和加载模块330。
其中,获取模块310,设置为在冷启动过程中,获取燃料电池的单体电压;
确定模块320,设置为根据所述燃料电池的单体电压确定最小单体电压和单体电压差值;
加载模块330,设置为根据所述最小单体电压和所述单体电压差值确定运行电压值,根据所述运行电压值进行加载操作。
可选的,所述加载模块,包括:
第一加载单元,设置为当开启PTC加热时,若燃料电池出口温度小于第一温度阈值,则根据第一设定电压进行加载操作,在加载过程中不断判断所述最小单体电压是否大于或等于第一阈值且所述单体电压差值是否小于第二阈值;
第二加载单元,设置为若所述最小单体电压大于或者等于第一阈值,且所 述单体电压差值小于第二阈值,则保持所述第一设定电压进行加载操作;
第一降载单元,设置为若所述最小单体电压小于第一阈值,或者,所述单体电压差值大于或者等于第二阈值,则进行降载操作;
第三加载单元,设置为若所述最小单体电压大于或者等于第一阈值,且所述单体电压差值大于或者等于第二阈值,则根据所述最小单体电压和单体电池数量进行加载操作。
可选的,所述加载模块,还包括:
第四加载单元,设置为若燃料电池出口温度大于或者等于第一温度阈值,且小于或者等于第二温度阈值,则根据第二设定电压进行加载操作,在加载过程中不断判断所述最小单体电压是否大于或等于第一阈值且所述单体电压差值是否小于第二阈值;
第五加载单元,设置为若所述最小单体电压大于或者等于第一阈值,且所述单体电压差值小于第二阈值,则保持第二设定电压进行加载操作;
第二降载单元,设置为若所述最小单体电压小于第一阈值,或者,所述单体电压差值大于或者等于第二阈值,则进行降载操作;
第六加载单元,设置为若所述最小单体电压大于或者等于第一阈值,且所述单体电压差值大于或者等于第二阈值,则根据所述最小单体电压和单体电池数量进行加载操作。
可选的,所述加载模块,设置为:
若燃料电池出口温度大于第二温度阈值,则切换至正常怠速工况,完成冷启动。
可选的,第一降载单元,设置为:
若所述最小单体电压小于第一阈值,或者,所述单体电压差值大于或者等于第二阈值,则根据预设降载速率进行降载操作。
可选的,所述单体电压差值为最大单体电压和最小单体电压的差值。
可选的,所述第一阈值为大于或等于0V且小于或等于0.5V的任一数值。
上述产品可执行本申请任意实施例所提供的方法,具备执行方法相应的功能模块。
本实施例的技术方案,根据所述最小单体电压和所述单体电压差值确定运行电压值,根据所述运行电压值进行加载操作,在运用燃料电池自产热来升温燃料电池时,考虑燃料电池的单体电压一致性和反极现象,能够在燃料电池不发生反极的情况下产生大量热能,使得燃料电池实现快速冷启动且减少燃料电池寿命的损耗。
实施例四
图4为本申请实施例四中的一种计算机设备的结构示意图。图4示出了适于用来实现本申请实施方式的示例性计算机设备12的框图。图4显示的计算机设备12仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图4所示,计算机设备12以通用计算设备的形式表现。计算机设备12的组件可以包括但不限于:至少一个处理器或者处理单元16,系统存储器28,连接不同系统组件(包括系统存储器28和处理单元16)的总线18。
总线18表示几类总线结构中的至少一种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(Industry Standard Architecture,ISA)总线,微通道体系结构(Micro Channel Architecture,MCA)总线,增强型ISA总线、视频电子标准协会(Video Electronics Standards Association,VESA)局域总线以及外围组件互连(Peripheral Component Interconnect,PCI)总线。
计算机设备12典型地包括多种计算机系统可读介质。这些介质可以是任何能够被计算机设备12访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
系统存储器28可以包括易失性存储器形式的计算机系统可读介质,例如随 机存取存储器(Random Access Memory,RAM)30和/或高速缓存存储器32。计算机设备12可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储系统34可以设置为读写不可移动的、非易失性磁介质(图4未显示,通常称为“硬盘驱动器”)。尽管图4中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如只读光盘(Compact Disc-Read Only Memory,CD-ROM),数字视盘(Digital Video Disc-Read Only Memory,DVD-ROM)或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过至少一个数据介质接口与总线18相连。存储器28可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本申请各实施例的功能。
具有一组(至少一个)程序模块42的程序/实用工具40,可以存储在例如存储器28中,这样的程序模块42包括——但不限于——操作系统、至少一个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块42通常执行本申请所描述的实施例中的功能和/或方法。
计算机设备12也可以与至少一个外部设备14(例如键盘、指向设备、显示器24等)通信,还可与至少一个使得用户能与该计算机设备12交互的设备通信,和/或与使得该计算机设备12能与至少一个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(Input/Output,I/O)接口22进行。另外,本实施例中的计算机设备12,显示器24不是作为独立个体存在,而是嵌入镜面中,在显示器24的显示面不予显示时,显示器24的显示面与镜面从视觉上融为一体。并且,计算机设备12还可以通过网络适配器20与至少一个网络(例如局域网(Local Area Network,LAN),广域网(Wide Area Network,WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器20通过总线18与计算机设备12的其它模块通信。应当明白,尽管图中未 示出,可以结合计算机设备12使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、磁盘阵列(Redundant Arrays of Independent Disks,RAID)系统、磁带驱动器以及数据备份存储系统等。
处理单元16通过运行存储在系统存储器28中的程序,从而执行各种功能应用以及数据处理,例如实现本申请实施例所提供的燃料电池控制方法:
在冷启动过程中,获取燃料电池的单体电压;
根据所述燃料电池的单体电压确定最小单体电压和单体电压差值;
根据所述最小单体电压和所述单体电压差值确定运行电压值,根据所述运行电压值进行加载操作。
可选的,处理单元16通过运行存储在系统存储器28中的程序,还可以执行本申请任意实施例提供的燃料电池控制方法。
实施例五
本申请实施例五提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请所有申请实施例提供的燃料电池控制方法:
在冷启动过程中,获取燃料电池的单体电压;
根据所述燃料电池的单体电压确定最小单体电压和单体电压差值;
根据所述最小单体电压和所述单体电压差值确定运行电压值,根据所述运行电压值进行加载操作。
可选的,计算机可读存储介质中存储的计算机程序被处理器执行时,还可以实现本申请任意实施例提供的燃料电池控制方法。
可以采用至少一个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有至少一个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、 只读存储器(ROM)、可擦式可编程只读存储器((Erasable Programmable Read-Only Memory,EPROM)或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以至少一种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。

Claims (10)

  1. 一种燃料电池控制方法,包括:
    在冷启动过程中,获取燃料电池的单体电压;
    根据所述燃料电池的单体电压确定最小单体电压和单体电压差值;
    根据所述最小单体电压和所述单体电压差值确定运行电压值,根据所述运行电压值进行加载操作。
  2. 根据权利要求1所述的方法,其中,根据所述最小单体电压和所述单体电压差值确定运行电压值,根据所述运行电压值进行加载操作,包括:
    在开启正温度系数PTC加热,且燃料电池出口温度小于第一温度阈值的情况下,根据第一设定电压进行加载操作,在加载过程中不断判断所述最小单体电压是否大于或等于第一阈值且所述单体电压差值是否小于第二阈值;
    响应于所述最小单体电压大于或者等于第一阈值,且所述单体电压差值小于第二阈值,保持所述第一设定电压进行加载操作;
    响应于所述最小单体电压小于第一阈值,或者,所述单体电压差值大于或者等于第二阈值,进行降载操作;
    响应于所述最小单体电压大于或者等于第一阈值,且所述单体电压差值大于或者等于第二阈值,根据所述最小单体电压和单体电池数量进行加载操作。
  3. 根据权利要求2所述的方法,其中,根据所述最小单体电压和单体电压差值确定运行电压值,根据所述运行电压值进行加载,包括:
    在燃料电池出口温度大于或者等于第一温度阈值,且小于或者等于第二温度阈值的情况下,根据第二设定电压进行加载操作,在加载过程中不断判断所述最小单体电压是否大于或等于第一阈值且所述单体电压差值是否小于第二阈值;
    响应于所述最小单体电压大于或者等于第一阈值,且所述单体电压差值小于第二阈值,保持第二设定电压进行加载操作;
    响应于所述最小单体电压小于第一阈值,或者,所述单体电压差值大于或者等于第二阈值,进行降载操作;
    响应于所述最小单体电压大于或者等于第一阈值,且所述单体电压差值大于或者等于第二阈值,根据所述最小单体电压和单体电池数量进行加载操作。
  4. 根据权利要求3所述的方法,其中,根据所述最小单体电压和单体电压差值确定运行电压值,根据所述运行电压值进行加载,包括:
    响应于燃料电池出口温度大于第二温度阈值,切换至正常怠速工况,完成冷启动。
  5. 根据权利要求2所述的方法,其中,响应于所述最小单体电压小于第一阈值,或者,所述单体电压差值大于或者等于第二阈值,进行降载操作,包括:
    响应于所述最小单体电压小于第一阈值,或者,所述单体电压差值大于或者等于第二阈值,根据预设降载速率进行降载操作。
  6. 根据权利要求1所述的方法,其中,所述单体电压差值为最大单体电压和最小单体电压的差值。
  7. 根据权利要求2所述的方法,其中,所述第一阈值为大于或等于0V且小于或等于0.5V的任一数值。
  8. 一种燃料电池控制装置,包括:
    获取模块,设置为在冷启动过程中,获取燃料电池的单体电压;
    确定模块,设置为根据所述燃料电池的单体电压确定最小单体电压和单体电压差值;
    加载模块,设置为根据所述最小单体电压和所述单体电压差值确定运行电压值,根据所述运行电压值进行加载操作。
  9. 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1-7中任一所述的方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-7中任一所述的方法。
PCT/CN2021/133087 2020-12-25 2021-11-25 一种燃料电池控制方法、装置、设备及存储介质 WO2022135016A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011564111.7A CN112713289B (zh) 2020-12-25 2020-12-25 一种燃料电池控制方法、装置、设备及存储介质
CN202011564111.7 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022135016A1 true WO2022135016A1 (zh) 2022-06-30

Family

ID=75546600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133087 WO2022135016A1 (zh) 2020-12-25 2021-11-25 一种燃料电池控制方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN112713289B (zh)
WO (1) WO2022135016A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116238391A (zh) * 2023-01-31 2023-06-09 中国第一汽车股份有限公司 燃料电池的控制方法及装置
CN117594838A (zh) * 2024-01-19 2024-02-23 广东云韬氢能科技有限公司 燃料电池系统启动过程中的热机控制方法及燃料电池系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713289B (zh) * 2020-12-25 2022-04-15 中国第一汽车股份有限公司 一种燃料电池控制方法、装置、设备及存储介质
CN113629269B (zh) * 2021-07-28 2022-09-16 同济大学 一种燃料电池系统及其低温启动控制方法
CN113793952A (zh) * 2021-08-12 2021-12-14 上海电气集团股份有限公司 燃料电池系统及其低温启动控制方法、装置
CN113948739B (zh) * 2021-10-29 2023-03-07 北京亿华通科技股份有限公司 一种车载燃料电池发动机系统及控制方法
CN114976130A (zh) * 2022-06-08 2022-08-30 中国第一汽车股份有限公司 一种车用燃料电池系统健康状态评价方法、系统、电子设备和存储介质
CN116575988B (zh) * 2023-05-19 2023-12-22 北京亿华通科技股份有限公司 燃料电池系统用膨胀机及燃料电池系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100095A (ja) * 2004-09-29 2006-04-13 Honda Motor Co Ltd 燃料電池の起動方法
JP2007172843A (ja) * 2005-12-19 2007-07-05 Honda Motor Co Ltd 燃料電池システム及びその起動方法
CN102169165A (zh) * 2010-01-21 2011-08-31 通用汽车环球科技运作有限责任公司 燃料电池堆的最小电池电压退化的早期检测
DE102018202111A1 (de) * 2018-02-12 2019-08-14 Audi Ag Verfahren zum Starten eines Brennstoffzellensystems bei Vorliegen von Froststartbedingungen
CN112072138A (zh) * 2020-08-14 2020-12-11 同济大学 适应于冷启动的燃料电池混合电源系统及其建模方法
CN112713289A (zh) * 2020-12-25 2021-04-27 中国第一汽车股份有限公司 一种燃料电池控制方法、装置、设备及存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4877656B2 (ja) * 2007-07-02 2012-02-15 トヨタ自動車株式会社 燃料電池システムおよびその電流制御方法
JP4424419B2 (ja) * 2007-12-27 2010-03-03 トヨタ自動車株式会社 燃料電池システム
US8420271B2 (en) * 2009-07-14 2013-04-16 GM Global Technology Operations LLC Method to improve reliability of a fuel cell system using low performance cell detection at low power operation
SA04250400B1 (ar) * 2009-09-10 2008-03-29 سولفاي فارماسويتكالز جي ام بي اتش مشتقات الهيدرونوبول hydronopol كمؤازرات agonists في مستقبلات orl1 البشرية
CN104067428B (zh) * 2012-01-17 2017-03-08 丰田自动车株式会社 燃料电池系统
JP2016096019A (ja) * 2014-11-14 2016-05-26 トヨタ自動車株式会社 燃料電池システムおよびそのセル電圧の復帰方法
JP6164199B2 (ja) * 2014-11-15 2017-07-19 トヨタ自動車株式会社 電源システムおよび燃料電池の電圧制御方法
CN105047965B (zh) * 2015-07-03 2017-05-03 西南交通大学 一种计及电压均衡的pemfc电堆停机策略
GB2546729B (en) * 2016-01-19 2022-02-16 Intelligent Energy Ltd Fuel cell controller, fuel cell system and method of operation
JP6493323B2 (ja) * 2016-07-21 2019-04-03 トヨタ自動車株式会社 燃料電池システム
JP6399053B2 (ja) * 2016-07-26 2018-10-03 トヨタ自動車株式会社 燃料電池システム
KR102565339B1 (ko) * 2018-03-14 2023-08-09 현대자동차주식회사 연료전지의 시동 제어방법 및 제어시스템
CN110957510B (zh) * 2019-12-06 2021-08-31 中国第一汽车股份有限公司 一种燃料电池电堆台架测试开关机方法
CN111769313B (zh) * 2020-06-30 2021-10-08 中国第一汽车股份有限公司 一种燃料电池系统的控制方法
CN111952631B (zh) * 2020-08-17 2023-03-31 河南豫氢动力有限公司 一种车用燃料电池系统低温冷启动控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100095A (ja) * 2004-09-29 2006-04-13 Honda Motor Co Ltd 燃料電池の起動方法
JP2007172843A (ja) * 2005-12-19 2007-07-05 Honda Motor Co Ltd 燃料電池システム及びその起動方法
CN102169165A (zh) * 2010-01-21 2011-08-31 通用汽车环球科技运作有限责任公司 燃料电池堆的最小电池电压退化的早期检测
DE102018202111A1 (de) * 2018-02-12 2019-08-14 Audi Ag Verfahren zum Starten eines Brennstoffzellensystems bei Vorliegen von Froststartbedingungen
CN112072138A (zh) * 2020-08-14 2020-12-11 同济大学 适应于冷启动的燃料电池混合电源系统及其建模方法
CN112713289A (zh) * 2020-12-25 2021-04-27 中国第一汽车股份有限公司 一种燃料电池控制方法、装置、设备及存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116238391A (zh) * 2023-01-31 2023-06-09 中国第一汽车股份有限公司 燃料电池的控制方法及装置
CN117594838A (zh) * 2024-01-19 2024-02-23 广东云韬氢能科技有限公司 燃料电池系统启动过程中的热机控制方法及燃料电池系统
CN117594838B (zh) * 2024-01-19 2024-04-26 广东云韬氢能科技有限公司 燃料电池系统启动过程中的热机控制方法及燃料电池系统

Also Published As

Publication number Publication date
CN112713289B (zh) 2022-04-15
CN112713289A (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
WO2022135016A1 (zh) 一种燃料电池控制方法、装置、设备及存储介质
WO2020220512A1 (zh) 电池热失控的检测方法、装置、系统和电池管理单元
KR100513248B1 (ko) 연료 전지 시스템 및 이 시스템의 정지 방법
JP2021099994A (ja) 燃料電池の劣化管理のためのシステム及び方法
WO2021223717A1 (zh) 车辆的电池保温方法、系统、存储介质及处理器
CN114695921B (zh) 用于燃料电池系统低温启动的控制方法和控制装置
CN111211337B (zh) 一种直接甲醇燃料电池系统
JP4595317B2 (ja) 燃料電池システム
KR20160032072A (ko) 저온 환경의 성능 개선을 위한 배터리팩 제어장치
CN111987333A (zh) 一种燃料电池储能系统的控制方法及控制系统
CN116169327B (zh) 阳极吹扫控制方法、装置、电子设备及燃料电池
CN107415936B (zh) 电池预热方法、装置和混合动力控制设备
CN112140941B (zh) 一种车模式切换方法、装置、设备及存储介质
CN117007988A (zh) 动力电池放电功率测试方法、装置、电子设备及存储介质
CN111370812A (zh) 一种电池加热控制方法、装置、系统及存储介质
WO2023151190A1 (zh) 充电时间确定方法及bms、电池、电能设备
CN115483418A (zh) 燃料电池的瞬时温度控制方法、系统、设备和存储介质
CN208489333U (zh) 一种电池恒温系统
CN116315273A (zh) 电池储能系统液冷管路的控制方法、装置和设备
US20150224894A1 (en) Method for diagnosing fuel cell stack
CN117747892B (zh) 燃料电池发热功率控制方法、电子设备和用电设备
US11724706B2 (en) Preconditioning a fuel cell using route data
CN115548380A (zh) 燃料电池加热控制方法、装置和管理系统
CN115991124A (zh) 一种燃料电池车辆及其低温启动控制方法和系统
WO2024109162A1 (zh) 燃料电池电堆的冷启动控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909015

Country of ref document: EP

Kind code of ref document: A1